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The inverse probability weighted Cox model is frequently used to estimate the
marginal hazard ratio. Its validity requires a crucial condition that the propensity
score model be correctly specified. To provide protection against misspecifica-
tion of the propensity score model, we propose a weighted estimation method
rooted in the empirical likelihood theory. The proposed estimator is multiply
robust in that it is guaranteed to be consistent when a set of postulated propen-
sity score models contains a correctly specified model. Our simulation studies
demonstrate satisfactory finite sample performance of the proposed method in
terms of consistency and efficiency. We apply the proposed method to com-
pare the risk of postoperative hospitalization between sleeve gastrectomy and
Roux-en-Y gastric bypass using data from a large medical claims and billing
database. We further extend the development to multisite studies to enable each
site to postulate multiple site-specific propensity score models.
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1 INTRODUCTION

In biomedical studies, marginal hazard ratios are commonly used to assess the effects of treatments on time-to-event
outcomes by comparing the hazard functions of failure times between the treated and untreated individuals. In random-
ized controlled trials, fitting a Cox model relating the time-to-event outcome to only the treatment yields the estimated
marginal hazard ratio. In observational studies, inverse probability weighted (IPW) Cox estimation provides one approach
to estimating the marginal hazard ratio when measured confounders are adjusted for through weighting.1-9 The weights
are a function of the estimated propensity score, that is, the probability of receiving treatment conditional on the mea-
sured baseline confounders.10 Specifically, an IPW Cox model is a Cox model that relates the time-to-event outcome to
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only the treatment and weighs the individuals by the reciprocal of their estimated probabilities of receiving the observed
treatment, that is, the estimated propensity score (if treated) or 1 minus the estimated propensity score (if untreated).
Like other standard propensity score methods, the validity of IPW Cox estimation requires correct specification of the
propensity score model.

There is a growing interest in developing more robust methods to protect against potential misspecification of the
propensity score model. For example, the doubly robust estimation methods provide consistent estimators if either the
propensity score model or the outcome model is correctly specified.11-16 Additional estimation methods have been devel-
oped to achieve multiple robustness, mainly in the context of missing data analysis.17-22 An estimator is said to be multiply
robust if it is consistent when a set of postulated propensity score or outcome models contains a correctly specified model.

To our knowledge, there are currently no doubly or multiply robust estimators for marginal hazard ratios. In this arti-
cle, we propose to estimate the marginal hazard ratio by fitting a weighted Cox model where the weights are obtained by
adapting the method in Han and Wang,17 which considered estimating a population mean for a nonsurvival outcome with
missing values. Our method yields consistent marginal hazard ratio estimators as long as the set of postulated propensity
score models contains a correctly specified model, thereby providing more protection against model misspecification than
the commonly used IPW Cox estimation method. We further expand the proposed method to multisite studies, where
weighted Cox models stratified on data-contributing site will produce consistent estimators of the marginal hazard ratio
when each site includes a correctly specified model in its set of propensity score models.

The rest of this article is organized as follows. In Section 2, we describe the standard IPW Cox model framework for
estimating the marginal hazard ratio using one (possibly misspecified) propensity score model. In Section 3, we discuss
why propensity score model misspecification is a practical concern in observational studies and illustrate the need for
robust methods. In Section 4, we develop a multiply robust method to estimate marginal hazard ratios. In Sections 5 and
6, we conduct simulation studies to evaluate the finite sample performance of the proposed method, with and without
including a correctly specified propensity score model in the set of postulated models, respectively. In Section 7, we apply
the proposed method to analyze a real-world electronic healthcare data set to compare the risk of postoperative hospital-
ization between sleeve gastrectomy and Roux-en-Y gastric bypass. In Section 8, we extend the development to multisite
studies. We conclude the article with a discussion in Section 9.

2 WEIGHTED ESTIMATION OF THE MARGINAL HAZARD RATIO USING
ONE PROPENSITY SCORE MODEL

Let X be a vector of measured baseline covariates, A a binary treatment indicator (A= 1 if treated and A= 0 if untreated),
and T = min(T∗,C) where T∗ is the event time, C is the censoring time. Define 𝛿 = I(T∗ ≤ C) to be the event indicator,
where I(⋅) is the indicator function.

Suppose we have an independent and identically distributed (i.i.d.) sample of size n. For the ith individual where
i= 1, … , n, the observed data are (Xi,Ai,Ti, 𝛿i). We aim to use the observed data to estimate the log marginal hazard ratio
𝜃 of the model:

𝜆a(t) = 𝜆0(t) exp(𝜃a), (1)

where 𝜆a(t) is the hazard function for T∗
a the event time for an individual that would have been observed had we set the

treatment level A= a for a= 0 or 1.
Provided that standard exchangeability, consistency, and positivity assumptions9 hold, propensity score weighting

effectively adjusts for confounding bias. Given that the weighted data emulate data that would have been collected from
a randomized controlled trial, the IPW Cox models provide one approach to estimating marginal hazard ratios.

Based on propensity score e(X) = P(A = 1|X), the conventional inverse probability weights

w = wipw = A
e(X)

+ 1 − A
1 − e(X)

(2)

and stabilized weights

w = wstabilized = P(A = 1) A
e(X)

+ P(A = 0) 1 − A
1 − e(X)

(3)
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are commonly used.2,4,5 Since the treatment decision process is often unknown, one modeling strategy is to specify a
parametric propensity score model for e(X). We then estimate e(X) by fitting the specified propensity score model relating
the treatment indicator A to the baseline covariates X. The treatment prevalence P(A= 1) is estimated nonparametrically
as the number of treated individuals divided by the total number of individuals in the study.

