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Natural populations are often exposed to temporally varying environments.
Evolutionary dynamics in varying environments have been extensively stud-
ied, though understanding the effects of varying selection pressures remains
challenging. Here we investigate how cycling between a pair of statistically
related fitness landscapes affects the evolved fitness of an asexually reproduc-
ing population. We construct pairs of fitness landscapes that share global
fitness features but are correlated with one another in a tunable way, resulting
in landscape pairs with specific correlations. We find that switching between
these landscape pairs, depending on the ruggedness of the landscape and
the inter-landscape correlation, can either increase or decrease steady-state
fitness relative to evolution in single environments. In addition, we show
that switching between rugged landscapes often selects for increased fitness
in both landscapes, even in situations where the landscapes themselves are
anti-correlated. We demonstrate that positively correlated landscapes often
possess a shared maximum in both landscapes that allows the population to
step through sub-optimal local fitness maxima that often trap single land-
scape evolution trajectories. Finally, we demonstrate that switching between
anti-correlated paired landscapes leads to ergodic-like dynamics where each
genotype is populated with nonzero probability, dramatically lowering the
steady-state fitness in comparison to single landscape evolution.
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Evolution in alternating environments with tunable

inter-landscape correlations

Abstract

Natural populations are often exposed to temporally varying environments. Evolutionary dynam-

ics in varying environments have been extensively studied, though understanding the effects of

varying selection pressures remains challenging. Here we investigate how cycling between a pair of

statistically related fitness landscapes affects the evolved fitness of an asexually reproducing popu-

lation. We construct pairs of fitness landscapes that share global fitness features but are correlated

with one another in a tunable way, resulting in landscape pairs with specific correlations. We

find that switching between these landscape pairs, depending on the ruggedness of the landscape

and the inter-landscape correlation, can either increase or decrease steady-state fitness relative to

evolution in single environments. In addition, we show that switching between rugged landscapes

often selects for increased fitness in both landscapes, even in situations where the landscapes them-

selves are anti-correlated. We demonstrate that positively correlated landscapes often possess a

shared maximum in both landscapes that allows the population to step through sub-optimal lo-

cal fitness maxima that often trap single landscape evolution trajectories. Finally, we demonstrate

that switching between anti-correlated paired landscapes leads to ergodic-like dynamics where each

genotype is populated with nonzero probability, dramatically lowering the steady-state fitness in

comparison to single landscape evolution.
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I. INTRODUCTION

Natural populations experience tremendous environmental diversity, and understand-1

ing how this spatiotemporal diversity influences evolutionary dynamics is a long-standing2

challenge. A great deal of work, both theoretical and experimental, has shown that spa-3

tial (Agarwala and Fisher 2019; Constable and McKane 2014a,b; Farhang-Sardroodi et al.4

2017; Habets et al. 2006; Hermsen and Hwa 2010; Korona et al. 1994; Lin et al. 2015;5

Waddell et al. 2010; Whitlock and Gomulkiewicz 2005) and temporal (Acar et al. 2008;6

Canino-Koning et al. 2019; Cook and Hartl 1974; Cooper and Lenski 2010; Cvijović et al.7

2015; Gaál et al. 2010; Gillespie and Guess 1978; Gupta et al. 2011; Hartl and Cook 1974;8

Kashtan et al. 2007; Kussell and Leibler 2005; Lewontin and Cohen 1969; Mustonen and9

Lässig 2008; Mustonen and Lässig 2009; Patra and Klumpp 2015; Shahrezaei et al. 2008;10

Skanata and Kussell 2016; Steinberg and Ostermeier 2016; Tan and Gore 2012; Tan et al.11

2011; de Vos et al. 2015) heterogeneity play an important role in adaptation of asexual12

communities. For example, temporal or spatial fluctuations may lead to increased fixa-13

tion probability and adaptation rates (Cvijović et al. 2015; Farhang-Sardroodi et al. 2017;14

Hermsen and Hwa 2010; Kashtan et al. 2007; Lewontin and Cohen 1969; Mustonen and15

Lässig 2008; Whitlock and Gomulkiewicz 2005), a phenomenon that is also exploited in ge-16

netic programming algorithms (ONeill et al. 2010). In addition, environments that change17

in systematic ways may promote facilitated variation (Gerhart and Kirschner 2007; Parter18

et al. 2008), allowing organisms to preferentially harness the beneficial effects of random19

genetic changes and rapidly adapt to future perturbations. And when phenotypes them-20

selves fluctuate over time, the frequency of inter-phenotype switching can evolve to match21

the timescale of environmental fluctuations (Acar et al. 2008; Gupta et al. 2011; Kussell and22

Leibler 2005; Shahrezaei et al. 2008).23

It is increasingly clear that these evolutionary dynamics have practical consequences for24

human health. The rise of drug resistance, which threatens the efficacy of treatments for25

bacterial infections, cancer, and viruses, is driven–at least in part–by evolutionary adaption26

occurring in complex, heterogeneous environments. Spatial heterogeneity in drug concen-27

tration has been shown to accelerate the evolution of resistance (Baym et al. 2016; Fu28

et al. 2015; Greulich et al. 2012; Hermsen et al. 2012; Moreno-Gamez et al. 2015; Zhang29

et al. 2011), though adaptation may also be slowed when fitness landscapes (Greulich et al.30
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2012) or drug profiles (De Jong and Wood 2018) are judiciously tuned. Similarly, tempo-31

ral variations in drug exposure–for example, drug cycling–can slow resistance under some32

conditions, though hospital-level strategies such as mixing may be more effective at generat-33

ing the requisite environmental heterogeneity (Bergstrom et al. 2004; Brown and Nathwani34

2005). Recent studies have also shown the potential of new control strategies that harness35

so-called collateral effects (Barbosa et al. 2018; Dhawan et al. 2017; de Evgrafov et al. 2015;36

Fuentes-Hernandez et al. 2015; Imamovic et al. 2018; Imamovic and Sommer 2013; Kim37

et al. 2014; Lazar et al. 2018, 2014, 2013; Maltas et al. 2019; Maltas and Wood 2019; Munck38

et al. 2014; Nichol et al. 2019; Roemhild et al. 2015, 2018; Yoshida et al. 2017), which occur39

when resistance to a target drug is accompanied by an increase or decrease in resistance to40

an unseen stressor. In essence, these strategies force populations to simultaneously adapt to41

incompatible evolutionary tasks (Hart et al. 2015; Shoval et al. 2012).42

Evolutionary adaptation is often modeled as a biased random walk on a high-dimensional43

landscape that links each specific genotype with a particular fitness (Gillespie 1983a,b, 1984).44

In the simplest scenario, these landscapes represent evolution in the strong selection weak45

mutation (SSWM) limit, where isogenic populations evolve step-wise as the current geno-46

type is replaced by that of a fitter descendant. While these idealized models are strictly47

valid only under certain conditions–for example, SSWM typically holds when mutation rate48

and effective population size are small–simple models have contributed significantly to our49

understanding of evolution (Cook and Hartl 1974; Desai and Fisher 2007; Desai et al. 2007;50

Gerrish and Lenski 1998; Gillespie 1983a, 1984; Hartl and Cook 1974). In the context of fit-51

ness landscape models, control strategies that exploit collateral effects force the population52

to adapt to sequences of distinct, but statistically related, landscapes. For example, alter-53

nating between two drugs that induce mutual collateral sensitivity (adaptation to drug A54

leads to sensitivity to drug B, and vice versa) corresponds to landscapes with anti-correlated55

fitness peaks. When environments change in systematic ways–for example, by forcing the56

population to adapt to modular tasks comprised of related sub-goals–adaptation may select57

for generalists, genotypes that are fit in a wide range of environments at the cost of subop-58

timal specialization for any particular task (Parter et al. 2008; Sachdeva et al. 2020; Wang59

and Dai 2019). Relatively recent theoretical work also shows that conditional effects of60

evolutionary history can be captured by slowly changing landscapes–seascapes–which allow61

for the incorporation of time-dependent correlations (Agarwala and Fisher 2019; Mustonen62
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and Lässig 2009). In general, however, understanding evolution in correlated landscapes–63

and in particular, how the choice of that correlation impacts fitness adaptation–remains64

challenging.65

In this work, we investigate evolutionary dynamics of asexual populations in rapidly al-66

ternating environments described by pairs of (potentially rugged) fitness landscapes with67

tunable inter-landscape correlations (Fig 1). This problem is loosely inspired by adaptation68

of microbial communities to 2-drug cycles in which each drug induces collateral resistance or69

sensitivity to the other, though the scenario in question may arise in many different contexts,70

including evolution in antibodies (Burton et al. 2012) and viruses (Rhee et al. 2010). Our71

goal is to understand how the interplay between intra-landscape disorder (ruggedness) and72

inter-landscape fitness correlations impact fitness. By formulating the evolutionary dynam-73

ics as a simple Markov chain (Durrett and Durrett 1999; Nichol et al. 2015), we are able74

