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Abstract— In this paper, four-dimensional (4D) relativistic scattering of electromagnetic waves from an arbitrary collection of uniformly 
translational moving lossy dielectric spheres is discussed. Two reference frames, four 4D coordinate systems and Lorentz transformation 
are used to obtain the scattered electromagnetic fields. The direct scattering of the spheres and their interactions are considered with a 
novel approach. The introduced method is straightforward and the analytical relations for the fields are achieved. To check the validity 
of the proposed method, different examples for both stationary and moving scatterers are investigated. The effect of the key parameters 
such as the size, material, velocity, number, position of the spheres and also the frequency of the incident wave are discussed. The derived 
scattered fields are valid for low, medium and high velocities but according to practical applications low and moderate velocities are 
highlighted in numerical results. 
 

I. INTRODUCTION 

A very interesting subject in electromagnetics is related to the 
scattering of electromagnetic (EM) waves from moving objects 
which has been investigated by researchers over the last 
century. From the standpoint of applications, for low and 
moderate speed cases, it can be used to calculate the attenuation 
and transmission of EM waves for rainy, snowy and dusty 
mediums, which is very important in meteorology, satellite 
communications, environmental issues, radar applications and 
remotely sensed data. Furthermore, for the high-speed objects 
profile, it has applications in the understanding of scattering by 
relativistically moving interstellar dust grains [1], moving 
plasma columns [2-4] and mass flows in pneumatic pipes [5]. 
      The important properties of objects such as shape, material, 
and velocity could be obtained by processing the scattered 
fields which is known as the inverse scattering. Furthermore, 
with post-processing, other significant practical characteristics 
of a collection of objects such as scattering, extinction and 
absorption cross sections could be derived. The main challenge 
in the random and multiple scattering is obtaining the scattered 
fields from a moving medium or targets. In this case, four 4D 
coordinate systems for the rest and moving frames and Special 
Theory of Relativity (STR) should be considered which causes 
mathematical difficulties.  
     Electromagnetic scattering of a translational moving body 
with STR, which has been introduced firstly by Einstein in 1905 
[6], has been used for a moving perfectly reflecting 
mirror[7],[8]. By applying STR, EM scattered waves for 
different moving shapes such as dielectric medium [9, 10] 
cylinder [11-15], conducting sphere [16], electrically small 
chiral sphere [17], small particle [18], perfectly conducting flat 
plate [19], rough surface [20], arbitrary obstacle [21-27], wedge 
[28, 29], and half-plane [30-32] have been derived.  Also, 
scattering characteristics (scattering cross section, extinction, 
and absorption) for a uniformly moving object [33] and a 
moving concentrically layered sphere [34] are discussed. The 

backscattered signal by a uniformly moving sphere considering 
incident wave to be a pulsed plane wave, is investigated [35]. 
All foregoing works discuss only one moving object whereas 
practical applications mostly deal with a collection of many 
moving random objects. In that case, not only investigation on 
relativistic translational motion of the individual object is 
required, the mutual interactions of the moving objects also 
have significant effects, which make the solution more 
complicated.  
In this paper, time-domain scattered fields from an arbitrary 
collection of uniformly translational moving lossy-dielectric 
spheres are calculated in the far field region. The size, material, 
velocity, number, position of the spheres, and the frequency of 
the incident wave can be selected, arbitrarily which make 
studying of effective parameters possible. By considering the 
intrinsic inaccuracies of using numerical techniques, such as the 
finite-difference-time-domain method (FDTD) and Lorentz 
precise integration time-domain method (Lorentz-PITD), for a 
moving object [36-42], here the STR and Mie theory [43-46] 
are employed. Also other kinds of motions for an individual 
object such as rotational [47-50] and vibrational [52-54] have 
been investigated, but, here the translational motion is of 
interest.    

