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Natural populations are often exposed to temporally varying environments. Evolutionary dynamics in varying environments have

been extensively studied, although understanding the effects of varying selection pressures remains challenging. Here, we inves-

tigate how cycling between a pair of statistically related fitness landscapes affects the evolved fitness of an asexually reproducing

population. We construct pairs of fitness landscapes that share global fitness features but are correlated with one another in

a tunable way, resulting in landscape pairs with specific correlations. We find that switching between these landscape pairs, de-

pending on the ruggedness of the landscape and the interlandscape correlation, can either increase or decrease steady-state fitness

relative to evolution in single environments. In addition, we show that switching between rugged landscapes often selects for in-

creased fitness in both landscapes, even in situations where the landscapes themselves are anticorrelated. We demonstrate that

positively correlated landscapes often possess a shared maximum in both landscapes that allows the population to step through

sub-optimal local fitness maxima that often trap single landscape evolution trajectories. Finally, we demonstrate that switching be-

tween anticorrelated paired landscapes leads to ergodic-like dynamics where each genotype is populatedwith nonzero probability,

dramatically lowering the steady-state fitness in comparison to single landscape evolution.
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Natural populations experience tremendous environmental di-

versity, and understanding how this spatiotemporal diversity in-

fluences evolutionary dynamics is a long-standing challenge. A

great deal of work, both theoretical and experimental, has shown

that spatial (Farhang-Sardroodi et al. 2017; Hermsen and Hwa

2010; Lin et al. 2015; Waddell et al. 2010; Whitlock and Go-

mulkiewicz 2005; Constable and McKane 2014a, 2014b; Ha-

bets et al. 2006; Korona et al. 1994; Agarwala and Fisher 2019)

and temporal (Lewontin and Cohen 1969; Cook and Hartl 1974;

Hartl and Cook 1974; Gillespie and Guess 1978; Gupta et al.

2011; Kussell and Leibler 2005; Kashtan et al. 2007; Mustonen

and Lässig 2008; Acar et al. 2008; Shahrezaei et al. 2008; Mu-

stonen and Lässig 2009; Gaál et al. 2010; Cooper and Lenski

2010; Tan et al. 2011; Tan and Gore 2012; Cvijović et al. 2015;

Patra and Klumpp 2015; Skanata and Kussell 2016; Steinberg

and Ostermeier 2016; Canino-Koning et al. 2019; de Vos et al.

2015) heterogeneity play an important role in adaptation of

asexual communities. For example, temporal or spatial fluctua-

tions may lead to increased fixation probability and adaptation

rates (Cvijović et al. 2015; Mustonen and Lässig 2008; Lewon-

tin and Cohen 1969; Hermsen and Hwa 2010; Whitlock and Go-

mulkiewicz 2005; Farhang-Sardroodi et al. 2017; Kashtan et al.

2007), a phenomenon that is also exploited in genetic program-

ming algorithms (O’Neill et al. 2010). In addition, environments

that change in systematic ways may promote facilitated varia-

tion (Gerhart and Kirschner 2007; Parter et al. 2008), allowing or-

ganisms to preferentially harness the beneficial effects of random

genetic changes and rapidly adapt to future perturbations. And

when phenotypes themselves fluctuate over time, the frequency

of interphenotype switching can evolve to match the timescale

of environmental fluctuations (Kussell and Leibler 2005; Gupta

et al. 2011; Acar et al. 2008; Shahrezaei et al. 2008).
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It is increasingly clear that these evolutionary dynamics have

practical consequences for human health. The rise of drug re-

sistance, which threatens the efficacy of treatments for bacte-

rial infections, cancer, and viruses, is driven–at least in part–by

evolutionary adaption occurring in complex, heterogeneous envi-

ronments. Spatial heterogeneity in drug concentration has been

shown to accelerate the evolution of resistance (Zhang et al.

2011; Hermsen et al. 2012; Greulich et al. 2012; Fu et al. 2015;

Moreno-Gamez et al. 2015; Baym et al. 2016), although adap-

tation may also be slowed when fitness landscapes (Greulich

et al. 2012) or drug profiles (De Jong and Wood 2018) are ju-

diciously tuned. Similarly, temporal variations in drug exposure–

for example, drug cycling–can slow resistance under some con-

ditions, although hospital-level strategies such as mixing may

be more effective at generating the requisite environmental het-

erogeneity (Bergstrom et al. 2004; Brown and Nathwani 2005).

Recent studies have also shown the potential of new control

strategies that harness so-called “collateral effects” (de Evgrafov

et al. 2015; Lazar et al. 2014, 2013, 2018; Imamovic et al.

2018; Imamovic and Sommer 2013; Kim et al. 2014; Fuentes-

Hernandez et al. 2015; Roemhild et al. 2015; Yoshida et al. 2017;

Roemhild et al. 2018; Munck et al. 2014; Barbosa et al. 2018;

Dhawan et al. 2017; Nichol et al. 2019; Maltas and Wood 2019;

Maltas et al. 2019), which occur when resistance to a target drug

is accompanied by an increase or decrease in resistance to an un-

seen stressor. In essence, these strategies force populations to si-

multaneously adapt to incompatible evolutionary tasks (Shoval

et al. 2012; Hart et al. 2015).

