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ABSTRACT
In this paper, we present a compositional condition for ensuring

safety of a collection of interacting systems modeled by inter-

triggering hybrid automata (ITHA). ITHA is a modeling formal-

ism for representing multi-agent systems in which each agent is

governed by individual dynamics but can also interact with other

agents through triggering actions. These triggering actions result

in a jump/reset in the state of other agents according to a global res-

olution function. A sufficient condition for safety of the collection,

inspired by responsibility-sensitive safety, is developed in two parts:

self-safety relating to the individual dynamics, and responsibility

relating to the triggering actions. The condition relies on having an

over-approximation method for the resolution function. We further

show how such over-approximations can be obtained and improved

via communication. We use two examples, a job scheduling task on

parallel processors and a highway driving example, throughout the

paper to illustrate the concepts. Finally, we provide a comprehen-

sive evaluation on how the proposed condition can be leveraged

for several multi-agent control and supervision examples.
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1 INTRODUCTION
Proving safety or designing controllers guaranteeing safety in a

multi-agent setting is a challenging task for multiple reasons. On

one extreme, one can try to come up with a monolithic safety

rule, which may be hard to verify due to scalability issues, and

hard to follow at run-time without a central coordinator. On the

other extreme, one can analyze agents individually, assuming all

of the remaining agents act adversarially, in which case safety is

hard to attain, if at all possible. Several frameworks have been

developed between these two extremes to capture various notions

of coordination, collaboration, or contracts [5, 6, 9, 14, 17, 23, 25, 28].
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An alternative viewpoint is presented by responsibility-sensitive

safety [7, 11, 24, 27], in the context of autonomous driving, where

some hard safety constraints are replaced by a notion of not causing

a crash and avoiding one whenever possible. This is particularly

well-suited for scenarios where some of the agents are human-

controlled, which can lead to unpredictable behaviors. From this

viewpoint, we expect autonomous agents to act in a well-behaved

fashion as long as others reciprocate, and we should not punish the

autonomous agents for failures that are out of their control.

In this paper, we consider multi-agent systems modeled by inter-

triggering hybrid automata (ITHA), a modeling framework for

interacting parallel processes and multi-agent systems [20]. Inter-

triggering hybrid automata consist of a collection of agents, where

each agent is modeled with a discrete-time dynamical system lo-

cally. In addition to their local dynamics, agents are also equipped

with triggering actions as a means to interact with other agents in

the collection. In particular, these triggering actions can collectively

induce a reset (i.e., jump) in the dynamics of other agents. For this

class of systems, we propose a simple two part condition for each

agent to follow that is shown to be sufficient to guarantee safety

of the overall collection. The two parts pertain to self-safety (in

the local dynamics) and responsibility (in the interactions), jointly

called responsibility-sensitive safety. Controlled invariant sets for

the individual dynamics [3] are used for both parts of the condition.

Intuitively, each agent aims to remain in their corresponding invari-

ant set, and when they use a triggering action that affects another

agent, they do so in a “responsible way", by trying to ensure that

the other agent’s state does not leave its invariant set due to this

action. The responsibility-sensitive safety conditions, being based

on local invariant sets, enable us to use the same conditions either

for proving the safety of other policies, for supervising existing

policies, or for designing new control policies for guaranteed safety.

A central component of the inter-triggering hybrid automaton

is what we call a global resolution function, which determines

the reset induced on a given agent based on all agent’s triggering

actions. This function’s value cannot be known, in general, to any

of the agents at run-time. This is because the value of the global

resolution function depends on the triggering actions chosen by all

agents. To overcome this issue, we introduce over-approximations

of the resolution functions that can be used within the responsibility

rule. We also show how individual agents may compute such over-

approximations, and how the conservativeness in this computation

can be reduced if (local) communication between agents is allowed.

We apply our proposed framework on several multi-agent con-

trol problems, including task coordination for parallel processing

on a server farm and navigation for autonomous highway driv-

ing, empirically verifying the safety guarantees of our method and

also demonstrating how different over-approximations can lead to
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Figure 1: An example directed graphG that we use to demon-
strate potential links between processors in a server farm.

differing levels of conservativeness. Finally, we evaluate the conser-

vativeness of our framework by employing it as a safety supervisor

on trajectories drawn from a real-world highway driving data-set

[13] and demonstrate that we experience few safety overrides, sug-

gesting that ITHA is sufficiently permissive to be used to supervise

system safety without excessive intervention.

We summarize our contributions as:

• We refine the inter-triggering hybrid automata model: a

flexible modeling formalism for representing multi-agent

interactions, vastly expanding on the initial ideas in [20].

• We design compositional conditions which are sufficient for

global safety, provided that each agent ensures it remains self-

safe and responsible with respect to the agents it triggers.

• For tractability, we provide practical over-approximations

of the collective triggering behavior and show how they can

be made less conservative with local communication.

• We perform a comprehensive evaluation of our method on a

variety of multi-agent control and supervision tasks.

2 PRELIMINARIES
In this section, we introduce the graph, dynamical system, and

invariant set notation which will be used throughout the paper.

2.1 Graph notation
A directed graph G = (V, E) is a tuple containing a set of vertices

V and a set of directed edges E. Note that each edge is an ordered

pair (𝑣1, 𝑣2) ∈ E of vertices fromV (i.e. 𝑣1, 𝑣2 ∈ V). We say that a

vertex 𝑣1 is connected to a vertex 𝑣2 if and only if (𝑣1, 𝑣2) ∈ E. By
the nature of directed graphs, 𝑣1 being connected to 𝑣2 does not

mean that 𝑣2 is connected to 𝑣1.Within directed graphs the inward
connections of a vertex 𝑣 can be defined as follows:

𝑖𝑛G (𝑣) = {𝑣 ′ ∈ V | (𝑣 ′, 𝑣) ∈ E}.

The outward connections of a vertex 𝑣 can be defined similarly:

𝑜𝑢𝑡G (𝑣) = {𝑣 ′ ∈ V | (𝑣, 𝑣 ′) ∈ E}.

2.2 Invariant sets
Consider a discrete-time dynamical system Σ : ⟨X,U,D, 𝑓 ⟩ where
X is the state space,U is the set of control inputs, D is the set of

disturbances, and 𝑓 : X ×U ×D → X is the state update function.

The state of the system Σ evolves according to

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡), 𝑑 (𝑡)). (1)

Controlled invariant sets play an important role in ensuring

safety of systems with dynamics of the form (1). Formally, a robust

controlled invariant set Cinv inside a given safe set X
safe
⊆ X (i.e.,

Cinv ⊆ Xsafe) is a set of states that satisfies:
𝑥 ∈ Cinv ⇒ ∃𝑢 ∈ U ∀𝑑 ∈ D 𝑓 (𝑥,𝑢, 𝑑) ∈ Cinv . (2)

In words, this means that if the state 𝑥 (𝑡) is in Cinv, there is an input
𝑢 (𝑡) to ensure that 𝑥 (𝑡+1) will be in Cinv for any disturbance within
given bounds, thus allowing the states to stay in Cinv indefinitely.

3 A MODELING FORMALISM FOR
INTERACTING SYSTEMS

We introduce inter-triggering hybrid automata (ITHA), a hybrid

modeling formalism for collections of discrete-time hybrid systems

with a special form of interaction between them. In particular, these

interactions are such that they induce jumps or resets on the state

evolution of individual agents.

Definition 1. An inter-triggering hybrid automaton is a collec-
tion {H𝑖 }𝑖∈I of systems together with a function 𝜌 = (𝜌1, . . . , 𝜌 |I |),
which we refer to as a resolution function, with eachH𝑖 , i.e., agent 𝑖 ,
being a hybrid automaton of the formH𝑖 = ⟨Σ𝑖 ,T𝑖 , 𝑅𝑖 ⟩, where:
• Σ𝑖 = ⟨X𝑖 ,U𝑖 ,D𝑖 , 𝑓𝑖 ⟩ are the individual dynamics for agent 𝑖 ;
• T𝑖 is the set of triggering actions of agent 𝑖 , including a null
triggering action 𝜖 ∈ T𝑖 that indicates that agent 𝑖 is not
triggering a reset on any other agent;
• 𝑅𝑖 : N×X𝑖 ×U𝑖 × 2

I → 2
X𝑖 is the (potentially time-varying)

reset map for agent 𝑖1;

and where each 𝜌𝑖 : N×T1×· · ·×T|I | → 2
I is the resolution function

of agent 𝑖 that takes the triggering inputs of the entire collection and
determines the set of agents that trigger a reset on agent 𝑖 .

For notational simplicity when referring to an ITHA, we will

omit the resolution function and simply say “an ITHA {H𝑖 }𝑖∈I ".We

assume the resolution function 𝜌 satisfies the following property,

which essentially says if agent 𝑖 is using a null triggering action

at a given time, it will not appear in the output of the resolution

function of any agents at that time.

