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26 Abstract 

27 1. The integration of citizen scientists into ecological research is transforming how, where, and 

28 when data are collected, and expanding the potential scales of ecological studies. Citizen-
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29 science projects can provide numerous benefits for participants, while educating and connecting 

30 professionals with lay audiences, potentially increasing acceptance of conservation and 

31 management actions. However, for all the benefits, collection of citizen-science data is often 

32 biased towards areas that are easily accessible (e.g. developments and roadways), and thus 

33 data are usually affected by issues typical of opportunistic surveys (e.g. uneven sampling effort). 

34 These areas are usually illuminated by artificial light at night (ALAN), a dynamic sensory 

35 stimulus that alters the perceptual world for both humans and wildlife. 

36 2. Our goal was to test whether satellite-based measures of ALAN could improve our 

37 understanding of the detection process of citizen scientist-reported sightings of a large mammal. 

38 3. We collected observations of American black bears (Ursus americanus; n = 1,315) outside 

39 their primary range in Minnesota, USA, as part of a study to gauge population expansion. 

40 Participants from the public provided sighting locations of bears on a website. We used an 

41 occupancy modelling framework to determine how well ALAN accounted for observer metrics 

42 compared to other commonly used metrics (e.g. housing density).

43 4. Citizen scientists reported 17% of bear sightings were under artificially-lit conditions and 

44 monthly ALAN estimates did the best job accounting for spatial bias in detection of all 

45 observations, based on AIC values and effect sizes (  = 0.81, 0.71 – 0.90 95% CI). Bear �
46 detection increased with elevated illuminance; relative abundance was positively associated 

47 with natural cover, proximity to primary bear range and lower road density. Although the highest 

48 counts of bear sightings occurred in the highly illuminated suburbs of the Minneapolis-St. Paul 

49 metropolitan region, we estimated substantially higher bear abundance in another region with 

50 plentiful natural cover and low ALAN (up to ~375% increased predicted relative abundance) 

51 where observations were sparse. 

52 5. We demonstrate the importance of considering ALAN radiance when analyzing citizen 

53 scientist-collected data, and we highlight the ways that ALAN data provides a dynamic snapshot 

54 of human activity.

55

56 Keywords: bears, geographic expansion, human-wildlife interactions, occupancy model, spatial 

57 bias, species monitoring

58

59

60 Introduction 

61 The integration of citizen science into research provides numerous benefits to the public 

62 and the research community. Citizen scientists benefit from project participation by receiving an 
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63 authentic learning experience, place-based interactions with nature that deepen connections to 

64 the study area, and a sense of involvement in the research and management process 

65 (Dickinson et al., 2012; Newman et al., 2017). Developing projects that involve citizens can also 

66 serve as an outreach tool that increases the public’s knowledge of species and helps connect 

67 lay people with scientists (Bonney et al., 2009). Moreover, researchers in citizen science 

68 projects can assess or monitor ecological processes and environmental change at greater 

69 spatio-temporal scales than would otherwise be possible (Dickinson, Zuckerberg, & Bonter, 

70 2010). In addition to increased ecological inference, methods that leverage citizen scientists 

71 realize several practical advantages, including decreased data processing time (Swanson, 

72 Kosmala, Lintott, & Packer, 2016) and costs of data collection (Sullivan et al. 2009), as well as 

73 increased quantities of data collected (Bonney et al. 2009). Indeed, the number of studies that 

74 use citizen scientist-collected data has grown dramatically (Follett & Strezov, 2015; Silvertown, 

75 2009). Wildlife monitoring applications include the assessment of changes in species’ 

76 geographic ranges (Wilson, Anderson, Wilson, Bertram, & Arcese, 2013), population trends 

77 (Massimino, Harris, & Gillings, 2018), and biodiversity (Tulloch, Possingham, Joseph, Szabo, & 

78 Martin, 2013). 

79 Gaining inference about ecological processes using opportunistically-collected citizen 

80 scientist data must account for the inherent biases of data collection (Altwegg & Nichols, 2019; 

81 Isaac, Strien, August, Zeeuw, & Roy, 2014). To maximize participation, citizen-science projects 

82 require data collection protocols to be simple (Dickinson et al., 2012), typically allowing for 

83 passive and observational data, resulting in large heterogeneity in how, where, and when data 

84 are collected (Kelling et al., 2015). As a result, observations tend to occur where people are 

85 present and able to detect the target species, oftentimes in areas that are the most accessible 

86 (Tulloch et al., 2013), yielding a spatial bias in the observations such that they do not reflect the 

87 spatial distribution or abundance of the species (Hugo & Altwegg, 2017). While numerous 

88 efforts have been made to account for observer effort and filter errant observations by modelling 

89 the observation process (Kelling et al., 2015), spatial bias remains an area ripe for 

90 improvement. 

91 One important source of spatial bias is artificial light at night (ALAN). Areas most 

92 accessible by citizen observers, such as near residential developments or roads, are also those 

93 with night lighting (e.g. porch, streetlights). Lighted areas directly increase the probability of 

94 detection during crepuscular and nighttime hours. ALAN has become pervasive globally 

95 (Gaston, 2018), extending far from urban areas into protected areas (Garrett, Donald, & Gaston, 

96 2019) and fundamentally altering the perceptual landscape for both humans and wildlife. Thus, 
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97 models of wildlife distributions that omit ALAN run the risk of under or overestimating wildlife 

98 occurrence, especially along the wildland-urban interface, producing a bias that increases as 

99 ALAN increases (Kyba et al., 2017). To date, however, the degree to which ALAN biases wildlife 

100 data collected by citizen scientists has not been assessed, nor has that bias been incorporated 

101 into predictive models of wildlife occurrence. 

