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Abstract
Four‐dimensional (4D) relativistic scattering of electromagnetic waves from an arbi-
trary collection of uniformly translational moving lossy dielectric spheres is discussed.
Two reference frames, four 4D coordinate systems and Lorentz transformation are
used to obtain the scattered electromagnetic fields. The direct scattering of the
spheres and their interactions are considered with a novel approach. The introduced
method is straightforward and the analytical relations for the fields are achieved. To
check the validity of the proposed method, different examples for both stationary and
moving scatterers are investigated. The effects of key parameters such as the size,
material, velocity, number, position of the spheres and also the frequency of the
incident wave are discussed. The derived scattered fields are valid for low, medium
and high velocities but according to practical applications low and moderate velocities
are highlighted in numerical results.

1 | INTRODUCTION

A very interesting subject in electromagnetics is the scattering
of electromagnetic (EM) waves from moving objects which
has been investigated by researchers over the last century.
From the standpoint of applications, for low and moderate
speed cases, it can be used to calculate the attenuation and
transmission of EM waves for rainy, snowy and dusty me-
diums, which is very important in meteorology, satellite
communications, environmental issues, radar applications and
remotely sensed data. Furthermore, for the profile of high‐
speed objects, it has applications in the understanding of
scattering by relativistically moving interstellar dust grains [1],
moving plasma columns [2–4] and mass flows in pneumatic
pipes [5].

The important properties of objects such as shape, ma-
terial, and velocity could be obtained by processing the
scattered fields, which is known as inverse scattering.
Furthermore, with post‐processing, other significant practical
characteristics of a collection of objects such as scattering,
extinction and absorption cross‐sections could be derived.
The main challenge in random and multiple scattering is

obtaining the scattered fields from a collection of moving
scatterers. In this case, 4 four‐dimensional (4D) coordinate
systems for the rest and moving frames and Special Theory
of Relativity (STR) should be considered which causes
mathematical difficulties.

Electromagnetic scattering of a translational moving body
with STR, which was first introduced by Einstein in 1905 [6],
has been used for a moving perfectly reflecting mirror [7,8].
By applying STR, EM scattered waves for different moving
shapes such as dielectric medium [9,10] cylinder [11–15],
conducting sphere [16], electrically small chiral sphere [17],
small particle [18], perfectly conducting flat plate [19], rough
surface [20], arbitrary obstacle [21–27], wedge [28,29] and
half‐plane [30–32] have been derived. Also, scattering char-
acteristics (scattering cross‐section, extinction and absorp-
tion) for a uniformly moving object [33] and a moving
concentrically layered sphere [34] are discussed. The back-
scattered signal by a uniformly moving sphere considering
the incident wave to be a pulsed plane wave, is investigated
[35]. All foregoing works discuss only one moving object
whereas practical applications mostly deal with a collection of
many moving random objects. In that case, not only
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investigation on the relativistic translational motion of the
individual object is required, the mutual interactions of the
moving objects also have significant effects, which make the
solution more complicated.

Time‐domain scattered fields from an arbitrary collection
of uniformly translational moving lossy‐dielectric spheres are
calculated in the far‐field region. The size, material, velocity,
number, position of the spheres and the frequency of the
incident wave can be selected arbitrarily, which makes
studying of effective parameters possible. By considering the
intrinsic inaccuracies of using numerical techniques, such as
the finite‐difference–time‐domain method (FDTD) and Lor-
entz precise integration time‐domain method (Lorentz‐
PITD), for a moving object [36–42], here the STR and Mie
theory [43–46] are employed. Also, other kinds of motions
for an individual object such as rotational [47–51] and
vibrational [52–54] have been investigated, but, here the
translational motion is of interest.

2 | FORMULATION OF THE PROBLEM

A collection of uniformly translational moving spheres of
radius a, a complex refractive index of n ¼ n0þjn″ and a
constant velocity of ν→¼ vẑ moving along the z‐direction is
considered. Four 4D coordinate systems (three dimensions are
associated with the position and one with the time) are
considered regarding the rest and moving frames which are
denoted with K and K0, respectively, as shown in Figure 1. In
the rest frame, the spheres appear to be moving and in the
moving frame, the spheres seem to be stationary.