Assumption 1. For all 𝑖 , for all 𝑡 such that 𝜏𝑖 (𝑡) = 𝜖 , we have
𝑖 ∉ 𝜌 𝑗 (𝑡, . . . , 𝜏𝑖 (𝑡), . . .) for all 𝑗 , which implies, as a special case,
𝜌𝑖 (𝑡, 𝜖, . . . , 𝜖) = ∅.

Definition 2 (Execution of an ITHA). Given sequences of
control inputs u𝑖 = 𝑢𝑖 (0), 𝑢𝑖 (1) . . . and triggering inputs 𝝉𝑖 =

𝜏𝑖 (0), 𝜏𝑖 (1) . . . for each agent 𝑖 , an execution of {H𝑖 }𝑖∈I is a col-
lection of sequences {e𝑖 }𝑖∈I , each a sequence of alternating states
and actions e𝑖 = 𝑥𝑖 (0), 𝑢𝑖 (0), 𝜏𝑖 (0), 𝑥𝑖 (1), 𝑢𝑖 (1), 𝜏𝑖 (1), ... such that:

𝑥𝑖 (0) ∈ X𝑖 ∀𝑖 ∈ I (3a)

(𝑢𝑖 (𝑡), 𝜏𝑖 (𝑡)) ∈ U𝑖 × T𝑖 ∀𝑖 ∈ I,∀𝑡 ≥ 0 (3b)

𝑥𝑖 (𝑡 + 1) ∈
{
𝑓𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡),D𝑖 ) if 𝜌𝑖 (𝑡) = ∅,
𝑅𝑖 (𝑡, 𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡), 𝜌𝑖 (𝑡)) otherwise.

(3c)

where 𝜌𝑖 (𝑡) ≜ 𝜌𝑖 (𝑡, 𝜏1 (𝑡), 𝜏2 (𝑡), ..., 𝜏 |I | (𝑡)).
1
With a slight abuse of notation, the last argument of the reset map is shown as an

index set, but the actual reset value depends on the state, input, and triggering action

of the agents in that set.
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For an element e𝑖 of an execution, we denote the corresponding

state trajectory by x𝑖 = 𝑥𝑖 (0), 𝑥𝑖 (1), . . .. We consider problems

related to safety of an execution of an ITHA, where we require the

state trajectory of each agentH𝑖 to remain in a safe setX𝑖,𝑠𝑎𝑓 𝑒 ⊆ X𝑖
for all times. We use an execution {e𝑖 }𝑖∈I remaining in a collection

of sets {X𝑖,𝑠𝑎𝑓 𝑒 }𝑖∈I inter-changeably with the corresponding state

trajectories {x𝑖 }𝑖∈I remaining in the same collection.

To make the definition of inter-triggering hybrid automaton

concrete, we present two examples used throughout the paper.

Example 1 (Parallel Processors on a Server Farm). A col-
lection of processors in a server farm can be treated as a collection
of agents where each agent’s state is the number of jobs it has left
to compute. In other words, agent 𝑖’s state 𝑥𝑖 ∈ N, where there is a
limit of jobs, 𝑛𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 , over which the processor will create a stack
overflow and fail. External jobs 𝑑𝑖 for processor 𝑖 are passed into the
server according to a protocol that blocks new jobs from coming in
if 𝑥𝑖 ≥ 𝑛𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 where 𝑛𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 < 𝑛𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 and the processor al-
ways can take the action to address a job in its queue or do nothing.
Thus, the individual dynamics can be visualized as shown in Fig. 2. In
addition, the processors can be recruited by other processors according
to a directed graph G that indicates which processors can send jobs
to which other processors, i.e. processor 𝑖 can recruit processor 𝑗 if
(𝑖, 𝑗) ∈ E. An example of such a graph is shown in Fig. 1. This scenario
can be modeled with the representation {H𝑖 }𝑖∈I , where each agent
H𝑖 = ⟨Σ𝑖 ,T𝑖 , 𝑅𝑖 ⟩ is composed of the following parts:

• Dynamics Σ𝑖 where X𝑖 = N is the queue of jobs to be done
by agent 𝑖 ;U𝑖 = {0,−1} represents processor 𝑖’s choice to do
nothing (i.e. 𝑢𝑖 (𝑡) = 0) or to address one of the jobs in its
queue (i.e. 𝑢𝑖 (𝑡) = −1); D𝑖 ∈ {0, 1, 2} represents the number
of external jobs passed into processor 𝑖 , and 𝑓𝑖 , given by

𝑓𝑖 (𝑥𝑖 , 𝑢𝑖 , 𝑑𝑖 ) =
{
𝑥𝑖 + 𝑢𝑖 if 𝑥𝑖 ≥ 𝑛𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒

𝑥𝑖 + 𝑢𝑖 + 𝑑𝑖 otherwise,

describes how the queue of jobs is changing for agent 𝑖 in the
absence of it being recruited;
• T𝑖 = 2

outG (𝑖) represents the possible sets of agents that agent
𝑖 recruits to help it with its queue, with null element 𝜖 = ∅,
according to its outgoing edges in G;
• Reset map 𝑅𝑖 describes how the queue for agent 𝑖 changes if it
was recruited by or recruited another agent. To each agent in
the recruit set (i.e. ∀𝑗 ∈ 𝜏𝑖 (𝑡) ∈ T𝑖 ), agent 𝑖 sends 1 job from
its queue to that processor:

𝑅𝑖 (𝑡, 𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡), 𝑆) =
{

0 if 𝑠𝑖 (𝑡) ≤ 0,

𝑠𝑖 (𝑡) otherwise,
(4)

where 𝑠𝑖 (𝑡) = 𝑥𝑖 (𝑡) − |𝜏𝑖 (𝑡) | + 𝑢𝑖 (𝑡) + |𝑆 | + 𝑑𝑖 (𝑡), where 𝑆 is
the set of agents recruiting agent 𝑖 .

Furthermore, we can write the 𝑖𝑡ℎ component of the resolution
function 𝜌𝑖 (𝑡) = { 𝑗 ∈ I | 𝑖 ∈ 𝜏 𝑗 (𝑡)}; that is, the set of agents
triggering agent 𝑖 at time 𝑡 is the set of agents which contain 𝑖 in its
triggering action at time 𝑡 . Concretely, for agent 1 in Fig. 1, 𝜌1 (𝑡) ⊆
{2, 4}, for all 𝑡 . If 𝜏2 (𝑡) = 𝜖 and 𝜏4 (𝑡) = {1, 6}, then 𝜌1 (𝑡) = {4},
regardless of the triggering actions of the remaining agents.

Note that each processor can avoid the overflow states indefinitely if
it is within a robust control invariant set that is completely contained

in the safe set {𝑥 ∈ N | 𝑥 < 𝑛𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤}. Under the individual
dynamics, the maximal control invariant set in the safe set (i.e. C ⊆
{𝑥 ∈ N | 𝑥 < 𝑛𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤}) can be quickly shown to be C = {𝑥 ∈
N | 𝑥 ≤ 𝑛𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 −1}. Depending on the objectives of the processors,
i.e. maximizing throughput, each processor may need to trigger other
agents, and without adequate precaution the triggering can reset the
states of some processors above 𝑛overflow, leading to unsafe behavior.

Example 2 (Highway Driving). Consider a collection of vehicles
travelling in the same direction on a highway (see Fig. 3). This col-
lection can be represented by an inter-triggering hybrid automaton
{H𝑖 }𝑖∈I where each agentH𝑖 = ⟨Σ𝑖 ,T𝑖 , 𝑅𝑖 ⟩ is composed of:
• Dynamics Σ𝑖 with X𝑖 = [0, 𝑣𝑚𝑎𝑥 ] × [0,∞) × [0, 𝑣𝑚𝑎𝑥 ], where
state 𝑥𝑖 = [𝑣𝑖 , ℎ𝑖 , 𝑣𝐿𝑖 ]

⊺ contains 𝑣𝑖 (velocity of current agent 𝑖 ,
henceforth referred to as the ego vehicle), ℎ𝑖 (headway between
this agent and the nearest car in front of it on the same lane,
henceforth referred to as the lead vehicle), and 𝑣𝐿

𝑖
(the velocity

of the lead vehicle),U𝑖 is the set of allowed inputs, with input
𝑢𝑖 = 𝑎𝑖 being the acceleration of the ego car, D𝑖 is the set
of allowable disturbances, with disturbance 𝑑𝑖 = 𝑎𝐿

𝑖
being

the acceleration of the lead vehicle, and the system dynamics
𝑓𝑖 : X𝑖 ×U𝑖 × D𝑖 → X𝑖 is such that

𝑓𝑖 (𝑥𝑖 , 𝑢𝑖 , 𝑑𝑖 ) =


1 0 0

−Δ𝑡 1 Δ𝑡
0 0 1

 𝑥𝑖 +

Δ𝑡
0

0

 𝑢𝑖 +


0

0

Δ𝑡

 𝑑𝑖 (5)

where Δ𝑡 is the sampling time;
• T𝑖 = {stay, left, right} is the set of possible lane change deci-
sions, with null element 𝜖 = stay;
• A reset 𝑅𝑖 (𝑡, 𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡), 𝜌𝑖 (𝑡)) is triggered on agent 𝑖 if one of
the following happens (1) 𝜏𝑖 (𝑡) ≠ 𝜖 , (2) if their lead car is 𝑗 and
𝜏 𝑗 (𝑡) ≠ 𝜖 and/or (3) a car becomes the current agent’s lead car
(i.e. lead car was 𝑗 at time 𝑡 − 1 but the lead car becomes 𝑘 ≠ 𝑗

at time 𝑡). The value of the reset depends on the triggering
actions of all agents 𝜌𝑖 (𝑡), which can possibly affect agent 𝑖 at
time 𝑡 . This determines the new lead car and hence the new
values of ℎ𝑖 and 𝑣𝐿𝑖 , while 𝑣𝑖 evolves according to individual
dynamics in (5).