102 Here we utilized an occupancy-modelling framework to test whether spatially explicit 

103 estimates of ALAN improve modelled detection processes in opportunistically collected wildlife 

104 observations by citizen scientists. Occupancy models explicitly account for detection bias while 

105 estimating species occurrence by separating ecological processes from detection processes 

106 within the same model (MacKenzie et al., 2017). Occupancy models are well suited to citizen 

107 science projects because they can test the influence of covariates that may influence either 

108 process (Kéry et al., 2010; Strien, Swaay, & Termaat, 2013), such as bias in animal detections 

109 by participants (Sun, Royle, & Fuller, 2019). However, even when the source of variation in 

110 detection process is known, such as ambient noise in avian surveys (Simons, Alldredge, 

111 Pollock, & Wettroth, 2007), there is often no spatially-explicit estimate that can be collected 

112 across large spatial scales or with regular frequency; this is especially problematic for highly 

113 mobile animals. Some studies have incorporated spatially-explicit estimates of sampling bias to 

114 better account for greater site accessibility of citizen science observers, such as proximity to 

115 roads, urban areas (Reddy & Dávalos, 2003; Warton, Renner, & Ramp, 2013), and human 

116 population density (Mair & Ruete, 2016). However, these metrics of the human footprint are 

117 static and do not capture its spatially and temporally dynamic nature, nor the changes to the 

118 sensory landscape created by ALAN associated with human activities. Choosing a variable that 

119 can be collected regularly and that accounts for observer bias at large spatial scales would be 

120 especially useful for tracking the spatio-temporal dynamics of observer bias. 

121 Here, we capture the dynamic changes of the human footprint across the landscape by 

122 using recently developed estimates of human-generated night light (Román et al., 2018) 

123 produced by the US National Aeronautical and Space Administration (NASA). ALAN radiance 

124 levels correlate with spatial changes in human activity (Gaston, Bennie, Davies, & Hopkins, 

125 2013), such as population and economic growth (e.g., natural gas drilling), and are collected at 

126 relatively fine scales (~ 1km2) on a daily basis, dynamically representing seasonal shifts in 

127 human space use (e.g., ski resorts that are operational during only a few months; changes in 

128 traffic volume patterns). Quantifying and mapping ALAN may additionally identify areas in which 

129 nighttime lighting increases the chance of observing species during crepuscular and nocturnal 

130 periods.
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131 We apply our occupancy modelling framework to a citizen-science project aimed to 

132 investigate range expansion of American black bears (Ursus americanus) in Minnesota, USA. 

133 Black bear population abundance and geographic range have been steadily increasing 

134 throughout much of North America (Scheick & McCown, 2014), owing to the bear’s mobility, 

135 relatively high level of tolerance for human presence (and vice versa), and ability to exploit 

136 anthropogenic food sources (e.g. crops, trash, bird feeders; Tri et al., 2016, Evans et al. 2017). 

137 This propensity to forage for calorically-rich anthropogenically-sourced foods can bring them 

138 into close proximity to humans and result in human-bear conflicts (Wilton, Belant, & Beringer, 

139 2014). Understanding where bears are expanding their range, and consequently elevating the 

140 risk of conflict with humans is of particular interest to wildlife managers (e.g. Evans, Hawley, 

141 Rego, & Rittenhouse, 2014). 

142 In 2018, the Minnesota Department of Natural Resources (MNDNR) launched an online 

143 citizen-science data collection program, asking the public to report sightings of bears outside the 

144 forested, northern portion of the state, which constitutes primary bear range. The goal was to 

145 track the expansion of the population into less forested regions, after anecdotal reports 

146 suggested an increasing number of bear sightings outside the primary range. The data 

147 collection portal formalized collection of these observations into a monitoring tool, and also 

148 provided a means for citizens to view the distribution of sightings as they accumulated, and thus 

149 learn more about bear occurrences in the state. Black bears are an ideal species for citizen-

150 scientist participation because they are a large-bodied, relatively easily-identifiable, iconic and 

151 charismatic species, which results in high levels of public participation, minimal species 

152 misidentification, and positive media attention for the project. Importantly, bears’ tolerance for 

153 humans (including attraction to human-related food sources) enabled us to examine how 

154 several metrics of the human footprint influence detection of bears at moderately high levels of 

155 human presence.

156 Our objectives were to test how ALAN may influence the detection process of 

157 opportunistically-collected bear observations from citizen scientists. We compared how well 

158 spatially-explicit, monthly estimates of ALAN data explained variance in the detection process of 

159 bears within our occupancy models relative to factors that may be more commonly used (e.g., 

160 housing density) and assessed how ALAN impacted our results. We sought to understand 

161 whether quantification of ALAN, which has become a pervasive part of the modern global 

162 landscape (Kyba et al., 2017), helped to address observation bias. Properly accounting for 

163 observation bias is critical for fully realizing the potential benefits to ecological inference offered 

164 by citizen science projects. 
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165 Methods

166 Study area 

167 Minnesota marks the westernmost edge of the eastern black bear population in the 

168 United States. Primary bear range in Minnesota matches the region of extensive forest cover in 

169 the north (~100,000 km2), but bears also thrive along the edge of this primary forested range by 

170 exploiting agricultural crops (e.g. corn, sunflowers) and abundant wild fruits and nuts along 

171 edges of small, isolated patches of forest (Ditmer, Garshelis, Noyce, Haveles, & Fieberg, 2016). 