Evolutionary adaptation is often modeled as a biased ran-

dom walk on a high-dimensional landscape that links each spe-

cific genotype with a particular fitness (Gillespie 1983b, 1983a,

1984). In the simplest scenario, these landscapes represent evolu-

tion in the strong selection weak mutation (SSWM) limit, where

isogenic populations evolve step-wise as the current genotype

is replaced by that of a fitter descendant. While these idealized

models are strictly valid only under certain conditions–for ex-

ample, SSWM typically holds when mutation rate and effective

population size are small–simple models have contributed sig-

nificantly to our understanding of evolution (Gillespie 1983a,

1984; Gerrish and Lenski 1998; Cook and Hartl 1974; Hartl and

Cook 1974; Desai and Fisher 2007; Desai et al. 2007). In the

context of fitness landscape models, control strategies that ex-

ploit collateral effects force the population to adapt to sequences

of distinct, but statistically related, landscapes. For example, al-

ternating between two drugs that induce mutual collateral sen-

sitivity (adaptation to drug A leads to sensitivity to drug B, and

vice versa) corresponds to landscapes with anticorrelated fitness

peaks. When environments change in systematic ways–for exam-

ple, by forcing the population to adapt to modular tasks com-

prised of related sub-goals–adaptation may select for generalists,

genotypes that are fit in a wide range of environments at the cost

of suboptimal specialization for any particular task (Parter et al.

2008; Wang and Dai 2019; Sachdeva et al. 2020). Relatively re-

cent theoretical work also shows that conditional effects of evolu-

tionary history can be captured by slowly changing landscapes–

“seascapes”–which allow for the incorporation of time-dependent

correlations (Mustonen and Lässig 2009; Agarwala and Fisher

2019). In general, however, understanding evolution in correlated

landscapes–and in particular, how the choice of that correlation

impacts adaptation–remains challenging.

In this work, we investigate evolutionary dynamics of asex-

ual populations in rapidly alternating environments described by

pairs of (potentially rugged) fitness landscapes with tunable inter-

landscape correlations (Fig. 1). This problem is loosely inspired

by adaptation of microbial communities to two-drug cycles in

which each drug induces collateral resistance or sensitivity to

the other, although the scenario in question may arise in many

different contexts, including evolution in antibodies (Burton et al.

2012) and viruses (Rhee et al. 2010). Our goal is to understand

how the interplay between intralandscape disorder (ruggedness)

and interlandscape fitness correlations impact fitness. By for-

mulating the evolutionary dynamics as a simple Markov chain

(Durrett and Durrett 1999; Nichol et al. 2015), we are able

to efficiently calculate time-dependent genotype distributions

and investigate adaptation to ensembles of landscape pairs with

various levels of epistasis and fitness correlations—results that

would be more difficult to achieve from stochastic simulations

alone. We find that rapid switching can either increase or de-

crease the steady state fitness of the population, depending

on both the correlation between landscapes and level of in-

tralandscape ruggedness (i.e., epistasis). On short timescales,

mean fitness is generally highest in static landscapes, but rapid

switching between correlated environments can produce fitness

gains for sufficiently rugged landscapes on longer timescales.

Surprisingly, longer periods of rapid switching can also produce

a genotype distribution whose fitness is, on average, larger

than that of the ancestor population in both environments, even

when the landscapes themselves are anticorrelated. To intuitively

understand these results, we visualized genotype distributions

and intergenotype transitions as network diagrams, revealing

that rapid switching in highly correlated environments frequently

shepherds the population to genotypes that are locally optimal in

both landscapes and, in doing so, fosters escape from the locally

optimal but globally suboptimal fitness peaks that limit adapta-

tion in static environments. The dynamics arise, in part, from the

fact that rugged landscape pairs are increasingly likely to exhibit

shared maxima as they become more positively correlated, and in

turn, for landscapes with positive correlations, the mean fitness

of these shared peaks is higher than that of non-shared peaks. By

contrast, evolution in anticorrelated landscape pairs sample large
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regions of genotype space, exhibiting ergodic-like steady-state

behavior that results in decreased average fitness.

Results
MARKOV CHAIN MODEL OF EVOLUTION IN

ALTERNATING LANDSCAPE PAIRS WITH TUNABLE

CORRELATIONS

We consider evolution of an asexual haploid genome with N mu-

tational sites. Each mutational site can have one of two alleles (la-

beled 0 or 1), and a single genotype can therefore be represented

by one of the 2N possible binary sequences of length N. The fit-

ness of each genotype depends on the specific environment in

which evolution takes place. We consider two different environ-

ments (“A” and “B”), and in each environment, every genotype

is assigned a fixed fitness value, which defines the corresponding

fitness landscapes (landscape A and landscape B) in each envi-

ronment. Each fitness landscape is therefore defined on an N-

dimensional hypercubic graph, with the nodes corresponding to

specific genotypes.

To construct the landscape for a given environment, we use

a many-peaked “rough Mt. Fuji” landscape (Aita and Husimi

1998; Tan and Gore 2012; Neidhart et al. 2014). Specifically,

we assume that the Malthusian fitness of the ancestor genotype

(0,0,0\ldots0) is zero and that the fitness fi associated with a sin-

gle mutation at mutational site i is drawn from a uniform distribu-

tion on the interval [−1,1]. Single mutations can therefore lead to

increases ( fi > 0) or decreases ( fi < 0) in fitness. To fully spec-

ify the base landscape (i.e., the smooth landscape in the absence

of epistasis), we then assume fitness associated with multiple mu-

tations is additive. Finally, landscape ruggedness is incorporated

by adding to the fitness of each genotype j a fixed, random vari-

able ξ j drawn from a zero-mean normal distribution with vari-

ance σ2. The variable σ—the amplitude of the noise—determines

the level of ruggedness of the landscape, which simulates epis-

tasis (Phillips 2008; Ritchie et al. 2001; Xu et al. 2005; Tsai

et al. 2007; da Silva et al. 2010; Weinreich et al. 2006; Ander-

son et al. 2015). In what follows, we focus on landscapes of size

N = 7 (128 total genotypes) for computational convenience and

limit ourselves primarily to σ = 0 (smooth landscapes) or σ = 1

(rugged landscapes).