Controlled invariant sets for the system defined in (5) can be com-
puted using polyhedral set computation methods such as those dis-
cussed in [18, 25]. An example of such a set is shown in Fig. 4.

To further illustrate how the reset map is defined for highway
driving, the value of 𝑅𝑖 will be explained for some vehicles in Fig. 3.
First, suppose that the current time is 𝑡 and vehicles 𝐸 and 𝐹2 have
states 𝑥𝐸 = [𝑣𝐸 , ℎ𝐸 , 𝑣𝐿𝐸 ]

⊺ and 𝑥𝐹2
= [𝑣𝐹2

, ℎ𝐹2
, 𝑣𝐿

𝐹2

]⊺, respectively, and
apply control inputs 𝑢𝐸 and 𝑢𝐹2

. Suppose that the ego vehicle makes
a left lane change at time 𝑡 ; this action triggers a reset of its own
continuous state as well as that of 𝐹2 (leading to changes in headway
and lead car velocity for both vehicles). Formally, if 𝜏𝐸 (𝑡) = {left},
then

𝑅𝐸 (𝑡, 𝑥𝐸 , 𝑢𝐸 , {𝐸}) =

𝑣𝐸 + Δ𝑡𝑢𝐸
∞

𝑣max


and

𝑅𝐹2
(𝑡, 𝑥𝐹2

, 𝑢𝐹2
, {𝐸}) =


𝑣𝐹2
+ Δ𝑡𝑢𝐹2

ℎrel
𝐹2

+ (𝑣𝐸 − 𝑣𝐹2
)Δ𝑡

𝑣𝐸 + Δ𝑡𝑢𝐸


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0start 1 2 · · · · · · · · · · · ·

𝑛𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 1

𝑛𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒

𝑛𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 + 1

· · · · · ·

𝑛𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 − 1

𝑛𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤

𝑛𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 + 1

Figure 2: The individual dynamics for a processor in the collection specified in Example 1. The processor is unable to accept
as many jobs when 𝑥𝑖 (𝑡) ≥ 𝑛𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 and it experiences a stack overflow (i.e. it fails) if 𝑥𝑖 (𝑡) ≥ 𝑛𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 .
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𝐸
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𝐿1
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𝐿3
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Figure 3: A collection of vehicles on the highway, as de-
scribed in Example 2. The ego vehicle 𝐸 is marked in blue,
and longitudinal distances between the ego vehicle and car
𝑖 are marked as ℎrel

𝑖
.

v
L i

vihi

Figure 4: The controlled
invariant set for the car-
following system defined
in (5) for parameters used
in [18, 25].

where we assume by convention that resetting an agent to have no
lead car results in a headway of∞ and a lead car velocity of 𝑣max.

As concrete examples, we overview a subset of possible values that
the resolution function may take in the highway setting. We can
write 𝜌𝐸 (𝑡, 𝜏𝐸 (𝑡) = left, 𝜏𝐿1

(𝑡) = 𝜖, 𝜏𝐹2
(𝑡) = 𝜖, 𝜏𝐿3

(𝑡) = right) =
{𝐸, 𝐿3}, as both the ego vehicle and vehicle 𝐿3 changing lanes re-
sets the continuous state of the ego vehicle. Likewise, we can write
𝜌𝐸 (𝑡, 𝜏𝐸 (𝑡) = 𝜖, 𝜏𝐿1

(𝑡) = 𝜖, 𝜏𝐹2
(𝑡) = right, 𝜏𝐿3

(𝑡) = 𝜖) = ∅, as 𝐹2

will not trigger a state reset on the ego vehicle. Vehicle 𝐿1 can also
trigger a reset on the state of the ego vehicle by changing lanes, i.e.
𝜌𝐸 (𝑡, 𝜏𝐸 (𝑡) = 𝜖, 𝜏𝐿1

(𝑡) = left, 𝜏𝐹2
(𝑡) = 𝜖, 𝜏𝐿3

(𝑡) = right) = {𝐿1}. A fi-
nal, more complicated case occurs when vehicles 𝐸 and 𝐿1 both make a
left lane change, while 𝐿3 makes a right lane change at the same time:
𝜌𝐸 (𝑡, 𝜏𝐸 (𝑡) = left, 𝜏𝐿1

(𝑡) = left, 𝜏𝐹2
(𝑡) = 𝜖, 𝜏𝐿3

(𝑡) = right) = {𝐸, 𝐿3};
in this case, 𝐿1 does not end up factoring into the resolution function
as 𝐿3 becomes the ego vehicle’s lead car instead.

4 COMPOSITIONAL SAFETY RULES
In general, not all executions of an inter-triggering hybrid automa-

ton are safe. To render the executions safe, control policies may need

to restrict the possible control inputs and triggering actions of indi-

vidual agents. In this section, we develop sufficient conditions on

local control policies that collectively guarantee safety. To do this,

robust controlled invariant sets are found for the inter-triggering

hybrid automaton’s individual dynamics and then responsibility-

sensitive safe controllers are definedwith respect to these individual

invariant sets. This section shows that safety can be guaranteed

when all agents in the collection use such responsibility-sensitive

safe controllers and then discusses how conservativeness can be

further reduced via a communication scheme.

4.1 Control Policies and Safety Control
Problem for ITHA

At run-time each agent 𝑖 picks its control inputs𝑢𝑖 (𝑡) and triggering
actions 𝜏𝑖 (𝑡) based on the information available to it by time 𝑡 .

Formally, for a given set Y𝑖 of possible observations of agent 𝑖 , a
memoryless local controller (or, control policy) is a function 𝛾𝑖 :

Y𝑖 →U𝑖×T𝑖 . Similarly, a local controller withmemory is a function

𝛾𝑖 : Y+
𝑖
→U𝑖 ×T𝑖 , where the superscript + denotes finite non-zero

repetition. If agent 𝑖’s decisions only depend on its own state or

the state of all agents, we have Y𝑖 = X𝑖 or Y𝑖 = X1 × . . . × X|I | ,
respectively. Also, if an agent can access a (potentially time-varying)

subset of other agents’ states, we have Y𝑖 =
⋃
I′⊂I {X𝑗 } 𝑗 ∈I′ . In

addition to states, Y𝑖 can incorporate observations of actions of

the other agents, which would be relevant when introducing the

communication scheme in section 4.3.2.

Definition 3 (Controlled Execution of an ITHA). Given
a collection of controllers {𝛾𝑖 }𝑖∈I , {𝛾𝑖 }𝑖∈I-controlled executions

of {H𝑖 }𝑖∈I are the set of executions where control inputs u𝑖 and
triggering inputs 𝝉𝑖 are produced according to the function 𝛾𝑖 for all 𝑖 .

Given a collection of local safe sets {X𝑖,𝑠𝑎𝑓 𝑒 }𝑖∈I and information

Y𝑖 available to each agent, synthesizing local controllers for each

agent to guarantee global safety is a distributed synthesis problem

[21]. Verifying existence of such controllers is known to be unde-

cidable in general even when the sets X𝑖 , U𝑖 , D𝑖 are finite [4, 8].

Any architecture defining the information flow in a distributed syn-

thesis problem can be captured by choosing some I ′
𝑖
and setting

Y𝑖 = {X𝑗 } 𝑗 ∈I′
𝑖
, therefore synthesis in the ITHA setting cannot be

easier. Given this hardness result, we instead search for sufficient

conditions on local controllers under which global safety is guaran-

teed. These conditions can be checked locally and instantaneously

in time. Moreover, instead of working with a fixed observation

structure, we will deduce the sets Y𝑖 each local agent should have

access to in order to be able to comply with the conditions.