172 For example, in the mid-1990s, bears rapidly colonized the far northwestern corner of the state, 

173 a region that is over 50% agriculture and less than 20% forested, yet individuals living there are 

174 some of the physically largest and most fecund in the state due to abundant forage in the region 

175 (Ditmer, Noyce, Fieberg, & Garshelis, 2018). The total population is estimated at 12–15,000 

176 bears, of which ~2,000 bears reside along the periphery of primary bear range, where the forest 

177 is much more fragmented (secondary bear range ~21,500 km2; Garshelis & Tri, 2019; Fig. 1). 

178 Bear harvest occurs in the fall and a large portion of the primary bear range is regulated with a 

179 relatively conservative hunting quota system; the peripheral regions outside primary range are 

180 hunted more liberally, intended to prevent population increase and thus control the extent of 

181 bear damage to property or agricultural crops. 

182 Natural landcover (forest, shrublands, wetlands) generally decreases moving farther 

183 from primary bear range. In the northern half of the state, human population density is sparse, 

184 and most roads have relatively low traffic volume. Along the edge of primary bear range, the 

185 landcover is a heterogenous composition of highly developed lands, with a high human 

186 population density in the Minneapolis-Saint Paul metropolitan region (population: >3.5 million), 

187 and extensive suburban developments in all directions, along with high-volume highways (e.g.,  

188 Interstate 94) running approximately along the transition from primary to non-primary range. The 

189 southern half of the state is dominated by agricultural lands. Outside the primary bear range, 

190 swaths of forest occur in river corridors, which bears use as travelways (Ditmer et al., 2018; Fig. 

191 2). 

192 Our study area within Minnesota was restricted to a band within 55 km along the edge of 

193 (and including) secondary bear range (~115,000 km2). This area contained > 90% of sites with 

194 bear observations and 95% of sites with recurring bear observations (bear observed in the 

195 same site more than once; Fig. S1; see Statistical analysis for more details). We did not aim to 

196 predict bear occurrence in regions with few observations of bears. Landcover within the 

197 designated study area rapidly changes from east to west, and beyond the western limit, there is 

198 little natural vegetation. 
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199 Figure 1. Map of Minnesota, USA, showing primary black bear range (where no citizen science 

200 observations were collected), secondary range (with more fragmented habitat and lower-density bear 

201 populations), the study region (including and within 55km of the secondary bear range), and all citizen 

202 scientist-collected observations, 2018-2019. Purple lines = counties containing the Minneapolis-Saint 

203 Paul metropolitan area.

204

205 Figure 2. Maps of abundance covariates used in occupancy models of citizen scientist-collected 

206 observations of black bears outside of their primary range in Minnesota, USA, including: A) distance to 

207 nearest river (m), B) distance to primary bear range (km), C) natural landcover (% cover), and D) road 
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208 density (road length [km]/area [km2]),. Each cell represents the mean value for a 25-km2 area (the size of 

209 our sites). Histograms were created using mean values along the latitudinal and longitudinal axes of 

210 values within Minnesota not associated with primary bear range. Gray areas: primary bear range. Green 

211 lines: study area (<55 km from secondary bear range). The Minneapolis-Saint Paul metropolitan area is 

212 located between 44–45°N and 93–94°W. 

213

214

215 Bear sighting collection
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216 During 2018 - 2019, citizens were asked to report sightings of bears outside primary 

217 range (Fig. 1) by entering the location and answering questions about the bear’s activity on a 

218 MNDNR-hosted website (https://www.dnr.state.mn.us/hunting/bear/bear-sightings.html). To 

219 facilitate accurate reporting, participants could enter a street address, coordinates, or click on 

220 the location using an interactive map (Survey 123 for ArcGIS, ESRI, Inc., Redlands, CA). If the 

221 participant entered an address or coordinates, the map automatically zoomed to the location for 

222 verification before submission. All bear sightings were publicly available for viewing on the 

223 website, except during bear baiting and hunting seasons (mid-August – mid-October). However, 

224 observations were collected during all months (rarely during November – March, when bears 

225 are generally hibernating). Observers entered their name and contact details to enable 

226 verification of unusual sightings, but we did not contact any observers, and all personal 

227 information was removed from the database before we began analysis.

228 We were primarily interested in the number of sighting events (i.e., disregarding the 

229 number of bears reported in each sighting), and the date and location of each. However, we 

230 used the responses to other questions in each report, such as “What was the bear doing?” and 

231 “If the bear was eating, what was it eating?” to help ensure the response was valid. We 

232 excluded sightings that were within primary bear range or outside the state of Minnesota. 