II. FORMULATION OF THE PROBLEM 

     A collection of uniformly translational moving spheres of 
radius a , complex refractive index of n n jn′ ′′= +  and 

constant velocity of ˆvz=rν  moving along z-direction is 
considered. Four 4D coordinate systems (three dimensions are 
associated with the position and one with the time) are 
considered regarding the rest and moving frames which are 
denoted with K and K', respectively, as shown in Fig.1. In the 
rest frame, the spheres appear to be moving and in the moving 
frame the spheres seem to be stationary. 
      In order to synchronize times, K  and K ′  are considered to 
coincide at the time 0t t ′= = . Each frame has two spatial 
coordinate systems. In order to characterize and solve the whole 
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problem, Cartesian ( , , )x y z  and spherical ( , , )r θ ϕ  coordinate 

systems are considered for the rest frame ( )K  and similarly, 

the prime forms ( , , )x y z′ ′ ′  and ( , , )r θ ϕ′ ′ ′  are chosen to indicate 

the quantities in the moving frame ( )K ′ . Considering that all 

spheres are moving in the rest frame, it would be more 
appropriate to transform the problem to the moving frame. In 
other words, the problem is solved in K ′  and then the resulting 
scattered fields transformed back intoK . The incident wave 
and the observation point are given in the K frame. According 
to symmetry characteristics of spheres, without losing 
generality, an incident plane wave is considered to propagate in 
the negative x̂ direction1 and has a polarization in the y

direction which can be expressed in the rest frame by: 
j ˆi i kxE E e y−=

r
     , 

1
ˆi iH x E

η
= − ×

r r
                                    (1)                                                      

where η  is the intrinsic impedance of the free space and k  is 

the wave number in the rest frame. 
 

A. Electromagnetic scattering from a moving sphere: 

     At the time 0t = , the coordinates of the ith moving sphere 
is represented by 0 0 0)( ,  ,  i i ix y z . Moreover, τ  is the time 

when the ith sphere scatters a spherical wavefront and ir   is the 

instantaneous distance between the ith moving sphere and the 
observation point ( , , )p p px y z , as shown in Fig.2. So the 

position of this sphere in the rest frame can be expressed by

0 0 0( ),  ,  , ,  ,) ,(   i i i i i ix y z t x y z vτ τ+=  and the angle iθ  is 

defined as:  

0cos p i
i

i

z z v

r

τ
θ

− −
=  (2)         

1
2 2 2 2

0[( ) ( ) ( ) ]i p i p i p ir x x y y z z vτ= − + − + − −                  (3) 

 
 In order to associate K  and K ′ using the Lorentz 
transformation [7, 8]  

2 2

2
( )

;
1 1

; ;
i

i
i i i i i

v
t zz v cx x y y z t

τ
β β

−−′ ′ ′= =
−

=
−

′ =                     (4) 

 
Where /v cβ = and c is the speed of light in free space. The 

components of the spherical coordinate system in K ′ can be 
written as [7, 8]:  
 

2

1 cos

1

i
i ir r

β θ
β

−′ =
−

                                                                        (5) 

2sin 1cos
cos   ;   sin

1 cos 1 cos
ii

i i
i i

θ βθ βθ θ
β θ β θ

−−′ ′= =
− −

                        (6) 

cos   ;    sin  ;  
sin sin
p i p i

i i i i
i i i i

x x y y

r r
ϕ ϕ ϕ ϕ

θ θ
′ ′ ′ ′− −

′ ′ ′= = =
′ ′ ′ ′

                        (7) 

                                                           
1 Throughout this paper j te ω−  used to transform to the time-harmonic 

fields. 

 
 

 
Fig.1. Two reference frames for relative motion. 

 
 
 

    The incident plane wave is transformed into the moving 
frame [7, 16]:  
 

j

2

1
ˆ

1

i i k xE E e y
β

′ ′−′ ′=
−

r

                                                     (8) 

21

k
k

β
′ =

−
                                                                     (9) 

 
By applying Mie theory to the incident field2 for the far-field 
region (k r′ ′≫ 1� in the moving frame, the direct scattered field 

can be derived as 

12

j

2 2

1
[ ( ) sin cos

1

j
0.25 ( ) sin 2 sin 2 ]

i

ds
i i

k r

i i

i

E S

e
S

k r X

θ δ ϕ θ
β

δ θ ϕ
′′

′ ′′ ′=
−

′ ′′+
′ ′ ′

r

                       (10)

2
12

j
2

2 2

1
[ ( ) cos cos

1

j
( ) s in sin )]

i

ds
i i

k r

i i
i

E S

e
S

k r X

ϕ δ θ ϕ
β

δ ϕ θ
′′

′ ′′ ′=
−

′ ′′−
′ ′ ′

r

                     (11) 

with 
1

2 2 2(1 sin cos )i iX θ ϕ′ ′′ = −  and δ ′  is the angle between 

incident direction ˆ( )ik ′  and scattering direction ( ŝk ′ ). The 

scattering amplitude matrix coefficients for Mie theory [45] can 
be stated as  

1
1

2
1

2 1
( ) [ (cos ) (cos )]