4.2 Responsibility-Sensitive Safety
Responsibility-sensitive safety consists of two rules. The first rule

handles safety of the individual dynamics and the second rule han-

dles safety during triggering interactions. Consider the first rule:

Definition 4 (Self-Safety). A control policy 𝛾𝑖 renders agent
H𝑖 self-safe on a set X𝑖,𝑐 ⊆ X𝑖 if for all states in X𝑖,𝑐 , the control
input guaranteesH𝑖 ’s own safety assuming a reset will not happen
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in the next step. In math, for all 𝑡 , if 𝑥𝑖 (𝑡) ∈ X𝑖,𝑐 , then 𝑢𝑖 (𝑡) produced
by 𝛾𝑖 is such that

𝑓𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡),D𝑖 ) ⊆ X𝑖,𝑐 . (6)

It is clear from (2) that for the existence of a self-safe controller

on X𝑖,𝑐 , X𝑖,𝑐 should be a robust controlled invariant set. Moreover,

the controller would only need information on the agent’s own

state to be in Y𝑖 . Though even when X𝑖,𝑐 ’s are robust controlled
invariant sets for Σ𝑖 ’s, adopting a controller that rendersX𝑖,𝑐 invari-
ant, an agentH𝑖 cannot be guaranteed to remain in X𝑖,𝑐 because
its state trajectories depend on both 𝑓𝑖 and 𝑅𝑖 . To incorporate the

potential resets of agentH𝑖 into an invariance condition, any agent

𝑗 contributing to a reset on agent 𝑖 , i.e., 𝑗 ∈ 𝜌𝑖 (𝑡), should some-

how make guarantees about 𝑅𝑖 on the same set. While it may be

problematic to expect agents to know 𝜌 in a distributed setting, an

over-approximation of the value of 𝜌 at each time step, as defined

next, can be obtained locally in many practical scenarios.

Definition 5 (Resolution Over-approximation). A function
𝜌𝑖 : N× T1 × T2 × · · · × T|I | → 2

2
I
is an over-approximation of the

𝑖𝑡ℎ component of the resolution function if and only if:

𝜌𝑖 (𝑡, 𝜏 ′1, 𝜏
′
2
, · · · , 𝜏 ′|I |) ∈ 𝜌𝑖 (𝑡, 𝜏

′
1
, 𝜏 ′

2
, · · · , 𝜏 ′|I |).

for all values of 𝑡 and all 𝜏 ′
𝑖
∈ T𝑖 for all 𝑖 . Similarly, we say 𝜌 is an

over-approximation of the resolution function 𝜌 , denoted as 𝜌 ⊇ 𝜌 , if
and only if each 𝜌𝑖 is an over-approximation of corresponding 𝜌𝑖 .

For notation convenience, when the triggering action arguments

of 𝜌 are clear from the context or are irrelevant, we simply write

𝜌𝑖 (𝑡). We discuss how resolution over-approximations can be

obtained locally by each agent in Section 4.3. In general, differ-

ent agents 𝑗 might have different resolution over-approximations

𝜌 ( 𝑗) ⊇ 𝜌 depending on their local information. With this in mind,

to enable safety through resets, we define a responsibility rule that

uses such over-approximations.

Definition 6 (𝜌-Responsibility). Given an over-approximation
𝜌 of the resolution function and a collection {X𝑖,𝑐 }𝑖∈I of sets, a con-
troller 𝛾 𝑗 renders an agentH𝑗 𝜌-responsible with respect to the sets
{X𝑖,𝑐 }𝑖∈I if, when agent 𝑗 triggers a reset on other agents, agent 𝑗 ’s
triggering action does not lead to safety violations for any other agent
that it could induce a reset on according to 𝜌 , possibly including itself.
In math, the controller 𝛾 𝑗 rendersH𝑗 𝜌-responsible, if for all 𝑡 , 𝜏 𝑗 (𝑡)
and 𝑢 𝑗 (𝑡) produced by the controller are such that if 𝜏 𝑗 (𝑡) ≠ 𝜖 and
𝑥𝑖 (𝑡) ∈ X𝑖,𝑐 ∀𝑖 ∈ I , then for all 𝑖 ∈ I and 𝑆 ∈ 𝜌𝑖 (𝑡) with 𝑗 ∈ 𝑆 we
have: {

𝑅𝑖 (𝑡, 𝑥𝑖 (𝑡),U𝑖 , 𝑆) ⊆ X𝑖,𝑐 if 𝑖 ≠ 𝑗, 𝑎𝑛𝑑

𝑅𝑖 (𝑡, 𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡), 𝑆) ⊆ X𝑖,𝑐 if 𝑖 = 𝑗 .
(7)

We use controller being 𝜌-responsible (or, self-safe), agent being

𝜌-responsible (or, self-safe) and controller rendering an agent 𝜌-

responsible (or, self-safe), interchangeably. With all of the above

the following theorem can be stated, which provides a recursive

safety guarantee.

Theorem 1. Consider an inter-triggering hybrid automaton
{H𝑖 }𝑖∈I , an accompanying collection of sets {X𝑖,𝑐 }𝑖∈I that are
robustly controlled invariant for respective Σ𝑖 ’s in their respective
safe sets {X𝑖,𝑠𝑎𝑓 𝑒 }𝑖∈I and a collection {𝜌 (𝑖) }𝑖∈I of resolution over-
approximations. Then,

(1) there exists local controllers 𝛾𝑖 for each agentH𝑖 that render
them self-safe and 𝜌 (𝑖) -responsible with respect to the sets
{X𝑖,𝑐 }𝑖∈I and

(2) if each agent uses a controller𝛾𝑖 that renders itself self-safe and
𝜌 (𝑖) -responsible with respect to the sets {X𝑖,𝑐 }𝑖∈I , the state
trajectories corresponding to any {𝛾𝑖 }𝑖∈I -controlled execution
of {H𝑖 }𝑖∈I beginning in {X𝑖,𝑐 }𝑖∈I always remain within
these sets.

Proof. To prove statement (1), consider, for eachH𝑖 , a controller

that produces an input 𝑢𝑖 (𝑡) ∈ {𝑢 | 𝑓 (𝑥𝑖 (𝑡), 𝑢,D) ⊆ X𝑖,𝑐 } and the

triggering action 𝜏𝑖 (𝑡) = 𝜖 for all time 𝑡 for which 𝑥𝑖 (𝑡) ∈ X𝑖,𝑐 . With

the triggering action 𝜏𝑖 (𝑡) = 𝜖 , the controller𝛾𝑖 trivially satisfies the

definition of 𝜌-responsibility. Also, X𝑖,𝑐 being a robust controlled
invariant set guarantees 𝑢𝑖 (𝑡) exists whenever 𝑥𝑖 (𝑡) ∈ X𝑖,𝑐 and

with this 𝑢𝑖 (𝑡) the controller satisfies (6).
To show statement (2), we use induction on time. In the base

case (𝑡 = 0), by assumption, all agents satisfy 𝑥𝑖 (0) ∈ X𝑖,𝑐 . Assume

at time 𝑡 = 𝑘 , each agent’s state 𝑥𝑖 (𝑘) is in its corresponding set

X𝑖,𝑐 . The controller 𝛾𝑖 either produces (i) 𝜏𝑖 (𝑘) = 𝜖 or (ii) 𝜏𝑖 (𝑘) ≠ 𝜖 .

First, consider case (i). Since controller 𝛾𝑖 rendersH𝑖 self-safe,

𝑢 ′
𝑖
(𝑘) ∈ U𝑖 produced by it satisfies (6). With this choice of 𝑢 ′

𝑖
(𝑘),

there are two possibilities for state evolution. If 𝜌𝑖 (𝑘) = ∅, the
state 𝑥𝑖 evolves with the first line of Eq. (3c) and we have 𝑥𝑖 (𝑘 +
1) ∈ X𝑖,𝑐 by (6). If 𝜌𝑖 (𝑘) ≠ ∅, state 𝑥𝑖 evolves with the second

line of Eq. (3c), that is, 𝑥𝑖 (𝑘 + 1) ∈ 𝑅𝑖 (𝑘, 𝑥𝑖 (𝑘), 𝑢 ′𝑖 (𝑘), 𝜌𝑖 (𝑘)). Let
𝑗 ∈ 𝜌𝑖 (𝑘) ∈ 𝜌 ( 𝑗)𝑖

(𝑘). By Assumption 1, 𝜏 𝑗 (𝑘) ≠ 𝜖 . By agent 𝑗 being

𝜌 ( 𝑗) -responsible with 𝜏 𝑗 (𝑘) ≠ 𝜖 , for any 𝑆 ∈ 𝜌
( 𝑗)
𝑖
(𝑘) with 𝑗 ∈ 𝑆 ,

and, in particular for 𝑆 = 𝜌𝑖 (𝑘), the first line of (7) is satisfied. Since
𝑅𝑖 (𝑘, 𝑥𝑖 (𝑘), 𝑢 ′𝑖 (𝑘), 𝜌𝑖 (𝑘)) ⊆ 𝑅𝑖 (𝑘, 𝑥𝑖 (𝑘),U𝑖 , 𝜌𝑖 (𝑘)) and 𝑗 ∈ 𝜌𝑖 (𝑘)
was arbitrary, 𝑥𝑖 (𝑘 + 1) ∈ X𝑖,𝑐 follows.