For i= 1, … , n, let ŵi denote the estimated weight for individual i under either the conventional inverse probability
weights (2) or stabilized weights (3). The weighted partial likelihood score equation23,24 for 𝜃 is

n∑
i=1

ŵi𝛿i

{
Ai −

∑
l∶l∈ℜi

ŵl exp(Al𝜃)Al∑
l∶l∈ℜi

ŵl exp(Al𝜃)

}
= 0, (4)

where ℜi = {l ∶ Tl ≥ Ti, 𝛿i = 1} is the risk set for uncensored individual i. Solving (4) for 𝜃 gives the IPW estimator of log
hazard ratio, denoted by �̂�.

The consistency of estimator �̂� requires the propensity score model be correctly specified. Misspecifying a propensity
score model may result in severely biased results.

3 CONCERNS ABOUT PROPENSITY SCORE MODEL MISSPECIFICATION
IN OBSERVATIONAL STUDIES

Propensity score methods are commonly used in observational studies that investigate the effects of medical treat-
ments, especially when there is more information to model the treatment decision process than the outcome
process (eg, drug safety studies with common exposures and rare outcomes). The validity of a typical propen-
sity score-based analysis requires the propensity score model be correctly specified. However, treatment decision
process is complex in clinical practice. Many studies collect high-dimensional data that may or may not fully
capture factors that influence treatment decision, making it challenging to correctly specify the propensity score
model.

Confounder selection has been extensively discussed. For example, Mickey and Greenland25 and Maldon-
ado and Greenland26 examined various confounder selection strategies and found satisfactory performance of the
“change-in-estimate” criterion. Pearl27 and Greenland et al28 illustrated how to use known causal diagrams to identify
covariates that should be measured and controlled for to eliminate confounding bias. Brookhart et al29 recommended
including covariates related to the outcome and excluding covariates related only to the treatment but not the outcome.
Schneeweiss et al30 developed a data-driven algorithm based on prioritizing covariates by their potential for controlling
confounding unconditional on other covariates. VanderWeele31 proposed to include covariates that are known causes
of the exposure or the outcome, exclude instrumental variables, and include proxies for unmeasured variables that are
common causes of the exposure and the outcome.

In practice, it may still be difficult to develop one final propensity score model based on these useful principles for
various reasons. First, different covariate selection techniques may result in different sets of selected covariates. Second,
even if the set of confounders were known, it is difficult to correctly specify their functional forms in the propensity
score model (eg, using the viral load measurement itself or its log transformation). Third, different researchers (eg,
biostatisticians, clinicians, epidemiologists) in a multidisciplinary team may have different “best models” in mind and
cannot reach a consensus about which model to use. Given the complexity of treatment decision process in observa-
tional studies, researchers may end up having multiple candidate models that all seem reasonable but difficult to choose
from.

4 MULTIPLY ROBUST ESTIMATION OF THE MARGINAL HAZARD
RATIO USING A SET OF PROPENSITY SCORE MODELS

Using the empirical likelihood technique,32,33 Han and Wang17 proposed a multiply robust method for estimating
population means for nonsurvival outcomes that are subject to nonresponse. We adapt their method to our sur-
vival context to estimate the marginal hazard ratio. Our method allows researchers to simultaneously postulate a
set of propensity score models. The resulting estimator is consistent when this set contains a correctly specified
model.
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4.1 Motivation for empirical likelihood approach

In the context of nonsurvival outcomes where the interest is in the expectation of potential outcome under treatment (or
control), Qin34(pp357,366-368) illustrated that generally the likelihood based on data from treated (or untreated) individuals
is a biased version of the likelihood that would have been obtained had all individuals been treated (or untreated). To
handle this biased sampling problem, he discussed a general empirical likelihood approach35 that maximizes the biased
sampling likelihood subject to a required constraint on propensity score and an optional constraint on a function of
covariates. He further showed that the best choice for the optional constraint in terms of efficiency was the expectation
of the potential outcome conditional on covariates. Han and Wang17 and Han19-21 extended this empirical likelihood
approach to accommodate multiple choices for both the required and optional constraints.

In our survival context where the interest is in the marginal hazard ratio, we propose to fit a weighted Cox model
relating the time-to-event outcome to only the treatment, where the weights are obtained by adapting the work of Han
and Wang17 and Han.19-21 While it is tempting to specify some optional constraints on conditional outcome models like
these prior studies, in our survival context, inference results from a conditional Cox model may not be used to estimate
a marginal Cox model because the proportional hazards assumption usually does not simultaneously hold for both the
marginal and conditional Cox models. Given this challenge, here we drop the optional constraints.

4.2 Multiply robust estimation

To increase the chance of correctly modeling e(X), we allow a set of parametric models instead of using just one model.
Suppose  = {ej(𝜸j;X) ∶ j = 1, … , J} is a set of J postulated propensity score models for e(X), where 𝜸j is the vector of
parameters for the jth model. Let �̂�j be the estimator of 𝜸j obtained by fitting the jth propensity score model. Write �̂� =
(�̂�1T, … , �̂�JT)T.

Without loss of generality, let i= 1, … , m be the indexes for treated individuals and i=m+ 1, … , n the indexes
for untreated individuals, where m is the size of the treated group. Define �̂�j = n−1 ∑n

i=1 ej(�̂�j;Xi) for j= 1, … , J. For
i= 1, … , n, define

ĝi(�̂�) = (e1(�̂�1;Xi) − �̂�1, … , eJ(�̂�J ;Xi) − �̂�J)T.

The proposed empirical likelihood weights for the treated individuals i= 1, … , m are given by

ŵi = argmax
wi

m∏
i=1

wi

subject to constraints

wi ≥ 0,
m∑

i=1
wi = 1, and

m∑
i=1

wiĝi(�̂�) = 0,

which yields

ŵi =

{
1

1 + �̂�Tĝi(�̂�)

}/
m for i = 1, … ,m, (5)

where �̂� = (�̂�1, … , �̂�J)T is a J × 1 vector obtained by solving the equation

m∑
i=1

ĝi(�̂�)
1 + 𝝆Tĝi(�̂�)

= 0

for 𝝆 with �̂� given. To get around possible multiple-root issues, we apply the computation method of Han19 to obtain 𝝆 by
convex minimization.
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Here we give an intuition for the proposed constraints. By definition, it is immediate that
∑n

i=1 ĝi(�̂�) = 0, which can be
understood as an unweighted sample average of quantities ĝi(�̂�) that converges to zero. It follows that a weighted average
using only data from the treated group, with suitable weights that make the biased sample representative of the target
population, should also converge to zero, that is,

∑m
i=1 ŵiĝi(�̂�) = 0.