( 1)

2 1
( ) [ (cos ) (cos )]

( 1)

n n n n
n

n n n n
n

n
S a b

n n

n
S a b

n n

δ π δ τ δ

δ τ δ π δ

∞

=

∞

=

+= +
+
+= +
+





                   (12a) 

2 For the convenience amplitude of the incident field is considered to be 
1V/m.  
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Fig.2. Scattering configuration and angles for a sphere moving with velocity v 

along z-direction. 
where 

1

1

(cos )
(cos )

sin

(cos )
(cos )

n
n

n
n

P

dP

d

δπ δ
δ

δτ δ
δ

= −

= −

                                                  (12b)                                   

2 2 2 2

2 2 2 2

( )[ ( )] ( )[ ( )]

( )[ ( )] ( )[ ( )]

( )[ ( )] ( )[ ( )]

( )[ ( )] ( )[ ( )]

p n p n n p n p
n

p n p n n p n p

n p n n p n p
n

n p n n p n p

k a j k a kaj ka k a j ka k aj k a
a

k a j k a kah ka k a h ka k aj k a

j k a kaj ka j ka k aj k a
b

j k a kah ka h ka k aj k a

′ ′−
=

′ ′−
′ ′−

=
′ ′−

 

(12c) 
Where a  is the radius of the sphere, na , nb  are the Mie 

scattering coefficients, nj , nh  are the spherical Bessel and 

Hankel functions of the first kind, respectively, nP  is the 

associated Legendre function and prime is the notation for 
derivation. 
 
To transform back to the stationary frame, the following 
relations are used [7]  
 

2 21 1
  ;     

1 cos 1 cos
ds ds ds ds

i i

E E E Eθ θ ϕ ϕ
β β

β θ β θ
− −′ ′= =

− −
              (13) 

 

Hence, the time-harmonic expressions3 for dsEθ and dsEϕ can 

be written according to (10), (11) and (13) as 
 

12

j ( )

2

1 1
[ ( ( ) sin cos

1 cos

j
0.25 ( ) sin 2 sin 2 )]

i

ds
i i

i

k r ct

i i
i

E S
X

e
S

k r

θ δ ϕ θ
β θ

δ θ ϕ
′ ′ ′−

′ ′ ′=
′−

′ ′ ′+
′ ′

                   (14) 

 

                                                           
3 For the sake of simplicity the Re {.}al operation is not represented. 

2
12

j ( )
2

2

1 1
[ ( ( )cos cos

1 cos

j
( )sin sin )]

i

ds
i i

i

k r ct

i i
i

E S
X

e
S

k r

ϕ δ θ ϕ
β θ

δ ϕ θ
′ ′ ′−

′ ′ ′=
′−

′ ′ ′−
′ ′

                     (15) 

In order to represent the phase factor ( )( )ijk r cte ′ ′ ′−  of the obtained 

scattered fields in an unprimed form and to relate it with τ  it is 
noted that 
 

( )ir c t τ′ ′ ′= −      and   2 1( )ijk r ct jk c βτ′ ′ ′ ′− −= −         (16) 

 
By applying (16) and (9) to (14) and (15), the time-harmonic 
direct scattered fields in the rest frame could be expressed by: 
 

2

12

j

2

1 1
[ ( ( )sin cos

(1 cos )

j
0.25 ( )sin2 sin2 )]

ds
i i

i

kc

i i
i

E S
X

e
S

kr

θ

τ

β δ ϕ θ
β θ

δ θ ϕ
−

− ′ ′ ′=
′−

′ ′ ′+
                    (17) 

2
2

12

j
2

2

1 1
[ ( ( )cos cos

1 cos

j
( )sin sin )]

ds
i i

i

kc

i i
i

E S
X

e
S

kr

ϕ

τ

β δ θ ϕ
β θ

δ ϕ θ
−

− ′ ′ ′=
′−

′ ′ ′−
                    (18) 

1 ˆˆ ˆ( )ds ds dsH r E Eθ ϕθ ϕ
η

= × +
r

                                               (19) 

It is important to state that although these direct scattered fields 
components are functions of τ , they represent the scattered 

fields in the observation point at the time  irt
c

τ= + . 