233 In 2019, we added two questions to the reporting website to get a better idea about the 

234 light conditions. The first question asked “What period of the day did you see the bear(s)?”, and 

235 provided  six options: 1) 01:00 – 05:00, 2) 05:00 – 09:00, 3) 09:00 – 13:00, 4) 13:00 – 17:00, 5) 

236 17:00 – 21:00, and 6) 21:00 – 01:00.The second added question asked “What were the light 

237 conditions during the sighting?” with four options 1) Daylight, 2) Dawn or Dusk (low light), 3) 

238 Nighttime aided by artificial lights (streetlights, headlights, porch light, etc), 4) Nighttime with no 

239 artificial lighting. 

240 Detection variables 

241 We characterized five aspects of the human footprint outside primary bear range: 1) 

242 artificial light at night averaged over the months considered in the study (ALAN_ave.), 2) 

243 monthly ALAN estimates (ALAN_monthly), 3) housing density (HousDen), 4) developed land 

244 (Developed%), and 5) impervious surface (ImpSurf). These spatially explicit estimates were 

245 applied as covariates for the detection process of our occupancy model to account for biased 

246 detection and sampling efforts by citizen scientists observing bears (Fig. 3). Estimates of 

247 nighttime radiance values were derived from data collected by NASA-NOAA’s Suomi National 

248 Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. 

249 Data from the VIIRS sensor were lunar BRDF-corrected (bidirectional reflectance distribution 
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250 function), and provided as 1 km2 radiance values that remove the contributions of moonlight, 

251 clouds, terrain, wildfire, seasons, atmospheric effects, snow, and stray light, thus resulting in 

252 contributions of anthropogenic point source emissions only (Román et al., 2018). We used 

253 monthly ALAN estimates from the most current year available (2016). HousDen data were 

254 based on 2010 estimates at a 100 m2 resolution (National Park Service, 2010). The 

255 Developed% layer was derived from the 2011 National Land Cover Database (NLCD) 

256 classification (U.S. Geological Survey, 2014). NLCD data are provided at a 30-m2 resolution and 

257 we assigned a “1” for any “developed” classification (open-space – high intensity; class/value: 

258 21 – 24), while all other landcover types were reclassified as “0”. The ImpSurf estimates provide 

259 a percentage of impervious landcover (e.g. roads, energy production, urban areas) at a 100-m2 

260 resolution (Xian et al., 2011). 

261 Figure 3. Maps of detection covariates used in occupancy models of citizen scientist-collected 

262 observations of black bears outside of their primary range in Minnesota, USA, including A) average 

263 artificial light at night, B) housing density, C) developed landcover, and D) impervious surface. We 

264 created mean scaled and centered values based on aggregated cells equal to four sites (100 km2) for 

265 comparison and visualization. Each cell represents the mean value for a 25 km2 area (the size of our 

266 sites). Histograms were created using mean values along the latitudinal and longitudinal axes of values 

267 within Minnesota not associated with primary bear range. Green lines: study area (<55 km from 

268 secondary bear range). The Minneapolis-Saint Paul metropolitan area is located between 44–45°N and 

269 93–94°W.

270
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271

272 Abundance/biological variables 

273 We developed layers that estimated: 1) distance to nearest river (m; RiverDist), 2) 

274 distance to primary bear range (km; RangeDist), 3) road density (RdDens), and 4) percentage 

275 of area with natural cover (Natural%; Fig. 2). We hypothesized that each of these variables 

276 would help predict relative bear abundance within the non-primary bear range. Non-primary 

277 bear range was dominated by agricultural lands, and we believed bears would be more 

278 abundant in the areas that contained relatively high levels of natural cover despite their ability to 
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279 persist in areas dominated by agriculture (Ditmer et al., 2018). We also hypothesized that bears 

280 would preferentially use riparian zones because of the associated natural cover, providing 

281 conduits for movement. We expected lower relative bear abundance farther from primary bear 

282 range (population source) and in areas with high road density. While bears do use lower traffic 

283 volume roads for movement and roadside forage, high road densities and traffic volume reduce 

284 cover and increase mortality risk (Brody & Pelton, 1989). 

285 We created RiverDist using the National Hydrography Dataset (NHD; U.S. Geological 

286 Survey, 2015) obtained from the Minnesota Geospatial Commons 

287 (https://gisdata.mn.gov/dataset/water-national-hydrography-data). We used the shapefile for 

288 river features (NHDArea) and created a 30-m2 resolution raster layer by calculating the distance 

289 to the nearest river from the centroid of each raster cell using the “Euclidian Distance” tool in the 

290 Spatial Analyst extension of ArcMap (v.10.6; ESRI, 2017). We used the same process to 

291 calculate the Euclidian distance to primary bear range. Road density estimates (1-km2 

292 resolution) were developed by the National Park Service (National Park Service Inventory and 

293 Monitoring Division - Modeling, Analysis, and Synthesis Group, 2014). To create the Natural%, 

294 we assigned any classifications from the NLCD raster layer associated with water, developed 

295 areas, barren areas or agriculture as “0”, and assigned landcover classifications associated with 

296 forest, shrubland, herbaceous, and wetlands (class/value: 40 – 74 & 90 – 95) as a “1”.  

297 For all values associated with detection and abundance covariates, we calculated values 

298 that aligned with the same resolution of the ALAN data (1 km2). If a given raster layer could not 

299 be aligned with the same extent of the ALAN data, we used the package ‘raster’ (Hijmans, 

300 2019) in program R to convert each cell to a point (function ‘rasterToPoints’) based on its 

301 centroid and retained the value associated with each cell. For layers with binary data (0–1; 

302 Developed% and Natural%), we calculated the percentage of centroid points equal to 1, 

303 corresponding to if the cell was assigned a “0” or “1” as developed or natural, within each 1 km2 

304 cell associated with the ALAN data (i.e., % of each landcover category within ALAN raster cell). 

