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18 If the traveler notices a particular species and wishes to find more like it, he may often turn his eyes in vain in every 

19 direction. Trees of varied forms, dimensions, and colours are around him, but he rarely sees any one of them 

20 repeated. Time after time he goes towards a tree which looks like the one he seeks, but a closer examination proves 

21 it to be distinct. A. R. Wallace, 1878 

22

23 In our current moment of rampant deforestation and climate change, research on the adaptive 

24 potential of tropical trees takes on new urgency. In a From the Cover article in

25 this issue of Molecular Ecology, Brousseau et al (2021) map out a genomic approach to studying 

26 local to regional-scale adaption in tropical trees. 
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28 Tropical tree diversity is a perennial source of fascination for ecologists and evolutionary 

29 biologists. Consider that a single hectare of Amazon rain forest harbors more tree species 

30 (N=644) than all the temperate forests of Europe and North America combined (Fine & Ree, 

31 2006; Valencia et al., 2004). The broader Amazon basin contains an estimated 16,000 tree 

32 species (ter Steege et al., 2016). The question that intrigues evolutionary biologists – how did 

33 this diversity arise? – complements the ecological question of how so many species can coexist. 

34

35 Evolutionary studies of Amazon tree diversity trace back to the 18th century. Alfred Russel 

36 Wallace (1878) famously described the varied forms of Amazon tree species. In his view, 

37 tropical tree diversity was best understood in a historical context. Unlike the recently glaciated 

38 landscapes of Europe and North America, the lowland tropics have been environmentally stable 

39 through deep geological time. Tropical forests are akin to museums, in a sense, and accumulate 

40 more species than they lose through extinction (Stebbins, 1974). 

41

42 The geneticist Theodosius Dobzhansky (1950) highlighted the role that biotic diversity itself 

43 must play in generating diversity. Tropical trees are embedded in a network of symbiotic 

44 relationships on which they depend for nutrients and reproduction, and they directly compete 

45 with hundreds of other plant species. And pest pressures (pathogens, herbivores, seed 

46 predators) are intense in tropical moist forests. Hence there are many possibly axes of biotic 

47 niche differentiation.

48

49 The Janzen-Connell hypothesis – also called the enemies hypothesis – posits a central role of 

50 pests in regulating the population densities of tropical trees (Connell, 1971; Janzen, 1970). Pests 

51 can keep any single species from becoming dominant if they act in a density dependent fashion, 

52 and divergence in plant defenses can promote coexistence insofar as related species do not 

53 attract the same enemies. In the species-rich Neotropical tree genus Inga the evolution of 

54 defense traits far outpaces neutral genetic divergence and was inferred to promote coexistence 

55 (Kursar et al., 2009).

56
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57 Like all Amazon trees, the focal species of the featured study, Eperua falcata (Fabaceae), exists 

58 within a nexus of biotic and abiotic interactions. It depends on bats for pollination and – 

59 somewhat unusually for rain forest trees – on the explosive dehiscence of its fruit pods for seed 

60 dispersal (see figure 1). Eperua falcata ranks 13th in overall Amazon tree species abundance 

61 and forms near monocultures in the Guiana shield. Forget (1989) reported high densities of E. 

62 falcata seedlings in defiance of Janzen-Connell expectations. It is a hyperdominant tree species, 

63 which means that it is one of 227 tree species that comprise half of Amazon forest biomass and 

64 stem numbers, and thus contributes inordinately to ecosystem processes (ter Steege et al., 

65 2013). Like some other hyperdominant species, E. falcata thrives in both floodplain and terra 

66 firme (unflooded) forest. 

67  

68 Brousseau and colleagues designed a brilliantly symmetrical experiment in which to study 

69 adaptive genomic differentiation of E. falcata in French Guiana. The authors paired populations 

70 in microgeographic floodplain and terra firme habitats separated by 30 meters. These habitat 

71 pairs were then replicated in a different site 300 km away. The authors pooled DNA from each 

72 of the four subpopulations and analyzed SNPs obtained from genome wide shotgun 

73 sequencing. To detect selection, they developed a hierarchical Bayesian analyses that 

74 distinguishes FST outlier loci from background levels of divergence. To complement the genomic 

75 analyses, the authors performed a reciprocal transplant experiment across microhabitats and 

76 between regions. 

77

78 The authors found SNPs under selection between regions and between habitat types. 

79 Remarkably, similar trends of genetic turnover between terra firme and floodplain habitats 

80 were detected in the two study sites for many SNPs, suggesting parallel selection over 

81 microgeographic scales. The outlier SNPs were neighbors to 106 genes, including ones involved 

82 in pathogen defense and physiological response to flooding and soil hypoxia. 

83

84 The reciprocal transplant studies showed some measure of heritable variation between regions 

85 and microhabitats, although significance tended to fade over longer monitoring periods. There 
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86 were significant maternal effects associated with all measured traits, which in turn varied 

87 across sites and microhabitats, suggesting that foresters might consider sourcing seeds on the 

88 basis of matched maternal habitat.

89

90 The Amazon has been broadly characterized by flooded forest and terra firme and periodic 

91 barriers to gene flow. It is not hard to envision evolution along biotic and abiotic axes leading to 

92 speciation. In support of this view, several phylogenetic studies have documented sister species 

93 divergence in clades of trees across soil and habitat types in the Amazon basin (Dick & 

94 Pennington, 2019). 

95

96 The study signals an exciting direction in molecular ecology and especially in its application to 

97 the origins and maintenance of tropical tree diversity. It will be interesting to see these 

98 methods replicated in other species and habitats, such as the fingers of dry forest and islands of 

99 white sand soils in the Amazon basin. Such methods are sorely needed to understand the 

100 mechanisms driving diversification in rapidly evolving clades such as Inga (Bermingham, 2001). 

101 Genomic approaches such as these will undoubtedly lead to a deeper understanding of the 

102 varied forms of tropical trees.

103
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