B. Secondary electromagnetic scattering fields from two 
spheres configurations  

       In this section, two moving spheres are considered and the 
problem is to evaluate the secondary scattered fields. The 
secondary scattered fields are the fields scattered from a moving 
sphere, when illuminated by a primary scattered field from 
another moving sphere. Assuming that ith and jth spheres are 
moving along the z-direction, as represented in Fig.3, their 
positions in the K frame can be expressed by  
 

0 0 0

0 0 0

( ) ( )

( )

,  ,  , ,  ,   ,

,  ,  , ,  ,  ) (  ,
i i i i i i

j j j j j j

x y z t x y z v

x y z t x y z v

τ τ
τ τ=

+
+

=
                           (20) 

 
 The incident field in (1) is upon the ith sphere and this sphere 
scatters a field which illuminates the jth sphere, then the jth 
sphere scatters a field which would be calculated.  Since these 
two spheres move with an equal velocity and have an identical 
direction of motion, they appear stationary to each other in the 
moving frame; therefore, the secondary scattered fields can be 
called coupling fields. It is assumed that the jth sphere is in the 
far-field region of the ith sphere. If the distance between the two  
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Fig.3. Two moving spheres with the direct and coupling scattered fields. 

 
 
spheres represented by ijd and the radius of the ith sphere 

denoted by ia  then the far-field condition mathematically can 

be stated as 
28 i

ij

a
d

λ
≥                                                                             (21)                             

 
According to the length-contraction property of STR, it can be 
written that   
 

2

1 cos

1

ij

ij ijd d
β θ

β

−
′ =

−
 ;       

2

1 cos

1

j

j jr r
β θ

β

−
′ =

−
                   (22) 

 

where jr  is considered as the instantaneous distance between 

sphere number j and the observation point ( , , )p p px y z in the K 

frame. 
 
The parameters ( , )ij ijθ ϕ  and ( , )j jθ ϕ  are defined as 

 

1
cos ( )ij j i

ij

z z
d

θ = −                                                             (23) 

1
cos ( )

sinij j i
ij ij

x x
d

ϕ
θ

= − ; 
1

sin ( )
sinij j i

ij ij

y y
d

ϕ
θ

= −    (24)    

0

1
cos ( )j p j

j

z z v
r

θ τ= − −                                                  (25) 

1
cos ( )

sinj p j
j j

x x
r

ϕ
θ

= −  ; 
1

sin ( )
sinj p j

j j

y y
r

ϕ
θ

= −   (26)  

 
Prime forms of ( , )ij ijθ ϕ  and ( , )j jθ ϕ in moving frame can be 

obtained in a similar way (6-7).                                  
The coupling fields would be calculated by applying Mie theory 
in two levels and transformations between stationary and 
moving frames would be employed. 
 The parameters 1iS  , 2iS , 1 jS  and 2 jS construct the scattering 

amplitude matrices that are used to calculate the primary and 
secondary scattered fields. The parameters1iS , 2iS  which are 

used for evaluation of the scattered fields from the ith sphere 
could be obtained with direct replacement of iδ ′  in (12a) and 

(12b) and 1 jS , 2 jS are related to the jth sphere that could be 

achieved by replacing ijδ ′  in (12a) and (12b). 

 
cos( ) sin cosi ij ijδ θ ϕ′ ′ ′= −                                                       (27a) 

1
cos( ) [( ( ) ( ) ( )]ij pj j i pj j i pj j i

ij j

x x x y y y z z z
d r

δ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − + − + −
′ ′

                                                                      

                                                                                            (27b) 

The parameters ̂ ik  and ˆ
sk are incident and scattered fields 

propagation directions, respectively, associated with the jth 

sphere. Therefore ˆˆ ˆ(1 , 2 , )i i ik′ ′ ′  and ˆˆ ˆ(1 , 2 , )s s sk are the orthonormal 

unit systems [45] to characterize scattering by the jth sphere 
which can be defined as 
 

; ;pj p j pj p j pj p jx x x y y y z z z′ ′ ′ ′ ′ ′ ′ ′ ′= − = − = −                         

1ˆ ˆ ˆ ˆ[ ]i pj pj pj
ij

k x x y y z z
d

′ ′ ′ ′ ′ ′ ′= + +
′

, ˆs jk r′ ′=  

4 6

ˆ ˆ 1ˆ ˆ ˆ ˆ1 1 [ ]
ˆ ˆ

s
i s

s s

k k
L L

Nk k
θ ϕ

′ ′×′ ′ ′ ′= = = +
′′ ′×

                                               (28) 