By symmetry, the empirical likelihood weights for untreated individuals i=m+ 1, … , n are given by

ŵi =

{
1

1 − �̂�Tĝi(�̂�)

}/
(n − m) for i = m + 1, … ,n, (6)

where �̂� = (�̂�1, … , �̂�J)T is a J × 1 vector solving the equation

n∑
i=m+1

ĝi(�̂�)
1 − 𝜼Tĝi(�̂�)

= 0

for 𝜼 with �̂� given.
Similar to the use of the stabilized weights (3) as an alternative to the conventional weights (2) in the IPW context, we

also consider an alternative to empirical likelihood weights (5) and (6):

ŵi = P̂(A = 1)

{
1

1 + �̂�Tĝi(�̂�)

}/
m for i = 1, … ,m, (7)

ŵi = P̂(A = 0)

{
1

1 − �̂�Tĝi(�̂�)

}/
(n − m) for i = m + 1, … ,n, (8)

where �̂� and �̂� are the same as in (5) and (6), P̂(A = 1) = m∕n, and P̂(A = 0) = (n − m)∕n.
The proposed estimator of the log marginal hazard ratio is obtained by fitting a Cox model relating the time-to-event

outcome to only the treatment with individuals weighted by empirical likelihood weights (5) and (6), or, their alternatives
(7) and (8). Specifically, with the proposed empirical likelihood weights, solving the estimating equation (4) for 𝜃 gives
the proposed estimator of the log marginal hazard ratio 𝜃, denoted as �̂�.

In Appendix, we establish the multiple robustness of �̂�. That is, �̂� is a consistent estimator of the log marginal haz-
ard ratio 𝜃, if  = {ej(𝜸j;X) ∶ j = 1, … , J} contains a correctly specified model. Specifically, we show that the proposed
weights are asymptotically equivalent to the IPW weights using the correctly specified propensity score model. The inverse
probability weights from the correct model achieves covariate balancing after weighting, so do the proposed weights.
Because weighting effectively eliminates confounding bias, the proposed weighted Cox model relating the time-to-event
outcome to only the treatment provides a consistent estimator of the marginal hazard ratio.

4.3 Variance and confidence interval estimation

In the setting of fitting an IPW Cox model with one propensity score model, Austin7 suggested using the bootstrap
method36 for variance estimation. For each bootstrap sample, the weights are estimated using the same bootstrap sam-
ple rather than the original data. By doing so, the uncertainty in weight estimation is taken into account. His simulations
demonstrated satisfactory performance of the bootstrap variance estimator with 200 bootstrap samples.

For our setting with multiple propensity score models, the bootstrap method can also be used for variance estimation.
Specifically, we resample the data with replacement for B times to construct B bootstrap samples, each with the same
size as the original data, where B is a user-specified number. For b= 1, … , B, let �̂�b denote the estimated log hazard ratio
obtained from the bth bootstrap sample. Then the bootstrap variance estimator for �̂� is given by

v̂ar(�̂�) = 1
B − 1

B∑
b=1

(
�̂�b −

1
B

B∑
b=1

�̂�b

)2

. (9)

A normality-based 95% confidence interval for 𝜃 is �̂� ± 1.96 ⋅
√

v̂ar(�̂�).
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4.4 Balance diagnostics

As noted in Section 4.2, the proposed method creates a weighted population in which the distributions of base-
line covariates are expected to be the same between the treated and untreated individuals. Therefore, just like in an
IPW analysis, it is essential to assess the balance of covariates between treatment groups in the weighted sample
when using the proposed method. For an IPW analysis, Austin and Stuart37 examined a suite of balance diagnos-
tic tools that assess whether weighting balances measured covariates between the treated and untreated individu-
als in the weighted sample. These tools are also applicable to our weighting approach. For example, researchers
can use the standardized difference to check for covariate balance in the weighted sample when using the pro-
posed method. This measure compares the means of covariates between the treatment groups in units of the
pooled standard deviation, and hence allows for fair comparisons of balance among covariates measured in different
units.37

5 SIMULATION STUDIES: WHEN ONE OF THE POSTULATED
PROPENSITY SCORE MODELS IS CORRECTLY SPECIFIED

We conducted simulation studies to assess the finite sample performance of the proposed multiply robust method
compared to the standard IPW Cox estimation.

5.1 Data generating process

To simulate data that exactly followed model (1) with the true log marginal hazard ratio 𝜃, we adapted the simulation
method of Young et al,38 which was originally designed for time-varying treatment settings, to our one-time treatment
studies. Specifically, for individuals i= 1, … , n, we simulated the following data:

Step 1: counterfactual control (ie, untreated) group event time T∗
0 that followed the unit exponential

distribution.
Step 2: vector of covariates X = (X (1),X (2),X (3),X (4),X (5),X (6))T. The first three covariates were con-

tinuous, simulated as X (1) = −0.3 + 0.5T∗
0∕(T

∗
0 + 1) + 0.4Z1, X (2) = −0.3 + log(T∗

0 + 2) + Z2, and X (3) = 1∕
(T∗

0 + 2) + Z1, where Z1 and Z2 independently followed the uniform distribution ranging from −0.5 to 0.5. The other
three covariates were binary, with P(X (4) = 1|T∗

0 ) = 0.2 + 0.6∕(T∗
0 + 3), P(X (5) = 1|T∗

0 ) = 0.3 + 0.4∕(0.5T∗
0 + 2), and

P(X (6) = 1|T∗
0 ) = 1∕(T∗

0 + 1).
Step 3: treatment indicator A generated from the propensity score model

logit P(A = 1|X) = 𝛾0 − 0.1 exp(X (1)) − 0.3 exp(X (2)) + 0.1 exp(X (3)) + 0.6X (4) + 0.4X (5) + 0.5X (6), (10)

where the parameter 𝛾0 was chosen to produce treatment prevalence of approximately 10%, 20%, 30%, 40%, or
50%.