To synchronize times, K and K0 are considered to coin-
cide at time t ¼ t0 ¼ 0. Each frame has two spatial coor-
dinate systems. To characterize and solve the whole problem,
Cartesian (x,y,z) and spherical ðr; θ;φÞ coordinate systems are
considered for the rest frame (K) and similarly, the prime
forms (x0,y0,z0) and ðr0 ; θ0 ;φ0 Þ are chosen to indicate the
quantities in the moving frame (K0). Considering that all
spheres are moving in the rest frame, it would be more
appropriate to transform the problem to the moving frame.
In other words, the problem is solved in K0 and then the
resulting scattered fields transformed back into K. The inci-
dent wave and the observation point are given in the K
frame. According to symmetry characteristics of spheres,
without losing generality, an incident plane wave is consid-
ered to propagate in the negative x^direction1 and has a
polarization in the y direction which can be expressed in the
rest frame by:

E
→i
¼ Eie� jkxŷ;H

→ i
¼ �

1
η
x̂� E

→i
ð1Þ

where η is the intrinsic impedance of the free space and k is the
wave number in the rest frame.

2.1 | Electromagnetic scattering from a
moving sphere:

At time t ¼ 0, the coordinates of the ith moving sphere is
represented by (xi0, yi0, zi0). Moreover, τ is the time when
the ith sphere scatters a spherical wavefront and ri is the
instantaneous distance between the ith moving sphere and
the observation point (xp, yp, zp), as shown in Figure 2. So
the position of this sphere in the rest frame can be expressed
by (xi, yi, zi,t)¼(xi0, yi0, zi0þ vτ,τ) and the angle θi is defined
as:

cos θi ¼
zp � zi0 � vτ

ri
ð2Þ

ri ¼
h
ðxp � xiÞ2 þ ðyp � yiÞ

2
þ
�
zp � zi0 � vτ

�2
i1

2
ð3Þ

In orther to associate K and K0 using the Lorentz trans-
formation [7, 8]

F I GURE 1 Two reference frames for relative motion

1
Throughout this article e� jωt used to transform to the time‐harmonic fields.
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x
0

i ¼ xi; y
0

i ¼ yi; z
0

i ¼
zi � vτ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p ; t
0

¼
t �
�

v
c2

�
zi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p ð4Þ

where β ¼ v/c and c is the speed of light in free space. The
components of the spherical coordinate system in K0 can be
written as [7,8]:

r
0

i ¼
1 � β cos θi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p ri ð5Þ

cosθ
0

i ¼
cos θi � β

1 � β cos θi
; sinθ

0

i ¼
sin θi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p

1 � β cos θi
ð6Þ

cosφ
0

i ¼
x0 p � x0 i
r0 i sinθ0 i

; sinφ
0

i ¼
y0 p � y0 i
r0 i sinθ0 i

; φ
0

i ¼ φi ð7Þ

The incident plane wave is transformed into the moving
frame [7,16]:

E
→'i
¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p Eie� jk0 x0 ŷ ð8Þ

k
0

¼
k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p ð9Þ

By applying Mie theory to the incident field2 for the far‐
field region (k0r0≫1Þ in the moving frame, the direct scattered
field can be derived as

E
0ds
θ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p
�

S1ðδ
0

Þsinφi
0

cosθi
0

þ0:25S2ðδ
0

Þsin 2θi
0

sin 2φi
0
# jejk

0 ri
0

k0ri
0 X 02 ð10Þ

E
0ds
φ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p

�

S1ðδ
0

Þcos 2θi
0

cosφi
0

� S2ðδ
0

Þsin2φi
0

sinθi
0

�
jejk

0 ri
0

k0r0 iX
02 ð11Þ

with X 0

¼ ð1 � sin 2θi
0

cos 2φi
0

Þ
1
2 and δ0 is the angle between

the incident direction (k̂i
´) and the scattering direction (k̂s

´).
The scattering amplitude matrix coefficients for Mie theory
[45] can be stated as