Our goal is to investigate evolution in rapidly changing en-

vironments that correspond to landscape pairs with correlated fit-

ness peaks. To do so, we generate for each landscape A a “paired”

landscape B with similar statistical properties (identical fitness

mean and variance) but fitness peaks that are, on average, cor-

related with those of landscape A in a tunable way. To do so,

we represent each landscape A as a vector Ā of length 2N and

use simple matrix algebra to generate a random vector Ā⊥ or-
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Figure 1. Adaptation to alternating landscapes may depend on

inter-landscape correlations. (A) Schematic fitness landscape, with

fitness varying from less fit (blue) to more fit (red) over the two-

dimensional genotype space. Starting from a single genotype

(lower right hand corner), adaptation follows a biased random

walk (arrows) toward local fitness maxima (in this case, in the

upper left side of the landscape). (B and C) Fitness landscapes A

and B are positively (B) or negatively (C) correlated and do not

share a global fitness maximum. Adaptation under rapid alterna-

tion of landscapes A and B leads to an altered evolutionary trajec-

tory (represented as arrows, with solid arrows indicating steps in

A and dashed arrows steps in B). In this example, the final fitness

achieved in both correlated (panel B) and anticorrelated (panel C)

landscapes is lower than that of static landscape evolution (panel

A). Adaptation to anticorrelated landscapes leads to a particularly

significant decrease in final fitness, as each step in B effectively

reverses the progress made the previous step in A.

thogonal to Ā; by construction, then, this vector corresponds to

a landscape whose fitness values are, on average, uncorrelated

with those of landscape A. It is then straightforward to generate a

vector B̄, a linear combination of Ā and Ā⊥, such that the fitness

values of landscapes A and B are correlated to a tunable degree
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−1 ≤ ρ ≤ 1, where ρ is the Pearson correlation coefficient be-

tween the two vectors Ā and B̄ (see Methods).
With the landscapes specified, we then model adaptation in

the well-characterized Strong Selection Weak Mutation (SSWM)

limit (Gillespie 1983b, 1983a, 1984), which can be formally de-

scribed by a Markov chain (Nichol et al. 2015; Durrett and Dur-

rett 1999). During each time step, the population transitions with

uniform probability to one of the neighboring genotypes with a

higher fitness in the current environment. We compare adapta-

tion on a single landscape (single landscape evolution, SLE) with

adaptation to rapid alternation of the two correlated landscapes A

and B, which we refer to as paired landscape evolution (PLE). We

focus here on the limit of rapid environmental switching, where

the fitness landscape changes (A-B-A-B...) at each time step. This

corresponds loosely to the rapid environmental switching seen

in many laboratory experiments (Lenski 1988; Burch and Chao

1999; Crill et al. 2000; Kim et al. 2014).
We are primarily interested in comparing the (average)

steady-state fitness of populations undergoing SLE to that of pop-

ulations undergoing PLE. The average fitness, F̄X ( p̄), in envi-

ronment X can be calculated at any time step t using F̄X ( p̄) =
X̄ · p̄(t ), where p̄(t ) is the vector whose ith component is the prob-

ability to be in genotype i at time t and X̄ is the landscape vector

for environment X . Because the process can be described by a

Markov chain, the vector p̄(t ) is given by p̄(t ) = TM p̄(0), where

the matrix TM describes the sequence of environments over time

(e.g. TM = T M
A for M steps in environment A, or TM = (TBTA)M/2

for M consecutive A-B cycles, with TA and TB the transition ma-

trices corresponding to single steps in environment A and B, re-

spectively). In what follows, we focus primarily on the mean fit-

ness difference between the SLE and PLE adaptation, which is

given by F̄ A
� ≡ F̄A( p̄A) − F̄A( p̄AB), where p̄A is the steady state

genotype distribution following adaptation to environment A, and

p̄AB is the steady state genotype distribution following adapta-

tion to alternating A-B environments. Note that we define this

fitness difference, F̄ A
� , with respect to landscape Ā (noted by su-

perscript), which allows us to compare adaptation in environment

A with adaptation in the alternating A-B environments. In the

drug cycling analogy, we are measuring the average fitness in the

drug A environment–essentially a measure of resistance to that

drug. In all calculations, we consider an ensemble of 1000 land-

scapes pairs–with each pair sharing the same mean and variance

in fitness and the same inter-landscape correlations–and we aver-

age the results over this ensemble.

ADAPTATION IN RUGGED LANDSCAPES FREQUENTLY

ENDS IN LOCAL, SUB-OPTIMAL FITNESS MAXIMA

While adaptation to static, rugged landscapes is well-understood,

we first briefly discuss the effects of landscape ruggedness in the

context of the current model. In static landscapes, steady state is

reached when the genotype corresponds to a local fitness maxi-

mum. In the case of smooth, purely additive landscapes (σ = 0),

there is a single fitness peak that corresponds to the global max-

imum, which we call gMax. However, as the landscape becomes

more rugged (σ > 0), the average number of local maxima in-

creases. For small σ � 1, the average number of local maxima

is Nmax ≈ 1 + 1/2N (N + 1)σ2, while for large σ it approaches

the theoretical maximum of 2N/(N + 1) (Fig. 2A); in the SI, we

provide a semi-analytical approximation for intermediate values

of σ. In turn, the fraction of adaptation trajectories that reach the

global maximum decreases, reflecting the propensity of rugged

landscapes to trap evolution in globally sub-optimal genotypes.

To visualize these results, we represented the steady state geno-

type distributions and inter-genotype transitions as a network di-

agram (Fig. 2B), with each node (circle) representing a genotype.