305 For all other layers, which were continuous values, we averaged the values of the points within 

306 each 1-km2 cell and again associated it with the corresponding ALAN layer cell. Finally, we 

307 overlaid the locations of reported bear sightings, combining both years, onto the corresponding 

308 monthly ALAN raster layer to create monthly layers of bear sightings (BearSight). Over 97% of 

309 bear sightings occurred during April–October, when bears are not hibernating, so we only 

310 considered BearSight raster layers from those associated months. 

311 Statistical analysis
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312 The number of bear sightings depended both on the abundance of the species in the 

313 area and on factors affecting the detection process (Dénes, Silveira, & Beissinger, 2015). To 

314 assess which characterization of human footprint best described the detection process, we 

315 applied latent N-mixture models (Kéry, Royle, & Schmid, 2005; Royle, 2004) using the pcount 

316 function in the R-package ‘unmarked’ (Fiske & Chandler, 2011; vers.0.13-0) in program R (R 

317 Core Team, 2019).

318 The hierarchical structure of the N-mixture occupancy models explicitly accounts for 

319 imperfect detection and consists of two parts, one describing the ecological process determining 

320 the abundance of the species, and one describing the conditional detection process (Royle 

321 2004). We fit a series of N-mixture models to our spatially replicated counts of bear 

322 observations and absences (no bears observed at the site in a given month) by altering the 

323 covariates describing the detection process with 1) Intercept only (NULL), 2) ALAN_ave., 3) 

324 ALAN_monthly, 4) Developed%, 5) HousDen, and 6) ImpSurf. However, we always included the 

325 same four covariates in the abundance portion of the model: RiverDist + RangeDist + RdDens + 

326 Natural%. All covariate values were scaled and centered for fit and comparison purposes. We 

327 tested for collinearity in our models using variance inflation factors via the “vif” function in the 

328 package ‘unmarked’. The resulting variance inflation factors were all < 2, so we determined 

329 collinearity was not a problem (Dormann et al. 2013). 

330 In order to better meet the closure assumption of occupancy models (Kéry & Royle 

331 2016), we aggregated all spatial layers, for both detection and abundance, from 1 km2 to 25 

332 km2. We refer to these 25 km2 areas as “sites”. We assumed that sites were large enough such 

333 that if a bear was detected there one month, it was occupied during all seven months (although 

334 individual bears may have used more than one site). In very sparsely-occupied parts of the 

335 state, where bears roam widely between distant food sources and adequate patches of habitat 

336 (Ditmer et al., 2018), this closure assumption might not hold, which is why we restricted our 

337 study to the region near the secondary range, where bear density was higher and food sources 

338 closer together. However, because of the potential for violation of the closure assumption, we 

339 interpret the estimates of our occupancy models to represent the total number of bears 

340 associated with a site during the overall period of study (referred to as ‘relative abundance’ in 

341 the Results and Discussion sections), rather than those permanently residing in the cell. 

342 Nevertheless, we tested the same models at 1-km2 resolution (where closure was likely to be 

343 violated) and found similar results (Tables S1 & S2). 

344 We used the zero-inflated Poisson (ZIP) mixture to fit all the models, due to the 

345 instability of negative binomial mixture models applied to data with numerous zeros (Dénes et 
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346 al., 2015; Knape et al., 2018). To assess fit we used QQ plots of site‐sum randomized quantile 

347 residuals from the R package ‘nmixgof’ (Knape et al., 2018; Fig. S2). We determined that 

348 parameter estimates were stable at a K value (index of integration) of 200 (Table S3) and 

349 compared model fit among the different detection covariates using Akaike Information Criterion 

350 (AIC) values.

351 The residuals from our top model were autocorrelated based on spatial correlograms (by 

352 month) and Moran’s I. To account for the autocorrelation we used the package ‘spdep’ (Bivand 

353 et al. 2018) and created an autocovariate term (Crase et al. 2012) that was added to our top 

354 model (see Table S4 for model values) prior to making predictions of relative bear abundance. 

355 We fit a variety of neighborhood radius distances (15 – 100 km) into our autocovariate variable 

356 and used AIC values to determine the distance that reduced variance the most (60 km). For 

357 both the detection and abundance component of the model, we applied the function predict to 

358 plot the effect of a specific variable while holding the others constant at their scaled mean. We 

359 created spatially-explicit predictions of relative bear abundance based on the top model, 

360 converting the values to a raster (function rasterFromXYZ in the ‘raster’ package). 

361 Results

362 We received 1,081 reports of black bear sightings in 2018 and 811 in 2019 (2-year total 

363 = 1,892 sightings). After removal of invalid or unusable reports, and those outside of our defined 

364 study area, we retained 1,315 sightings for use in our analysis (Fig. 1). Citizen-scientists 

365 observed bears most frequently during crepuscular hours (44% of 755 reports with the question 

366 included; 05:00 – 09:00 & 17:00 – 21:00; total 8 hours), and at nighttime (31%; 21:00 – 05:00; 

367 total 8 hours), while the diurnal period had the fewest observations (25%; 09:00 – 17:00). Of the 

368 745 bear sighting reports that included a response to the question, “What were the lighting 

369 conditions during the sighting?”, 17% reported “nighttime aided by artificial lights”, 10%: 

370 nighttime with no artificial lights, 21%: dawn or dusk (low light), and 52% = daylight (many in the 

371 crepuscular period).  

