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21 Abstract

22

23 Purpose: Most existing CT‐ventilation imaging techniques are based on deformable 

24 image registration (DIR) of different respiratory phases of a 4DCT scan of the lung, 

25 followed by the quantification of local breathing‐induced changes in Hounsfield Units 

26 (HU) or volume. To date, only moderate correlations have been reported between 

27 these CT-ventilation metrics and standard ventilation imaging modalities for adaptive 

28 lung radiation therapy. This study evaluates the use of stress maps derived from 

29 biomechanical model-based DIR as an alternative CT-ventilation metric.A
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30 Materials and Methods: Six patients treated for lung cancer with conventional 

31 radiation therapy were retrospectively analyzed. For each patient, a 4DCT scan and 

32 Tc‐99m SPECT-V image acquired for treatment planning were collected. 

33 Biomechanical model-based DIR was applied between the inhale and exhale phase of 

34 the 4DCT scans and stress maps were calculated. The voxel-wise correlation between 

35 the reference SPECT-V image and map of the maximum principal stress was 

36 measured with a Spearman correlation coefficient. The overlap between high (above 

37 the 75th percentile) and low (below the 25th percentile) functioning volumes extracted 

38 from the reference SPECT-V and the stress maps were measured with Dice similarity 

39 coefficients (DSC). The results were compared to those obtained when using two 

40 classical CT-ventilation metrics: the change in HU and Jacobian determinant.

41 Results: The mean Spearman correlation coefficients were: 0.37±18 and 0.39±13 and 

42 0.59±0.13 considering the changes in HU, Jacobian and maximum principal stress, 

43 respectively. The corresponding mean DSC coefficients were 0.38±0.09, 0.37±0.07 

44 and 0.52±0.07 for the high ventilation function volumes and 0.48±0.13, 0.44±0.09 and 

45 0.52±0.07 for the low ventilation function volumes.

46 Conclusion: For presenting a significantly stronger and more consistent correlation 

47 with standard SPECT-V images than previously proposed CT-ventilation metrics, 

48 stress maps derived with the proposed method appear to be a promising tool for 

49 incorporation into functional lung avoidance strategies.

50

51 Running title: Stress map-based CT-ventilation imaging

52 Keywords: lung cancer, biomechanics, CT-ventilation imaging

53 1. Introduction

54 Management of lung cancer includes radiation therapy for the majority of patients.1 

55 A common side-effect of lung radiotherapy, and a limiting factor for dose escalation trials, is 

56 radiation induced pneumonitis.2-6 To reduce the risk of toxicity, functional lung avoidance 

57 techniques have been proposed, consisting of taking into account the spatial heterogeneity of 

58 the lung function at planning into the optimization process of the dose distribution.7,8 The 

59 definition of functional volumes for planning has typically relied on the acquisition of 

60 ventilation/perfusion single photon emission computed tomography (SPECT) scan in 

61 addition to the standard Computed Tomography (CT) scans acquired for treatment 

62 planning.9

63 Previous studies have suggested that the lung ventilation functional distribution 

64 could be derived from the planning CT scan alone, which would enable functional lung 

65 avoidance without increasing the burden for the patient and financial cost of the treatment A
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66 protocol. This concept, named CT-ventilation imaging and used in three clinical US trials 

67 for functional lung avoidance (NCT02528942,  NCT02308709,  NCT0284356), mainly 

68 relies on the calculation of two metrics after deformable image registration (DIR) between 

69 different temporal phases of 4D CT scans typically acquired to assess the movement of 

70 tumors and/or other organs to assist target definition for patients treated while breathing 

71 freely. The first approach consisted of estimating the ventilation at each corresponding voxel 

72 in the lungs  as a function of change in Hounsfield Units (HU).10 A second approach focused 

73 on estimating the local ventilation by calculating the local volume change given by the 

74 determinant of the Jacobian of the displacement vector field (DVF).11 Other studies have 

75 since reported correlation measures between CT-ventilation maps, derived by these or other 

76 methods, and reference lung function maps extracted from images such as SPECT 

77 ventilation/perfusion,12-15 contrast-enhanced Xenon CT for sheep,16,17 hyperpolarized 

78 magnetic resonance (MR)18 or positron emission tomography (PET) using 68GaCl3-labeled 

79 pseudogas (“Galligas”).19 These studies have demonstrated a correlation between the CT-

80 ventilation maps and reference images when considering the contribution of sub-volumes of 

81 the lung to the total ventilation function. However, in the studies that reported a voxel-wise 

82 correlation between the CT-ventilation maps and reference ventilation images, a weak and 

83 highly variable correlation was found for SPECT images14,20 and at best was qualified as 

84 moderate for PET Galligas images19.