Step 4: actual true event time using formula T∗ = T∗
0 exp(−𝜃A). We specified 𝜃 = log(1.5) so that the true marginal

hazard ratio was 1.5.
Step 5: event indicator 𝛿 = I(T∗ ≤ C) and T = min(T∗,C), where C followed an exponential distribution whose rate

parameter was chosen to yield a censoring rate of about 30% or 60%.
The distribution and overlap of propensity scores between treatment groups are often examined prior to the estimation

of treatment effects. Limited overlap may indicate substantial differences between treated and untreated individuals or
violation of the positivity assumption. In that case, researchers may consider abandoning the analysis or restricting the
analysis to a suitably chosen subsample.39,40 For example, Crump et al41 proposed to select subsamples that can most
precisely estimate the average treatment effect. For each treatment prevalence scenario in Step 3, Figure 1 visualizes the
propensity score distribution and overlap between two treatment groups under the true propensity score model using
density plots. Our simulation design produced a reasonable degree of overlap in the density and range of propensity
scores.
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F I G U R E 1 Propensity score distribution and overlap between two treatment groups under the true propensity score model: density
plots [Colour figure can be viewed at wileyonlinelibrary.com]

5.2 Specification of propensity score models

In analyzing the simulated data, we considered  = {ej(𝜸j;X) ∶ j = 1, … , 5}, a set of five postulated propensity score
models:

logit P(A = 1|X) = (1,X (1),X (2))𝜸1, (11)

logit P(A = 1|X) = (1,X (4),X (5),X (6))𝜸2, (12)

logit P(A = 1|X) = (1, exp(X (1)),X (5),X (6))𝜸3, (13)

c loglog P(A = 1|X) = (1,X (3),X (5),X (3) ⋅ X (5))𝜸4, (14)

and

logit P(A = 1|X) = (1, exp(X (1)), exp(X (2)), exp(X (3)),X (4),X (5),X (6))𝜸5, (15)

where “logit” was the logit link function, “c loglog” was the complementary log-log link function, and the 𝜸j(j = 1, … , 5)
were vectors of the associated propensity score model parameters.

Given that the true propensity score model was (10), the postulated models (11)-(14) were wrong, due to excluding
certain covariates or using incorrect functional forms of covariates. The fifth postulated model (15) was correctly specified.

http://wileyonlinelibrary.com
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F I G U R E 2 Empirical relative bias
in percent using stabilized weights with
n= 500. Incorrectly specified PS-1 to
PS-4: IPW Cox estimators from four
incorrectly specified propensity score
models (11)-(14), respectively; correctly
specified PS-5: IPW Cox estimator from a
correctly specified propensity score
model (15); multiply robust: the proposed
multiply robust estimator using multiple
models (11)-(15) [Colour figure can be
viewed at wileyonlinelibrary.com]
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5.3 Evaluation criteria

We compared six estimators. The first five were IPW Cox estimators obtained from the individual propensity score mod-
els (11)-(15). The sixth estimator was the proposed multiply robust estimator obtained by simultaneously using the five
models (11)-(15). We considered two types of weights. The first type was referred to as conventional weights, including the
inverse probability weights (2) and the proposed empirical likelihood weights (5) and (6). The second type was referred
to as stabilized weights, including the inverse probability weights (3) and the proposed empirical likelihood weights (7)
and (8).

We considered sample sizes of 500 and 5000 and ran 1000 simulations for each parameter configuration. As in Austin,7
we used 200 bootstrap samples for estimating the variance of each estimator. We used three criteria to evaluate the finite
sample performance of each estimator. First, we examined the average empirical relative bias (in percent) for estimator
�̂�, defined as (�̂� − 𝜃)∕𝜃 × 100%, across 1000 simulation runs. Second, we examined the empirical coverage (in percent),
defined as the percentage of 95% confidence intervals in 1000 simulation runs that covered the true log marginal hazard
ratio 𝜃. Third, we examined the average widths of the 95% confidence intervals across 1000 simulation runs.

5.4 Results

5.4.1 Empirical relative bias

Figures 2 and 3 report the empirical relative bias in percent using the six estimators with stabilized weights, under various
combinations of censoring rate and treatment prevalence. The four IPW Cox estimators under the incorrectly specified
propensity score models (11)-(14) produced substantially biased results due to model misspecification. As expected, the
IPW Cox estimator under the correctly specified propensity score model (15) and the proposed multiply robust estimator
using all five models (11)-(15) generally yielded negligible empirical bias, although a noticeable empirical bias for both
estimators was seen when n= 500 with low treatment prevalence 10%.

5.4.2 Empirical coverage

Figures 4 and 5 report the empirical coverage using the six estimators with stabilized weights, under various combinations
of censoring rate and treatment prevalence. Given that we used 1000 simulation runs for each parameter configuration,

http://wileyonlinelibrary.com
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F I G U R E 3 Empirical relative
bias in percent using stabilized
weights with n= 5000. Incorrectly
specified PS-1 to PS-4: IPW Cox
estimators from four incorrectly
specified propensity score models
(11)-(14), respectively; correctly
specified PS-5: IPW Cox estimator
from a correctly specified propensity
score model (15); multiply robust:
the proposed multiply robust
estimator using multiple models
(11)-(15) [Colour figure can be
viewed at wileyonlinelibrary.com]

empirical coverage for a consistent point estimator with a reliable variance estimator was expected to fluctuate around
95% and roughly lie within the range of 93.65% to 96.35%. Therefore, as in Austin,7 we drew three horizontal lines (at
93.65%, 95%, and 96.35%) to indicate a plausible range of coverage.