to efficiently calculate time-dependent genotype distributions and investigate adaptation to75

ensembles of landscape pairs with various levels of epistasis and fitness correlations–results76

that would be more difficult to achieve from stochastic simulations alone. We find that rapid77

switching can either increase or decrease the steady state fitness of the population, depend-78

ing on both the correlation between landscapes and level of intra-landscape ruggedness (i.e.79

epistasis). On short timescales, mean fitness is generally highest in static landscapes, but80

rapid switching between correlated environments can produce fitness gains for sufficiently81

rugged landscapes on longer timescales. Surprisingly, longer periods of rapid switching can82

also produce a genotype distribution whose fitness is, on average, larger than that of the83

ancestor population in both environments, even when the landscapes themselves are anti-84

correlated. To intuitively understand these results, we visualized genotype distributions85

and inter-genotype transitions as network diagrams, revealing that rapid switching in highly86

correlated environments frequently shepherds the population to genotypes that are locally87

optimal in both landscapes and, in doing so, fosters escape from the locally optimal but88

globally suboptimal fitness peaks that limit adaptation in static environments. The dynam-89

ics arise, in part, from the fact that rugged landscape pairs are increasingly likely to exhibit90

shared maxima as they become more positively correlated, and in turn, for landscapes with91

positive correlations, the mean fitness of these shared peaks is higher than that of non-92

shared peaks. By contrast, evolution in anti-correlated landscape pairs sample large regions93

of genotype space, exhibiting ergodic-like steady-state behavior that results in decreased94
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FIG. 1: Adaptation to alternating landscapes may depend on inter-landscape correlations A. Schematic fitness
landscape, with fitness varying from less fit (blue) to more fit (red) over the two dimensional genotype space. Starting from a
single genotype (lower right hand corner), adaptation follows a biased random walk (arrows) toward local fitness maxima (in
this case, in the upper left side of the landscape). B and C. Fitness landscapes A and B are positively (B) or negatively (C)
correlated and do not share a global fitness maximum. Adaptation under rapid alternation of landscapes A and B leads to an
altered evolutionary trajectory (represented as arrows, with solid arrows indicating steps in A and dashed arrows steps in B).
In this example, the final fitness achieved in both correlated (panel B) and anti-correlated (panel C) landscapes is lower than
that of static landscape evolution (panel A). Adaptation to anti-correlated landscapes leads to a particularly significant
decrease in final fitness, as each step in B effectively reverses the progress made the previous step in A.

average fitness.95

II. RESULTS96

A. Markov chain model of evolution in alternating landscape pairs with tunable97

correlations98

We consider evolution of an asexual haploid genome with N mutational sites. Each99

mutational site can have one of two alleles (labeled 0 or 1), and a single genotype can100

therefore be represented by one of the 2N possible binary sequences of length N. The fitness101
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of each genotype depends on the specific environment in which evolution takes place. We102

consider two different environments (“A” and “B”), and in each environment, every genotype103

is assigned a fixed fitness value, which defines the corresponding fitness landscapes (landscape104

A and landscape B) in each environment. Each fitness landscape is therefore defined on an105

N -dimensional hypercubic graph, with the nodes corresponding to specific genotypes.106

To construct the landscape for a given environment, we use a many-peaked “rough Mt.107

Fuji” landscape (Aita and Husimi 1998; Neidhart et al. 2014; Tan and Gore 2012). Specif-108

ically, we assume that the fitness of the ancestor genotype (0,0,0...0) is zero and that the109

fitness fi associated with a single mutation at mutational site i is drawn from a uniform110

distribution on the interval [-1,1]. Single mutations can therefore lead to increases (fi > 0)111

or decreases (fi < 0) in fitness. To fully specify the base landscape (i.e. the smooth land-112

scape in the absence of epistasis), we then assume fitness associated with multiple mutations113

is additive. Finally, landscape ruggedness is incorporated by adding to the fitness of each114

genotype j a fixed, random variable ξj drawn from a zero-mean normal distribution with115

variance σ2. The variable σ–the amplitude of the noise–determines the level of ruggedness116

of the landscape, which simulates epistasis (Anderson et al. 2015; Phillips 2008; Ritchie117

et al. 2001; da Silva et al. 2010; Tsai et al. 2007; Weinreich et al. 2006; Xu et al. 2005). In118

what follows, we focus on landscapes of size N = 7 (128 total genotypes) for computational119

convenience and limit ourselves primarily to σ = 0 (smooth landscapes) or σ=1 (rugged120

landscapes).121

Our goal is to investigate evolution in rapidly changing environments that correspond to122

landscape pairs with correlated fitness peaks. To do so, we generate for each landscape A a123

“paired” landscape B with similar statistical properties (identical fitness mean and variance)124

but fitness peaks that are, on average, correlated with those of landscape A in a tunable125

way. To do so, we represent each landscape A as a vector Ā of length 2N and use simple126

matrix algebra to generate a random vector Ā⊥ orthogonal to Ā; by construction, then, this127

vector corresponds to a landscape whose fitness values are, on average, uncorrelated with128

those of landscape A. It is then straightforward to generate a vector B̄, a linear combination129

of Ā and Ā⊥, such that the fitness values of landscapes A and B are correlated to a tunable130

degree −1 ≤ ρ ≤ 1, where ρ is the Pearson correlation coefficient between the two vectors131

Ā and B̄ (see Methods).132

With the landscapes specified, we then model adaptation in the well-characterized Strong133
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Selection Weak Mutation (SSWM) limit (Gillespie 1983a,b, 1984), which can be formally134

described by a Markov chain (Durrett and Durrett 1999; Nichol et al. 2015). During each135

time step, the population transitions with uniform probability to one of the neighboring136

genotypes with a higher fitness in the current environment. We compare adaptation on a137

single landscape (single landscape evolution, SLE) with adaptation to rapid alternation of138

the two correlated landscapes A and B, which we refer to as paired landscape evolution139

(PLE). We focus here on the limit of rapid environmental switching, where the fitness140

landscape changes (A-B-A-B...) at each time step. This corresponds loosely to the rapid141

environmental switching seen in many laboratory experiments (Burch and Chao 1999; Crill142

et al. 2000; Kim et al. 2014; Lenski 1988).143

We are primarily interested in comparing the (average) steady-state fitness of populations144

undergoing SLE to that of populations undergoing PLE. The average fitness, F̄X(p̄) , in145

environment X can be calculated at any time step t using F̄X(p̄) = X̄ · p̄(t), where p̄(t)146

is the vector whose ith component is the probability to be in genotype i at time t and147

X̄ is the landscape vector for environment X. Because the process can be described by a148

Markov chain, the vector p̄(t) is given by p̄(t) = TM p̄(0), where the matrix TM describes149

the sequence of environments over time (e.g. TM = TMA for M steps in environment A, or150

TM = (TBTA)M/2 for M consecutive A-B cycles, with TA and TB the transition matrices151

corresponding to single steps in environment A and B, respectively). In what follows, we152

focus primarily on the mean fitness difference between the SLE and PLE adaptation, which153

is given by F̄A
∆ ≡ F̄A(p̄A) − F̄A(p̄AB), where p̄A is the steady state genotype distribution154

following adaptation to environment A, and p̄AB is the steady state genotype distribution155

following adaptation to alternating A-B environments. Note that we define this fitness156

difference, F̄A
∆ , with respect to landscape Ā (noted by superscript), which allows us to157

compare adaptation in environment A with adaptation in the alternating A-B environments.158

In the drug cycling analogy, we are measuring the average fitness in the drug A environment–159

essentially a measure of resistance to that drug. In all calculations, we consider an ensemble160

of 1000 landscapes pairs–with each pair sharing the same mean and variance in fitness and161

the same inter-landscape correlations–and we average the results over this ensemble.162
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FIG. 2: Rugged landscapes trap populations in non-optimal fitness maxima A. Left panel: average number of local
fitness maxima per landscape as a function of increasing ruggedness (epistasis, σ). Circles are estimates from simulations,
solid curve is semi-analytical approximation (see SI), and dotted red line is the theoretical maximum (2N/(N + 1) = 16).
Right panel: fraction of adapted populations that reach the global fitness maximum value as a function of ruggedness. Error
bars are ± standard error of the mean in the ensemble of landscapes. B. Sample adaptive trajectories for small landscapes
(N = 4) and σ = 0 (left) or σ = 1 (right). Each circle represents a genotype, with the ancestral genotype at the top. The
shading of the circle represents the relative fitness of that genotype (ranging from less fit, white, to more fit, black) and the
size of the circle indicates occupation probability in the steady state. Red + symbols mark genotypes corresponding to local
fitness maxima. Arrows represent transitions between genotypes that occur with nonzero probability given that adaptation
begins in the ancestral genotype.. The width of the arrow represents the magnitude of the transition probability.