The shading of each circle represents the relative fitness of that

genotype (ranging from less fit, white, to more fit, black) and the

size of the circle indicates occupation probability in the steady

state. Arrows connecting different genotypes indicate nonzero

transition probabilities, with the thickness of the arrow corre-

sponding to its magnitude. We show only those transitions that

can occur when adaptation starts in the ancestor genotype (top of

diagram). In the case of evolution on a smooth landscape (σ = 0,

Fig. 2B, left panel), all trajectories lead to the single global max-

imum (indicated by red “+”). However, in the rugged landscape

(σ = 1, Fig. 2B, right panel), there is a nonzero probability of

settling in each of three local maxima, and the population fre-

quently ends in a non-optimal genotype. Increasing ruggedness

would therefore be expected to lower the average fitness achieved

in an ensemble of landscapes.

SWITCHING BETWEEN POSITIVELY CORRELATED

LANDSCAPES CAN PRODUCE HIGHER AVERAGE

FITNESS THAN ADAPTATION TO A STATIC

ENVIRONMENT

Next, we set out to compare adaptation to landscape A with adap-

tation to alternating landscapes (A, B) with a tunable level of cor-

relation, ρ, in the absence of epistasis (σ = 0, Fig. 3A, blue). On

these smooth landscapes, the fitness is single-peaked (Tan and

Gore 2012), and in the absence of switching, the population al-

ways reaches this global maximum. In alternating environments,

adaptation approaches the same average fitness as in static envi-

ronments (i.e. F̄ A
� ≈ 0)–implying that it finds the global fitness

maximum–for all but the most negatively correlated landscapes

(ρ < −0.85), where switching leads to steep decreases in fitness.

By contrast, when landscapes are rugged (σ = 1), we find a range

of correlations for which switching (PLE) increases the mean

fitness (F̄ A
� < 0, Fig. 3A, orange). Furthermore, as ruggedness

increases, the range of correlations leading to increased fitness

grows (Fig. 3B).
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Figure 2. Rugged landscapes trap populations in non-optimal fitness maxima A. Left panel: average number of local fitness maxima

per landscape as a function of increasing ruggedness (epistasis, σ). Circles are estimates from simulations, solid curve is semi-analytical

approximation (see SI), and dotted red line is the theoretical maximum (2N/(N + 1) = 16). Right panel: fraction of adapted populations

that reach the global fitness maximum value as a function of ruggedness. Error bars are ± standard error of the mean in the ensemble of

landscapes. B. Sample adaptive trajectories for small landscapes (N = 4) and σ = 0 (left) or σ = 1 (right). Each circle represents a genotype,

with the ancestral genotype at the top. The shading of the circle represents the relative fitness of that genotype (ranging from less fit,

white, to more fit, black) and the size of the circle indicates occupation probability in the steady state. Red + symbols mark genotypes

corresponding to local fitness maxima. Arrows represent transitions between genotypes that occur with nonzero probability given that

adaptation begins in the ancestral genotype. The width of the arrow represents the magnitude of the transition probability.
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Figure 3. Modulated fitness in alternating landscapes depends on intralandscape ruggedness and interlandscape correlations. (A) Dif-

ference in average fitness (at steady state) between populations adapted to a single static landscape (A) or rapidly alternating landscape

pairs (A and B) as a function of correlation between landscapes A and B. Average fitness is defined as the mean fitness of the steady

state genotype distribution (which arises following adaptation to either static or switching protocols) measured in landscape A. Blue

curve: σ = 0 (no epistasis; smooth); Orange curve: σ = 1 (orange; rugged). Dotted vertical line (corresponding to zero fitness difference)

indicates critical value of correlation; above this critical value, switching between rugged landscape pairs (σ = 1) leads to larger fitness

gains than evolution in a static landscape. (B) Heatmap showing regions of parameter space (ruggedness σ, interlandscape correlation)

where switching leads to higher (black) or lower (white) fitness than evolution in a static landscape. (C) Identical to panel (A), but curves

are shown for 5 (blue), 11 (red), and 501 (black) total evolutionary steps. σ = 1 for all curves. (D) Collateral fitness change, ranging from

blue (less fit) to red (more fit), for populations adapted to alternating environments A and B as a function of ruggedness (σ) and interland-

scape correlation. Collateral fitness change is defined as the increase in average fitness in landscape B (relative to ancestor) associated

with the steady state genotype distribution arising from adaptation to alternating A-B landscapes. N = 7 in all panels, but see also

Figure S1. Error bars in panels (A) and (C) are ± standard error of the mean in the ensemble of landscapes.

FITNESS CAN BE MAXIMALLY INCREASED IN EITHER

STATIC OR ALTERNATING ENVIRONMENTS

DEPENDING ON THE TIMESCALE

We find that adaptation to static environments typically occurs

on a faster timescale than adaptation to alternating environments

(Fig. S3). As a result, the protocol yielding the highest average

fitness may differ depending on the timescale over which the

comparison is made. For example, on short timescales (5 total

evolutionary steps; Fig. 3C, blue), adaptation to static environ-

ments always leads to greater fitness gain, regardless of the cor-

relation between landscapes. On moderate (11 total evolutionary

steps; Fig. 3C, red) to long (Fig. 3C, black) timescales, however,
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we again see a range of positive correlations for which switching

improves fitness–first only for highly correlated landscapes, and

then eventually for a wider range of positively correlated land-

scapes. This result indicates that the optimal protocol for increas-

ing fitness may depend on the chosen timescale; notably, recent

results indicate that these timescales can also be tuned to maintain

generalists successful in different environments (Sachdeva et al.

2020).

ADAPTATION TO ALTERNATING LANDSCAPES CAN

LEAD TO INCREASED MEAN FITNESS EVEN IN

ANTI-CORRELATED LANDSCAPES

While we have so far focused on mean fitness defined in land-

scape A, either due to static (F̄A( p̄A)) or alternating (F̄A( p̄A)) en-

vironments, we also asked how fitness in landscape B was modu-

lated during adaptation. If adaptation occurs to a static landscape

(A), the results are simple: the genotype adapted to A will on av-

erage exhibit increased (decreased) fitness in B when landscape

B is positively (negatively) correlated with A. This scenario is

reminiscent of collateral effects between different drugs, where

increased resistance to one drug may be associated with either

increased (cross resistance) or decreased (collateral sensitivity)

resistance to a different (unseen) drug. In the case of alternating

environments, however, the outcome is less clear a priori.