85 Among existing DIR strategies for CT scans of the lung, a method based on 

86 biomechanical modeling has previously been demonstrated to provide accurate displacement 

87 vector fields (DVF), especially in registering the exhale to the inhale phase of 4DCT scans.21 

88 This finite-element model (FEM)-based method (Morfeus) has the additional advantage, 

89 compared to traditional DIR algorithms, of allowing the definition of heterogeneous elastic 

90 properties inside the lung while controlling local deformation based on image features, in 

91 this case the lung and vasculature segmentations. It has been demonstrated that this method 

92 provides an accurate estimation of the DVF, and therefore the strain distribution in the lung. 

93 Assuming that the local ventilation function is proportional to the local air-induced volume 

94 change, which can be measured directly by the strain given by DIR, and to the local density 

95 of normal lung tissue (which might be related to the elasticity), the stress, defined as the 

96 product of strain and elasticity, appears as a natural metric for this ventilation function. In 

97 this paper, we propose to expand the biomechanical model-based DIR method to calculate 

98 mechanical stress maps and evaluate their correlation with reference ventilation imaging.

99 Recently, the VAMPIRE Challenge was conducted, aiming to quantify the 

100 variability in proposed CT-ventilation maps based on different DIR methods and CT-

101 ventilation metric as well as their correlation with three different reference ventilation image A
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102 modalities: Xenon CT for sheep, DTPA-SPECT and Galligas 4DPET/CT for humans.22 

103 Considering stress maps as the CT-ventilation metric as an alternative to other proposed 

104 metrics yielded a substantially higher correlation with the reference imaging for the human 

105 datasets. This paper describes the method to generate the stress maps and provides further 

106 evaluation of the correlation with SPECT-V data from six additional patients not included in 

107 the VAMPIRE Challenge.

108

109

110 2. Materials and methods

111 2.1. Patient data

112

113 Six lung cancer patients who underwent SPECT-V scans as part of treatment on an 

114 IRB-approved adaptive radiation therapy protocol were retrospectively analyzed for this 

115 study. Each patient had a 4DCT scan for planning, reconstructed using 10 bins with axial 

116 spatial resolution ranging from 0.93 to 1.18 mm and consistent slice spacing of 3 mm. The 

117 inhale and exhale phases were selected by visually assessing which phases presented with 

118 the minimum and maximum lung inflation levels. Contours of the left and right lungs were 

119 manually delineated on both phases in the treatment planning system (Eclipse, Varian 

120 Medical Systems, Palo Alto, California, USA). For all patients, a ventilation Tc-99m SPECT 

121 (SPECT-V) scan of resolution 0.9x0.9x2 mm was acquired prior to treatment and used for 

122 analysis.

123

124

125 2.2. Stress maps computation

126

127 The workflow of the biomechanical model-based deformable registration  method 

128 (Morfeus) used for the lung is represented Figure 1 and has previously been described in 

129 detail.21 Briefly, it consists first of generating a tetrahedral mesh of the lung and body from 

130 the contours of the reference fixed image, in this case the inhale phase of the 4DCT. A 

131 surface projection algorithm was then used between the lung surfaces defined on the two 

132 images, based on the computation of distance maps from the lung contours followed by 

133 application of DIR with a variant of the Demons algorithm. The displacements estimated by 

134 the Demons algorithm were used to define boundary conditions in the FEM. Instead of 

135 applying displacements directly on the lung surface nodes, the displacements were applied 