S1ðδÞ ¼ ∑
∞

n¼1

2nþ 1
nðnþ 1Þ

½anπnðcos δÞ þ bnτnðcos δÞ�

S2ðδÞ ¼ ∑
∞

n¼1

2nþ 1
nðnþ 1Þ

½anτnðcos δÞ þ bnπnðcos δÞ�
ð12aÞ

where

πnðcos δÞ ¼ �
P1
nðcos δÞ
sin δ

τnðcos δÞ ¼ �
dP1

nðcos δÞ
dδ

ð12bÞ

an ¼
k2

pa2jnðkpaÞ
h
kajnðkaÞ

i
0
� k2a2jnðkaÞ

h
kpajnðkpaÞ

i
0

k2
pa2jnðkpaÞ

h
kahnðkaÞ

i
0
� k2a2hnðkaÞ

h
kpajnðkpaÞ

i
0

bn ¼
jn
�
kpa
��
kajn

�
ka
��0 � jn

�
ka
��
kpajn

�
kpa
��0

jn
�
kpa
��
kahn

�
ka
��
0 � hn

�
ka
��
kpajn

�
kpa
��
0

ð12cÞ

where a is the radius of the sphere, an, bn are the Mie scattering
coefficients, jn, hn are the spherical Bessel and Hankel func-
tions of the first kind, respectively, Pn is the associated Leg-
endre function and prime is the notation for derivation.

To transform back to the stationary frame, the following
relations are used [7].

Eds
θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p

1 � β cos θi
E
0

θ
ds

; Eds
φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p

1 � β cos θi
E
0

φ
ds
ð13Þ

Hence, the time‐harmonic expressions3 for Eθ
dsand Eφ

dscan
be written according to Equations (10), (11), and (13) as

F I GURE 2 Scattering configuration and angles for a sphere moving
with velocity v along the z‐direction

2
For the convenience amplitude of the incident field is considered to be 1 V/m.

3
For the sake of simplicity the Real{.}operation is not represented.
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Eθ
ds ¼

1
1 � β cos θi

�
1
X 02

�

S1ðδ
0

Þsinφ
0

i cosθ
0

i

þ0:25S2ðδ
0

Þsin 2θ
0

i sin 2φ
0

i

��
jejk

0
ðr0 i� ct

0
Þ

k0r0 i

ð14Þ

Eφ
ds ¼

1
1 � β cos θi

�
1
X 0 2

�

S1ðδ
0

Þcos 2θ
0

i cosφ
0

i

� S2ðδ
0

Þsin 2φ
0

i sinθ
0

i

��
jejk

0
ðr0 i� ct

0
Þ

k0r0 i

ð15Þ

To represent the phase factor ðejk
0
ðr0i � ct

0
ÞÞ of the obtained

scattered fields in an unprimed form and to relate it with τ it
should be noted that

r
0

i ¼ cðt
0

� τ
0

Þ and jk
0

ðr
0

i � ct0Þ ¼ � jk
0

cτ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � β2
q

ð16Þ

By applying Equations (16) and (9) to (14) and (15), the
time‐harmonic direct scattered fields in the rest frame could be
expressed by:

Eθ
ds ¼

1 � β2

ð1 � β cos θiÞ

�
1
X 02

�

S1ðδ
0

Þsinφ
0

i cosθ
0

i

þ0:25S2ðδ
0

Þsin 2θ
0

i sin 2φ
0

i

��
je� jkcτ

kri

ð17Þ

Eφ
ds ¼

1 � β2

1 � β cos θi

�
1
X 0 2

�

S1ðδ
0

Þcos 2θ
0

i cosφ
0

i

� S2ðδ
0

Þsin 2φ
0

i sinθ
0

i

��
je� jkcτ

kri

ð18Þ

H
→ds
¼

1
η
r̂ � ðEθ

dsθ̂ þ Eφ
dsφ̂Þ ð19Þ

It is important to state that although these direct scat-
tered fields components are functions of τ, they represent
the scattered fields in the observation point at time
t ¼ τþri/c.