Now, consider case (ii). By assumption, the controller𝛾𝑖 produces

𝜏∗
𝑖
(𝑘) ≠ 𝜖 and 𝑢∗

𝑖
(𝑘) such that both conditions in (7) and condition

(6) are satisfied. Then, if 𝜌𝑖 (𝑘) = ∅, the state 𝑥𝑖 evolves with the

first line of Eq. (3c) and we have 𝑥𝑖 (𝑘 + 1) ∈ X𝑖,𝑐 by (6). If 𝜌𝑖 (𝑘) ≠ ∅,
state 𝑥𝑖 evolves with the second line of Eq. (3c), that is, 𝑥𝑖 (𝑘 + 1) ∈
𝑅𝑖 (𝑘, 𝑥𝑖 (𝑘), 𝑢∗𝑖 (𝑘), 𝜌𝑖 (𝑘)). Let 𝑗 ∈ 𝜌𝑖 (𝑘) ∈ 𝜌

( 𝑗)
𝑖
(𝑘). If 𝑗 ≠ 𝑖 , the

reasoning in case (i) above holds. If 𝑗 = 𝑖 ∈ 𝜌𝑖 (𝑘), by assumption,

𝑢∗
𝑖
(𝑘) also satisfies the second line of (7) for any 𝑆 ∈ 𝜌 ( 𝑗)

𝑖
(𝑘) with

𝑖 ∈ 𝑆 , and in particular for 𝑆 = 𝜌𝑖 (𝑘). Therefore, 𝑥𝑖 (𝑘 + 1) ∈
𝑅𝑖 (𝑘, 𝑥𝑖 (𝑘), 𝑢∗𝑖 (𝑘), 𝜌𝑖 (𝑘)) ⊆ X𝑖,𝑐 . □

This theorem essentially says for ITHA, existence of controlled

invariant sets for individual dynamics is a sufficient condition for

ensuring global safety. However, this is not a necessary condition

and our results do not apply to the cases where the only way to

ensure safety is via triggering. The next result relates the self-

safety and responsibility conditions to “not being at fault" as in

[24] in the sense that if an agent’s control policy is self-safe and

𝜌-responsible, there exists controllers for the remaining agents such

that the overall system stays safe.

Corollary 1. Consider an inter-triggering hybrid automaton
{H𝑖 }𝑖∈I , an accompanying collection of sets {X𝑖,𝑐 }𝑖∈I that are
robustly controlled invariant for respective Σ𝑖 ’s in their respective
safe sets {X𝑖,𝑠𝑎𝑓 𝑒 }𝑖∈I and a collection {𝜌 (𝑖) }𝑖∈I of resolution over-
approximations. If some subset {H𝑗 } 𝑗 ∈I′ with I ′ ⊂ I of agents
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have controllers 𝛾 𝑗 which are both self-safe and 𝜌 ( 𝑗) -responsible on
the sets {X𝑖,𝑐 }𝑖∈I , then there exists controllers 𝛾𝑖 for all of the other
agents {H𝑖 }𝑖∈I\I′ such that the state trajectories corresponding to
any {𝛾𝑖 }𝑖∈I -controlled execution of {H𝑖 }𝑖∈I beginning in {X𝑖,𝑐 }𝑖∈I
always remain within these sets.

Proof. For each 𝑖 ∈ I \ I ′, consider the controller 𝛾𝑖 that

produces an input 𝑢𝑖 (𝑡) ∈ {𝑢 | 𝑓 (𝑥𝑖 (𝑡), 𝑢,D) ⊆ X𝑖,𝑐 }, which exists

by X𝑖,𝑐 being robust controlled invariant, and triggering action

𝜏𝑖 (𝑡) = 𝜖 for all time 𝑡 for which 𝑥𝑖 (𝑡) ∈ X𝑖,𝑐 . As shown in the proof

of Theorem 1 statement (1), such 𝛾𝑖 is self-safe and 𝜌
(𝑖)
-responsible

on X𝑖,𝑐 . Since 𝛾 𝑗 for 𝑗 ∈ I ′ are given to be self-safe and 𝜌 ( 𝑗) -
responsible on X𝑗,𝑐 , with the above choice of controllers for agents

in I \ I ′, all the controllers are self-safe and 𝜌-responsible, which

by statement (2) of Theorem 1 ensures safety of the executions. □

One can try to verify self-safety and responsibility for given

sets {X𝑖,𝑐 }𝑖∈I , controllers 𝛾𝑖 and resolution over approximations

𝜌 . Conditions (6) and (7) can also be used to synthesize controllers

that render an ITHA self-safe and 𝜌-responsible or to supervise

existing controllers at run-time. The latter two are the use cases

we demonstrate in Section 5 using robust controlled invariant sets

for {X𝑖,𝑐 }𝑖∈I . Given 𝜌 , the basic idea is to construct the set of all

triggering actions and control inputs that together satisfy condi-

tions (6) and (7). This set is always non-empty when {X𝑖,𝑐 }𝑖∈I
are robust controlled invariant sets and it can be constructed at

run-time. Then, for synthesis, a pair (𝑢 𝑗 , 𝜏 𝑗 ) is picked from this set

and for supervision, we check if the controller’s 𝑢 𝑗 , 𝜏 𝑗 is in this set

or not. A few comments are in order as to what information, in

general, is needed to construct this set, which also prescribes what

observations should be included in Y𝑗 to implement a controller 𝛾 𝑗
constructed this way. In general, the states of all agents 𝑖 , for which

𝑗 appears in the sets in 𝜌𝑖 (𝑡) should be included inY𝑗 . However, we
note that the reset maps together with the collection {X𝑖,𝑐 }𝑖∈I of

sets in practice have more structure that can simplify checking for

𝜌-reponsibility or the amount of observations needed. For instance,

for the processor example, for all 𝑆 ⊆ I, 𝑅𝑖 (·, ·, ·, 𝑆) ⊆ X𝑖,𝑐 implies

for all 𝑆 ′ with |𝑆 ′ | ≤ |𝑆 |, 𝑅𝑖 (·, ·, ·, 𝑆 ′) ⊆ X𝑖,𝑐 . In words, if the proces-

sor 𝑖 is safe when recruited by a number of other processors, it will

be safe when recruited by a smaller number of processors. This im-

plies that it is enough to check the condition (7) only for the largest

cardinality 𝑆 containing 𝑗 instead of all such sets. Similarly, for

the highway example, for all 𝑆 ⊆ I, there is an 𝑆∗
𝑡,𝑖
⊆ 𝑆 such that

𝑅𝑖 (𝑡, ·, ·, 𝑆∗𝑡,𝑖 ) ⊆ X𝑖,𝑐 implies 𝑅𝑖 (𝑡, ·, ·, 𝑆) ⊆ X𝑖,𝑐 for all non-empty

𝑆 ⊆ 𝑆 . This is because there is a “worst-case" lane switching leading

to a “worst-case" reset. In a sense, it does not matter what switching

actions an arbitrary agent takes; only agents close to agent 𝑗 matter.

Thus, an ego vehicle can reason over the set of agents switching

lanes nearest to itself while still being able to guarantee safety. It

is also worth remarking that when either 𝑅𝑖 or X𝑖,𝑐 is not known
exactly, an over-approximation of 𝑅𝑖 and an under-approximation

of X𝑖,𝑐 can be used in (7) while still guaranteeing overall safety

of the ITHA per Theorem 1. Moreover, as discussed in the next

section, 𝜌 (𝑖) can be constructed on the fly, meaning 𝜌 (𝑖) is only
known up to 𝜌 (𝑖) (𝑡) at a given time 𝑡 but this is enough to construct

a controller that is self-safe and 𝜌 (𝑖) -responsible at time 𝑡 .

4.3 Finding Resolution Over-Approximations
Both complexity and conservativeness can be exacerbated if the

over-approximation 𝜌 (𝑖) is “far" from the true 𝜌 . The task of identi-

fying proper over-approximations of 𝜌 is thus a vitally important

one. Insights into the structure of the problem can be used to gen-

erate good over-approximations.

We start this section with a relatively easy to compute, yet pos-

sibly conservative, over-approximation. Then, we define an order

between agents through which they can communicate and substan-

tially reduce conservatism. Along the way, we also discuss how

these over-approximations look for our running examples.