B. Adaptation in rugged landscapes frequently ends in local, sub-optimal fitness163

maxima164

While adaptation to static, rugged landscapes is well-understood, we first briefly discuss165

the effects of landscape ruggedness in the context of the current model. In static landscapes,166

steady state is reached when the genotype corresponds to a local fitness maximum. In167

the case of smooth, purely additive landscapes (σ = 0), there is a single fitness peak that168

corresponds to the global maximum, which we call gMax. However, as the landscape becomes169

more rugged (σ > 0), the average number of local maxima increases. For small σ � 1,170

the average number of local maxima is Nmax ≈ 1 + 1/2N(N + 1)σ2, while for large σ it171
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approaches the theoretical maximum of 2N/(N + 1) (Fig 2A); in the SI, we provide a semi-172

analytical approximation for intermediate values of σ. In turn, the fraction of adaptation173

trajectories that reach the global maximum decreases, reflecting the propensity of rugged174

landscapes to trap evolution in globally sub-optimal genotypes. To visualize these results,175

we represented the steady state genotype distributions and inter-genotype transitions as a176

network diagram (Fig 2B), with each node (circle) representing a genotype. The shading177

of each circle represents the relative fitness of that genotype (ranging from less fit, white,178

to more fit, black) and the size of the circle indicates occupation probability in the steady179

state. Arrows connecting different genotypes indicate nonzero transition probabilities, with180

the thickness of the arrow corresponding to its magnitude. We show only those transitions181

that can occur when adaptation starts in the ancestor genotype (top of diagram). In the case182

of evolution on a smooth landscape (σ = 0, Fig 2B, left panel), all trajectories lead to the183

single global maximum (indicated by red “+”). However, in the rugged landscape (σ = 1,184

Fig 2B, right panel), there is a nonzero probability of settling in each of three local maxima,185

and the population frequently ends in a non-optimal genotype. Increasing ruggedness would186

therefore be expected to lower the average fitness achieved in an ensemble of landscapes.187

C. Switching between positively correlated landscapes can produce higher average188

fitness than adaptation to a static environment189

Next, we set out to compare adaptation to landscape A with adaptation to alternating190

landscapes (A, B) with a tunable level of correlation, ρ, in the absence of epistasis (σ = 0,191

Fig 3A, blue). On these smooth landscapes, the fitness is single-peaked (Tan and Gore192

2012), and in the absence of switching, the population always reaches this global maximum.193

In alternating environments, adaptation approaches the same average fitness as in static194

environments (i.e. F̄A
∆ ≈ 0)–implying that it finds the global fitness maximum–for all but195

the most negatively correlated landscapes (ρ < −0.85), where switching leads to steep196

decreases in fitness. By contrast, when landscapes are rugged (σ = 1), we find a range of197

correlations for which switching (PLE) increases the mean fitness (F̄A
∆ < 0, Fig 3A, orange).198

Furthermore, as ruggedness increases, the range of correlations leading to increased fitness199

grows (Fig 3B).200
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D. Fitness can be maximally increased in either static or alternating environments201

depending on the timescale202

We find that adaptation to static environments typically occurs on a faster timescale203

than adaptation to alternating environments (Fig S3). As a result, the protocol yielding204

the highest average fitness may differ depending on the timescale over which the compar-205

ison is made. For example, on short timescales (5 total evolutionary steps; Fig 3C, blue),206

adaptation to static environments always leads to greater fitness gain, regardless of the cor-207

relation between landscapes. On moderate (11 total evolutionary steps; Fig 3C, red) to long208

(Fig 3C, black) timescales, however, we again see a range of positive correlations for which209

switching improves fitness–first only for highly correlated landscapes, and then eventually210

for a wider range of positively correlated landscapes. This result indicates that the optimal211

protocol for increasing fitness may depend on the chosen timescale; notably, recent results212

indicate that these timescales can also be tuned to maintain generalists successful in different213

environments (Sachdeva et al. 2020).214

E. Adaptation to alternating landscapes can lead to increased mean fitness even215

in anti-correlated landscapes216

While we have so far focused on mean fitness defined in landscape A, either due to static217

(F̄A(p̄A)) or alternating (F̄A(p̄A)) environments, we also asked how fitness in landscape B was218

modulated during adaptation. If adaptation occurs to a static landscape (A), the results are219

simple: the genotype adapted to A will on average exhibit increased (decreased) fitness in B220

when landscape B is positively (negatively) correlated with A. This scenario is reminiscent221

of collateral effects between different drugs, where increased resistance to one drug may222

be associated with either increased (cross resistance) or decreased (collateral sensitivity)223

resistance to a different (unseen) drug. In the case of alternating environments, however,224

the outcome is less clear a priori.225

For smooth landscapes (σ = 0), we find that adaptation to the alternating landscapes226

leads to increased fitness in B (F̄B(p̄AB) > 0) when the landscapes are positively corre-227

lated and decreased fitness when they are negatively correlated (Fig 3D). Nonzero epista-228

sis shifts the boundary separating increased and decreased fitness toward negative corre-229
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FIG. 3: Modulated fitness in alternating landscapes depends on intra-landscape ruggedness and
inter-landscape correlations. A. Difference in average fitness (at steady state) between populations adapted to a single
static landscape (A) or rapidly alternating landscape pairs (A-B) as a function of correlation between landscapes A and B.
Average fitness is defined as the mean fitness of the steady state genotypte distribution (which arises following adaptation to
either static or switching protocols) measured in landscape A. Blue curve: σ = 0 (no epistasis; smooth); Orange curve: σ = 1
(orange; rugged). Dotted vertical line (corresponding to zero fitness difference) indicates critical value of correlation; above
this critical value, switching between rugged landscape pairs (σ = 1) leads to larger fitness gains than evolution in a static
landscape. B. Heatmap showing regions of parameter space (ruggedness σ, inter-landscape correlation) where switching leads
to higher (black) or lower (white) fitness than evolution in a static landscape. C. Identical to panel A, but curves are shown
for 5 (blue), 11 (red) and 501 (black) total evolutionary steps. σ=1 for all curves. D. Collateral fitness change, ranging from
blue (less fit) to red (more fit), for populations adapted to alternating environments A and B as a function of ruggedness (σ)
and inter-landscape correlation. Collateral fitness change is defined as the increase in average fitness in landscape B (relative
to ancestor) associated with the steady state genotype distribution arising from adaptation to alternating A-B landscapes.
N = 7 in all panels, but see also Figure S1. Error bars in panels A and C are ± standard error of the mean in the ensemble of
landscapes.

lations. As a result, switching leads to increased fitness in both landscapes for a wider230

range of correlations–even, counterintuitively, in cases where the landscapes are (weakly)231

anti-correlated. In the context of drug cycling, this result suggests that cross resistance is232

likely to arise following repeated cycling of two drugs, even when their fitness landscapes233

are anti-correlated (i.e. drugs induce mutual collateral sensitivity).234
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F. Alternating between highly-correlated landscapes promotes escape from local235

fitness optima236

To understand why switching between highly correlated landscapes can increase fitness237

relative to single landscape adaptation, we again represented adaptation on a simple (N =238

4) network representing a particular pair of fitness landscapes (Fig S7). The choice of239

N=4 allows for a simpler visual interpretation of the results, and the relevant dynamics are240

qualitatively similar for a broad range of landscape sizes and sigma values (Fig S1, Fig S2).241

The landscape for environment A is characterized by multiple local maxima (Fig S7A, left242

panel), and in this example, the adaptation dynamics starting from the ancestral genotype243

are relatively simple, with only two paths possible (Fig S7A, right panel). With equal244

probability, the trajectory ends in one of two possible states, one of which is the global245

maximum.246

If we now introduce rapid alternation with a second, positively correlated landscape247

(ρ = 0.8), the dynamics are much richer (Fig S7B). In this example, there is a single248

shared (local) maximum between the two landscapes (marked with red “+”), and adaptation249

to alternating environments eventually shepherds all trajectories to this shared maximum,250

which also happens to be the global maximum. As a result, alternating between landscapes251

leads to (on average) greater fitness increases than that achieved in static landscapes, where252

trajectories are split between local and global maxima. Intuitively, this example suggests253

that one advantage of rapid switching is that it dislodges trajectories from suboptimal local254

maxima–that is, switching between highly (but not perfectly) correlated landscapes provides255

a source of fluctuations that maximize the likelihood of finding globally optimal genotypes.256

This result is reminiscent of the observed ”ratchet-like” mechanism of the lac operon in257

Escherichia coli (de Vos et al. 2015).258

G. Evolution in highly anti-correlated paired landscapes broadly samples geno-259

type space resulting in reduced average fitness260

We now return to dynamics in strongly anti-correlated landscapes, where shared max-261

ima may be less likely to occur. To intuitively understand dynamics in this regime, we262

visualized the fitness landscape and evolutionary trajectories for a pair of simple (N = 4)263
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anticorrelated landscapes (Fig S8). In this example, adaptation to the static landscape leads264

to considerably higher fitness than adaptation to alternating landscapes. Interestingly, we265

see that the genotype distribution remains broad, even for long times. In fact, the only266

genotypes that remain unoccupied (pi = 0) are those five that correspond to local minima267

in the A landscape. Including an additional step in landscape B leads to a similarly broad268

distribution, now with unoccupied genotypes corresponding to local minima of landscape B269