136 on the chest cavity nodes. Thanks to the definition of a frictionless contact surface between A
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137 the lung and chest wall, this approach allowed to simulate the physiological lung sliding and 

138 to limit the impact of a possible inaccurate surface projection.23 In parallel, vessels were 

139 automatically segmented in the two images and non-rigidly registered to define boundary 

140 conditions on their centerline. A numerical simulation of the displacement of all nodes of the 

141 mesh was finally performed using the finite-element analysis software Optistruct (Altair 

142 Engineering, Troy, MI). 

143 The introduction of heterogeneous elastic properties in this workflow was 

144 demonstrated to have a negligible impact on the resulting DVF.24 However, in order to 

145 accurately calculate the stress distribution, or the local resistance of the lung tissue to the 

146 deformation imposed by the boundary conditions, variations in elastic properties of the lung 

147 must be defined. A wide range of elastic properties were considered in previous work on 

148 finite-element modeling of the lung with a linear elastic model, with a Poisson’s ratio 

149 ranging from 0.1 to 0.49 and a Young’s modulus ranging from 0.1 to 7.8 kPa.25-28 In this 

150 study, based on these orders of magnitude, the elements’ compressibility was assumed 

151 constant with a Poisson’s ratio set to 0.4 as in the previously proposed Morfeus workflow 

152 for DIR and variable Young’s moduli (E) were assigned to different regions of the lung 

153 ranging from 1 kPa for the definition of air to a maximum of 20 kPa for the definition of the 

154 stiffest lung tissues such as fibrosis.

155 The assignment of different elastic properties in the FEM and the generation of 

156 stress maps are illustrated in Figure 2. To estimate the Young’s modulus spatial distribution, 

157 a linear relationship was assumed with the density of lung tissue given by the HU in the 

158 inhale CT scan. Voxels with HU below -950 were considered as air only and those with HU 

159 above -200 as the stiffest tissue. The stiffness in all other voxels was assumed linearly 

160 proportional to the corresponding HU. Each tetrahedral element of the lung was assigned a 

161 Young’s modulus based on the density at the tetrahedron centroid location in the inhale CT. 

162 Since the tetrahedral mesh resolution (5 mm) was much coarser than the image, the inhale 

163 CT scan was first smoothed with a Gaussian filter of radius 6 mm to ensure a smooth 

164 distribution of the stiffness in the mesh. To obtain a single scalar value at the centroid 

165 coordinates  of each tetrahedron  of the mesh, the maximum principal stress , defined �� � ��1

166 as the maximum eigenvalue of the Cauchy stress tensor , was calculated by the finite-��
167 element analysis software Optistruct (Altair Engineering). The scattered  distribution was ��1

168 then resampled on the grid of the reference image to generate a stress map directly �������
169 comparable to a reference ventilation function map.

170

171

172 2.3. SPECT-V and stress maps similarity analysisA
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173

174 The SPECT-V was aligned with the average CT generated from the planning 4DCT 

175 in the TPS Eclipse as performed for treatment planning. The same comparison was 

176 performed between the generated and reference ventilation images as in many CT-

177 ventilation imaging studies, in particular the VAMPIRE challenge.22 

178 First, the Spearman correlation coefficient was calculated between the generated 

179 stress maps and reference ventilation images in a mask defined by the contours of the lung 

180 in the exhale image. This coefficient measures the strength of the monotonicity between the 

181 two-paired distributions. 

182 Second, in order to compare the identification of high and low functioning volumes 

183 in the lung, thresholds were applied to the stress maps and SPECT-based ventilation maps 

184 based on the individual patient’s map. For each patients individual stress map and SPECT 

185 ventilation map, the low functioning volume included all lung voxels below the 25th 

186 percentile of the patient’s specific map distribution and the high functioning volume all lung 

187 voxels above the 75th percentile. Dice similarity coefficients (DSC) were calculated between 

188 the high and low functional volumes extracted from the stress maps and the reference 

189 SPECT-V images. The patient-specific determination of the high and low functioning 

190 volumes of the lung is acceptable as the ventilation maps are used to assess relative lung 

191 function on individual patients (as opposed to the whole patient population).