5 6

1ˆˆ ˆ ˆ ˆ2 1 [ ]i i i
ij

k L L
d N

θ ϕ′ ′ ′ ′ ′= × = − +
′ ′

 

 4 3

1ˆˆ ˆ ˆ ˆ2 1 [ ]s s sk L L
N

θ ϕ′ ′ ′= × = − +
′

        

where       
 

1

2

3

4 1 3

5 2 1

6 3 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

pj j i pj j i

pj j i pj j i

pj j i pj j i

j i j i

j i j i

j i j i

u x y y y x x

u y z z z y y

u z x x x z z

u u y y u z z

u u z z u x x

u u x x u y y

′ ′ ′ ′ ′ ′ ′= − − −

′ ′ ′ ′ ′ ′ ′= − − −

′ ′ ′ ′ ′ ′ ′= − − −

′ ′ ′′ ′ ′ ′= − − −

′ ′ ′′ ′ ′ ′= − − −

′ ′ ′′ ′ ′ ′= − − −

                                      (29) 

1
2 2 2 2

1 2 3( )N u u u′ = + +          

                                                 

1 1 2

2 2
2 1 2

3 2 3 1

4 2 3

5 4 5 6

cos sin 0.25 sin 2 sin 2

cos cos sin sin

cos cos cos sin sin

sin cos

cos cos cos sin sin

i ij ij i ij ij

i ij s i ij ij

j j j j j

j j

j j j j j

L S S

L S S

L u u u

L u u

L u u u

L

θ ϕ θ ϕ

θ ϕ θ ϕ

θ ϕ θ ϕ θ

ϕ ϕ

θ ϕ θ ϕ θ

′ ′ ′ ′ ′= +

′ ′ ′ ′ ′= −

′ ′ ′′ ′ ′ ′ ′ ′= + −

′ ′ ′ ′ ′= − +

′ ′ ′ ′′ ′ ′ ′ ′= + −

6 4 5sin cosj ju uϕ ϕ′ ′ ′′ ′= − +

            (30)  

 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 5

1
2 2 2(1 sin cos )ij ijX θ ϕ′ ′ ′= −                                                   (31)  

 
Then the secondary scattered fields components in the moving 
frame can be written as 
 

1 3 1 3 2 42 2

j ( )
2

4 1 5 2 6 2

1
[ ( ( )

( ) ) ]
i j j

c s
j

k d r
j

i j i j j

E S L L L L L
X N

S e
L L L L L

d k d r

θ

′ ′ ′+

′ ′ ′ ′ ′ ′= − +
′ ′

′ ′ ′ ′ ′+ +
′ ′ ′ ′

                    (32)  

1 4 1 3 2 42 2

j ( )
2

3 1 5 2 6 2

1
[ ( ( )

( ) ) ]
i j j

c s
j

k d r
j

i j i j j

E S L L L L L
X N

S e
L L L L L

d k d r

ϕ

′ ′ ′+

′ ′ ′ ′ ′ ′= − +
′ ′

′ ′ ′ ′ ′+ +
′ ′ ′ ′

                    (33)  

 
Referring (13) for transforming scattered fields back into the 
stationary frame, the time-harmonic field components can be 
expressed as  
 

2

1 3 1 3 2 42 2

j ( )
2

4 1 5 2 6 2

1 1
[ ( ( )

1 cos

( ))]
ij j

cs
j

j

k d r ct
j

ij ij j

E S L L L L L
X N

S e
L L L L L

d k d r

θ
β

β θ
′ ′ ′ ′+ −

− ′ ′ ′ ′ ′= − +
′ ′−

′ ′ ′ ′ ′+ +
′ ′ ′ ′

r

        (34) 

2

1 4 1 3 2 42 2

j ( )
2

3 1 5 2 6 2

1 1
[ ( ( )

1 cos

( ))]
ij j

cs
j

j

k d r ct
j

ij ij j

E S L L L L L
X N

S e
L L L L L

d k d r

ϕ
β

β θ
′ ′ ′ ′+ −

− ′ ′ ′ ′ ′= − +
′ ′−

′ ′ ′ ′ ′− +
′ ′ ′ ′

r

        (35) 

Considering ijt ′  and jt ′  the corresponding elapsed times for ijd ′  

and jr ′   respectively; it can be written that 

 

ij jt t tτ′ ′ ′ ′= + +                                                                      (36) 