(Figure S5). In contrast to adaptation to single landscapes or alternating, positively corre-270

lated landscapes, the steady state distribution is not dominated by local fitness maxima but271

instead corresponds to broad genotype distribution and an associated decrease in average272

fitness.273

H. Adaptation to alternating landscapes is frequently dominated by presence or274

absence of shared fitness maxima275

We hypothesized that the increased fitness in alternating landscapes is closely linked276

to the expected number of shared maxima between paired landscapes. To probe this hy-277

pothesis, we first estimated two quantities: 1) the fraction of local maxima that are shared278

between landscapes (specifically, the fraction of A-landscape maxima that also correspond279

to maxima in the paired landscape B) and 2) the fraction of landscape pairs that share at280

least one maxima. We estimated these quantities by simulating ensembles of landscapes281

and also developed semi-analytical approximations that reduce to simple evaluations of the282

cumulative distribution function (CDF) of a multivariate normal variable (SI). As intuition283

suggests, the fraction of shared maxima increases with correlation, both for smooth and284

rugged landscapes (Fig 4A). In addition, we estimated the fraction of landscape pairs in the285

entire ensemble that share at least one shared maximum (Fig 4B). Again we find that this286

quantity increases with correlation, but it does so much more rapidly for rugged landscapes.287

For smooth landscapes, the latter fraction increases gradually–and the curve is identical to288

that in (Fig 4A), a result of the fact that smooth landscapes have only a single (global)289

maximum.290

To link these architectural properties of the landscapes with dynamics, we calculated291

adaptation trajectories under rapid switching of all paired landscapes in these ensembles292

(Fig 4C). For both smooth landscapes and negatively correlated rugged landscapes, the293
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fraction of trajectories ending in a shared maximum closely mirrors the fraction of landscapes294

pairs that share a maximum. This correspondence suggests that under these conditions,295

when landscapes share a local maximum, the adapting system is likely to settle there. On296

the other hand, for positively correlated rugged landscapes, the likelihood of finding a shared297

maximum is relatively insensitive to correlation until ρ becomes quite large (> .80), when298

it rapidly increases (Fig 4C).299

To further clarify the connection between fitness and shared maxima, we divided the local300

fitness maxima from landscape A into one of two categories: those that also correspond to301

a local maximum in landscape B, and those that do not. We found, somewhat counter-302

intuitively, that the mean fitness differs for the two categories (Fig 4D). For negatively303

correlated landscape pairs, the fitness of shared maxima is less than that of non-shared304

maxima. By contrast, shared maxima in highly (positively) correlated landscapes have a305

higher mean fitness than non-shared maxima. In addition, there is a range of positive ρ where306

the fitness of shared maxima is also greater than the average fitness of maxima in a single A307

landscape (which corresponds to the ρ→ 1 limit of the curve), offering an explanation for the308

fitness increase induced by alternating between highly correlated landscapes. Specifically,309

evolutionary trajectories typically settle into a single local maxima for adaptation to both310

static and positively correlated, alternating environments; however, for a range of highly311

(but not perfectly) correlated landscape pairs, the mean fitness of those shared maxima is312

greater than the mean fitness of local maxima in a single A landscape.313

I. Steady-state genotype distributions transition from narrow to broad as corre-314

lation is decreased315

To further characterize steady state dynamics, we calculated the entropy of the steady316

state genotype distribution, defined as S(p)/Smax ≡ −(
∑

i pi ln pi)/Smax, where pi is the317

steady state probability of being in genotype i and the expression is normalized by Smax =318

N ln(2), the entropy of a uniform distribution (Fig 4E)–that is, a state where every genotype319

is equally probable. To capture dynamics associated with potential non-fixed point behavior,320

for this analysis we slightly modify the definition of steady state to be pi = (pA+pB)/2, where321

pA is the steady state fitness following a step in landscape A (the previously used definition)322

and pB the fitness in the same steady state regime but following a step in landscape B (in323
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words, we average over a full A-B cycle in the steady state). We find that as correlation (ρ)324

increases, the entropy of the system decreases, indicating that the dynamics are confined325

to an ever smaller set of genotypes–presumably those corresponding to shared maxima.326

Indeed, if we restrict the ensemble to only those landscape pairs that share a maximum,327

the entropy of the distribution is unchanged for highly correlated landscapes, suggesting328

that shared maxima dominate the steady state dynamics. By contrast, when landscape329

pairs are anticorrelated, restricting the ensemble to pairs without shared maxima closely330

approximates the results of the full ensemble, suggesting that dynamics in this regime are331

dominated by qualitatively different behavior. Consistent with changes in the entropy of332

the genotype distribution, we also find that correlation dramatically changes the fraction of333

genotype space occupied (with nonzero probability) in the steady state (Fig 4F). For highly334

correlated landscapes, only a small fraction of the total genotype space is occupied. By335

contrast, highly anti-correlated landscapes produce steady state distributions wherein all336

states are occupied with non-zero probability, suggesting ergodic-like behavior, consistent337

with the example in Fig S8. The fact that relative entropy remains less than 1 in this regime338

does indicate, however, that the distribution is not fully uniform.339

Finally, in Fig 4G, we plot the difference in steady state fitness achieved in static vs340

alternating environments for both the full landscape pair ensemble (black) and for a reduced341

ensemble consisting only of landscapes with shared maxima (red). We find that the curves342

are nearly identical over a wide range of correlations σ > −0.4. Similarly, when correlation343

is strongly anticorrelated, fitness differences are similar between the full ensemble and the344

reduced ensemble with no shared maxima (Fig 4H). Taken together, these results provide345

evidence that adaptation in this model is frequently dominated by the presence or absence346

of shared fitness maxima, which in turn depends on the correlation between landscapes and347

landscape ruggedness.348

J. Clonal interference and slow switching reduce the impact of alternating be-349

tween anticorrelated landscapes350

Our idealized model neglects clonal interference, which could potentially impact the evo-351

lutionary dynamics (Gerrish and Lenski 1998). To investigate its potential impacts, we352

implement a phenomenological model previously used to estimate the effects of clonal inter-353
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ference (Tan and Gore 2012). Briefly, in the absence of clonal interference, the population354

can be treated as a random walker that steps to any nearby more fit genotype with equal355

probability. In order to simulate clonal interference, the population can be treated as a356

greedy walker, where the fixation probability of advantageous mutations is assumed to be357

proportional to sx, where s is the selective advantage and x is the phenomenological pa-358

rameter. As x increases, the probability of stepping to more fit mutants continues to grow,359

simulating larger population sizes.360

We find that small and moderate levels of clonal interference (x ∼ 5) reduce the observed361

fitness differences between static and alternating protocols but lead to similar qualitative362

dynamics (Fig 5). However, as the population size gets large (x > 5) the fitness difference,363

genetic diversity and collateral effects due to switching become quite small; the impact of364

clonal interference is particularly large when landscape pairs are strongly anticorrelated.365

We next asked how the period of switching impacts the evolutionary dynamics. To do366

so, we varied the period of the switching (specifically, the number of consecutive steps taken367

in one landscape before switching) over approximately an order of magnitude (Fig 6). We368

find that small changes in the period–for example, doubling it from 1 step to 2– reduces369

the observed fitness differences and the normalized entropy, particularly for anticorrelated370

landscapes, but does not dramatically impact the likelihood of ending in a shared maximum371

or the collateral fitness changes (Fig 6).372

III. DISCUSSION373

Our results indicate that both intra-landscape disorder (ruggedness) and inter-landscape374

fitness correlations impact fitness in rapidly alternating fitness landscapes. Compared with375

static adaptation, rapid switching can lead to increased or decreased fitness, depending on376

both the correlation between landscapes and level of intra-landscape ruggedness (i.e. epista-377

sis). Perhaps most strikingly, switching between highly, but not perfectly, correlated rugged378

landscapes can increase fitness by promoting escape from local fitness maxima, increasing379

the likelihood of finding global fitness optima. Furthermore, rapid switching can also pro-380

duce a genotype distribution whose fitness is, on average, larger than that of the ancestor381

population in both environments, even when the landscapes themselves are anti-correlated.382

Adaptation dynamics are often dominated by the presence or absence of shared maxima383
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between landscapes. Rugged landscape pairs are increasingly likely to exhibit shared max-384

ima as they become more positively correlated, and in turn, for landscapes with positive385

correlations, the mean fitness of these shared peaks is higher than that of non-shared peaks.386

By contrast, evolution in anti-correlated landscape pairs samples large regions of genotype387

space, exhibiting ergodic-like steady-state behavior that results in decreased average fitness.388