372 Bear Detection

373 Changing monthly estimates of ALAN best explained detection probability (AIC weight = 

374 1.00) of citizen scientists encountering black bears relative to the null model and models 

375 including the other detection covariates (Table 1; Fig. 4). ALAN_monthly had the greatest effect 

376 on detection within our occupancy models (  = 0.81, 0.71 – 0.90 95% CI) relative to ALAN_ave �
377 (  = 0.67, 0.57 – 0.76 95% CI), Developed% (  = 0.48, 0.34 – 0.61 95%CI), HousDens (  = � � �
378 0.22, 0.03 – 0.40 95%CI) and ImpSurf (  = -0.20, -0.36 – -0.04 95%CI; Fig. 4A). Predicted �
379 detection probability increased from 0.05 (0.02 - 0.10 95% CI) at the lowest observed ALAN 
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380 values to 29.1 (18.2 – 43.3 95% CI) in the most illuminated areas (Fig. 4B). In contrast, the 

381 detection covariate Developed%, which was the most supported non-ALAN detection variable, 

382 was predicted to increase detection from 1.20 (0.57 – 2.11 95% CI) at its lowest observed 

383 values, to 16.6 (9.9 – 26.4 95% CI) at its largest.  

384 Ecological Relationships

385 Based on the best-fitting model, which included ALAN_monthly as the covariate in the 

386 detection process, relative bear abundance increased with greater percentages of natural 

387 landcover (non-urban, crop, or barren), proximity to primary bear range and riparian areas, 

388 although RiverDist had a 95% confidence interval overlapping zero in our best fitting model 

389 (Table 2; Fig. 2). RdDens had a negative relationship with relative bear abundance in models 

390 containing ALAN in the detection component, but a positive relationship with relative bear 

391 abundance in the Null model and models including HousDen and ImpSurf in the detection 

392 process (Table 2; Fig. 2D). 

393 A large percentage of the bear sighting reports were from the suburban section north of 

394 the Minneapolis-Saint Paul metropolitan area (Fig. 1 & Fig. 5A). However, detection in this area 

395 was high, so predicted abundance of bears was lower than indicated by the large number of 

396 sightings. Likewise, predicted bear abundance was higher in northwestern Minnesota, where 

397 sightings were fewer, but detection was also far lower (Fig. 5B & 5C). This area in the 

398 northwest has low levels of ALAN, low-to-medium road density, and is one of the few regions 

399 close to primary bear range with a large percentage of natural land cover (Fig. 2), all 

400 characteristics that favor the establishment of bears. The monthly ALAN model, corrected for 

401 bias in detection and autocorrelation of the residuals, predicted an expected relative abundance 

402 for this area up to ~375% higher than indicated by the number of reported sightings.

403 Table 1. Ranking of occupancy models of citizen scientist-collected observations

404 of black bears outside of their primary range in Minnesota, USA. All models contained the same 

405 covariates for bear abundance, but each contained a different explanatory variable for the detection 

406 process. nPars: number of parameters; AIC: Akaike Information Criterion; ΔAIC: AIC relative to top-

407 ranked model; AICwt: model weight

Model nPars AIC ΔAIC AICwt

p(ALAN_monthly) 8 9115.7 0.0 1.00

p(ALAN_average) 8 9208.7 93.0 0.00

p(Developed%) 8 9340.4 224.7 0.00

p(HousDen) 8 9372.4 256.8 0.00

p(ImpSurf). 8 9373.7 258.1 0.00
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p(Null) 7 9377.2 261.6 0.00

408

409 Figure 4. A) Mean coefficient and 95% confidence intervals of scaled and centered detection covariates 

410 from occupancy models of citizen scientist-collected observations of black bears outside of their primary 

411 range in Minnesota, USA. B) Predicted detection probability of monthly ALAN values from our top model 

412 (values were centered and scaled). All other variables within the occupancy model were at their mean 

413 values.

414

415

416
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417 Table 2. Parameter estimates and standard errors (in parenthesis) from occupancy models fit to citizen scientist-collected observations of black 

418 bears outside of their primary range in Minnesota, USA. All models contained the same covariates for bear abundance, but each contained a 

419 different explanatory variable for the detection process. p, ψ, λ: influence on detection, occupancy and abundance, respectively.

420

Model p: Intercept ψ λ: Intercept Λ: RiverDist Λ: RdDens Λ: RangeDist Λ: Natural%

p(ALAN_monthly) -4.94 (0.30) 0.32 (0.08) 1.87 (0.31) -0.05 (0.04) -0.24 (0.05) -0.97 (0.06) 0.55 (0.03)

p(ALAN_average) -4.75 (0.30) 0.34 (0.08) 1.74 (0.31) -0.06 (0.04) -0.18 (0.05) -0.98 (0.06) 0.55 (0.03)

p(Developed%) -4.17 (0.27) 0.5 (0.08) 1.31 (0.28) -0.12 (0.04) -0.07 (0.07) -0.99 (0.06) 0.59 (0.03)

p(HousDen) -3.69 (0.20) 0.49 (0.08) 0.86 (0.21) -0.14 (0.04) 0.14 (0.07) -1.00 (0.07) 0.56 (0.03)

p(ImpSurf). -3.59 (0.20) 0.48 (0.08) 0.77 (0.22) -0.14 (0.04) 0.48 (0.08) -0.98 (0.07) 0.55 (0.03)

p(Null) -3.62 (0.21) 0.50 (0.08) 0.81 (0.22) -0.14 (0.04) 0.30 (0.03) -1.00 (0.07) 0.56 (0.03)