2j  ( 1) jij jk d r ct k c βτ′ ′ ′ ′ ′= − −+ −                                        (37)  

              
Applying (9), (24) and (37) to (34-35) leads to the time-
harmonic secondary scattered fields in the stationary frame  

5
2 2

1 3 1 3 2 42 2 2

j
2

4 1 5 2 6 2

(1 ) 1
[ ( ( )

(1 cos )(1 cos )

( ))]

cs
j

ij j

kc
j

ij ij j

E S L L L L L
X N

S e
L L L L L

d k d r

θ

τ

β
β θ β θ

−

− ′ ′ ′ ′ ′= − +
′ ′− −

′ ′ ′ ′ ′+ +
′

r

    (38)  

5
2 2

1 4 1 3 2

3

 

42 2 2

j
2

1 5 2 6 2

(1 ) 1
[ ( ( )

(1 cos )(1 cos )

( ))]

cs
j

ij j

kc
j

ij ij j

E S L L L L L
X N

S e
L L L L L

d k d r

ϕ

τ

β
β θ β θ

−

− ′ ′ ′ ′ ′= +
′ ′− −

′ ′ ′ ′ ′− +
′

r

     (39) 

1 ˆˆ ˆ( )cs cs cs
jH r E Eθ ϕθ ϕ

η
= × +

r

                                               (40)  

It is important to notice that components of these fields 
represent secondary scattered fields in the observation point at 

the time  
ij jd r

t
c

τ
+

= + .             

The developed approach for deriving direct and coupling 
scattered fields can be generalized to a collection of arbitrary 
number of spheres by the employment of an iterative procedure 
to achieve the scattered fields up to the second order. This is a 
good approximation regarding that the spheres are in the 
farfield of each other then the amplitudes of scattered fields 
more than second order are negligible.        
            

III.  NUMERICAL RESULTS  

Theoretical results achieved in the last section for a collection 
of both stationary and moving spheres are simulated to have a 
deeper physical insight of the problem. The incident field is 
considered to propagate in the negative x̂  direction 

j ˆ( )i kxE e y−=
r

 and the maximum value used for n in the Mie 

theory is set to be 100 to calculate the numerical results. The 
azimuth and elevation angles are angular measurements in the 
spherical coordinate system and have the intervals of [0,2 ]π
and [0, ]π  respectively. 

A. Fields for Stationary Scatterers 

In this section the refractive index of the spheres is set to be 
3.2 0.32n j= + . An individual stationary sphere with a radius 

of 1a cm= and size parameter of 10ka = ( 47.75GHz)f =  

which is located at ( ) ( ), , 0, 5m,0x y z −=  is considered. Fig.4.a 

represents the 3D scattered field pattern at a distance of 10m
from the origin of the coordinate system (radius 10m)r =  and 

Fig.4.b illustrates the azimuth pattern for a 90o elevation angle. 
According to the position of the sphere, it is expected for the 
elevation pattern to be symmetric about the elevation angle of 
90o  which is confirmed by Fig. 4.c. 
 
 

 
Fig.4. a. Electric scattered field pattern for a stationary sphere at 10mr = . 
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Fig.4. b. Bistatic scattered field amplitude for an elevation angle of 
2
π

. 

 

 
Fig.4. c. Bistatic scattered field amplitude for an azimuth angle of π . 

 
 
In the following, scattered fields are calculated for two similar 
spheres with 5mma = and 1.5ka = ( 14.3GHz)f =  which 

are located at ( )1.5cm, 1.5cm, 0 and ( )-1.5cm,-1.5cm, 0. 

Fig.5.a shows the field pattern at  10mr =  and the 2D patterns 
in the azimuth and elevation planes are illustrated in Figs 5.b 
and 5.c, respectively. Fig.5.b demonstrates that the maximum 
level for coupling fields are approximately around the azimuth 
angle of 225o  which is expected regarding the position of the 
spheres and direction of the incident field. Fig.5.c again has the 
property of symmetry due to the position of spheres.  

 
 

 
Fig.5. a. Electric scattered field pattern for two stationary spheres at 10mr = . 

 

Fig.5. b. Bistatic scattered field amplitude for an elevation angle of 
2
π

. 

 

 
Fig.5. c. Bistatic scattered field amplitude for an azimuth angle of π . 