A simple phenomenological model suggests these results are robust to competition due to389

small and moderate clonal interference, however they disappear as population sizes grow390

excessively large. In addition, while prolonging the period of switching can alter the dy-391

namics in anti-correlated landscape evolution, the fitness advantage conferred by alternating392

evolution in correlated landscape pairs is robust to the period of switching.393

While our results are loosely inspired by antibiotic cycling, the model is highly idealized394

and certainly cannot make predictions that apply directly to clinical scenarios. At the same395

time, the simplicity and relative generality of the model means that it may be relevant for396

understanding the qualitative behavior of a wide range of systems, including evolution in397

antibodies (Burton et al. 2012), viruses (Rhee et al. 2010), and bacteria, where ratchet-like398

mechanisms for rapid adaptation have been observed experimentally (de Vos et al. 2015).399

Our model relies on the Strong Selection Weak Mutation (SSWM) limit and neglects po-400

tentially relevant dynamics that could arise due to horizontal gene transfer or population401

heterogeneity, which could potentially accelerate adaptation, particularly when switching402

between anticorrelated landscapes. While we also investigated an adapted model that ac-403

counts for clonal interference (Tan and Gore 2012), the model still assumes a homogeneous404

population, thus ignoring the genetic diversity necessary of clonal interference, and it ne-405

glects the possibility for deleterious or multiple simultaneous mutations to fix. In addition,406

we focus on small (typically N = 7) landscapes for tractability, and dynamics could differ407

for much larger landscapes.408

It is important to note that we focus on paired landscapes characterized by a prescribed409

”global” correlation coefficient, but we do not investigate heterogeneity in the correlations410

at the single node level. In addition, the paired landscapes in our ensembles are constructed411

to share certain global features–like mean fitness–and are related by a prescribed inter-412

landscape correlation, but they are not statistically identical. For example, the average413

number of local maxima can differ between landscape A and B, leading to different levels414

of evolved fitness for each landscape individually (Figure S6). This indicates that land-415
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scapes A and B have effectively different levels of epistasis, depending on the desired value416

of ρ, though these differences are most pronounced when A landscapes are very smooth417

(σ ≈ 0). These differences do not seem to be appreciably impacting fitness dynamics, as418

removing them by choosing a reduced ensemble (keeping only the B landscapes the exhibit419

similar fitness gains as A under static adaptation) does not appreciably modify the results420

(Figure S6). Nevertheless, it is possible that some of these results are specific to the exact421

manner in which correlated landscapes were produced; for example, in Figure 4D, the mean422

fitness for shared maxima equals that for unshared maxima at a small but nonzero value of ρ423

(rather than at ρ = 0), a counter intuitive result that may not hold when paired landscapes424

are generated by different algorithms. Indeed, it may be interesting to investigate switching425

dynamics using landscapes with different types of statistical similarities–for example, those426

that differ only in higher-order moments, or those that fully decouple landscape ruggedness427

and correlation (Wang and Dai 2019)). In fact, the results presented here are complementary428

to recent findings showing that environmental switching can enhance the basin of attraction429

for generalists, which are genotypes that are fit in multiple environments (Sachdeva et al.430

2020; Wang and Dai 2019). While the focus of the work is different–and the timescale of431

environmental switching and the statistical relationships between landscape pairs differ in432

their model–our results similarly highlight the importance of shared landscape maxima in433

determining adaptation dynamics. Future work may aim to further elucidate the evolution-434

ary impacts of varying timescale, ordering, and temporal correlations in landscape dynamics.435

In the long run, we hope results from idealized models like these offer increased conceptual436

clarity to complement the rapidly evolving experimental approaches for mapping landscape437

dynamics in living organisms.438

IV. METHODS439

A. Construction of the landscapes440

We use the “rough Mt. Fiji” landscape model (Aita and Husimi 1998; Neidhart et al.441

2014; Tan and Gore 2012) where each genotype is represented by a binary sequences of length442

N. The fitness of the ancestor genotype (0,0,0...0) is set to zero and the fitness fi associated443

with a single mutation at mutational site i is drawn from a uniform distribution on the444
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interval [-1,1]. The fitness associated with multiple mutations is additive, and landscape445

ruggedness is incorporated by adding to the fitness of each genotype j a fixed, random446

variable ξj drawn from a zero-mean normal distribution with variance σ2.447

To create paired fitness landscapes, we represent each landscape A as a vector Ā of448

length 2N , which we center and rescale to achieve a zero mean, unit variance vector. Then,449

we generate a Gaussian random vector Ā⊥ (also with zero mean and unit variance) and450

subtract from Ā⊥ its projection onto Ā, making Ā⊥ orthogonal to Ā; by construction, this451

vector corresponds to a landscape whose fitness values are, on average, uncorrelated with452

those of landscape A. It is then straightforward to generate a vector B̄, a linear combination453

of Ā and Ā⊥, such that the fitness values of landscapes A and B are correlated to a tunable454

degree −1 ≤ ρ ≤ 1, where ρ is the Pearson correlation coefficient between the two vectors455

Ā and B̄. At the end of this procedure, we rescale Ā and B̄ so that both have mean and456

variance equal to that of the original A landscape.457

B. Evolution on the landscapes458

The SSWM assumption allows the evolutionary trajectories to be modeled as a Markov

chain (Durrett and Durrett 1999; Nichol et al. 2015). We follow the “random move SSWM

model”, which says that the probability of transitioning between adjacent genotypes i→ j

is given by Tij = 1/m, with m the total number of i-adjacent genotypes with fitnes greater

than that of i in the given environment. Each environment (A or B) has its own transition

matrix, which we designate as TA and TB. Evolution in environment A is then given by

p̄(t) = (TA)tp̄(0) (1)

with p̄(t) the vector whose ith component is the probability to be in genotype i at time

step t. We refer to the steady state (t → ∞) limit of this process as p̄A. Similarly, we can

describe rapidly alternating landscapes (A-B-A-B...) with

p̄(t′) = (TBTA)t
′/2p̄(0) (2)

with t′ ≡ 2t an even time step. We refer to the steady state (t → ∞) limit of this process459

as p̄AB. In practice, we define steady state using the condition ‖(p̄(2t+ 1)− p̄(2t− 1))‖ <460
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ε = 0.001. In words, we require the change in p̄ between consecutive steps in environment461

A to be sufficiently small. To facilitate comparison with static evolution in landscape A, we462

always end the process after a step in landscape A, meaning there are always an odd number463

of steps. Ending instead in landscape B results in qualitatively similar behavior, though the464

fitness is often shifted, indicating that a single step in A or B–even in steady state–can lead465

to significant changes in fitness S4.466
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Cvijović, I., B. H. Good, E. R. Jerison, and M. M. Desai, 2015. Fate of a mutation in a fluctuating505

environment. Proceedings of the National Academy of Sciences 112:E5021–E5028. URL https:506

//www.pnas.org/content/112/36/E5021.507

David, H. A. and H. N. Nagaraja, 2004. Order statistics. Encyclopedia of Statistical Sciences .508

De Jong, M. G. and K. B. Wood, 2018. Tuning spatial profiles of selection pressure to modulate509

the evolution of drug resistance. Physical review letters 120:238102.510

Desai, M. M. and D. S. Fisher, 2007. Beneficial mutation–selection balance and the effect of linkage511

on positive selection. Genetics 176:1759–1798. URL https://www.genetics.org/content/176/512

3/1759.513

Desai, M. M., D. S. Fisher, and A. W. Murray, 2007. The speed of evolution and maintenance of514

variation in asexual populations. Current Biology 17:385–394. URL https://doi.org/10.1016/515

j.cub.2007.01.072.516

Dhawan, A., D. Nichol, F. Kinose, M. E. Abazeed, A. Marusyk, E. B. Haura, and J. G. Scott,517

2017. Collateral sensitivity networks reveal evolutionary instability and novel treatment strategies518

in alk mutated non-small cell lung cancer. Scientific Reports 7.519

21



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Durrett, R. and R. Durrett, 1999. Essentials of stochastic processes, vol. 1. Springer.520

de Evgrafov, M. R., H. Gumpert, C. Munck, T. T. Thomsen, and M. O. A. Sommer, 2015. Collateral521

resistance and sensitivity modulate evolution in high-level resistance to drug combination treatment522

in staphylococcus aureus. Mol. Biol. Evol. 32:1175–1185.523

Farhang-Sardroodi, S., A. Darooneh, M. Nikbakht, N. Komarova, and M. Kohandel, 2017. The524

effect of spatial randomness on the average fixation time of mutants. PLoS computational biology525

13:e1005864.526

Fu, F., M. A. Nowak, and S. Bonhoeffer, 2015. Spatial heterogeneity in drug concentrations can527

facilitate the emergence of resistance to cancer therapy. PLoS Comput Biol 11:e1004142.528

