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We estimate the propagation of uncertainties in electromagnetic wave scattering problems. The computational domain is
a dielectric object with uncertain shape. Since classical Monte Carlo (MC) method is too expensive, we suggest to use a
modified multilevel Monte Carlo (MLMC) method. This method uses a hierarchy of spatial meshes and optimally balances
the statistical and discretisation errors. MLMC performs most of the simulations using low-fidelity models and only a few
simulations using high-fidelity models. As a result, the final computational cost is becoming significantly smaller.
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More details about this research can be found in [1].
Problem: electromagnetic wave scattering from a dielectric object of uncertain shape, see schema in Fig. 1, left.
Input uncertainties: shape, geometry.
Output uncertainties: electromagnetic fields, radar and scattering cross sections (RCS and SCS).
Goal: estimate output uncertainties.
Methods: the continuation multilevel Monte Carlo (CMLMC) method [2].
During the last 10 years the multilevel MC (MLMC) methods have shown their efficiency, robustness, and simplicity [3].
The exact shape of the computational domain could be unknown. We suggest to model and parameterise this shape by random
variables. Random sampling could be done by the traditional MC method with the error convergence rate O(N−1/2), where
N is the number of samples. The quasi-MC method requires more smoothness and may have the convergence rate O(N−1).
Sparse grids were applied in [4, 5]. Another class of methods is the surrogate schemes [6–8].

Let ξ be the vector of random variables. The quantity of interest (QoI) be g(ξ). The goal of the MLMC method is to
approximate the expected value, E[g], to a guaranteed tolerance TOL with predefined probability, and minimal computational
cost. To achieve this, the MLMC method constructs a hierarchy of meshes (see Fig. 2, left) and performs most of the simu-
lations using low-fidelity models (the problem is discretised and solved on a coarse mesh) and only a few simulations using
high-fidelity models (a fine mesh is used). Figure 1(center) shows the averaged computing time vs. tolerance TOL. As TOL
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Fig. 1: (left) Illustration of the scattering problem; (center) Computation times required by the CMLMC and MC methods vs. TOL; (right)
Computational work estimate for the CMLMC and MC methods vs. TOL.

gets smaller, the CMLMC algorithm becomes more efficient than the MC method. For values of TOL close to 0.02, the
CMLMC algorithm is roughly 10 times faster than MC. Figure 1(right) shows the estimated work vs. TOL. The job done by
CMLMC is again much smaller than the job done by MC.
Deterministic solver. We use the Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation (PMCHWT-SIE) [1].
The PMCHWT-SIE is discretized using the method of moments (MoM) and the iterative solution of the resulting matrix sys-
tem is accelerated using a (parallelized) fast multipole method (FMM) - fast Fourier transform (FFT) scheme (FMM-FFT) [9].
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2 of 2 Section 15: Uncertainty quantification

Even with these modern numerical techniques the computational time for real-life problems may vary from a few hours to a
few days.

Fig. 2: (left) An example of four nested meshes of a perturbed sphere with N , 4N , 16N and 64N triangular elements; Amplitudes of
magnetic (center) and electric (right) surface current densities induced on the perturbed domain under excitation by an x-polarized plane
wave propagating in z direction at 300 MHz (dB scale).

CMLMC method constructs a sequence of (nested) meshes {P`}L`=0. In our case, all meshes consist of {N, 4N, . . . , 4LN}
triangular elements (see an example in Fig. 2, left). Perturbations are generated in the following way by perturbing the nodes
of the initial mesh P0 with N elements:

v(ϑm, ϕm) ≈ ṽ(ϑm, ϕm) +
K∑

k=1

akκk(ϑm, ϕm). (1)

Here ϑm and ϕm denote angular coordinates ofmth node, v(ϑm, ϕm) is its (perturbed) radial coordinate, and ṽ(ϑm, ϕm) = 1
is its (unperturbed) radial coordinate on the unit sphere. Here, κk(ϑ, ϕ) are obtained from spherical harmonics by re-scaling
their arguments and ak are uncorrelated random variables. In numerical tests we used K = 2, κ1(ϑ, ϕ) = cos(α1ϑ) and
κ2(ϑ, ϕ) = sin(α2ϑ) sin(α3ϕ), α1 = 2, α2 = 3, and α3 = 2. See also [10] to learn how to generate random fields. Note, that
no uncertainties are added on meshes P`, ` > 0; the uncertainty is introduced only at level ` = 0.

The random variables used in generating random perturbations in P0 are the weights ak, k = 1, . . . ,K, the rotation angles
ϕx, ϕy , and ϕz , and the scaling factors lx, ly , and lz , making the dimension of the stochastic space K + 6, i.e., random
parameter vector

ξ = {a1, . . . , aK , ϕx, ϕy, ϕz, lx, ly, lz}. (2)

In the example shown in Fig. 1, the CMLMC algorithm is executed for uniform random variables a1, a2 ∼ U [−0.14, 0.14]
m, ϕx, ϕy , ϕz ∼ U [0.2, 3] rad, and lx, ly , lz ∼ U [0.9, 1.1]. The CMLMC algorithm is run for TOL, decreasing from 0.2 to
0.008. At the lowest value of TOL, the CMLMC algorithm requires L = 5 mesh levels. The QoI is the scattering cross-section
(SCS) computed over the cone Ω = [1/6, 11/36]π rad × [5/12, 19/36]π rad. The scatterer resides in free space (vacuum)
with µ0 = 4π × 10−7 H/m and the frequency f = 300 MHz.
Conclusion. We successfully applied CMLMC method to efficiently and accurately characterize EM wave scattering from
dielectric objects with uncertain shapes. For some settings we observed that the CMLMC algorithm is roughly 10 times faster
than MC.
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