For smooth landscapes (σ = 0), we find that adaptation

to the alternating landscapes leads to increased fitness in B

(F̄B( p̄AB) > 0) when the landscapes are positively correlated and

decreased fitness when they are negatively correlated (Fig. 3D).

Nonzero epistasis shifts the boundary separating increased and

decreased fitness toward negative correlations. As a result,

switching leads to increased fitness in both landscapes for a wider

range of correlations—even, counterintuitively, in cases where

the landscapes are (weakly) anticorrelated. In the context of drug

cycling, this result suggests that cross resistance is likely to arise

following repeated cycling of two drugs, even when their fitness

landscapes are anticorrelated (i.e., drugs induce mutual collateral

sensitivity).

ALTERNATING BETWEEN HIGHLY CORRELATED

LANDSCAPES PROMOTES ESCAPE FROM LOCAL

FITNESS OPTIMA

To understand why switching between highly correlated land-

scapes can increase fitness relative to single landscape adapta-

tion, we again represented adaptation on a simple (N = 4) net-

work representing a particular pair of fitness landscapes (Fig. S7).

The choice of N = 4 allows for a simpler visual interpretation of

the results, and the relevant dynamics are qualitatively similar

for a broad range of landscape sizes and sigma values (Fig. S1,

Fig. S2). The landscape for environment A is characterized by

multiple local maxima (Fig. S7A, left panel), and in this example,

the adaptation dynamics starting from the ancestral genotype are

relatively simple, with only two paths possible (Fig. S7A, right

panel). With equal probability, the trajectory ends in one of two

possible states, one of which is the global maximum.

If we now introduce rapid alternation with a second, pos-

itively correlated landscape (ρ = 0.8), the dynamics are much

richer (Fig. S7B). In this example, there is a single shared (local)

maximum between the two landscapes (marked with red “+”),

and adaptation to alternating environments eventually shepherds

all trajectories to this shared maximum, which also happens to be

the global maximum. As a result, alternating between landscapes

leads to (on average) greater fitness increases than that achieved

in static landscapes, where trajectories are split between local and

global maxima. Intuitively, this example suggests that one advan-

tage of rapid switching is that it dislodges trajectories from sub-

optimal local maxima—that is, switching between highly (but not

perfectly) correlated landscapes provides a source of fluctuations

that maximize the likelihood of finding globally optimal geno-

types. This result is reminiscent of the observed “ratchet-like”

mechanism of the lac operon in Escherichia coli (de Vos et al.

2015).

EVOLUTION IN HIGHLY ANTICORRELATED PAIRED

LANDSCAPES BROADLY SAMPLES GENOTYPE SPACE

RESULTING IN REDUCED AVERAGE FITNESS

We now return to dynamics in strongly anticorrelated landscapes,

where shared maxima may be less likely to occur. To intuitively

understand dynamics in this regime, we visualized the fitness

landscape and evolutionary trajectories for a pair of simple (N =
4) anticorrelated landscapes (Fig. S8). In this example, adapta-

tion to the static landscape leads to considerably higher fitness

than adaptation to alternating landscapes. Interestingly, we see

that the genotype distribution remains broad, even for long times.

In fact, the only genotypes that remain unoccupied (pi = 0) are

those five that correspond to local minima in the A landscape.

Including an additional step in landscape B leads to a similarly

broad distribution, now with unoccupied genotypes correspond-

ing to local minima of landscape B (Figure S5). In contrast to

adaptation to single landscapes or alternating, positively corre-

lated landscapes, the steady state distribution is not dominated by

local fitness maxima but instead corresponds to broad genotype

distribution and an associated decrease in average fitness.

ADAPTATION TO ALTERNATING LANDSCAPES IS

FREQUENTLY DOMINATED BY PRESENCE OR

ABSENCE OF SHARED FITNESS MAXIMA

We hypothesized that the increased fitness in alternating land-

scapes is closely linked to the expected number of shared max-

ima between paired landscapes. To probe this hypothesis, we first

estimated two quantities: (1) the fraction of local maxima that
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are shared between landscapes (specifically, the fraction of A-

landscape maxima that also correspond to maxima in the paired

landscape B) and (2) the fraction of landscape pairs that share

at least one maxima. We estimated these quantities by simulat-

ing ensembles of landscapes and also developed semi-analytical

approximations that reduce to simple evaluations of the cumu-

lative distribution function (CDF) of a multivariate normal vari-

able (SI). As intuition suggests, the fraction of shared maxima

increases with correlation, both for smooth and rugged land-

scapes (Fig. 4A). In addition, we estimated the fraction of land-

scape pairs in the entire ensemble that share at least one shared

maximum (Fig. 4B). Again we find that this quantity increases

with correlation, but it does so much more rapidly for rugged

landscapes. For smooth landscapes, the latter fraction increases

gradually—and the curve is identical to that in Figure 4A, a

result of the fact that smooth landscapes have only a single

(global) maximum.

To link these architectural properties of the landscapes

with dynamics, we calculated adaptation trajectories under rapid

switching of all paired landscapes in these ensembles (Fig. 4C).

For both smooth landscapes and negatively correlated rugged

landscapes, the fraction of trajectories ending in a shared max-

imum closely mirrors the fraction of landscapes pairs that share

a maximum. This correspondence suggests that under these con-

ditions, when landscapes share a local maximum, the adapting

system is likely to settle there. On the other hand, for positively

correlated rugged landscapes, the likelihood of finding a shared

maximum is relatively insensitive to correlation until ρ becomes

quite large (>0.80), when it rapidly increases (Fig. 4C).