Fuentes-Hernandez, A., J. Plucain, F. Gori, R. Pena-Miller, C. Reding, G. Jansen, H. Schulenburg,529

I. Gudelj, and R. Beardmore, 2015. Using a sequential regimen to eliminate bacteria at sublethal530

antibiotic dosages. PLoS biology 13:e1002104.531

Gaál, B., J. W. Pitchford, and A. J. Wood, 2010. Exact results for the evolution of stochastic532

switching in variable asymmetric environments. Genetics 184:1113–1119.533

Gerhart, J. and M. Kirschner, 2007. The theory of facilitated variation. Proceedings of the National534

Academy of Sciences 104:8582–8589.535

Gerrish, P. J. and R. E. Lenski, 1998. The fate of competing beneficial mutations in an asexual536

population. Genetica 102:127. URL https://doi.org/10.1023/A:1017067816551.537

Gillespie, J. H., 1983a. A simple stochastic gene substitution model. Theoretical Population Biology538

23:202 – 215. URL http://www.sciencedirect.com/science/article/pii/004058098390014X.539

———, 1983b. Some properties of finite populations experiencing strong selection and weak mu-540

tation. The American Naturalist 121:691–708.541

———, 1984. Molecular evolution over the mutational landscape. Evolution 38:1116–1129.542

Gillespie, J. H. and H. A. Guess, 1978. The effects of environmental autocorrelations on the543

progress of selection in a random environment. The American Naturalist 112:897–909. URL544

https://doi.org/10.1086/283330.545

Greulich, P., B. Waclaw, and R. J. Allen, 2012. Mutational pathway determines whether drug546

gradients accelerate evolution of drug-resistant cells. Physical Review Letters 109:088101.547

Gupta, P. B., C. M. Fillmore, G. Kiang, S. D. Shapira, K. Tao, C. Kuperwasser, and E. S. Lander,548

2011. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells.549

Cell 146:633–644.550

22



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Habets, M. G., D. E. Rozen, R. F. Hoekstra, and J. A. G. de Visser, 2006. The effect of popula-551

tion structure on the adaptive radiation of microbial populations evolving in spatially structured552

environments. Ecology letters 9:1041–1048.553

Hart, Y., H. Sheftel, J. Hausser, P. Szekely, N. B. Ben-Moshe, Y. Korem, A. Tendler, A. E. Mayo,554

and U. Alon, 2015. Inferring biological tasks using pareto analysis of high-dimensional data. Nature555

methods 12:233–235.556

Hartl, D. L. and R. D. Cook, 1974. Autocorrelated random environments and their effects on gene557

frequency. Evolution 28:275–280. URL http://www.jstor.org/stable/2407329.558

Hermsen, R., J. B. Deris, and T. Hwa, 2012. On the rapidity of antibiotic resistance evolu-559

tion facilitated by a concentration gradient. Proceedings of the National Academy of Sciences560

109:10775–10780.561

Hermsen, R. and T. Hwa, 2010. Sources and sinks: a stochastic model of evolution in heterogeneous562

environments. Physical review letters 105:248104.563

Imamovic, L., M. Ellabaan, A. Machado, S. Molin, H. Johansen, and M. Sommer, 2018. Drug-564

driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell565

172:P121–134.566

Imamovic, L. and M. O. A. Sommer, 2013. Use of collateral sensitivity networks to design drug567

cycling protocols that avoid resistance development. Sci. Transl. Med 5:204ra132.568

Kashtan, N., E. Noor, and U. Alon, 2007. Varying environments can speed up evolution. Pro-569

ceedings of the National Academy of Sciences 104:13711–13716. URL https://www.pnas.org/570

content/104/34/13711.571

Kim, S., T. D. Lieberman, and R. Kishony, 2014. Alternating antibiotic treatments constrain572

evolutionary paths to multidrug resistance. Proceedings of the National Academy of Sciences573

111:14494–14499.574

Korona, R., C. H. Nakatsu, L. J. Forney, and R. E. Lenski, 1994. Evidence for multiple adaptive575

peaks from populations of bacteria evolving in a structured habitat. Proceedings of the National576

Academy of Sciences 91:9037–9041.577

Kussell, E. and S. Leibler, 2005. Phenotypic diversity, population growth, and information in fluctu-578

ating environments. Science 309:2075–2078. URL https://science.sciencemag.org/content/579

309/5743/2075.580

23



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Lazar, V., A. Martins, R. Spohn, L. Daruka, G. Grezal, G. Fekete, M. Szamel, P. Jangir, B. Kintses,581

B. Csorgo, A. Nyerges, A. Gyorkei, A. Kincses, A. Der, F. Walter, M. Deli, E. Urban, Z. Hegedus,582

G. Olajos, O. Mehi, B. Balint, I. Nagy, T. Martinek, B. Papp, and C. Pal, 2018. Antibiotic-resistant583

bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology584

3:718–731.585

Lazar, V., I. Nagy, R. Spohn, B. Csorgo, A. Gyorkei, A. Nyerges, B. Horvath, A. Voros, R. Busa-586

Fekete, M. Hrtyan, B. Bogos, O. Mehi, G. Fekete, B. Szappanos, B. Kegl, B. Papp, and C. Pal,587

2014. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction588

network. Nat. Commun. 5.589

Lazar, V., G. P. Singh, R. Spohn, I. Nagy, B. Horvath, M. Hrtyan, R. Busa-Fekete, B. Bogos,590

O. Mehi, B. Csorgo, G. Posfai, G. Fekete, B. Szappanos, B. Kegl, B. Papp, and C. Pal, 2013.591

Bacterial evolution and antibiotic hypersensitivity. Mol. Syst. Biol. 9.592

Lenski, R. E., 1988. Experimental studies of pleiotropy and epistasis in escherichia coli. ii. com-593

pensation for maldaptive effects associated with resistance to virus t4. Evolution 42:433–440. URL594

http://www.jstor.org/stable/2409029.595

Lewontin, R. C. and D. Cohen, 1969. On population growth in a randomly varying environment.596

Proceedings of the National Academy of Sciences 62:1056–1060. URL https://www.pnas.org/597

content/62/4/1056.598

Lin, Y. T., H. Kim, and C. R. Doering, 2015. Demographic stochasticity and evolution of dispersion599

ii: Spatially inhomogeneous environments. Journal of Mathematical Biology 70:679–707. URL600

https://doi.org/10.1007/s00285-014-0756-0.601

Maltas, J., B. Krasnick, and K. B. Wood, 2019. Using Selection by Nonantibiotic Stressors to602

Sensitize Bacteria to Antibiotics. Molecular Biology and Evolution URL https://doi.org/10.603

1093/molbev/msz303. Msz303.604

Maltas, J. and K. B. Wood, 2019. Pervasive and diverse collateral sensitivity profiles inform optimal605

strategies to limit antibiotic resistance. PLoS biology 17.606

Moreno-Gamez, S., A. L. Hill, D. I. Rosenbloom, D. A. Petrov, M. A. Nowak, and P. S. Pennings,607

2015. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug608

resistance. Proceedings of the National Academy of Sciences 112:E2874–E2883.609

Munck, C., H. K. Gumpert, A. I. N. Wallin, H. H. Wang, and M. O. A. Sommer, 2014. Prediction610

of resistance development against drug components by collateral responses to component drugs.611

24



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Sci. Transl. Med 6:262ra156.612
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FIG. 4: Evolution in alternating landscapes is frequently dominated by presence or absence of shared fitness
maxima. A. Fraction of local maxima in landscape A that also correspond to a shared maxima in landscape B (σ = 0, blue;
and σ = 1, red). B. Fraction of landscape pairs share at least one maximum. In panels A and B, circles corresponded to
simulated landscapes and solid lines are semi-analytic approximations (see SI). C. Fraction of trajectories ending in a shared
maximum as a function of correlation. D. Average fitness of shared maxima (blue) and average fitness of non-shared maxima
(orange). Dashed line is average fitness of all local maxima in landscape A. E. Normalized entropy of the steady state
genotype distribution following adaptation to alternating landscapes. Curves correspond to the full landscape pair ensemble
(blue) and a reduced ensemble consisting only of landscapes that contain a shared maximum (red), bottom, and a reduced
ensemble consisting only of landscapes with no shared maxima (red, top). The relative entropy is defined as
S(p)/Smax ≡ −(