2.2 | Secondary electromagnetic scattering
fields from two spheres configurations

In this section, two moving spheres are considered and the
problem is to evaluate the secondary scattered fields. The
secondary scattered fields are the fields scattered from a
moving sphere, when illuminated by a primary scattered field
from another moving sphere. Assuming that ith and jth
spheres are moving along the z‐direction, as represented

in Figure 3, their positions in the K frame can be expressed
by

ðxi; yi; zi; tÞ ¼ ðxi0; yi0; zi0 þ vτ; τÞ
ðxj; yj; zj; tÞ ¼ ðxj0; yj0; zj0 þ vτ; τÞ ð20Þ

The incident field in Equation (1) is upon the ith sphere
and this sphere scatters a field which illuminates the jth
sphere, then the jth sphere scatters a field which would be
calculated. Since these two spheres move with an equal
velocity and have an identical direction of motion, they
appear stationary to each other in the moving frame;
therefore, the secondary scattered fields can be called
coupling fields. It is assumed that the jth sphere is in the
far‐field region of the ith sphere. If the distance between the
two spheres represented by dij and the radius of the ith
sphere denoted by ai then the far‐field condition mathe-
matically can be stated as

dij ≥
8ai2

λ
ð21Þ

According to the length–contraction property of STR, it
can be written that

d
0

ij ¼
1 � β cos θij

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p dij; r
0

j ¼
1 � β cos θj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p rj ð22Þ

F I GURE 3 Two moving spheres with the direct and coupling scattered
fields
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where rj is considered as the instantaneous distance between
sphere number j and the observation point (xp,yp,zp) in the K
frame.

The parameters (θij,φij) and (θj,φj) are defined as

cos θij ¼
1
dij

�
zj � zi

�
ð23Þ

cos φij¼
1

dij sin θij

�
xj � xi

�
; sin φij¼

1
dij sin θij

ðyj � yiÞ ð24Þ

cos θj ¼
1
rj

�
zp � zj0 � vτ

�
ð25Þ

cos φj ¼
1

rj sin θj

�
xp � xj

�
; sin φj ¼

1
rj sin θj

ðyp � yjÞ ð26Þ

The prime forms of ðθij;φijÞ and ðθj;φjÞin moving frame
can be obtained in a similar way to Equations (6) and (7).

The coupling fields would be calculated by applying Mie
theory in two levels and transformations between stationary
and moving frames would be employed.

The parameters S1i, S2i, S1j and S2j construct the scat-
tering amplitude matrices that are used to calculate the
primary and secondary scattered fields. The parameters S1i,
S2i which are used for evaluation of the scattered fields from
the ith sphere could be obtained with direct replacement of
δ0i in Equations (12a) and (12b) and S1j, S2j are related to
the jth sphere that could be achieved by replacing δ0ij in
Equations (12a) and (12b).

cosðδ
0

iÞ ¼ � sinθ
0

ij cosφ
0

ij ð27aÞ

cosðδ
0

ijÞ ¼
1

d0 ijr
0

j

h�
x
0

pj

�
x
0

j � x
0

i

�
þ y

0

pj

�
y
0

j � y
0

i

�

þ z
0

pjðz
0

j � z
0

iÞ
i

ð27bÞ

The parameters k̂i and k̂s are incident and scattered field
propagation directions, respectively, associated with the jth
sphere. Therefore ð1̂i; 2̂i; k̂iÞ and ð1̂s; 2̂s; k̂sÞ are the ortho-
normal unit systems [45] to characterize scattering by the jth
sphere which can be defined as