4.3.1 Trivial Over-Approximations: If we assume each agent

knows the resolution function 𝜌 , a trivial over-approximation of

the resolution function can be locally computed at each time step

by considering every possible choice of triggering inputs for all

other agents. In math, agent 𝑖 computes the 𝑗𝑡ℎ component of a

trivial over-approximation 𝜌
(𝑖)
𝑗

as:

𝜌
(𝑖)
𝑗
(𝑡) = 𝜌

(𝑖)
𝑗
(𝑡, 𝜏𝑖 (𝑡)) ={

𝜌 ′ ∈ 2
I

���� ∃𝜏𝑘 ∈ T𝑘 ∀𝑘 ∈ I \ { 𝑗} :

𝜌 ′ = 𝜌 𝑗 (𝑡, 𝜏1, . . . , 𝜏𝑖 (𝑡), . . . , 𝜏 |I |)

}
(8)

It can be easily shown that 𝜌 (𝑖) , components of which are con-

structed as above is an over-approximation of 𝜌 .

Example 3 (Cont’d Example 1). For the server farm in Fig. 1,
we revisit the case where 𝜏2 (𝑡) = 𝜖 and 𝜏4 (𝑡) = {1, 6}, which leads
to 𝜌1 (𝑡) = {4}, regardless of the triggering actions of the remaining
agents. Using the trivial over-approximation, processor 1 has 𝜌 (1)

1
(𝑡) =

{∅, {2}, {4}, {2, 4}}, processor 2 has 𝜌 (2)
1
(𝑡) = {∅, {4}} and processor

4 has 𝜌 (4)
1
(𝑡) = {{4}, {2, 4}}. Note that no estimates depend on 𝜏1 (𝑡),

as agent 1 cannot recruit itself.

Example 4 (Cont’d Example 2). Consider the trivial over-
approximation from the perspective of the ego agent, in the case
where 𝜏𝐸 (𝑡) = 𝜖 : the only possible resets depend on if 𝐿1 does or
does not trigger a reset on 𝐸; that is, 𝜌 (𝐸)

𝐸
(𝑡) = {∅, {𝐿1}}. If instead

𝜏𝐸 (𝑡) = left, it is more complicated: 𝜌 (𝐸)
𝐸
(𝑡) = {{𝐸}, {𝐸, 𝐿3}, {𝐸, 𝐿1}}.

The first case occurs if neither 𝐿1 nor 𝐿3 changes to the center lane
simultaneously, the second case occurs if 𝐿3 changes to the center lane,
regardless of the triggering action of 𝐿1, and the last case occurs if 𝐿1

makes a lane change and 𝐿3 does not.

4.3.2 Ordered Actions. In some situations, agents in an inter-

triggering hybrid automaton {H𝑖 }𝑖∈I can communicate their

planned actions with one another. If such communication is done

in an “orderly" manner, it can allow agents to obtain much refined

over-approximations as they no longer need to consider all possible

actions of the other agents.

We again assume each agent knows the resolution function 𝜌 .

Moreover, we assume at each time that there is a total order ⪰𝑡
among the agents that all agents know and use to communicate

their planned triggering inputs.
2

2
The assumption of ⪰𝑡 being a total order can be relaxed. In particular, agents can

still get an over-approximation for a class of partial orders ⪰𝑡 for which the Hasse

diagram of the partially ordered set ( {H𝑖 }𝑖∈I , ⪰𝑡 ) is a rooted forest at each time, i.e.,

an agent does not receive information from two incomparable agents at a given time.
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Given such an order, we propose Algorithm 1 for each agent to

construct their resolution over-approximation at each time 𝑡 . With

abuse of notation and without loss of generality, we assume that the

automaton {H𝑖 }𝑖∈I is (re)ordered/(re)indexed (by keeping track

of their associated overestimates computed so far) at each time 𝑡 so

that {H𝑖 }𝑖∈I = {H1,H2, · · · ,H |I |} and the index of each agent

represents its ranking according to ⪰𝑡 . Then, Algorithm 1 is called

starting withH1 to compute resolution over-approximations 𝜌 (1)

and to choose a triggering action 𝜏1 (𝑡) for which a self-safe and

𝜌 (1) -responsible control input 𝑢1 (𝑡) exists. Then, 𝜏1 (𝑡) is shared
with the next agent and agentH2 calls the algorithm with {𝜏1 (𝑡)},
and so on, until all agents compute their triggering actions for time

𝑡 . Then these actions are executed and time progresses.

Algorithm 1: Resolution over-approximation construction

with ordered actions

Result: 𝜌 ( 𝑗) (𝑡, 𝜏 𝑗 ), 𝜏 𝑗 (𝑡)
Input :H𝑗 , {𝜏𝑖 (𝑡)} 𝑗−1

𝑖=1
, {𝑥𝑖 (𝑡)}𝑖∈I

1 T̃𝑗 ← ∅
2 for 𝜏 𝑗 ∈ T𝑗 do
3 𝜌 ( 𝑗) (𝑡, 𝜏 𝑗 ) ← ∅
4 for (𝜏 𝑗+1, · · · , 𝜏 |I |) ∈ T𝑗+1 × · · · × T|I | do
5 𝑆 ← 𝜌 (𝑡, 𝜏1 (𝑡), 𝜏2 (𝑡), · · · , 𝜏 𝑗−1 (𝑡), 𝜏 𝑗 , · · · , 𝜏 |I |)
6 if ∀𝑢 𝑗 ∈ U𝑗 , 𝑅 𝑗 (𝑡, 𝑥 𝑗 (𝑡), 𝑢 𝑗 , 𝑆) ⊈ X𝑗,𝑐 then
7 continue;

8 if ∃𝑖 ≠ 𝑗 s.t. 𝑅𝑖 (𝑡, 𝑥𝑖 (𝑡),U𝑖 , 𝑆) ⊈ X𝑖,𝑐 then
9 continue;

10 𝜌 ( 𝑗) (𝑡, 𝜏 𝑗 ) ← 𝜌 ( 𝑗) (𝜏 𝑗 ) ∪ {𝑆}
11 T̃𝑗 ← T̃𝑗 ∪ {𝜏 𝑗 };
12 𝜏 𝑗 (𝑡) ∈ T̃𝑗

This scheme, and particularly the method for constructing 𝜌 =

{𝜌𝑖 }𝑖∈I can be shown to produce an over-approximation.

Lemma 1. Calling Algorithm 1 at each time step according to order
⪰𝑡 produces functions 𝜌 ( 𝑗) , each of which is an over-approximation
of 𝜌 at every time step.

Proof. Note that 𝜌 (𝑡) = {𝜌𝑖 (𝑡, 𝜏1 (𝑡), 𝜏2 (𝑡), · · · , 𝜏 |I | (𝑡))}𝑖∈I .
Thus, when {𝜏𝑖 (𝑡)}𝑖∈I is completely known, we explicitly know

𝜌 (𝑡). At the |I |𝑡ℎ call of Algorithm 1 at time 𝑡 , after 𝜏 |I | (𝑡) is
chosen then {𝜏𝑖 (𝑡)}𝑖∈I is completely known. This indicates that

𝜌 (𝑡) ∈ 𝜌 ( |I |) (𝑡) for all 𝑡 .
Now, consider an arbitrary call 𝑘 of the Algorithm 1

at time 𝑡 . By definition, 𝜌
(𝑘)
𝑖
(𝑡) contains all resolutions

𝜌𝑖 (𝑡, 𝜏1 (𝑡), 𝜏2 (𝑡), · · · , 𝜏𝑘−1
(𝑡), 𝜏 ′

𝑘
, 𝜏 ′
𝑘+1, · · · , 𝜏

′
|I |) where 𝜏

′
𝑘
, 𝜏 ′
𝑘+1, · · ·

are arbitrarily chosen. Similarly, 𝜌
(𝑘−1)
𝑖

contains all resolu-

tions 𝜌𝑖 (𝑡, 𝜏1 (𝑡), 𝜏2 (𝑡), · · · , 𝜏𝑘−2
(𝑡), 𝜏 ′

𝑘−1
, 𝜏 ′
𝑘
, 𝜏 ′
𝑘+1, · · · , 𝜏

′
|I |) where

𝜏 ′
𝑘−1

, 𝜏 ′
𝑘
, · · · are arbitrarily chosen. By observation one can see that

𝜌
(𝑘−1)
𝑖

⊇ 𝜌
(𝑘)
𝑖

. Therefore, by induction 𝜌𝑖 (𝑡) ∈ 𝜌 (𝑘)𝑖
for any 𝑘 and

any 𝑖 . Therefore, the functions 𝜌 ( 𝑗) produced by Algorithm 1 are

an over-approximation of 𝜌 at every time step. □

Example 5 (Order in Highway Example). In the highway ex-
ample, one can assume that any vehicle (e.g. vehicle 𝐸 in Fig. 3) on the
highway sees the actions of the vehicles in front of it (or on a slower

lane when two agents are aligned) and can use those to inform its
own lane change decisions. In this way, a time-varying ordering is
implemented whereH𝑖 ⪰𝑡 H𝑗 if and only ifH𝑖 is in front ofH𝑗 or
they are aligned and H𝑗 is on a slower lane compared to H𝑖 . This
gives a total order across agents at each time 𝑡 .