Due to model misspecification, the four IPW Cox estimators under the incorrectly specified propensity score models
(11)-(14) resulted in severe undercoverage, and the performance worsened as sample size increased. The IPW Cox esti-
mator under the correctly specified propensity score model (15) and the proposed multiply robust estimator using all five
models (11)-(15) produced empirical coverage close to 95% and roughly within range, except that the IPW Cox estimator
produced slight undercoverage when n= 500 with 30% censoring. These results showed that with 200 bootstrap samples,
the bootstrap variance estimator performed reasonably well.

5.4.3 Widths of 95% confidence intervals

Both the IPW Cox estimator under the correctly specified propensity score model (15) and the proposed multiply
robust estimator using all five models (11)-(15) produced negligible empirical bias in estimating the log marginal
hazard ratio, because of their consistency (Figures 2 and 3). We further compared their efficiency through exam-
ining the average widths of the 95% confidence intervals. Figures 6 and 7 summarize the results with stabilized
weights, under various combinations of censoring rate and treatment prevalence. As seen from the overlapping lines
for these two estimators, the widths of their 95% confidence intervals were almost the same under 60% censor-
ing. Under 30% censoring, the proposed multiply robust estimator produced narrower 95% confidence intervals than
the IPW Cox estimator under the correctly specified propensity score model (15). Therefore, the proposed multiply
robust method not only provided protection against model misspecification but also had better efficiency in some
scenarios.

We observed similar simulation results using conventional weights (Figures S1-S6, Online Supplementary Material).

6 SIMULATION STUDIES: WHEN NONE OF THE POSTULATED
PROPENSITY SCORE MODELS IS CORRECTLY SPECIFIED

The validity of the proposed method requires a critical condition that the set of postulated propensity score models con-
tains a correctly specified model. When all models are wrong, the proposed estimator is generally biased. To examine the
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F I G U R E 4 Empirical
coverage in percent using stabilized
weights with n= 500. The right
panel shows a zoom-in version of
the left panel. incorrectly specified
PS-1 to PS-4: IPW Cox estimators
from four incorrectly specified
propensity score models (11)-(14),
respectively; correctly specified
PS-5: IPW Cox estimator from a
correctly specified propensity score
model (15); multiply robust: the
proposed multiply robust estimator
using multiple models (11)-(15)
[Colour figure can be viewed at
wileyonlinelibrary.com]
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performance of the proposed method when all models are wrong, we conducted simulations with a sample size of 5000
and replaced model (15) with the following incorrectly specified model:

logit P(A = 1|X) = (1,X (1),X (2),X (3),X (4),X (5),X (6))𝜸5. (16)

We compared eight estimators. The first five were IPW Cox estimators obtained from the individual incorrectly spec-
ified propensity score models (11)-(14) and (16). The other three estimators were the proposed estimators obtained using
various combinations of incorrectly specified models. Specifically, the sixth estimator used incorrect models (11)-(14) and
(16). The seventh estimator used incorrect models (11)-(14). The eighth estimator used incorrect models (12)-(14). The
sixth estimator represented a situation where the postulated models contained a nearly unbiased model, that is, model
(16). The seventh and eighth estimators represented a setting that all postulated models were severely misspecified.

Figure 8 reports the boxplots of the estimates obtained from the eight methods with stabilized weights, under various
combinations of censoring rate and treatment prevalence. In each panel, the horizontal line indicates the true log marginal
hazard ratio of log(1.5), and the sign “+” indicates the average of the estimates across 1000 simulation runs for each
method. Since models (11)-(14) and (16) were all incorrectly specified, all the eight estimators generally produced biased
results. In terms of empirical bias, the sixth estimator using the proposed method performed similarly to (and slightly
better than) the fifth estimator under model (16) and outperformed the first four estimators under models (11)-(14). This
may not be surprising since the postulated models contained a nearly unbiased one. Interestingly, the seventh estima-
tor, based on four seriously misspecified models (11)-(14), produced nearly unbiased results. The eighth estimator based
on incorrect models (12)-(14), showed slightly worse but still comparable performance to the least biased IPW estima-
tor among those estimators using individual models (12)-(14). It is also noted that the last three estimators using the
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F I G U R E 5 Empirical coverage in
percent using stabilized weights with
n= 5000. The right panel shows a
zoom-in version of the left panel.
Incorrectly specified PS-1 to PS-4: IPW
Cox estimators from four incorrectly
specified propensity score models
(11)-(14), respectively; correctly specified
PS-5: IPW Cox estimator from a correctly
specified propensity score model (15);
multiply robust: the proposed multiply
robust estimator using multiple models
(11)-(15) [Colour figure can be viewed at
wileyonlinelibrary.com]

proposed method were less or similarly variable than IPW estimators. Therefore, in our simulations, the proposed method
was still a reasonable option even when all postulated propensity score models were wrong.

We observed similar results using conventional weights (Figures S7, Online Supplementary Material).

7 APPLICATION TO REAL-WORLD DATA

We applied the existing IPW Cox estimation method in Section 2 and the proposed method in Section 4 to analyze the
bariatric surgery data set arising from the IBM MarketScan Research Databases, which contain deidentified patient-level
healthcare claims information from a variety of contributors such as employers who are fully compliant with the Health
Insurance Portability and Accountability Act (HIPAA). The data set included 6690 patients who were 18 to 79 years of age
and underwent either sleeve gastrectomy (70.5%) or Roux-en-Y gastric bypass (29.5%) between 1/1/2015 and 9/30/2015.
The treatment indicator was 1 for sleeve gastrectomy and 0 for Roux-en-Y gastric bypass. The outcome was time to the
first all-cause hospitalization during the first 30 postoperative days. As a common feature of administrative databases
with rare safety outcomes, the censoring rate was high (97%).