x
0

pj ¼ x
0

p � x
0

j; y
0

pj ¼ y
0

p � y
0

j; z
0

pj ¼ z
0

p � z
0

j

k̂i
0

¼
1
d0ij

�

x
0

pj x̂
0

þ y
0

pj ŷ
0

þ z
0

pj ẑ
0

�

; k̂s
0

¼ r
0

j

1̂i
0

¼1̂s
0

¼
k̂s
0

�k̂i
0

|k̂s
0
�k̂i

0 |
¼

1
N 0

�
θ̂L

0

4 þ φ̂L
0

6
�

ð28Þ

2̂i
0

¼ k̂i
0

�1̂i
0

¼ �
1

d0 ijN
0

�
θ̂L

0

5 þ φ̂L
0

6
�

2̂s
0

¼ k̂s
0

�1̂s
0

¼
1
N 0

�
� θ̂L4 þ φ̂L3

�

where

u1
0

¼ x
0

pj

�
y
0

j � y
0

i

�
� y

0

pj
�
x
0

j � x
0

i
�

u2
0

¼ y
0

pj
�
z
0

j � z
0

i
�
� z

0

pj

�
y
0

j � y
0

i

�

u3
0

¼ z
0

pj
�
x
0

j � x
0

i
�
� x

0

pj
�
z
0

j � z
0

i
�

u4
0

¼ u1
0
�
y
0

j � y
0

i

�
� u3

0 �
z
0

j � z
0

i
�

u5
0

¼ u2
0 �
z
0

j � z
0

i
�
� u1

0 �
x
0

j � x
0

i
�

u6
0

¼ u3
0 �
x
0

j � x
0

i
�
� u2

0
�
y
0

j � y
0

i

�

ð29Þ

N
0

¼
�
u01

2
þ u02

2
þ u03

2�1
2

L1
0

¼ S1i cosθ
0

ij sinφ
0

ij þ 0:25S2i sin 2θ
0

ij sin 2φ
0

ij

L2
0

¼ S1icos 2θ
0

ij cosφ
0

s � S2i sinθ
0

ijsin 2φ
0

ij

L3
0

¼ u2
0

cosθ
0

j cosφ
0

j þ u3
0

cosθ
0

j sinφ
0

j � u
0

1 sinθ
0

j

L4
0

¼ � u
0

2 sinφ
0

j þ u
0

3 cosφ
0

j

L5
0

¼ u4
0

cosθ
0

j cosφ
0

j þ u5
0

cosθ
0

j sinφ
0

j � u6
0

sinθ
0

j

L6
0

¼ � u4
0

sinφ
0

j þ u5
0

cosφ
0

j

ð30Þ

X
0

¼
�
1 � sin 2θ

0

ijcos 2φ
0

ij
�1

2 ð31Þ

Then the secondary scattered fields components in the
moving frame can be written as

E
0cs
θ ¼ �

� 1
X 02N 02

�

S1jL
0

3
�

L
0

1L
0

3 þ L
0

2L
0

4
�

þ
S2j

d0 ij
L
0

4

 

L
0

1L
0

5 þ L
0

2L
0

6

!!
#
ejk
0
ðd
0
ijþr

0
jÞ

k0 2d0 ijr
0

j

ð32Þ

E
0cs
φ ¼

� 1
X 0 2N 0 2

�

� S1jL
0

4
�

L
0

1L
0

3 þ L
0

2L
0

4
�

þ
S2j

d0 ij
L
0

3

 

L
0

1L
0

5 þ L
0

2L
0

6

!!
#
ejk
0
ðd
0
ijþr

0
jÞ

k02d0 ijr
0

j

ð33Þ

Referring Equation (13) for transforming scattered fields
back into the stationary frame, the time‐harmonic field com-
ponents can be expressed as

Ecs
θ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p

1 � β cos θj

"
1

X 02N 0 2ðS1jL
0

3ðL
0

1L
0

3 þ L
0

2L
0

4Þ

þ
S2j

d0ij
L
0

4ðL
0

1L
0

5 þ L
0

2L
0

6ÞÞ

#
ejk
0
ðd
0
ijþr

0
j � ct

0
Þ

k0 2d0ijr
0

j
ð34Þ
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Ecs
φ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � β2

p

1 � β cos θj

"
1

X 0 2N 0 2ðS1jL
0

4ðL
0

1L
0

3 þ L
0

2L
0

4Þ

�
S2j

d0 ij
L
0

3ðL
0

1L
0

5 þ L
0

2L
0

6ÞÞ

#
ejk
0
ðd
0
ijþr

0
j � ct

0
Þ

k0 2d0 ijr
0

j
ð35Þ

Considering t0ij and t0j the corresponding elapsed times for
d0ij and r0j, respectively; it can be written that

t
0

¼ τ
0

þ t
0

ij þ t
0

j ð36Þ

jk
0 �
d
0

ij þ r
0

j � ct
0�
¼ � jk

0

cτ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � β2
q

ð37Þ

Applying Equations (9), (24) and (37) to Equations (34)
and (35) leads to the time‐harmonic secondary scattered fields
in the stationary frame