∑
i pi ln pi)/Smax, where pi is the steady state probability of being in genotype i and Smax is the entropy of

a uniform distribution. F. Fraction of genotypes that have a nonzero probability of occupation in either the last A step or last
B step at steady-state. Curves represent the paired landscape ensemble with no shared maxima (blue), the ensemble where
every pair has at least one shared maximum (red), and the full ensemble (black). G. Difference in average fitness achieved in
static and switching landscapes. Curves correspond to the full ensemble of paired landscapes (black) or a restricted ensemble
that includes on those pairs that share a fitness maximum (red). H. Similar to panel F, with curves corresponding to the full
ensemble (black) or a restricted ensemble that includes only those pairs with no shared fitness maxima (red). Error bars are
± standard error of the mean in the ensemble of landscapes. Error bars are ± standard error of the mean in the ensemble of
landscapes. N = 7 for all curves, and σ = 1 for all curves in panels D-H.
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FIG. 5: Clonal interference reduces the effects of alternating landscape evolution. A. Difference in average fitness
achieved in static and switching landscapes. Curves correspond to different strengths of clonal interference (blue: random
walker, x = 0, red: proportional walker, x = 1, green: x = 2, black: x = 5, magenta: x = 10, orange: x infinite, always steps
to largest fitness neighbor). B. Normalized entropy of the steady state genotype distribution following adaption to alternating
landscapes with different clonal interference. C. Fraction of trajectories ending in a shared maximum as a function of
correlation with different clonal interference. D. Collateral fitness change, ranging from blue (less fit) to red (more fit), for
populations adapted to alternating environments A and B as a function of clonal interference (x).
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SUPPLEMENTAL MATERIAL701

The Supplemental Material contains semi-analytic approximations for the number of local702

maxima in a single landscape and the probability of shared maxima in paired landscapes.703

It also includes seven supplemental figures (S1-S7).704

Semi-analytical approximations to describe local maxima705

Dynamics in alternating environments are often impacted by the presence of shared local706

maxima. Here we derive semi-analytical approximate expressions for several key quantities.707

While exact expressions are difficult to obtain, even for the simple model used here, we708

derive below several approximations that involve cumulative distribution functions (CDFs)709

for common distributions (e.g. multivariate normal) and/or Gaussian-like integrals that can710

be easily calculated numerically.711

Number of local maxima in a single landscape712

Rugged landscapes (σ > 0) potentially have multiple local maxima. To approximate the713

expected number of local maxima, consider a landscape withN loci so that each genotype has714

a total of N nearest neighbor genotypes. In a purely additive (σ = 0) landscape, a mutation715

in gene i changes the fitness by an amount εi drawn from a uniform distribution [0,1]. In a716

rugged landscape, the fitness of each genotype also contains an additive contribution from717

epistasis–in this case, a zero-mean, normally distributed random variable with variance σ2.718

The fitness of each genotype is therefore a sum of (up to N) uniform variables and a single719

normally distributed variable.720

To estimate the expected number of maxima in a landscape, consider a particular geno-

type with a fixed fitness f = fε + fσ, where fε is the total fitness contribution from any

mutations and fσ is the contribution from epistasis. The genotype will have N neigh-

bors, each differing by a single mutation; the fitness of neighbor i has a fitness of the form

fi = fε + εi +σi, where εi is a uniform random variable accounting for adding or subtracting

one mutation, and σi is a normal random variable accounting for epistasis. The fε term is a

fixed value–the same as for the focal genotype. In a statistical ensemble of such neighbors,

the probability that f > fi, that is, the probability that the genotype in question has a
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higher fitness than one particular neighbor is given by

pimax(fσ) =

∫ fσ

−∞
dx p+(x), (S1)

where p+(x) is the probability density function (pdf) for the sum σi + εi. Since the pdf for

a sum of random variables is given by the convolution of their individual pdfs, we have

pimax(fσ) =
1

2

∫ fσ

−∞
dx

∫ 1

−1

du φσi(x− u), (S2)

where φσ(x) is the pdf of a zero-mean normal variable with variance σ2,

φσ(x) ≡ 1√
2πσ2

exp

(
− x2

2σ2

)
. (S3)

Equation S2 can also be written as

pimax(fσ) =
1

2

∫ 1

−1

duFσi(fσ + u), (S4)

where Fσi(x) is the cumulative distribution function for the variable σi (and in this case,721

each σi is a zero-mean normal variable with variance σ2). The integral above can be written722

as a linear sum of error functions, though it is somewhat cumbersome and we do not write723

it out here.724

The probability that the genotype in question is a local max–that is, has a fitness larger

than each of its N nearest neighbors–is approximately

pmax(fσ) ≈
(
pimax(fσ)

)N
(S5)

where we have assumed that each neighbor can be treated as independent from the others.

The average probability that a genotype is a local maximum is then given by integrating

over the distribution for fσ,

Pmax =

∫ ∞

−∞
dfσ φσ(fσ) pmax(fσ) = 〈pmax(x)〉 (S6)

where brackets 〈·〉 represent an average over a normal distribution with variance σ2. If we
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assume that the 2N different genotypes in a landscape are approximately independent, the

expected number of maxima is then given by

Nmax = 2NPmax. (S7)

Equation S7 is difficult to evaluate analytically but easy to solve numerically, and the ap-

proximation closely matches results from randomly generated landscapes (Figure 3). For

small epistasis (σ � 1), we can expand pmax(fσ) about the average 〈fσ〉 to arrive at the

approximation

Nmax ≈ 1 +
1

2
N(N − 1)σ2. (S8)

Similarly, for large epistasis (σ →∞), we have Pmax ≈ (N + 1)−1; intuitively, all genotypes725

in a local neighborhood (the focal genotype and its N nearest neighbors) are equally likely726

to be the maximum, and the expected number of maxima therefore approaches Nmax =727

2N/(N + 1).728

Shared maxima between correlated landscapes729

Given that a particular genotype corresponds to a local maximum in landscape A, we730

would like to estimate the probability that it is also a maximum in the paired landscape B.731

To do so, consider a genotype that is a local maximum in landscape A. Let the fitness of732

that genotype be a1 and the fitness of its N nearest neighbors be a2 > a3... > aN+1, where733

we have labeled the neighbors according to their ranked fitness. We would like to calculate734

the conditional probability p(b1, b2..bN+1|a1, a2..aN+1) that describes the fitness values {bi}735

of the corresponding genotypes in landscape B, which is correlated with landscape A with736

correlation ρ.737

In the limit of large epistasis (σ →∞), the fitness variables {ai} and {bi} are jointly dis-

tributed normal variables with mean µ̄ = (µa1 , µa2 , . . . , µaN+1
, µb1 , µb2 . . . µbN+1

) = (0, 0, . . . , 0)

and covariance matrix

Σ =


Σaa Σab

Σab Σbb


 (S9)
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made of (N + 1)× (N + 1) sub-matrices

Σaa = Σbb = σ2




1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1




(S10)

and

Σab = σ2




ρ 0 . . . 0

0 ρ . . . 0
...

...
. . .

...

0 0 . . . ρ




(S11)

The matrix Σaa (Σbb) describes the covariance relationships between the focal genotype in

landscape A (B) and each of itsN nearest neighbors. The matrix Σab describes the covariance

between fitness values for the local neighborhood of N + 1 genotypes in landscapes A and

B. If we treat the fitness values {ai} as fixed and the fitness values {bi} as random variables,

the conditional probability p(b1, b2, . . . bN+1|a1, a2, . . . aN+1) is also normally distributed, with

mean vector µ̄cond = ρ(a1, a2, . . . , aN+1) and covariance

Σcond = σ2




1− ρ2 0 . . . 0

0 1− ρ2 . . . 0
...

...
. . .

...

0 0 . . . 1− ρ2




(S12)

We would like to know the probability of b1 corresponding to a local maximum in land-

scape B given that a1 corresponds to a local maximum in landscape A. To do so, we consider

the N variables δi ≡ bi−bi−1, whose distribution (conditioned on a specific set of values {ai})
is a multivariate normal with mean µ̄δ = ρ(a1 − a2, a1 − a2, . . . , a1 − aN+1) and covariance

Σδ = σ2




2− 2ρ2 1− ρ2 . . . 1− ρ2

1− ρ2 2− 2ρ2 . . . 1− ρ2

...
...

. . .
...

1− ρ2 1− ρ2 . . . 2− 2ρ2




(S13)
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Hence, if we are given a specific set of fitness values {ai}, with a1 the maximum of the local

fitness neighborhood in landscape A, the probability that the fitness is also a maximum in

the B landscape is given by

pshared(σ, ρ) = 1− F̄δ,ā(0̄) (S14)

where F̄δ,ā(x̄) is the cumulative distribution function (CDF) for the multivariate normal with

mean µ̄δ and covariance Σδ (conditioned on a set of values ā = (a1, a2, . . . , aN+1)) and 0̄ is

the zero vector. Specifically, we have

F̄δ,ā(x̄) =

∫ x1

−∞
dz1

∫ x2

−∞
dz2 . . .