 

Ten similar spheres with 5mma =  and 3k a =
( 28.6GHz)f =  with locations shown in Table.1 are 

considered and the bistatic scattered field pattern at 20mr = is 
illustrated in Fig.6.a. Maximum amplitude in both Figs 6.a and 
6.b occurs around azimuth angle of 180o  which states the effect 
of the addition of direct scattered fields. Maximum deviations 
of the first and second-order fields, which happen at about 
45 ,225o o as highlighted, are due to the coupling interactions 
regarding the locations of spheres. These deviations show the 
importance of the coupling fields when the number of spheres 
increases. Fig.6.c is also symmetric about the elevation angle of 
90o . 
 

Table.1. Configurations of two stationary spheres. 
 

NO  (cm )x  (cm)y  (cm)z  

1 1.5 1.5 0 

2 4.5 4.5 0 

3 7.5 7.5 0 

4 10.5 10.5 0 

5 13.5 13.5 0 

6 -1.5 -1.5 0 

7 -4.5 -4.5 0 

8 -7.5 -7.5 0 

9 -10.5 -10.5 0 

10 -13.5 -13.5 0 
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Fig.6. a. Electric scattered field pattern for ten stationary spheres at 20mr = . 

 
 

 

Fig.6. b. Bistatic scattered field amplitude for an elevation angle of 
2
π

. 

 
Fig.6. c. Bistatic scattered field amplitude for an azimuth angle of π . 

 

A. Fields for Moving Scatterers 

In this section, the amplitude of the scattered electric field is 
illustrated in a determined observation point with respect to the 
time. Influence of the effective parameters such as the size, 
material, number, velocity, position of the spheres and the 
frequency of incident wave on the scattered fields of the moving 
spheres has been demonstrated in this section.  According to the 
quickly time varying phase of the both primary and secondary 

scattered fields, it is expected that the field patterns appear with 
a slowly varying amplitude envelop with a rapidly varying 
carrier.    
      Firstly, one sphere with 1mma = , 10ka =
( 477GHz),f = 3.2 0.32n j= +  and initial position in the 

origin of the coordinate system, moving with the velocity of 
0.5 /v m s= is considered.  The scattered field amplitude in the 

observation point of ( ) ( ), , 5m,  0,  5mp p px y z = −  is illustrated 

in Fig.7. According to the speed of the sphere and height of the 
observation point, it is expected that the maximum level of field 
amplitude to occur at about 10st = regarding that the forward 
scattering is dominant for this ka  value. Since the position of 
the sphere is symmetric about the observation point, scattered 
field amplitude must be either symmetric which is in full 
agreement with Fig.7. 
     In the next step, the conditions are as the same as the 
previous sphere except that the velocity is set to 82 10 m/s.v = ×  
As it is seen in Fig.8, amplitudes before the peak moment 
( )peakt  are larger than their symmetric corresponding moments 

(after )peakt  which is because of the effect of aberration in 

propagation direction phenomenon. Also, the peak amount of 
the amplitude is decreased compared to the previous condition. 
    For two spheres scenario, a reference mode is considered and 
only one parameter would be changed in each following mode  
     

 
Fig.7. Time-Domain electric scattered field amplitude for a moving sphere. 

 
 

 
Fig.8. Time-Domain electric scattered field amplitude for a moving sphere 

( 2 / 3)β =  
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to have a better understanding of the intended parameter. In the 
reference mode, two spheres are assumed to have 1mm,a =  

1m/sv = and 3.2 0.32n j= + . The size parameter is set to 

10ka = ( 477GHz)f =  and coordinates of observation point 

and primary location of spheres are given in Table.2. The 
maximum amplitude at 5st = and symmetry in Fig.9 could be 
predicted by physical interpretation. The peak at 5st = is about 
two times of the peak of Fig.7 which indicates that the direct 
scattered field of each sphere has been added constructively.  
       This time, the radius of the spheres is changed to 1μma =
and Fig.10 shows that the amplitude reduction of the scattered 
field (about 1000 times) is proportional to the reduction of the 
radiuses. Fig.11 relates to the mode that 5ka = . Thus 
comparing this with the results of the reference mode reveals 
that the lower ka  causes the wider beam which is in agreement 
with the general fact that moving from optical through Mie and 
Rayleigh scattering regions makes scattering pattern more 
homogeneous then forward scattered pattern becomes wider. 
      In the next mode to represent the effect of the dielectric 
material, the extinction coefficient is omitted and the refractive 
index is set to be 3.2n = ,  as shown in Fig.12.  
 