Ecs
θ ¼ �

ð1 � β2Þ
5
2

�
1 � β cos θij

��
1 � β cos θj

�2

�
1

X 02N 02 ðS1jL
0

3ðL
0

1L
0

3 þ L
0

2L
0

4Þ

þ
S2j

d0 ij
L
0

4ðL
0

1L
0

5 þ L
0

2L
0

6Þ

��
e� jkcτ

k2dijrj

ð38Þ

Ecs
φ ¼

ð1 � β2Þ
5
2

ð1 � β cos θij
��

1 � β cos θj
�2

�
1

X 0 2N 0 2 ðS1jL
0

4ðL
0

1L
0

3 þ L
0

2L
0

4Þ

�
S2j

d0 ij
L
0

3ðL
0

1L
0

5 þ L
0

2L
0

6Þ

��
e� jkcτ

k2dijrj

ð39Þ

H
→ cs
¼

1
η
r̂j � ðEθ

csθ̂ þ Eφ
csφ̂Þ ð40Þ

It is important to notice that components of these fields
represent secondary scattered fields in the observation point at
time t ¼ τ þ dijþrj

c .
The developed approach for deriving direct and coupling

scattered fields can be generalized to a collection of arbitrary
number of spheres by the employment of an iterative pro-
cedure to achieve the scattered fields up to the second order.
This is a good approximation regarding that the spheres are in
the farfield of each other, than the amplitudes of scattered
fields more than second order are negligible.

3 | NUMERICAL RESULTS

Theoretical results achieved in the last section for a collection
of both stationary and moving spheres are simulated to have a
deeper physical insight into the problem. The incident field is
considered to propagate in the negative x̂ direction

ðE
→i
¼ e� jkxŷÞ and the maximum value used for n in the Mie

theory is set to be 100 to calculate the numerical results. The
azimuth and elevation angles are angular measurements in the
spherical coordinate system and have intervals of [0,2π]and [0,
π], respectively.

3.1 | Fields for stationary scatterers

In this section the refractive index of the spheres is set to
be n ¼ 3.2þj0.32. An individual stationary sphere with a
radius of a ¼ 1 cm and size parameter of ka ¼ 10
(f ¼ 47.75 GHz) which is located at (x, y, z)¼(0, � 5m, 0) is
considered. Figure 4(a) represents the three‐dimensional
(3D) scattered field pattern at a distance of 10 m from the
origin of the coordinate system (radius r ¼ 10 m) and -
Figure 4(b) illustrates the azimuth pattern for a 90∘ ele-
vation angle. According to the position of the sphere, it is
expected for the elevation pattern to be symmetric
about the elevation angle of 90

∘
which is confirmed by

Figure 4(c).
In the following, scattered fields are calculated for two

similar spheres with a ¼ 5 mm and ka ¼ 1.5
(f ¼ 14.3 GHz) which are located at (1.5 cm, 1.5 cm, 0) and
(� 1.5 cm, � 1.5 cm, 0). Figure 5(a) shows the field pattern
at r ¼ 10 m and the two‐dimensional (2D) patterns in the
azimuth and elevation planes are illustrated in Figures 5(b,c),
respectively. Figure 5(b) demonstrates that the maximum
level for coupling fields are approximately around the azi-
muth angle of 225∘ which is expected regarding the position
of the spheres and direction of the incident field. Figure 5(c)
again has the property of symmetry due to the position of
spheres.