192

193 2.4. Comparison with other methods

194

195 The similarity results obtained with the analysis of the  maps were compared �������
196 to those obtained when considering the two other mainly used CT-ventilation metrics: the 

197 local volume change and local change in air density.  The local volume change was 

198 measured by the Jacobian determinant  of the inverse of the DVF calculated from Morfeus, J

199 so that a local tissue expansion yielded and a local contraction  as in [11]. The J >  1 J <  1

200 corresponding CT-ventilation map was noted . The CT-ventilation map based on change ����
201 in air density, noted , was also calculated using the inverse of the DVF from Morfeus ���
202 and following the equation19: 

203 ���(�) =
���(�) ―  ���(� + �)���(� + �) + 1000

,

204 with  and  respectively the exhale and inhale images and the displacement vector  at ��� ��� �
205 the corresponding voxel coordinates . For comparison of the results with previous studies, �
206 the  and  maps were smoothed with a median filter of width 3x3x3 voxels.22���� ���A
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207 Statistical differences between the mean Spearman correlation coefficients and 

208 mean DSCs obtained with the different CT-ventilation methods were assessed with two-

209 tailed paired t-tests.

210

211 3. Results

212 3.1. Spearman correlation coefficients

213

214 Figure 3 shows the breathing motion magnitude for the six patients with a color 

215 overlay between coronal slices of the inhale and exhale phases of the 4DCT scans. For each 

216 patient, the following were also represented on the same coronal slice: the SPECT-V image, 

217 the computed stress map and a scatter plot of their relationship. For visualization purposes, 

218 the SPECT-V and stress images were normalized for each patient by linearly rescaling the 0-

219 90th percentiles between 0 and 1 and by setting the visualization window/level to 1/0.5.

220 Various forms of ventilation function distributions were observed. Patient 1 did not 

221 present any particular ventilation defect, with the entire lung demonstrating breathing-

222 induced motion. On the reference SPECT-V image, areas of high ventilation function could 

223 be observed near the direct exit of the main airways and the signal globally decreased with 

224 the distance to these areas of high ventillation. The stress map computed for this patient 

225 presented a similar pattern due to the higher stiffness defined around the main vasculature. 

226 The SPECT images for Patients 2 and 3 presented low ventilation function in the upper lobe 

227 of their right and left lung, respectively. These defects, which were likely due to an 

228 obstruction of the airflow by the tumor, could also be observed on the generated stress maps 

229 resulting from the low volume change (e.g. low strain) calculated in this area. Patient 4 was 

230 the case presenting the lowest correlation between SPECT-V and stress. It appeared that the 

231 imaging aerosol did not enter the right lung at the time of the SPECT acquisition whereas the 

232 4DCT scan seemed to exhibit ventilation-induced volume change of the right middle and 

233 inferior lobes. However, the correlation for the left lobe alone appeared high. The highest 

234 Spearman correlation coefficients, above 0.7, were obtained for Patient 5 and 6 who both 

235 presented large regions with poor ventilation function. For Patient 5, the defect corresponded 

236 to the presence of emphysema in the upper part of the lungs while for Patient 6, the airways 

237 were obstructed preventing the air to enter the middle and upper lobe of the right lung.

238 Figure 4 reports the Spearman correlation coefficients measured between the three 

239 different CT-ventilation calculations and the SPECT-V intensity distribution. With a mean 

240 Spearman coefficient of 0.59±0.13, the correlation between the stress maps and reference 

241 imaging was significantly higher (p<0.05) than when considering the Jacobian (0.39±13) or A
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242 changes in HU (0.37±18). The stress map provided the highest correlation with the SPECT-

243 V ventilation map for all patients except Patient 4. We hypothesize that this difference could 

244 be due to an actual variation of the ventilation function between the time of the SPECT and 

245 planning 4DCT acquisitions or a limitation of the aerosol to propagate to that area of the 

246 lung, despite normal lung ventilation, that appeared to be depicted on the 4DCT. 