We classified the 30 researcher-identified baseline covariates into four categories (a) sex, age, and the Charl-
son/Elixhauser combined comorbidity score; (b) diagnosis of anxiety, cardiovascular disease, cancer, cerebrovascular
disease, depression, diabetes, dyslipidemia, eating disorder, gastroesophageal reflux disease, hypertension, infertility, kid-
ney disease, nonalcoholic fatty liver disease, osteoarthritis, polycystic ovary syndrome, psychosis, sleep apnea, substance
use disorder, and tobacco use disorder; (c) number of emergency department visits, inpatient stays, nonacute institutional
stays, outpatient visits, and other ambulatory visits; and (d) number of unique drug classes dispensed, unique generic
medications dispensed, and outpatient pharmacy dispensing.
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F I G U R E 6 Average widths of 95%
confidence intervals using stabilized
weights with n= 500. Incorrectly specified
PS-1 to PS-4: IPW Cox estimators from
four incorrectly specified propensity score
models (11)-(14), respectively; correctly
specified PS-5: IPW Cox estimator from a
correctly specified propensity score model
(15); multiply robust: the proposed
multiply robust estimator using multiple
models (11)-(15) [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 7 Average widths of 95%
confidence intervals using stabilized
weights with n= 5000. Incorrectly specified
PS-1 to PS-4: IPW Cox estimators from four
incorrectly specified propensity score
models (11)-(14), respectively; correctly
specified PS-5: IPW Cox estimator from a
correctly specified propensity score model
(15); multiply robust: the proposed
multiply robust estimator using multiple
models (11)-(15) [Colour figure can be
viewed at wileyonlinelibrary.com]
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We first conducted IPW Cox estimation, separately using six postulated propensity score models. The first propen-
sity score model (PS-1) was specified as a logistic regression model relating the treatment indicator to all 30
researcher-identified covariates, a commonly used strategy. In practice, it may be necessary to conduct covariate selec-
tion for propensity score models, so we specified the second propensity score model (PS-2) as a logistic regression model
relating the treatment indicator to sex, age, comorbidity score, and 15 other covariates (ie, diagnosis of cardiovascular
disease, depression, diabetes, dyslipidemia, hypertension, kidney disease, nonalcoholic fatty liver disease, psychosis, and
sleep apnea; number of emergency department visits, inpatient stays, and outpatient visits; and number of unique drug
classes dispensed, unique generic medications dispensed, and outpatient pharmacy dispensing) that were univariately
statistically significant at the 5% level in their associations with the treatment (modeled via univariate logistic regression
models). The last four logistic propensity score models reflected situations where only one category of covariates was
available. Specifically, the third model (PS-3) contained demographic covariates: sex, age, and comorbidity score in cate-
gory (a), and three interaction terms between sex and age, sex and comorbidity score, and age and comorbidity score. The
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F I G U R E 8 Simulation
results when all postulated
propensity score models are
wrong using stabilized weights
with n= 5000. Incorrect 1-5: IPW
Cox estimators from five
incorrectly specified propensity
score models (11)-(14) and (16),
respectively; MR(a-b): the
proposed multiply robust
estimator using incorrect models
a to b; Cases 1, 3, and 5: 30%
censoring with treatment
prevalence 10%, 30%, and 50%;
Cases 2, 4, and 6: 60% censoring
with treatment prevalence 10%,
30%, and 50%; “+”: average of
estimates across 1000 simulation
runs. The horizontal solid line
indicates the true log marginal
hazard ratio

fourth (PS-4), fifth (PS-5), and sixth (PS-6) models contained the diagnosis covariates in category (b), the health services
utilization covariates in category (c), and the drug dispensing covariates in category (d), respectively.

Given that the true propensity score model was unknown, we applied the proposed multiply robust method to simul-
taneously use all six models. We conducted bootstrapping to estimate the variance using 200 bootstrap samples. Using
absolute standardized difference, Figure 9 checks for covariate balance before and after weighting the sample based on
the proposed method. The proposed weights were found to balance all the 30 measured covariates between the treated
and untreated individuals in the weighted sample.

Table 1 summarizes the analysis results. PS-1 and PS-2 produced similar results, suggesting that the exclusion of
nonstatistically significant covariates did not affect the log hazard ratio estimates and standard errors. PS-3, PS-4, and
PS-5 produced slightly smaller (further from the null) hazard ratio estimates than PS-1 and PS-2. PS-6 produced larger
(toward the null) hazard ratio estimates than PS-1 and PS-2, but the difference was negligible. The proposed method
produced results similar to the results from IPW Cox estimation with PS-1, PS-2, and PS-6. The standard errors for all six
IPW estimators and the proposed estimator were similar (around 0.14). For each method, the conventional and stabilized
weights produced similar results.

All methods produced 95% confidence intervals for the marginal hazard ratio that excluded 1, suggesting a statistically
significant lower risk of hospitalization 30-day postoperatively at the 5% level comparing sleeve gastrectomy to Roux-en-Y
gastric bypass. The result was consistent with the findings from prior studies.42,43

8 EXTENSION TO MULTISITE STUDIES

There is a growing number of studies that combine information from multiple data sources to help generate more statis-
tically powerful and generalizable evidence. For example, the Sentinel System is a national electronic system funded by
the US Food and Drug Administration to monitor the safety of approved medical products using data from more than a
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F I G U R E 9 Absolute standardized
differences (in percent) of baseline covariates
in the original sample and the sample using
the proposed weights (with both conventional
and stabilized versions) for the bariatric
surgery data. The vertical line denotes an
absolute standardized difference of 10%, a
threshold under which any covariate
imbalance is generally considered
negligible37 [Colour figure can be viewed at
wileyonlinelibrary.com]
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dozen health plans and delivery systems.44 The IPW Cox model stratified on data-contributing site provides one approach
to estimating marginal hazard ratios in multisite studies, where each site fits a site-specific propensity score model.45-47

In this section, we extend the proposed multiply robust method in Section 4 to enable each participating site to postulate
multiple site-specific propensity score models.