Ten similar spheres with a ¼ 5 mm and ka ¼ 3
(f ¼ 28.6 GHz) with locations shown in Table 1 are considered
and the bistatic scattered field pattern at r ¼ 20 m is illustrated
in Figure 6(a). Maximum amplitude in both Figures 6(a,b)
occurs around azimuth angle of 180∘ which states the effect of
the addition of direct scattered fields. Maximum deviations of
the first and second‐order fields, which happen at about
45∘,225∘as highlighted, are due to the coupling interactions
regarding the locations of spheres. These deviations show the
importance of the coupling fields when the number of spheres
increases. Figure 6(c) is also symmetric about the elevation
angle of 90∘.
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F I GURE 5 (a) Electric scattered field pattern for two stationary
spheres at r ¼ 10 m. (b) Bistatic scattered field amplitude for an elevation
angle of π/2. (c) Bistatic scattered field amplitude for an azimuth angle of π

F I GURE 4 (a) Electric scattered field pattern for a stationary sphere at
r ¼ 10 m. (b) Bistatic scattered field amplitude for an elevation angle of π/
2. (c) Bistatic scattered field amplitude for an azimuth angle of π
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3.2 | Fields for moving scatterers

In this section, the amplitude of the scattered electric field is
illustrated in a determined observation point with respect to
the time. The influence of the effective parameters such as the
size, material, number, velocity, position of the spheres and the
frequency of the incident wave on the scattered fields of the
moving spheres has been demonstrated in this section. Ac-
cording to the quick time varying phase of the both primary
and secondary scattered fields, it is expected that the field
patterns appear with a slowly varying amplitude envelop with a
rapidly varying carrier.

Firstly, one sphere with a ¼ 1 mm, ka ¼ 10
(f ¼ 477 GHz), n ¼ 3.2þj0.32 and initial position in the
origin of the coordinate system, moving with the velocity of
v ¼ 0.5 m/s is considered. The scattered field amplitude in
the observation point of (xp, yp, zp)¼(� 5 m, 0, 5 m) is
illustrated in Figure 7. According to the speed of the sphere
and height of the observation point, it is expected that the
maximum level of field amplitude occurs at about t ¼ 10 s
revealing that the forward scattering is dominant for this
ka value. Since the position of the sphere is symmetric
about the observation point, scattered field amplitude must
be either symmetric which is in full agreement with
Figure 7.

In the next step, the conditions are the same as the pre-
vious sphere except that the velocity is set to v ¼ 2 � 108 m/s.
As can be seen in Figure 8, the amplitudes before the peak
moment (tpeak) are larger than their symmetric corresponding
moments (after tpeak) which is because of the effect of aber-
ration in the propagation direction phenomenon. Also, the
peak amount of the amplitude is decreased compared with the
previous condition.

For two spheres scenario, a reference mode is considered
and only one parameter would be changed in each following
mode to have a better understanding of the intended param-
eter. In the reference mode, two spheres are assumed to have
a ¼ 1 mm, v ¼ 1 m/sand n ¼ 3.2þj0.32. The size parameter is
set to ka ¼ 10 (f ¼ 477 GHz) and coordinates of observation

TABLE 1 Configurations of ten stationary spheres

No x (cm) y (cm) z (cm)

1 1.5 1.5 0

2 4.5 4.5 0

3 7.5 7.5 0

4 10.5 10.5 0

5 13.5 13.5 0

6 � 1.5 � 1.5 0

7 � 4.5 � 4.5 0

8 � 7.5 � 7.5 0

9 � 10.5 � 10.5 0

10 � 13.5 � 13.5 0

F I GURE 6 (a) Electric scattered field pattern for 10 stationary spheres
at r ¼ 20 m. (b) Bistatic scattered field amplitude for an elevation angle of
π/2. (c) Bistatic scattered field amplitude for an azimuth angle of π.
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point and primary location of spheres are given in Table 2. The
maximum amplitude at t ¼ 5 s and symmetry in Figure 9 could
be predicted by physical interpretation. The peak at t ¼ 5 s is
about two times the peak shown in Figure 7 which indicates
that the direct scattered field of each sphere has been added
constructively.