421

422

423 Figure 5. A) Centered and scaled counts of bears sighted outside of their primary range by citizen scientists. B) Scaled predicted expected 

424 relative abundance of bears based on our spatial autocorrelation-corrected best-fitting occupancy model which included monthly estimates of 

425 ALAN as the covariate in the detection portion of the model. C) The scaled difference between panel A and panel B.  All raster cells (5km2) were 

426 smoothed using a 7×7 moving window [function focal in package raster] to enhance visualization. Histograms were created using mean values 

427 along the latitudinal and longitudinal axes of values within Minnesota not associated with primary bear range. Green lines = counties containing 

428 the Minneapolis-Saint Paul metropolitan area. Gray areas: primary bear range.
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430 Discussion

431 Citizen scientists have become an integral and powerful aspect of many ecological 

432 research and monitoring projects, yet due to the opportunistic nature of data collection, spatial 

433 biases in sampling arise. These must be accounted for in order to make accurate inferences 

434 from the data. We demonstrated that spatially-explicit estimates of ALAN, a growing 

435 environmental pollutant strongly correlated to human development and activities (Gaston et al., 

436 2013), is a powerful source of data for reducing sampling bias driven by detection 

437 heterogeneity. Elevated ALAN radiance was associated with a greater detection probability 

438 among citizen scientists participating in an effort to assess range expansion of black bears 

439 across a large area (>115,000 km2) including many privately-owned lands. In our occupancy 

440 models, ALAN provided the best proxy that combined presence of citizens with their ability to 

441 see bears; ALAN not only directly aided at least ~17% of bear sightings, but also explained the 

442 distribution of potential observers better than other surrogates (e.g., housing density). 

443 Accounting for ALAN reduced sampling biases, and improved predictions related to 

444 associations between ecological factors and animal presence, which in turn created more 

445 accurate and biologically-realistic predictions of species’ relative abundance at a broad spatial 

446 scale. 

447 Using opportunistic observations for monitoring population expansion has the 

448 disadvantage that animals can be seen only where people are present and sighting conditions 

449 are favorable for detection. The intent of modelling detectability using ALAN is to account for 

450 this inherent bias, so clusters of observations, or blank spots where observations are scarce or 

451 absent, can be compared even if levels of detectability by people are different. For example, we 

452 found relatively dark areas that, based on landscape characteristics, likely had a higher 

453 presence of bears than indicated by the observational data. Instead of including precise 

454 measurements of human presence, some studies have suggested ways to improve the data 

455 collection protocols for citizen scientist projects to strengthen inference (Altwegg & Nichols, 

456 2019), such as accounting for completeness and individual ability to identify species (Kelling et 

457 al., 2015). However, for projects like ours that simply extend requests for participation to the 

458 public, keeping the process simple was key to maximizing the level of participation and number 

459 of reported bear sightings. 

460 As expected, the ecological factors associated with the expansion of this bear population 

461 were low road density, high natural landcover, and proximity to riparian areas. American black 

462 bears are known to be relatively human-tolerant, opportunistic omnivores, and throughout their 

463 range, they are colonizing or recolonizing areas that were once assumed to contain too little 
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464 natural habitat to support bears (Scheick & McCown, 2014). Bears may be enticed to leave their 

465 primary range and seek out new areas in search of mating opportunities or caloric hotspots 

466 (Noyce & Garshelis, 2010), such as garbage or birdfeeders in more developed settings (Merkle, 

467 Robinson, Krausman, & Alaback, 2013), or crops in agricultural areas (Ditmer et al., 2016). In 

468 northwestern Minnesota, Ditmer et al., (2018) found that male bears moved westward in late 

469 summer and fall into areas with very little forest cover to exploit crops such as corn. However, 

470 they required some forest cover near the feeding site, and typically returned to areas with more 

471 cover to den and feed the following year before crops again ripened. Female bears are more 

472 reluctant to venture far from forest, but green corridors along rivers may provide avenues for 

473 their expansion. 

474 Potential Applications and Caveats for use of ALAN in Citizen Science-focused Projects 

475 The ability to detect and monitor species’ range shifts, contractions, or expansions is 

476 increasingly important due to rapid changes in climate (Chen, Hill, Ohlemüller, Roy, & Thomas, 

477 2011), land use (Jetz, Wilcove, & Dobson, 2007), and human tolerance for species that share 

478 the landscape (Carter & Linnell, 2016). Currently, several large carnivore species are colonizing, 

479 or re-colonizing large regions in North America and Europe (Chapron et al., 2014). These 

480 species typically occur at relatively low densities, are extremely vagile, and require intensive 

481 monitoring to manage for human-wildlife conflicts. Our approach may be useful for monitoring 

482 changes in range and anticipating potential conflict hotspots. For polarizing species, connecting 

483 professionals with the public through a citizen science program enhances two-way information 

484 exchange, which is likely to enable more potential to mitigate potential conflict. Participation in a 

485 project can increase the public’s receptiveness to management and conservation actions 

486 because participants have been part of the research process (Backstrand, 2003; Dvornich, 

487 Tudor, & Grue, 1995). Weckel, Mack, Nagy, Christie, & Wincorn (2010) found that surveying the 

488 public about their feelings of risk amidst increasing human-coyote (Canis latrans) interactions in 

489 suburban New York City, USA provided a low-cost tool for reducing conflict via outreach, 

490 modifying behavior, and improving understanding of coyote space use. 