Suppose we have a sample of n individuals coming from K participating sites. For k= 1, … , K, let Ωk = {i ∶
i in site k for i = 1, … ,n} be the set of indexes for individuals that belong to the kth site. We consider a weighted Cox
model stratified on site. By stratification, we assume the K sites have a common hazard ratio, but their baseline hazards
are allowed to differ and be completely unspecified. The stratified weighted partial likelihood score equation is given by

K∑
k=1

∑
i∶i∈Ωk

{
ŵi𝛿iAi − ŵi𝛿i

∑
l∶l∈ℜi(k)

ŵl exp(Al𝜃)Al∑
l∶l∈ℜi(k)

ŵl exp(Al𝜃)

}
= 0, (17)

where ŵi is the empirical likelihood weight for individual i, and ℜi(k) = {l ∶ Tl ≥ Ti, l ∈ Ωk 𝛿i = 1} is the risk set for a
noncensored individual i in site k.

Solving (17) for 𝜃 gives �̂�, the estimate of the log hazard ratio 𝜃. Equation (17) is an extension of the unstratified
weighted partial likelihood score equation (4). When K = 1, (17) reduces to (4).

Instead of postulating a single site-specific propensity score model, each site can postulate a set of models to obtain
empirical likelihood weights in Section 4 for their members. The resulting log hazard ratio estimator of the weighted Cox
model stratified on site is multiply robust, as long as each site includes a correctly specified site-specific propensity score
model in its set of candidate models. Below is the justification.

For each site k where k= 1, … , K, the corresponding site-specific weighted partial likelihood score function

∑
i∶i∈Ωk

{
ŵi𝛿iAi − ŵi𝛿i

∑
l∶l∈ℜi(k)

ŵl exp(Al𝜃)Al∑
l∶l∈ℜi(k)

ŵl exp(Al𝜃)

}
(18)

is an unbiased estimating function for 𝜃, where ŵi is the empirical likelihood weight for individual i ∈ Ωk obtained from
a set of site k-specific propensity score models. As the summation of these K unbiased estimating functions (18), the
estimating function for the weighted Cox model stratified on site is also unbiased, that is, solving estimating equation (17)
for 𝜃 gives a consistent estimator of 𝜃.
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T A B L E 1 Results from the real-world data analysis comparing the risk of hospitalization between sleeve gastrectomy and
Roux-en-Y gastric bypass

Weight Method Log hazard ratio Standard error Hazard ratio 95% confidence interval

Conventional PS-1 −0.372 0.143 0.689 (0.521, 0.912)

PS-2 −0.376 0.142 0.686 (0.520, 0.906)

PS-3 −0.435 0.137 0.647 (0.494, 0.847)

PS-4 −0.416 0.139 0.660 (0.502, 0.866)

PS-5 −0.404 0.140 0.668 (0.508, 0.878)

PS-6 −0.368 0.139 0.692 (0.526, 0.909)

MR −0.364 0.141 0.695 (0.527, 0.916)

Stabilized PS-1 −0.372 0.143 0.690 (0.521, 0.912)

PS-2 −0.376 0.142 0.687 (0.520, 0.907)

PS-3 −0.435 0.137 0.647 (0.495, 0.847)

PS-4 −0.416 0.139 0.660 (0.503, 0.866)

PS-5 −0.404 0.140 0.668 (0.508, 0.878)

PS-6 −0.368 0.139 0.692 (0.526, 0.909)

MR −0.364 0.141 0.695 (0.527, 0.916)

Note: PS-1: IPW Cox estimator using a logistic propensity score model including all 30 prespecified covariates (see text for the list of covariates); PS-2: IPW
Cox estimator using a logistic propensity score model including sex, age, Charlson/Elixhauser combined comorbidity score and 15 other covariates that
were univariately statistically significant at 5% level (see text for the list of selected covariates); PS-3: IPW Cox estimator using a logistic propensity score
model including sex, age, Charlson/Elixhauser combined comorbidity score, and three interaction terms between sex and age, sex and comorbidity score,
and age and comorbidity score; PS-4: IPW Cox estimator using a logistic propensity score model including diagnosis covariates in category (b) (see text for
the list of diagnosis covariates); PS-5: IPW Cox estimator using a logistic propensity score model including health services utilization covariates in
category (c) (see text for the list of health services utilization covariates); PS-6: IPW Cox estimator using a logistic propensity score model including drug
dispensing covariates in category (d) (see text for the list of drug dispensing covariates); MR: the proposed multiply robust estimator using all six
propensity score models simultaneously.

9 DISCUSSION

In this article, we proposed a multiply robust method for estimating marginal hazard ratios that can simultaneously
accommodate a set of propensity score models. If one of these models is correctly specified, our method produces empirical
likelihood weights that are asymptotically equivalent to the IPW weights from the correctly specified propensity score
model and therefore guarantees estimation consistency. Compared with the IPW estimation method that relies on one
propensity score model, the proposed method offers more protection against model misspecification and more model
options for researchers. Our method is particularly useful when researchers have a difficult time developing or choosing
only one propensity score model for their studies.