∫ xN

−∞
dzN

1

(2π)N/2|Σδ|1/2
exp

(
(z̄ − µ̄δ)TΣ−1

δ (z̄ − µ̄δ)
)

(S15)

where xi is component i of x̄. While there is no closed expression for the CDF of a multi-738

variate Gaussian, there are many algorithms to rapidly calculate it numerically, and many739

scientific computing platforms even have built-in functions for this purpose.740

To complete our approximation, we must choose specific values of the fixed variables {ai}741

on which the approximation is conditioned. In what follows, we consider two choices that742

lead to approximate expressions in the limits of of large and small epistasis.743

In the limit of large epistasis, the fitness values in the local neighborhood {ai} are uncor-

related, Gaussian variables with variance σ2. We therefore choose ai to be the expected value

of the i-th largest value in a sample of Gaussian variables (i.e. an order statistic (David and

Nagaraja 2004)); without loss of generality, we assume the variables have mean zero. While

there is no analytical expression for the expected value of the order statistics for normal

variables, multiple approximations have been proposed. Here, we use the approximation

in Royston (1982), which gives for our N + 1 fitness variables

ai ≈ Φ−1

(
N + 1− i− α
N − 2α + 2

)
(S16)

where Φ−1 is the inverse CDF for the unit Gaussian and α = 0.375 (we note that the

order statistics can be calculated numerically to high precision, which slightly improves the

approximation). Therefore, in the large σ limit, we have

pshared(σ, ρ) = 1− F̄δ,āg(0̄) (S17)
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where the i-th component of āg is given in Equation S16.744

In the limit σ → 0, the fitness values in the local neighborhood {ai} are uncorrelated

variables drawn from the uniform distribution [-1,1] (where again we choose a zero mean

distribution without loss of generality). In this case, the expected value of the order statistics

for uniform variables leads to

ai =
2(N + 2− i)

(N + 2)
− 1, (S18)

and our approximate expression is therefore

pshared(σ, ρ) = 1− F̄δ,āu(0̄), (S19)

where the i-th component of āu is given in Equation S18.745

Finally, the fraction of landscape pairs that share at least one maximum is given by

fshared = 1− (1− pshared(σ, ρ))Nmax (S20)

The approximations in Equations S17-S20 are not exact, but we find that they agree quite746

well with results from simulated landscapes in the σ = 0 (low epistasis) and σ = 1 (high747

epistasis) cases (Figure 4A and 4B).748
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N = 3

N = 10

N = 10

N = 3

FIG. S1: Rugged landscapes of different sizes show qualitatively similar changes in fitness as a function of
correlation. Difference in average fitness (at steady state) between populations adapted to a single static landscape
(landscape A) or rapidly alternating landscape pairs (A-B cycles) as a function of correlation between landscapes A and B.
Average fitness is defined as the mean fitness of the steady state genotype distribution (which arises following adaptation to
either static or switching protocols) measured in landscape A. Different curves range from N = 3 to N = 10, and σ = N/12
for each landscape to achieve relatively similar magnitudes of epistasis as N varies.
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σ = 0

σ = 2.0

σ = 0

σ = 2.0

σ = 0

σ = 2.0

σ = 0

σ = 2.0

σ = 0

σ = 2.0

σ = 0

σ = 2.0

FIG. S2: Landscapes of different sizes and sigmas show qualitatively similar results. Difference in average fitness
(at steady state) between populations adapted to a single static landscape (landscape A) or rapidly alternating landscape
pairs (A-B cycles) as a function of correlation between landscapes A and B. Average fitness is defined as the mean fitness of
the steady state genotype distribution (which arises following adaptation to either static or switching protocols) measured in
landscape A. Different curves range from σ = 0.0 (blue, labeled) to σ = 2.0 (orange, labeled) in increments of 0.25 for each
landscape. Error bars represent the standard error of the mean for each simulation.
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FIG. S3: Adaptation to static and alternating environments approach steady state at different timescales. A.
Number of time steps (log scale) until steady state for alternating landscapes of a given ruggedness (σ) and correlation (ρ).
Full correlated landscapes (ρ = 1) correspond to static evolution in a single landscape. B. Example slices through panel A
corresponding to σ = 0 and σ = 2.
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FIG. S4: Adapted fitness depends on whether final step is taken in landscape A or B when landscapes are
anticorrleated. A. Difference in average fitness (at steady state) between populations adapted to a single static landscape
(landscape A) or rapidly alternating landscape pairs (A-B cycles) as a function of correlation between landscapes A and B.
Average fitness is defined as the mean fitness of the steady state genotypte distribution (which arises following adaptation to
either static or switching protocols) measured in landscape A. Curves correspond to steady state with a final step in
landscape A (black) or a final step in landscape B (red). B. Collateral fitness change for populations adapted to alternating
environments A and B as a function of inter-landscape correlation. Collateral fitness change is defined as the increase in
average fitness in landscape B (relative to ancestor) associated with the steady state genotype distribution arising from
adaptation to alternating A-B landscapes. C. Network representation of example fitness landscapes and transition
probabilities following long-term adaptation to uncorrelated (ρ = 0) landscapes; adaptation ends either in landscape A (left)
or B (right). N = 4 in all panels.
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A, step 1001 A, step 1003

A, step 1005 A, step 1007

A, step 1009 A, step 1011

A, step 1013 A, step 1015

B, step 1002 B, step 1004

B, step 1006 B, step 1008

B, step 1010 B, step 1012

B, step 1014 B, step 1016

FIG. S5: Adaptation to anti-correlated landscapes can produce cycles that sample large fractions of genotype
space. Network representations of 16 consecutive steps in the steady state for paired landscape evolution with ρ = −0.88.
Each circle represents a genotype (ancestral genotype at the top), with shading indicating the relative fitness of that genotype
and size representing the occupation probability at that time step. Arrows represent transitions between genotypes that occur
with nonzero probability and are accessible starting from the ancestor genotype. The width of the arrow represents the
magnitude of the transition probability.
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FIG. S6: Statistical properties of landscape B differ from those of A but do not appreciably impact fitness
differences between static and alternating landscapes. A. Average number of local maxima in landscape A (blue) and
two different B landscapes correlated with A to different degrees (ρ = 0, black; ρ = 0.9, red). B. Evolved fitness following
static adaptation to landscape A (red) or B (black). Blue curve is fitness in a reduced “forced fit” ensemble of B landscapes,
which includes only those B landscapes that lead to similar levels of fitness as in landscape A. C. Fitness difference between
static and switching environments for the full paired landscape ensemble (black) and for the reduced “forced fit” ensemble
(black).
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Fitness = 0.33 Fitness = 0.83 Fitness = 0.92 Fitness = 1.51

Fitness = 1.49 Fitness = 1.99 Fitness = 1.9 Fitness = 2.32

Fitness = 2.19 Fitness = 2.57 Fitness = 2.42 Fitness = 2.75

Fitness = 2.6 Fitness = 2.9 Fitness = 2.76 Fitness = 4.45
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A, Fitness = [2.52] Landscape A trajectories

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

B

A
More fit

Less fit

A, Fitness = 2.52 A landscape trajectories

A, SS

FIG. S7: Evolutionary dynamics in alternating landscapes with positively correlated fitness peaks. A. Left
panel: network representation of adaptation on a static landscape (environment A) of size N = 4. Each circle represents a
genotype (ancestral genotype at the top), with shading indicating the relative fitness of that genotype and size representing
the occupation probability in the steady state. Red + symbols mark genotypes corresponding to local fitness maxima.
Arrows represent transitions between genotypes that occur with nonzero probability–that is, the entries of the transition
matrix. The width of the arrow represents the magnitude of the transition probability. Right panel: same as left panel, but
showing only transitions that occur during adaptation starting from the ancestral genotype (top circle). B. Network
representations of adaptation (at different time points) in alternating landscapes with positively correlated fitness peaks. Red
number above each landscape represents the current evolutionary time point (ranging from 0 to SS, indicating steady state of
approximately 200 steps). Directed arrows represent possible transitions between genotypes based on the current genotype
distribution (indicated by the circle sizes) and the current landscape (A or B). Average fitness at each time point (calculated
over the current genotype distribution) are listed above each plot. Even numbered steps correspond to landscape A, odd to
landscape B.

42



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

+

-

+

-

- - -
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FIG. S8: Evolutionary dynamics in alternating landscapes with negatively correlated fitness peaks. A. Left
panel: network representation of adaptation on a static landscape (environment A) of size N = 4. Each circle represents a
genotype (ancestral genotype at the top), with shading indicating the relative fitness of that genotype and size representing
the occupation probability in the steady state. Red + symbols mark genotypes corresponding to local fitness maxima.
Arrows represent transitions between genotypes that occur with nonzero probability. The width of the arrow represents the
magnitude of the transition probability. Right panel: same as left panel, but showing only transitions that occur during
adaptation starting from the ancestral genotype (top circle). B. Network representations of adaptation (at different time
points) in alternating landscapes with negatively correlated fitness peaks. Red number above each landscape represents the
current evolutionary time point (ranging from 0 to SS, indicating steady state of approximately 200 steps). Directed arrows
represent possible transitions between genotypes based on the current genotype distribution (indicated by the circle sizes) and
the current landscape (A or B). Average fitness at each time point (calculated over the current genotype distribution) are
listed above each plot. Even numbered steps correspond to landscape A, odd to landscape B.
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