Table.2. Configurations of Reference Mode for two moving spheres. 

units in meter 

Observation point Sphere 1 Sphere 2 

px
 py

 pz
 1x

 1y
 1z

 2x
 2y

 2z
 

5−  0  5  
0 -0.01 0 0 0.01 0 

 
 
 
 

 
Fig.9. Time-Domain electric scattered field amplitude for a moving sphere. 

(Reference Mode) 

 
Fig.10. Time-Domain electric scattered field amplitude for two moving 

spheres.( 1μm)a =  

 

 
Fig.11. Time-Domain electric scattered field amplitude for two moving 

spheres. ( 5ka = ) 

 

 
Fig.12. Time-Domain electric scattered field amplitude for two moving 

spheres. ( 3.2n = ) 
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Fig.13. Time-Domain electric scattered field amplitude for two moving 

spheres. ( 20m/sv = ) 
 

   Fig.13 is for a condition that spheres move with the velocity 
of 20m/sv = which states that the pattern has been scaled. 
Since the velocity of spheres is negligible when compared to 
the velocity of light, the electric scattered field amplitude is 
similar to the reference mode.  
       In the next situation, the observation point is approached to 
( , , ) ( 1m,0,5m)p p px y z = − , as shown in Fig.14, which means 

that the closer distances result in narrower scattered beam-
widths.  
       Next, the velocity is set to 82 10 m/sv = × . As it is depicted 
in Fig.15, the scattered electric field amplitude is going to be 
more asymmetric by increasing the velocity to the relativistic 
speeds due the aberration in propagation direction 
phenomenon. Also, the peak amplitude decreases compared to 
the previous and reference mode. 
      In the following, scattered field amplitude for a collection 
of ten moving spheres with 1mma =  and 1m/sv =  is 
calculated. The size parameter and the refractive index are set 
to be 10ka = ( 477GHz)f =  and 3.2 0.32n j= +  

respectively. Table.3 specifies the configuration of the spheres 
collection and the observation point is considered to be 
( , , ) ( 1m,0, 20m)p p px y z = − . Fig.16 demonstrates the resulting 

scattered field amplitude.  
 

 
Fig.14. Time-Domain electric scattered field amplitude for two moving 

spheres with ( , , ) ( 1m,0,5m)p p px y z = −  

 
Fig.15. Time-Domain electric scattered field amplitude for two moving sphere 

( 2 / 3)β =  

 
 

Table.3. Configurations of ten moving spheres. 
 

NO  (cm )x  (cm)y  (m)z  

1 1.5 1.5 2 

2 4.5 4.5 4 

3 7.5 7.5 6 

4 10.5 10.5 8 

5 13.5 13.5 10 

6 -1.5 -1.5 -2 

7 -4.5 -4.5 -4 

8 -7.5 -7.5 -6 

9 -10.5 -10.5 -8 

10 -13.5 -13.5 -10 

 
 

 
Fig.16. Time-Domain electric scattered field amplitude for ten moving 

spheres. 
 
 

          Finally, time-domain electric scattered field amplitude 
for a collection of ten spheres moving in relativistic speed 
( 2 / 3)β =  is represented in Fig.17. The remaining parameters 

are the same as in the previous case. 
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Fig.17. Time-Domain electric scattered field amplitude for a moving sphere 

( 2 / 3)β =  

IV.  CONCLUSION 

In this work, the Frame-Hopping Method (FHM) which is 
based on the Special Theory of Relativity (STR) is used to 
obtain time-domain relativistic scattered fields up to the 
second-order from an arbitrary collection of uniformly 
translational moving lossy-dielectric spheres. To gain a deeper 
physical insight of the problem, scattered fields for a collection 
of both stationary and moving spheres have been simulated. 
The influence of effective parameters such as the size, material, 
velocity, number, position of the spheres and also the frequency 
of the incident field on the scattered fields of a collection of 
moving spheres has been investigated and the obtained 
numerical results are in good agreement with physical concepts. 
Also, a wide variety of objects, such as raindrops, snowflakes, 
and dust particles, could be approximated by spheres and the 
study of scattered fields from a collection of moving spheres 
has a substantial significance for many practical applications. 
The procedure applied in this work may be the basis for the 
study of multiple and random scattering from other collections 
of moving objects considering their mutual interactions.  
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