247

248

249 3.2. Dice similarity coefficients (DSC)

250

251 Table 1 reports the DSCs obtained between the high and low ventilation function 

252 volumes derived from the CT-ventilation maps and those extracted from corresponding 

253 SPECT-V images. For all six patients, the DSC of the high function volume was higher 

254 when derived from the stress map than from the Jacobian or change in HU, and the mean 

255 was significantly higher (p<0.01). For the low function volumes, the stress maps yielded the 

256 highest DSC for all but 2 patients (4 and 6). The DSC values for the low function volumes 

257 obtained with the stress maps were significantly higher than with the Jacobian (p<0.01) but 

258 not higher than those obtained with the change in HU (p=0.12), an effect that was mostly 

259 due to the differences observed for Patient 4. 

260

261 Patients 5 and 6, who presented the highest Spearman correlation 

262 coefficients between the stress map and SPECT-V, also presented the highest DSC between 

263 corresponding functional volumes. Figure 5 represents the low and high function volumes 

264 for those two patients who presented two different kinds of defects. Patient 5 exhibited 

265 emphysema in the superior parts of both lungs. Because of the resulting low HU values, the 

266 biomechanical model assigned a low elasticity in this area, leading to low stress values. 

267 Patient 6 exhibited relatively normal tissues across the whole lung but the disease prevented 

268 the aeration of the middle and superior lobes of the right lung, leading to the absence of 

269 motion estimated by the biomechanical DIR and so to low stress values. The highest 

270 ventilation function areas given by the SPECT-V images were found for these two patients 

271 in the rest of the lung where the vasculature density was high. As a consequence of defining 

272 these areas as stiffer in the biomechanical model, the stress map showed consistent high 

273 values.

274

275
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276 4. Discussion

277 In terms of correlation with SPECT-V images, the method outperformed other 

278 methods based on the computation of the Jacobian determinant or changes in HU alone. The 

279 stress maps presented the highest correlation with SPECT for all of the six patients analyzed 

280 but one, for whom the HU-change method performed better.For the methods based on the 

281 Jacobian or changes in HU, other DIR algorithms may potentially yield to a higher 

282 correlation but the Spearman coefficients obtained in this study, with mean values of 

283 0.39±13 and 0.37±18 respectively, were similar with the highest coefficients previously 

284 reported. A case scenario for which the Jacobian determinant alone was likely to present a 

285 poor correlation with reference ventilation imaging is when bullae or emphysema were 

286 present in the lung as it has been illustrated previously29 and in this study. Volume 

287 expansions were indeed still occurring in these areas following inspiration despite the 

288 absence of lung function. The inverse of the DVF was used for the determinant of the 

289 Jacobian and no constraint in this algorithm ensured inverse consistency in the DVF which 

290 may be a limitation in this calculation. The interpretation of the performance of the HU 

291 changes-based method is more challenging. One drawback of this HU-based method could 

292 be a higher sensitivity to image artifacts, which are common with 4DCT imaging and can 

293 lead locally to a completely wrong estimation of the intensity. By using only contours of the 

294 lung and autosegmentation of the vasculature to estimate the deformation, Morfeus is 

295 probably less sensitive to these motion artifacts than global intensity-based DIR methods, 

296 but the estimated CT-ventilation metrics could still be impacted. 

297 The  and  maps computed in this study were implemented to serve as a ���� ���
298 baseline as they correspond to the most commonly used CT-ventilation imaging metrics. 

299 Variants or combinations of these metrics may lead to a stronger correlation. However, the 

300 results reported in this paper are consistent with those recently reported for other datasets 

301 and other ventilation imaging modalities in the context of the VAMPIRE Challenge.22 The 

302 proposed algorithm performed the best for the two validation datasets of human subjects, 

303 one of 20 PET-Galligas and one of 11 DTPA-SPECT, with mean Spearman correlation 

304 coefficients of 0.53±0.10 and 0.49±16, respectively.