To further clarify the connection between fitness and shared

maxima, we divided the local fitness maxima from landscape A

into one of two categories: those that also correspond to a local

maximum in landscape B, and those that do not. We found, some-

what counter-intuitively, that the mean fitness differs for the two

categories (Fig. 4D). For negatively correlated landscape pairs,

the fitness of shared maxima is less than that of nonshared max-

ima. By contrast, shared maxima in highly (positively) correlated

landscapes have a higher mean fitness than nonshared maxima. In

addition, there is a range of positive ρ where the fitness of shared

maxima is also greater than the average fitness of maxima in a

single A landscape (which corresponds to the ρ → 1 limit of the

curve), offering an explanation for the fitness increase induced

by alternating between highly correlated landscapes. Specifically,

evolutionary trajectories typically settle into a single local max-

ima for adaptation to both static and positively correlated, al-

ternating environments; however, for a range of highly (but not

perfectly) correlated landscape pairs, the mean fitness of those

shared maxima is greater than the mean fitness of local maxima

in a single A landscape.

STEADY-STATE GENOTYPE DISTRIBUTIONS

TRANSITION FROM NARROW TO BROAD AS

CORRELATION IS DECREASED

To further characterize steady state dynamics, we calculated

the entropy of the steady-state genotype distribution, defined as

S(p)/Smax ≡ −(
∑

i pi ln pi )/Smax , where pi is the steady state

probability of being in genotype i and the expression is nor-

malized by Smax = N ln(2), the entropy of a uniform distribution

(Fig. 4E)—that is, a state where every genotype is equally proba-

ble. To capture dynamics associated with potential nonfixed point

behavior, for this analysis, we slightly modify the definition of

steady state to be pi = (pA + pB)/2, where pA is the steady state

fitness following a step in landscape A (the previously used def-

inition) and pB the fitness in the same steady state regime but

following a step in landscape B (in words, we average over a

full A-B cycle in the steady state). We find that as correlation

(ρ) increases, the entropy of the system decreases, indicating that

the dynamics are confined to an ever smaller set of genotypes—

presumably those corresponding to shared maxima. Indeed, if we

restrict the ensemble to only those landscape pairs that share a

maximum, the entropy of the distribution is unchanged for highly

correlated landscapes, suggesting that shared maxima dominate

the steady state dynamics. By contrast, when landscape pairs are

anticorrelated, restricting the ensemble to pairs without shared

maxima closely approximates the results of the full ensemble,

suggesting that dynamics in this regime are dominated by qualita-

tively different behavior. Consistent with changes in the entropy

of the genotype distribution, we also find that correlation dra-

matically changes the fraction of genotype space occupied (with

nonzero probability) in the steady state (Fig. 4F). For highly cor-

related landscapes, only a small fraction of the total genotype

space is occupied. By contrast, highly anticorrelated landscapes

produce steady state distributions wherein all states are occupied

with non-zero probability, suggesting ergodic-like behavior, con-

sistent with the example in Figure S8. The fact that relative en-

tropy remains less than 1 in this regime does indicate, however,

that the distribution is not fully uniform.

Finally, in Figure 4G, we plot the difference in steady state

fitness achieved in static versus alternating environments for both

the full landscape pair ensemble (black) and for a reduced en-

semble consisting only of landscapes with shared maxima (red).

We find that the curves are nearly identical over a wide range

of correlations σ > −0.4. Similarly, when the environments are

strongly anticorrelated, fitness differences are similar between

the full ensemble and the reduced ensemble with no shared max-

ima (Fig. 4H). Taken together, these results provide evidence that

adaptation in this model is frequently dominated by the presence

or absence of shared fitness maxima, which in turn depends on

the correlation between landscapes and landscape ruggedness.
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Figure 4. Evolution in alternating landscapes is frequently dominated by presence or absence of shared fitness maxima. (A) Fraction

of local maxima in landscape A that also correspond to a shared maxima in landscape B (σ = 0, blue; and σ = 1, red). (B) Fraction of

landscape pairs share at least one maximum. In panels (A) and (B), circles corresponded to simulated landscapes and solid lines are semi-

analytic approximations (see Supporting Information). (C) Fraction of trajectories ending in a sharedmaximum as a function of correlation.

(D) Average fitness of shared maxima (blue) and average fitness of nonshared maxima (black). Dashed line is average fitness of all local

maxima in landscape A. (E) Normalized entropy of the steady state genotype distribution following adaptation to alternating landscapes.

Curves correspond to the full landscape pair ensemble (blue) and a reduced ensemble consisting only of landscapes that contain a shared

maximum (red), bottom, and a reduced ensemble consisting only of landscapes with no shared maxima (red, top). The relative entropy

is defined as S(p)/Smax ≡ −(
∑

i pi ln pi )/Smax , where pi is the steady state probability of being in genotype i and Smax is the entropy of

a uniform distribution. (F) Fraction of genotypes that have a nonzero probability of occupation in either the last A step or last B step at

steady-state. Curves represent the paired landscape ensemble with no shared maxima (blue), the ensemble where every pair has at least

one shared maximum (red), and the full ensemble (black). (G) Difference in average fitness achieved in static and switching landscapes.

Curves correspond to the full ensemble of paired landscapes (black) or a restricted ensemble that includes on those pairs that share

a fitness maximum (red). (H) Similar to panel (F), with curves corresponding to the full ensemble (black) or a restricted ensemble that

includes only those pairs with no shared fitness maxima (red). Error bars are ± standard error of the mean in the ensemble of landscapes.