For example, in Fig. 3 the ordering is H𝐿1
⪰ H𝐿3

⪰ H𝐸 ⪰ H𝐹2
.

This choice is motivated by the intuition that the ego vehicleH𝐸 is
behind vehiclesH𝐿1

andH𝐿3
, so it can see their actions. As concrete

examples of what Algorithm 1 outputs in this case, if 𝜏𝐸 (𝑡) = 𝜖 ,
then 𝜌

(𝐸)
𝐸
(𝑡) = {𝐿1} when 𝜏𝐿1

(𝑡) ≠ 𝜖 and 𝜌
(𝐸)
𝐸
(𝑡) = ∅ otherwise;

that is, 𝜌 (𝐸)
𝐸
(𝑡) is not conservative, as it will observe the triggering

action of 𝐿1. Similarly, if 𝜏𝐸 (𝑡) = left, 𝜌 (𝐸)
𝐸
(𝑡) = {𝜌𝐸 (𝑡)}, since 𝐸

sees the triggering actions of both 𝐿3 and 𝐿1 and thus there is no
conservativeness.

5 EXPERIMENTS
We evaluate the flexibility and applicability of ITHA by using it

to perform single-agent control in the highway driving scenario

(Section 5.1) and multi-agent control in the parallel processing sce-

nario (Section 5.2). Finally, we evaluate the conservativeness of

the ITHA-based responsibility-sensitive safety rules on a real high-

way driving data-set (Section 5.3). Our software implementation is

published at [1].

5.1 Single-agent control: highway driving
We demonstrate ITHA on the highway driving scenario, as de-

scribed in Example 2, where only the ego vehicle is controlled and

seeks to remain safe and responsible with respect to the uncon-

trolled vehicles. The ego vehicle 𝐸 seeks to track a nominal velocity

𝑣nom = 15𝑚/𝑠 , formally solving the following receding horizon

control problem at each time-step:

min
𝑥𝐸 ,𝑢𝐸 ,

𝜏𝐸 (𝑡0 )

𝑡0+𝐻∑
𝑡=𝑡0+1

∥𝑣 (𝑡 ) − 𝑣nom ∥22

s.t. 𝑥𝐸 (𝑡 + 1) = 𝑓𝐸 (𝑥𝐸 (𝑡 ),𝑢𝐸 (𝑡 ), ˜𝑑 (𝑡 )), 𝑡 = 𝑡0 + 2, . . . ,

𝑡0 +𝐻 − 1

𝑥𝐸 (𝑡0 + 1) ∈ X𝐸,𝑐
𝑥𝐸 (𝑡0 + 1) = 𝑓𝐸 (𝑥𝐸 (𝑡0),𝑢𝐸 (𝑡0), ˜𝑑 (𝑡0)), if 𝜏𝐸 (𝑡0) = 𝜖

𝑥𝐸 (𝑡0 + 1) = 𝑅𝑙
𝐸 (𝑡0, 𝑥𝐸 (𝑡0),𝑢𝐸 (𝑡0),

⋃{𝜌 𝑗 (𝑡0) }), if 𝜏𝐸 (𝑡0) = 𝑙

𝑅𝑙
𝑗 (𝑡0, 𝑥 𝑗 (𝑡0),𝑢 𝑗 (𝑡0),

⋃{𝜌 𝑗 (𝑡0) }) ∈ X𝑗,𝑐 ,
∀𝑢 𝑗 (𝑡0) ∈ U𝑗 , ∀𝑗 ∈ 𝜌−𝐸 (𝑡0), if 𝜏𝐸 (𝑡0) = 𝑙

𝑥𝐸 (𝑡0 + 1) = 𝑅𝑟
𝐸 (𝑡0, 𝑥𝐸 (𝑡0),𝑢𝐸 (𝑡0),

⋃{𝜌 𝑗 (𝑡0) }), if 𝜏𝐸 (𝑡0) = 𝑟

𝑅𝑟
𝑗 (𝑡0, 𝑥 𝑗 (𝑡0),𝑢 𝑗 (𝑡0),

⋃{𝜌 𝑗 (𝑡0) }) ∈ X𝑗,𝑐 ,
∀𝑢 𝑗 (𝑡0) ∈ U𝑗 , ∀𝑗 ∈ 𝜌−𝐸 (𝑡0), if 𝜏𝐸 (𝑡0) = 𝑟

(9)

and executing 𝑢𝐸 (𝑡0), where the prediction horizon 𝐻 = 25, the

predicted disturbance
˜𝑑 (𝑡) = 0 if 𝑡 > 𝑡0 and

˜𝑑 (𝑡) = −10 if 𝑡 = 𝑡0,

and the continuous dynamics 𝑓𝐸 (·, ·, ·) are as in (5), where Δ𝑡 = 0.1.

Furthermore,U𝑖 = [−10, 10] for all agents 𝑖 , andwe define 𝜌−𝐸 (𝑡) =
{𝑖 ∈ I | ∃ 𝑗 ∈ 𝜌𝑖 (𝑡), 𝑗∩{𝐸} ≠ ∅} as an over-approximation of the set

of all agents that 𝐸 can trigger at time 𝑡 . We will shortly describe the

specific 𝜌 that we use in our experiments. Finally, we abuse notation

to define 𝑅𝑙
𝑗
(·, ·, ·, ·) and 𝑅𝑟

𝑗
(·, ·, ·, ·) as functions which output the

reset state upon making a left and right lane change, respectively.

To interpret (9), we note that the first constraint enforces the

continuous dynamics from the second timestep onwards, and the

second constraint enforces self-safety. The third constraint enforces
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the continuous dynamics at the first timestep if no triggering action

is taken, while the fourth and sixth constraints enforce an appropri-

ate state reset if the ego agent performs a left or right lane change,

respectively. Finally, the fifth and seventh constraints enforce that

all agents that are triggered by the ego vehicle’s lane change action

can remain safe by applying any control input.

Note that (9) can be represented as a mixed integer quadratic

program, where 𝜏𝐸 (𝑡0) ∈ {𝜖, left, right} can be modeled with an in-

teger decision variable 𝑧 ∈ {0, 1, 2} used within a big-M formulation

[2] to determine the lane change choice. To improve performance,

(9) only seeks to enforce self-safety and responsibility at the first

time-step (the system remains safe as only the input from first

time-step is executed; hence, only safe actions are applied).

The uncontrolled vehicles are simulated using the Intelligent

Driver Model (IDM) [26]:

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + Δ𝑡𝑣𝑖 (𝑡)

𝑣𝑖 (𝑡 + 1) = 𝑣𝑖 (𝑡) + Δ𝑡𝑎
(
1 −

(
𝑣𝑖 (𝑡)
𝑣𝑖

)𝛿
−(

𝑠0 + 𝑣𝑖 (𝑡)𝑇𝐻 + 𝑣𝑖 (𝑡) (𝑣𝑖 (𝑡) − 𝑣 lead𝑖
(𝑡))

2

√
𝑎𝑏

)
2
) (10)

with parameters 𝛿 = 4, 𝑠0 = 5,𝑇𝐻 = 1.5, 𝑎 = 𝑏 = 10 and randomly

sampled nominal velocities 𝑣𝑖 . Here, 𝑣
lead

𝑖
(𝑡) refers to the velocity of

agent 𝑖’s lead car. We execute for 500 time-steps, solving (9) at each

time-step; see Fig. 5 for a visualization of an example execution.

To illustrate the impact of different over-approximations of 𝜌 on

conservativeness, we compare control performance under these 𝜌 :

(A) The trivial over-approximation (8)

(B) The ordered over-approximation described in Algorithm 1,

with the time-varying ordering as described in Example 5

A video showing the behavior of the 𝜌-responsible ego vehicle

when using the two different over-approximations is available here:

https://youtu.be/a5IULWQYVzM. Under over-approximation (A),

the ego vehicle travels 351.9 meters, while it travels 415.3 meters

under over-approximation (B), averaged over 25 random initial-

izations of the uncontrolled vehicles. In all simulations for both

over-approximations, we did not experience any unsafe behav-

ior, as guaranteed by the theory. We note that the performance

improvement of the second over-approximation is a result of it

being less conservative than the first. For instance, consider the

example in Fig. 5. The simulation remains the same for both over-

approximations up until time 𝑡 = 86. At time 𝑡 = 87, the ego agent

is unable to make an advantageous left lane change to lane 3 under

over-approximation (A), because if the car in lane 4 also changes to

lane 3 simultaneously, it would lead to a safety violation. However,

under over-approximation (B), the ego agent can safely make that

lane change because the ordering implies that the car in lane 4 ob-

serves and should yield to the triggering action of the ego vehicle.