305 Uncertainties with the proposed biomechanical model-based method may come 

306 from the assumption of a linear relationship between the local density of the tissue in the CT 

307 scans and the stiffness. The choice of the Young’s modulus range was empirical. However, 

308 since variations in the Young’s modulus had little impact on the strain estimation and since 

309 ventilation maps are intended to provide relative and not absolute values of the ventilation 

310 function, the choice of this range does not matter as long as it ensures a linear relationship A
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311 between the stress and strain. To ensure a smooth distribution of the elasticity in the FEM, 

312 the Young’s moduli assigned to the mesh nodes were based on a Gaussian smoothing of the 

313 CT image. Without this type of filtering, mesh nodes located close to but outside of vessels 

314 could be assigned low Young’s moduli and the model could underestimate the local 

315 stiffness. The optimal radius of the Gaussian filter is directly related to the resolution of the 

316 FEM, with finer meshes which capture more anatomical information requiring smaller 

317 image smoothing. These two parameters were chosen empirically in this study and their 

318 optimal value will be optimized in future work based on a larger cohort of patients.

319 No consensus exists regarding the minimum required Spearman correlation 

320 coefficient to indicate that a CT-ventilation map is considered a good surrogate to the 

321 reference ventilation image. In a study comparing radiotherapy plans optimized using either 

322 SPECT or CT-ventilation maps for functional lung avoidance, the authors found that when 

323 the Spearman coefficient between the two ventilation maps was on the order of 0.4, a 

324 reasonable agreement was observed between the final functional lung sparing planned dose 

325 distributions.30 For all patients in this study with the exception of Patient 4, the Spearman 

326 correlation coefficient between the stress map and SPECT-V image was consistently greater 

327 than 0.5, suggesting the proposed method could serve as a good surrogate for SPECT-V for 

328 treatment planning purposes. Achieving a higher correlation might be possible, especially 

329 considering recent advances in deep learning techniques, but without necessarily being more 

330 clinically relevant for current models of functional sparing in treatment planning. Existing 

331 ventilation mapping methods are indeed known to be associated with uncertainties and 

332 artifacts. Especially, while it was not the case for the six patients analyzed in this study, 

333 SPECT-V image quality commonly suffers from clumping of the aerosol in the airways.31 

334 The mechanistic approach proposed in this study may provide a more reliable mapping of 

335 the actual ventilation function. 

336

337 5. Conclusion

338 This paper describes an original approach to generate lung ventilation function images 

339 through stress maps derived from biomechanical model-based DIR. The generated 

340 ventilation maps presented a significantly stronger and more consistent correlation with 

341 standard SPECT-V images than previously proposed CT-ventilation metrics did. We believe 

342 this approach is a very promising tool for incorporation in functional lung avoidance 

343 strategies.
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455 Figure 1. Morfeus workflow for the deformable image registration between the inhale and 

456 exhale phases of a 4DCT scan.

457 Figure 2. Expansion of the Morfeus method workflow described in Figure 1 for the 

458 generation of stress maps.

459 Figure 3.  Illustration of the breathing magnitude between the inhale and exhale phases of 

460 the 4DCT and of the correlation between the reference SPECT-V images and 

461 computationally generated stress maps.

462 Figure 4. Spearman correlation coefficients between each CT-ventilation metric and the 

463 reference SPECT-V for the six patients.

464 Figure 5. Representation for the two patients presenting the highest correlation between 

465 stress maps and reference SPECT-V images of the low and high function volumes obtained 

466 by thresholding. The plain red and green area represent respectively the low and high 

467 function volumes derived from the SPECT-V. The blue and orange contours represent the 

468 same volumes but derived from the stress maps.
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Table 1. Dice similarity coefficients between ventilation function volumes from CT-ventilation maps 

and reference SPECT-V images. 

 Low function volume DSC High function volume DSC 

 Stress Jacobian HU Stress Jacobian HU 

Patient1 0.55 0.49 0.48 0.52 0.43 0.40 

Patient2 0.52 0.31 0.33 0.46 0.24 0.29 

Patient3 0.65 0.49 0.47 0.42 0.35 0.28 

Patient4 0.39 0.36 0.46 0.52 0.36 0.50 

Patient5 0.66 0.43 0.41 0.57 0.44 0.45 

Patient6 0.69 0.55 0.72 0.60 0.40 0.34 

Mean 0.58 0.44 0.48 0.52 0.37 0.38 

STD 0.11 0.09 0.13 0.07 0.07 0.09 
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