491 Previous studies have accounted for the sampling bias in opportunistically collected data 

492 through a variety of ways, such as changes in detection across time (Kéry & Schmid, 2004), 

493 observer effort (Mair & Ruete, 2016), spatial correlation of observations (Clement, Hines, 

494 Nichols, Pardieck, & Ziolkowski, 2016), habitat factors (Paolino et al., 2018), and spatial 

495 estimates of human presence. However, the spatial metrics used in these studies are static, 

496 rarely updated, and often do not reflect temporal trends such as seasonal traffic volumes. The 

497 same was true for the NLCD data we used to derive % developed surface within each site 
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498 (NLCD layers updates ~ every 5 years; 2001, 2006, 2011, 2016). Our model with monthly 

499 estimates of ALAN explained variability in the detection process better than the average ALAN 

500 composite, further highlighting that capturing temporal changes in the human footprint can also 

501 improve inference. ALAN is collected daily at ~1-km2 resolution, and while cloud cover presents 

502 challenges with data loss, as with any other remotely-sensed product, its strength is the ability 

503 to detect changes through time (currently only available as a monthly composite). Combining a 

504 dynamic occupancy modelling framework with ALAN generation estimates at fine temporal 

505 scales could be especially informative for studies in regions undergoing rapid changes, 

506 locations in extreme latitudes where ALAN is prevalent for longer periods of most daily cycles 

507 for part of the year, and in areas that experience drastic fluctuations of human population 

508 density (e.g. National Parks in summer months) or are hotspots for human-wildlife conflict. 

509 Wildlife species often alter their activity patterns towards crepuscular and nocturnal 

510 periods in areas with high human activity or urbanization (Gaynor, Hojnowski, Carter, & 

511 Brashares, 2018). These areas are illuminated by ALAN, which blurs the lines between day and 

512 night (Hölker, Wolter, Perkin, & Tockner, 2010), and makes species that would have been 

513 previously unobservable more available for detection. However, it is not apparent how ALAN 

514 impacts the behavior (specifically movement/space use) or distribution of most wildlife species 

515 (i.e., ALAN may alter abundance patterns). A growing body of research is documenting the 

516 ways that ALAN can disrupt species (Hölker et al., 2010); however, these studies have been 

517 primarily conducted at fine scales, or in laboratory settings, with nearly all considering smaller-

518 bodied and less-vagile species. Although some species, such as insectivorous bats, may 

519 aggregate at light sources to forage (Jung & Kalko, 2010), others might avoid highly illuminated 

520 areas (Bliss-Ketchum, de Rivera, Turner, & Weisbaum, 2016). In the case of black bears, the 

521 species is known to be attracted to human-related food sources, and may thrive in areas with 

522 high human density, but they typically alter their movements and activities so as to reduce 

523 encounters with people (Beckmann & Berger 2003, Evans et al. 2017, Zeller et al. 2019). Many 

524 other species are not as tolerant of human presence or activities, or not as adaptable, so ALAN 

525 may reduce their use of an area. 

526 We also caution that ALAN may not always be closely related to human presence. In 

527 most cases, modern human activities and presence are strongly linked in developed parts of the 

528 world with features such as street lights, residential lighting and headlights from vehicles. 

529 However, in some regions, economic activities may generate large amounts of ALAN without 

530 associated increased detection probability (e.g. industrial sites), thus reducing the spatial 

531 correlation between ALAN and human presence. Because of this, researchers may want to 
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532 model observation bias with ALAN (where appropriate) along with a suite of covariates that are 

533 carefully chosen for the terrain, specific human activities, and other potentially important factors, 

534 such as Mair & Ruete (2016) who constructed “ignorance” scores which quantified overall 

535 observation bias of citizen-scientist collected data throughout Sweden. 

536 Although most established citizen science projects that involve data collection are aimed 

537 at bird species, mammal-focused projects are increasing (Massimino et al., 2018). Because 

538 many mammals are less easily detected than birds, the inherent sampling and detection bias of 

539 the observations requires proper accounting for the dynamic human footprint in order to make 

540 biologically-sound inference. More wildlife studies are using remotely-sensed products to 

541 capture ecological changes at fine spatial and temporal scales (e.g. forage in the form of 

542 vegetative greenness). Here, we highlight that remotely-sensed ALAN data can play a similar 

543 role in capturing an accurate snapshot of the human footprint at fine temporal and spatial 

544 scales. In the future, we expect ALAN data to continue to increase in resolution and for NASA’s 

545 filtering technologies to be further refined, thus providing more accurate delineations of the 

546 human footprint. Incorporating citizen-scientists into ecological research has been linked with 

547 numerous practical, social, and scientific advantages; within this framework, we need to account  

548 for the fact that most data will invariably be collected from areas that are the most accessible to 

549 the public, or their full potential cannot be realized.

550
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