Error bars are ± standard error of the mean in the ensemble of landscapes. N = 7 for all curves, and σ = 1 for all curves in panels (D–H).
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Figure 5. Clonal interference reduces the effects of alternating landscape evolution. (A) Difference in average fitness achieved in static

and switching landscapes. Curves correspond to different strengths of clonal interference (blue: random walker, x = 0, red: proportional

walker, x = 1, green: x = 2, black: x = 5, magenta: x = 10, orange: x infinite, always steps to largest fitness neighbor). (B) Normalized

entropy of the steady-state genotype distribution following adaption to alternating landscapes with different clonal interference. (C)

Fraction of trajectories ending in a shared maximum as a function of correlation with different clonal interference. (D) Collateral fitness

change, ranging from blue (less fit) to red (more fit), for populations adapted to alternating environments A and B as a function of clonal

interference (x).

CLONAL INTERFERENCE AND SLOW SWITCHING

REDUCE THE IMPACT OF ALTERNATING BETWEEN

ANTICORRELATED LANDSCAPES

Our idealized model neglects clonal interference, which could

potentially impact the evolutionary dynamics (Gerrish and Lenski

1998). To investigate its potential impacts, we implement a phe-

nomenological model previously used to estimate the effects of

clonal interference (Tan and Gore 2012). Briefly, in the absence

of clonal interference, the population can be treated as a ran-

dom walker that steps to any nearby more fit genotype with equal

probability. In order to simulate clonal interference, the popula-

tion can be treated as a greedy walker, where the fixation prob-

ability of advantageous mutations is assumed to be proportional

to sx , where s is the selective advantage and x is the phenomeno-

logical parameter. As x increases, the probability of stepping to

more fit mutants continues to grow, simulating larger population

sizes.

We find that small and moderate levels of clonal interfer-

ence (x ∼ 5) reduce the observed fitness differences between

static and alternating protocols but lead to similar qualitative

dynamics (Fig. 5). However, as the population size gets large

(x > 5), the fitness difference, genetic diversity and collateral

effects due to switching become quite small; the impact of

clonal interference is particularly large when landscape pairs are

strongly anticorrelated.

We next asked how the period of switching impacts the evo-

lutionary dynamics. To do so, we varied the period of the switch-

ing (specifically, the number of consecutive steps taken in one

landscape before switching) over approximately an order of mag-

nitude (Fig. 6). We found that small changes in the period—for

example, doubling it from 1 step to 2—reduces the observed fit-

ness differences and the normalized entropy, particularly for anti-

correlated landscapes, but does not dramatically impact the like-

lihood of ending in a shared maximum or the collateral fitness

changes (Fig. 6).

Discussion
Our results indicate that both intralandscape disorder (rugged-

ness) and interlandscape fitness correlations impact fitness in

rapidly alternating fitness landscapes. Compared with static adap-

tation, rapid switching can lead to increased or decreased fit-

ness, depending on both the correlation between landscapes and

level of intralandscape ruggedness (i.e., epistasis). Perhaps most

strikingly, switching between highly, but not perfectly, correlated

rugged landscapes can increase fitness by promoting escape from
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Figure 6. Consecutive steps in the same landscape before switching lessens the effects of alternating landscape evolution. (A) Difference

in average fitness achieved in static and switching landscapes. Curves correspond to different evolutionary steps taken in a landscape

before switching (blue: 1 step, red: 2 steps, green: 4 steps, magenta: 8 steps, black: 20 steps). (B) Normalized entropy of the steady state

genotype distribution following adaption to alternating in landscapes with different switching periods. (C) Fraction of trajectories ending

in a shared maximum as a function of correlation with different switching periods. (D) Collateral fitness change, ranging from blue (less

fit) to red (more fit), for populations adapted to alternating environments A and B as a function of switching period.

local fitness maxima, increasing the likelihood of finding global

fitness optima. Furthermore, rapid switching can also produce a

genotype distribution whose fitness is, on average, larger than that

of the ancestor population in both environments, even when the

landscapes themselves are anticorrelated. Adaptation dynamics

are often dominated by the presence or absence of shared max-

ima between landscapes. Rugged landscape pairs are increasingly

likely to exhibit shared maxima as they become more positively

correlated, and in turn, for landscapes with positive correlations,

the mean fitness of these shared peaks is higher than that of

non-shared peaks. By contrast, evolution in anti-correlated land-

scape pairs samples large regions of genotype space, exhibiting

ergodic-like steady-state behavior that results in decreased aver-

age fitness. A simple phenomenological model suggests these

results are robust to competition due to small and moderate

clonal interference, however they disappear as population sizes

grow excessively large. In addition, while prolonging the pe-

riod of switching can alter the dynamics in anticorrelated land-

scape evolution, the fitness advantage conferred by alternating

evolution in correlated landscape pairs is robust to the period of

switching.

Although our results are loosely inspired by antibiotic cy-

cling, the model is highly idealized and certainly cannot make

predictions that apply directly to clinical scenarios. At the same

time, the simplicity and relative generality of the model means

that it may be relevant for understanding the qualitative behav-

ior of a wide range of systems, including evolution in antibod-

ies (Burton et al. 2012), viruses (Rhee et al. 2010), and bacteria,

where ratchet-like mechanisms for rapid adaptation have been

observed experimentally (de Vos et al. 2015). Our model relies on

the Strong Selection Weak Mutation (SSWM) limit and neglects

potentially relevant dynamics that could arise due to horizontal

gene transfer or population heterogeneity, which could poten-

tially accelerate adaptation, particularly when switching between

anticorrelated landscapes. While we also investigated an adapted

model that accounts for clonal interference (Tan and Gore 2012),

the model still assumes a homogeneous population, thus ignor-

ing the genetic diversity necessary of clonal interference, and it

neglects the possibility for deleterious or multiple simultaneous

mutations to fix. In addition, we focus on small (typically N = 7)

landscapes for tractability, and dynamics could differ for much

larger landscapes.