This time, the radius of the spheres is changed to a ¼ 1 μm
and Figure 10 shows that the amplitude reduction of the
scattered field (about 1000 times) is proportional to the
reduction of the radiuses. Figure 11 relates to the mode ka ¼ 5.
Thus comparing this with the results of the reference mode
reveals that the lower ka causes a wider beam, which is in
agreement with the general fact that moving from optical
through Mie and Rayleigh scattering regions makes scattering
pattern more homogeneous then forward scattered pattern
becomes wider.

In the next mode to represent the effect of the dielectric
material, the extinction coefficient is omitted and the refractive
index is set to be n ¼ 3.2, as shown in Figure 12.

F I GURE 7 Time‐domain electric scattered field amplitude for a
moving sphere

F I GURE 8 Time‐domain electric scattered field amplitude for a
moving sphere (β ¼ 2/3)

F I GURE 9 Time‐domain electric scattered field amplitude for a
moving sphere (reference mode)

F I GURE 1 0 Time‐domain electric scattered field amplitude for two
moving spheres (a ¼ 1 μm)

TABLE 2 Configurations of reference mode for two moving spheres
(units in m)

Observation point Sphere 1 Sphere 2

xp yp zp x1 y1 z1 x2 y2 z2

� 5 0 5 0 � 0.01 0 0 0.01 0
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Figure 13 is for a condition that spheres move with the
velocity of v ¼ 20 m/s which states that the pattern has been
scaled. Since the velocity of spheres is negligible when
compared with the velocity of light, the electric scattered field
amplitude is similar to the reference mode.

In the next situation, the observation point is approached
to (xp, yp, zp)¼(� 1 m, 0, 5 m), as shown in Figure 14, which
means that the closer distances result in narrower scattered
beam‐widths.

Next, the velocity is set to v ¼ 2 � 108 m/s. As depicted in
Figure 15, the scattered electric field amplitude is going to be
more asymmetric by increasing the velocity to the relativistic
speeds due the aberration in the propagation direction

phenomenon. Also, the peak amplitude decreases compared
with the previous and reference mode.

In the following, scattered field amplitude for a collection of
ten moving spheres with a¼ 1 mm and v¼ 1 m/s is calculated.
The size parameter and the refractive index are set to be ka¼ 10
(f¼ 477 GHz) and n¼ 3.2þj0.32, respectively. Table 3 specifies
the configuration of the spheres collection and the observation
point is considered to be (xp, yp, zp)¼(� 1 m, 0, 20 m). Figure 16
demonstrates the resulting scattered field amplitude.

Finally, time‐domain electric scattered field amplitude for a
collection of ten spheres moving in relativistic speed (β ¼ 2/3)
is represented in Figure 17. The remaining parameters are the
same as in the previous case.

F I GURE 1 1 Time‐domain electric scattered field amplitude for two
moving spheres (ka ¼ 5)

F I GURE 1 2 Time‐domain electric scattered field amplitude for two
moving spheres (n ¼ 3.2)

F I GURE 1 3 Time‐domain electric scattered field amplitude for two
moving spheres (v ¼ 20 m/s)

F I GURE 1 4 Time‐domain electric scattered field amplitude for two
moving spheres with (xp, yp, zp)¼(� 1 m, 0, 5 m)

RADPOUR ET AL. - 189



4 | CONCLUSION

In this work, the Frame‐Hopping Method (FHM) which is based
on the STR is used to obtain time‐domain relativistic scattered
fields up to the second‐order from an arbitrary collection of
uniformly translational moving lossy‐dielectric spheres. To gain
a deeper physical insight into the problem, scattered fields for a
collection of both stationary and moving spheres have been
simulated. The influence of effective parameters such as the size,
material, velocity, number, position of the spheres and also the
frequency of the incident field on the scattered fields of a
collection of moving spheres has been investigated and the ob-
tained numerical results are in good agreement with physical
concepts. Also, a wide variety of objects, such as raindrops,
snowflakes and dust particles, could be approximated by spheres
and the study of scattered fields from a collection of moving
spheres has a substantial significance for many practical appli-
cations. The procedure applied in this work may be the basis for

the study of multiple and random scattering from other collec-
tions of moving objects considering their mutual interactions.
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