Our simulation studies showed that the conventional IPW Cox method can lead to severe bias and undercoverage
when misspecifying the propensity score model. The proposed method showed satisfactory finite sample performance
under various combinations of sample size, treatment prevalence, and censoring rate. The average widths of the 95%
confidence intervals of the proposed method tended to be no wider than that of the IPW estimation method that used
a correctly specified propensity score model, suggesting that our method achieved multiple robustness without losing
efficiency (and sometimes even gained efficiency). Similar promising efficiency was also observed in simulations when
all models were wrong. The reason that the proposed method leads to numerically more stable estimates than the IPW
method is that it reduces the occurrence of extreme weights through maximizing

∏
iwi subject to the constraints, as this

maximization results in more evenly distributed weights under the constraints.19-21 For nonsurvival outcomes, Han and
Wang17 evaluated the efficiency of their multiply robust estimator when both the propensity score and the data distribu-
tion are correctly modeled, but a theoretical efficiency comparison to the IPW estimator is unclear if only a propensity
score model is correct. Han48 proposed estimators for which incorrect models can always help improve efficiency as long
as the propensity score is correctly modeled, which thus are always more efficient than the IPW estimator. Future work
will formally examine the efficiency of the proposed estimator which focuses on time-to-event outcomes.
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Although the proposed method generally loses consistency if all postulated propensity score models are wrong, it was
comparable with the best-performing IPW estimation method in simulation settings we considered. It would be useful
to further investigate the theoretical properties of the proposed method when none of the postulated propensity score
models is correctly specified. In practice, efforts should be made to increase the chance of including at least one model that
gives consistent or nearly consistent estimators. Increasing the number of candidate models would increase the chance
of achieving this goal. Theoretically, the proposed method allows for any finite number of models, but having too many
models (ie, high-dimensional 𝝆 and 𝜼) may jeopardize its numerical performance.19-21 For example, collinearity problems
may arise when some candidate models are too similar or some constraints are highly correlated. These are well-known
problems in empirical likelihood implementation, but formal solutions are lacking to our knowledge. An excessively large
number of models also imposes heavy computational burden.

We recommend using both the subject-matter knowledge and reliable data-driven tools to carefully build a compre-
hensive set of reasonable but not too similar candidate models. Here we describe a four-step strategy for constructing
propensity score models. Step 1: develop a large set of candidate models. Researchers can apply different guidelines to
build various models.25-31 In particular, important covariates determined based on subject-matter knowledge should be
included. Step 2: refine the set of candidate models from Step 1. Researchers assess each of the models through cri-
teria such as covariate balancing after weighting. They may try to improve bad-performing models by adding higher
order terms or changing the functional forms. If it does not work, they may consider removing that model. Step 3: trim
the set of candidate models from Step 2. Specifically, if numerical issues such as collinearity occur, remove models that
are very similar to existing ones and hence offer no extra information for estimation. Continue reducing the model set
until no numerical issues occur. Step 4: check for covariate balance between treatment groups in the weighted sam-
ple using the proposed method based on the set of candidate models from Step 3. Researchers should make sure the
final weights achieve a satisfactory degree of covariate balancing. Otherwise, researchers may consider rolling back to
Step 1.

We also extended our method to multisite settings so that each participating site may postulate multiple site-specific
propensity score models. It can be done in a privacy-protecting way using data-sharing methods of Shu et al.47 Specifically,
each site first estimates the empirical likelihood weights for its members using multiple propensity score models, and then
obtains its risk-set table using the resultant empirical likelihood weights. Finally, instead of sharing individual-level data
across sites, it suffices for sites to share their summary-level risk-set tables to the analysis center to estimate the marginal
hazard ratio.47

Although the current development focuses on marginal hazard ratios, the proposed weights can be directly used to
conduct weighted estimation of other effect measures such as the difference in restricted mean survival times under
treatment and control.49 The resulting weighted estimators would be multiply robust, because the proposed weights are
asymptotically equivalent to the inverse probability weights from a correctly specified propensity score model.
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APPENDIX: PROOF OF MULTIPLE ROBUSTNESS OF THE PROPOSED METHOD

Suppose a set of postulated propensity score models  = {ej(𝜸j;X) ∶ j = 1, … , J} contains a correctly specified model,
say, without loss of generality, the first model e1(𝜸1;X). Let 𝜸1

0 be the true value of 𝜸1, then e1(𝜸1
0;X) = e(X).

By adapting the arguments of Han and Wang,17 the proposed weights ŵi in (5) can be rewritten as

ŵi =
1
m

�̂�1∕e1(�̂�1;Xi)

1 + �̂�
Tĝi(�̂�)∕e1(�̂�1;Xi)

for i = 1, … ,m,

where �̂� = Op(n−1∕2) is the Lagrange multiplier and �̂�1 = n−1 ∑n
i=1 e1(�̂�1;Xi). Then as n→∞,

1 + �̂�
Tĝi(�̂�)∕e1(�̂�1;Xi)

p
→ 1

and

�̂�1 p
→ E{e1(𝜸1

0;X)}, which equals P(A = 1).

As a nonparametric estimator of P(A= 1), m/n well approximates P(A= 1), where m is the number of individuals
who receive the treatment. Therefore, the proposed weights for treated individuals i= 1, … , m in (5) well approx-
imate 1∕{n ⋅ e1(�̂�1;Xi)}, which is equivalent to the conventional IPW weights for treated individuals using model
e1(𝜸1;X).

By symmetry, we can show the proposed weights for untreated individuals i=m+ 1, … , n in (6) well approximate
1∕[n ⋅ {1 − e1(�̂�1;Xi)}], which is equivalent to the conventional IPW weights for untreated individuals using the correct
propensity score model e1(𝜸1;X).

Since e1(𝜸1;X) is the correctly specified model that can be used to consistently estimate the log marginal hazard ratio,
the proposed weights (5) and (6), which are shown to be asymptotically equivalent to the conventional IPW weights (2),
can also be used to consistently estimate the log marginal hazard ratio.
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Note the proposed alternative weights (7) for treated individuals are defined as weights (5) multiplied by P̂(A = 1),
and the proposed alternative weights (8) for untreated individuals are defined as weights (6) multiplied by P̂(A = 0), it is
immediate that they are asymptotically equivalent to the stabilized weights (3) using model e1(𝜸1;X). Given that e1(𝜸1;X) is
the correctly specified propensity score model which yields a consistent log marginal hazard ratio estimator, the proposed
weights (7) and (8) also produce a consistent estimator of the log marginal hazard ratio.