It is important to note that we focus on paired landscapes

characterized by a prescribed “global” correlation coefficient,

but we do not investigate how smaller sub-regions may dif-

fer from that global characterization. In addition, the paired

landscapes in our ensembles are constructed to share certain

global features–like mean fitness–and are related by a prescribed
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inter-landscape correlation, but they are not statistically identical.

For example, the average number of local maxima can differ

between landscape A and B, leading to different levels of evolved

fitness for each landscape individually (Figure S6). This indicates

that landscapes A and B have effectively different levels of epis-

tasis, depending on the value of ρ, though these differences are

most pronounced when A landscapes are very smooth (σ ≈ 0).

These differences do not seem to be appreciably impacting

fitness dynamics, as removing them by choosing a reduced

ensemble (keeping only the B landscapes that exhibit similar

fitness gains as A under static adaptation) does not appreciably

modify the results (Figure S6). Nevertheless, it is possible that

some of these results are specific to the exact manner in which

correlated landscapes were produced. It may be interesting to

investigate switching dynamics using landscapes with different

types of statistical similarities–for example, those that differ only

in higher-order moments, or those that fully decouple landscape

ruggedness and correlation (Wang and Dai 2019)). In fact, the

results presented here are complementary to recent findings

showing that environmental switching can enhance the basin of

attraction for generalists, which are genotypes that are fit in mul-

tiple environments (Wang and Dai 2019; Sachdeva et al. 2020).

While the focus of the work is different–and the timescale of

environmental switching and the statistical relationships between

landscape pairs differ in their model–our results similarly high-

light the importance of shared landscape maxima in determining

adaptation dynamics. Future work may aim to further elucidate

the evolutionary impacts of varying timescale, ordering, and

temporal correlations in landscape dynamics. In the long run, we

hope results from idealized models like these offer increased con-

ceptual clarity to complement the rapidly evolving experimental

approaches for mapping landscape dynamics in living organisms.

Methods
CONSTRUCTION OF THE LANDSCAPES

We used the “rough Mt. Fiji” landscape model (Aita and Husimi

1998; Tan and Gore 2012; Neidhart et al. 2014) where each geno-

type is represented by a binary sequences of length N. The fitness

of the ancestor genotype (0,0,0\ldots0) was set to zero and the

Malthusian fitness fi associated with a single mutation at muta-

tional site i was drawn from a uniform distribution on the interval

[−1,1]. The fitness associated with multiple mutations is addi-

tive, and landscape ruggedness is incorporated by adding to the

fitness of each genotype j a fixed, random variable ξ j drawn from

a zero-mean normal distribution with variance σ2.

To create paired fitness landscapes, we represented each

landscape A as a vector Ā of length 2N , which we centered and

rescaled to achieve a zero mean, unit variance vector. Then, we

generated a Gaussian random vector Ā⊥ (also with zero mean and

unit variance) and subtracted from Ā⊥ its projection onto Ā, mak-

ing Ā⊥ orthogonal to Ā; by construction, this vector corresponds

to a landscape whose fitness values are, on average, uncorrelated

with those of landscape A. It was then straightforwarded to gen-

erate a vector B̄, a linear combination of Ā and Ā⊥, such that the

fitness values of landscapes A and B were correlated to a tunable

degree −1 ≤ ρ ≤ 1, where ρ is the Pearson correlation coefficient

between the two vectors Ā and B̄. At the end of this procedure,

we rescaled Ā and B̄ so that both had mean and variance equal to

that of the original A landscape.

EVOLUTION ON THE LANDSCAPES

The SSWM assumption allows the evolutionary trajectories to

be modeled as a Markov chain (Nichol et al. 2015; Durrett and

Durrett 1999). We followed the “random move SSWM model,”

which says that the probability of transitioning between adjacent

genotypes i → j is given by Ti j = 1/m, with m the total num-

ber of i-adjacent genotypes with fitness greater than that of i in

the given environment. Each environment (A or B) has its own

transition matrix, which we designate as TA and TB. Evolution in

environment A is then given by

p̄(t ) = (TA)t p̄(0) (1)

with p̄(t ) the vector whose ith component is the probability to be

in genotype i at time step t . We refer to the steady state (t → ∞)

limit of this process as p̄A. Similarly, we can describe rapidly

alternating landscapes (A-B-A-B...) with

p̄(t ′) = (TBTA)t ′/2 p̄(0) (2)

with t ′ ≡ 2t an even time step. We refer to the steady state

(t → ∞) limit of this process as p̄AB. In practice, we defined

steady state using the condition ‖( p̄(2t + 1) − p̄(2t − 1))‖ <

ε = 0.001. In words, we required the change in p̄ between con-

secutive steps in environment A to be sufficiently small. To fa-

cilitate comparison with static evolution in landscape A, we al-

ways ended the process after a step in landscape A, meaning

there were always an odd number of steps. Ending instead in

landscape B resulted in qualitatively similar behavior, although

the fitness was often shifted, indicating that a single step in

A or B–even in steady state–can lead to significant changes in

fitness S4.
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Data S1: Supplemental Material.
FIG. S1: Rugged landscapes of different sizes show qualitatively similar changes in fitness as a function of correlation.
FIG. S2: Landscapes of different sizes and sigmas show qualitatively similar results.
FIG. S3: Adaptation to static and alternating environments approach steady state at different timescales.
FIG. S4: Adapted fitness depends on whether final step is taken in landscape A or B when landscapes are anticorrleated.
FIG. S5: Adaptation to anti-correlated landscapes can produce cycles that sample large fractions of genotype space.
FIG. S6: Statistical properties of landscape B differ from those of A but do not appreciably impact fitness differences between static and alternating land-
scapes.
FIG. S7: Evolutionary dynamics in alternating landscapes with positively correlated fitness peaks.
FIG. S8: Evolutionary dynamics in alternating landscapes with negatively correlated fitness peaks.
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