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Figure S1 shows the spatial distribution of available MAVEN data points for the current

study.

Figure S2 provides the context of solar radiation at Mars’ orbit, in which the four cases

of Ls1-Ls4 have been highlighted. Both the seasonal Sun-Mars distance change and solar

activity come into play in controlling the heating and ionizing solar fluxes reaching the

Martian atmosphere.

Figure S3 provides the context of atmospheric dust loading, in which Ls1-Ls4 have been

marked. It is shown that Ls1-Ls2 are basically dust-free, and Ls3-Ls4 are associated with

regional dust storm events.

Figure S4 demonstrates that non-identical SZA and EUV conditions of individual data

points within each case actually make little impact on the tidal wave signatures. Therefore,

we choose to use the original data (rather than the data scaled after SZA and EUV) in

this work for simplicity.

Figure S5 shows that the MAVEN sampling analyzed in this work effectively avoids

Martian strong crustal magnetic field regions. Therefore, the potential influence of the

crustal field is negligible in our tidal analysis.

Figure S6 shows the altitude profiles of zonal means and tidal wave amplitudes, provid-

ing complementary information to Figure 8 of the main text.
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Figure S1. Number of available MAVEN data points as a function of longitude and altitude.
The results are given (from left to right) in the four cases of Ls1-Ls4 and (from top to bottom)
for CO2 density, O density, N2 density, Ar density, electron density, and electron temperature,
respectively. The cross-hatched areas indicate missing data. The white-hatched areas indicate
the bins where the number of available data points is less than 5.
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Figure S2. (a) Mars solar longitude (solid curve, left vertical axis) and the inverse square of
the Sun-Mars distance (dotted curve, right vertical axis), as a function time. (b) Daily sunspot
number (in yellow) and 27-day average sunspot number (in black). (c) Solar radiation at Mars
above the atmosphere, including those directly measured by MAVEN EUVM channel A (17-22
nm, in blue), channel B (0-7 nm, in purple), channel C (121.6 nm, in green), and an indirect
measure through F10.7 that has been extrapolated from Earth to Mars (in black). The EUVM
data are averaged at a 1-min cadence. In the extrapolation of F10.7, we consider not only solar
radiation decrease with the heliocentric distance but also the angular separation between Earth
and Mars. Note that the F10.7 index has been reduced by a factor of 103 to fit in the frame.
In all the panels, the time intervals of the four cases that we study in this work (Ls1-Ls4) are
highlighted by vertical shading bars. The corresponding mean values of the parameters are
summarized in Table 1 of the main text.
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Figure S3. Mars zonally-averaged column dust optical depth at ∼9.3 µm as a function of
solar longitude and latitude in three Martian years: (a) MY 32, (b) MY 33, and (c) MY 34.
The dust opacity has been scaled to the atmospheric pressure level of 610 Pa (cf., Montabone
et al., 2020). The cross-hatched areas indicate missing data. The MAVEN data coverage in
the Ls-latitude space during the four cases of Ls1-Ls4 (which are scattered in the three Martian
years) are marked by rectangles. The average dust opacities in the cases are given in Table 1 of
the main text.
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Figure S4. Comparison of the height-longitude structure of the electron density among the
four cases: (from top to bottom) Ls1, Ls2, Ls3, Ls4. The two columns show the analysis using
the original MAVEN LPW data and using the data that have been scaled to remove potential
observational bias due to SZA and EUV differences. In the scaling with SZA, the density is
multiplied by a factor to scale to the median SZA level within each case. The scaling factor, which
is SZA- and altitude-dependent, is calculated from a time-dependent global MHD simulation of
Ma et al. (2014); Fang et al. (2015, 2017). The factor is written as n

eMHD
(χ

M
, z)/n

eMHD
(χ, z), where

χ is SZA and χ
M
stands for the median SZA value. In the scaling with EUV, the electron density

is normalized to the median EUV level by multiplying by a scaling factor of sqrt(EUV
M
/EUV).

The solar radiation energy flux measured by the MAVEN EUVM channel A (17-22 nm) is used
as the proxy of EUV. The cross-hatched areas indicate missing data.
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Figure S5. The projection of the selected MAVEN LPW orbital data on the longitude-
latitude plane in (a) Ls1, (b) Ls2, (c) Ls3, and (d) Ls4. The background color contour shows the
magnitude of the Martian crustal magnetic field at 175 km altitude, which is calculated using
the model of Morschhauser et al. (2014).
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Figure S6. Similar to Figure 8 of the main text but showing absolute wave amplitudes.
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