A similar event occurs at time 𝑡 = 201: under (A), the ego vehicle

cannot make an advantageous switch to lane 4, because if the car

in lane 5 is to simultaneously switch to lane 4, it would result in

safety violations. By the end, the ego vehicle travels 161 meters

further under (B) than under (A) (Fig. 5, bottom).

Finally, we note that while (B) outperforms (A) on average, (A)

can still possibly outperform (B) for specific assignments of the

Avg. no. accepted jobs Avg. safety violations

𝜌 estimate (A) 268.6 0

𝜌 estimate (B) 262.2 147.64

𝜌 estimate (C) 302.72 0

Table 1: Parallel processor statistics, averaged over 25 runs.

uncontrolled vehicles. This occurs because (9) is restricted to a one-

step plan for triggering actions, so the ego vehicle can make extra

lane changes under (B) that can cause it to get trapped behind a slow

car without realizing that it can free itself using a long sequence

of lane changes; planning triggering actions over a longer horizon

would aid in escaping from these “local optima".

Overall, this experiment suggests we can use ITHA-based con-

trollers to control an agent in amulti-agent environment with safety

guarantees under limited communication, and that conservative-

ness of 𝜌 can affect control performance.

5.2 Multi-agent control: parallel processors
We demonstrate ITHA on the parallel processor scenario, as de-

cribed in Example 1, where we control all agents (processors). Our

task is to maximize the number of accepted jobs over a finite hori-

zon. At each time-step, we indirectly achieve this in a decentralized,

receding-horizon fashion by computing control inputs and trigger-

ing inputs individually for each agent, which greedily minimize the

number of remaining jobs for that agent. Formally, for each agent 𝑖 ,

we solve the following integer program at each time-step 𝑡 :

min

𝑢𝑖 (𝑡 ),𝜏𝑖 (𝑡 )
𝑥𝑖 (𝑡 + 1)

s.t. 𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) − 𝑢𝑖 (𝑡) + 𝑑𝑖 (𝑡) −
∑ |I |

𝑗=1
𝜏
𝑗
𝑖
(𝑡)

𝑥𝑖 (𝑡 + 1) ∈ X𝑖,𝑐
𝑥𝑖 (𝑡 + 1) ≥ 0

𝜏
𝑗
𝑖
(𝑡) = 0, ∀𝑗 ∉ 𝑜𝑢𝑡G (𝑖)

𝑅 𝑗 (𝑡, 𝑥 𝑗 (𝑡), 𝑢 𝑗 (𝑡),
⋃{𝜌 𝑗 (𝑡)}) ∈ X𝑗,𝑐 ,

∀𝑢 𝑗 (𝑡) ∈ U𝑗 ,∀𝑗 : 𝜏
𝑗
𝑖
(𝑡) = 1

(11)

where𝑢𝑖 (𝑡) ∈ {0, 1} and 𝜏𝑖 (𝑡) ∈ {0, 1} |I | . Here, |I | = 10, 𝑛
throttle

=

3, and 𝑛
overflow

= 5. We define an over-approximation of the set of

agents that agent 𝑖 can trigger at time 𝑡 , 𝜌−𝑖 (𝑡), in the same way as

in the highway example. Similar to the highway example, we will

compare performance between three 𝜌 estimates:

(A) The trivial over-approximation (8). Here, 𝜌𝑖 (𝑡) = 2
inG (𝑖)

.

(B) An under-approximation 𝜌bad−𝑗 (𝑡) ⊆ {𝑖}, that is, when plan-

ning 𝜏𝑖 (𝑡), agent 𝑖 assumes no other agent will recruit 𝑗 .

(C) The ordered over-approximation described in Algorithm

1, with a time-invariant priority order sorted by processor

index, i.e.H1 ≻ . . . ≻ HI .
We simulate 25 runs, each over a horizon of 50 time-steps, and

report the performance statistics in Table 1. In each run, we gen-

erate a random undirected connectivity graph G, where an edge

between agents 𝑖 and 𝑗 exists if a sample uniformly drawn from

[0, 1] is greater than or equal to 0.1. Disturbances 𝑑𝑖 (𝑡) are also

generated randomly. Note that using the 𝜌 estimate (A) leads to

conservative performance, since there is no communication; thus,

for agent 𝑖 to recruit agent 𝑗 , it must guarantee that agent 𝑗 can

remain safe if the rest of agent 𝑗 ’s neighbors also trigger it. This

overall leads to few recruitment actions, and thus many jobs are

https://youtu.be/a5IULWQYVzM
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Figure 5: Highway driving example.Red: ego vehicle. Blue: uncontrolled vehicles. Arrowmagnitudes are proportional to agent
velocity. Top row: the ego vehicle canmake an advantageous change to lane 3 under (B), but not under (A) due to a hypothetical
simultaneous lane change from the lane 4 agent to lane 3. Middle row: the ego vehicle cannot make an advantageous lane
change to lane 4 under (A) due to a hypothetical simultaneous lane change from the lane 5 agent to lane 4. Bottom row: At the
end of the simulation, there is a large performance gap between using over-estimates (A) and (B).

rejected. On the other hand, (B) is less conservative, but as it is an

unsafe estimate of 𝜌 (since it is an under-approximation), safety

violations can occur, such as when many other processors recruit

one processor during the same time-step, leading to the recruited

processor exceeding 𝑛
overflow

. As a side effect, the average number

of accepted jobs is also lower under (B) since many processors are

often over the throttle limit, limiting the number of incoming jobs.

With the ordered contract, we can avoid this mismanagement, more

efficiently allocating jobs among the processors and preventing jobs

from being unnecessarily rejected while remaining safe.

Overall, this experiment suggests that we can also use ITHA

to control multiple agents in a decentralized fashion with safety

guarantees, and that it is vital to select an appropriate 𝜌 estimate

to ensure safety and good performance.

5.3 Supervision: Evaluation of ITHA on data
Several frameworks for autonomous driving have sought to su-

pervise a performance controller with a safety supervisor, which

overrides when the performance controller may lead the system

to an unsafe state. These supervisors often use invariant sets or

control barrier functions to detect these safety violations. How-

ever, the usefulness of a safety supervisor is often dependent on its

conservativeness, i.e. it should not unnecessarily override, as the

jerkiness of changing controllers may annoy or frighten the user.

To empirically demonstrate that the ITHA framework can serve as

a high-quality safety supervisor that provides rigorous safety guar-

antees while remaining sufficiently permissive, we demonstrate

that an ITHA-based supervisor achieves low override rates when

supervising on a real world highway driving data-set [13].

The HighD data-set consists of trajectories of each driver’s po-

sition with annotations, such as the vehicle lane and vehicle class

(motorcycle, truck, or car), with data recorded at six different lo-

cations on the German Autobahn at various times of day. We use

110516 trajectories from the HighD data-set, containing a total of

around 4 × 10
7 (𝑥,𝑢, 𝑑) data-point tuples. The state, input, and dis-

turbance trajectories for each car in the data-set under the dynamics

(5) (the 𝑣𝑖 , ℎ𝑖 , 𝑣
𝐿
𝑖
, and 𝑑𝑖 trajectories) are generated as follows. 𝑣𝑖 ,

ℎ𝑖 , and 𝑣
𝐿
𝑖
are directly provided in the HighD data-set; we compute

𝑑𝑖 via finite-differencing using the lead car velocities and Δ𝑡 = 0.04

seconds, which is the provided time discretization of the data-set.

We hold out 20% of the data and use the remaining 80% as a

“training set" to compute disturbance bounds. These disturbance

bounds are used to compute invariant sets which are well-calibrated

to the driving behavior observed in the data-set. Let the set of all

disturbance trajectories in the training data-set for dynamics (5) be

denotedΞ𝑑 � {𝜉𝑑,𝑖 }𝑁𝑖=1
, where𝑁 is the number of trajectories in the

data-set. While the data-set can be noisy, we do not perform any de-

noising in this step, and instead process outliers when computing

the disturbance bounds. Specifically, we process Ξ𝑑 for outliers

by only keeping the data between the 0.025- and 0.975-sample

quantiles
ˆ𝑑0.025,

ˆ𝑑0.975; that is, we concatenate Ξ𝑑 , sort the result
in increasing order (i.e. obtain the order statistics of Ξ𝑑 , denoted
Ξ𝑑,(1) ,Ξ𝑑,(2) , . . .), and remove all disturbances belonging in the

first 2.5 and last 2.5 percent of Ξ𝑑 (this is possible, since 𝑑 is scalar

in (5)). Formally, we define the 𝑦-sample quantile, 𝑦 ∈ (0, 1), as
ˆ𝑑𝑦 = Ξ𝑑,( ⌈𝑦𝑁 ⌉) , where 𝑁 is the number of elements in Ξ𝑑 . Let this

modified data-set be denoted Ξ̂𝑑 � {𝑑 ∈ Ξ𝑑 | 𝑑 ∈ [ ˆ𝑑0.025, ˆ𝑑0.975]}.
We compute an invariant set assuming disturbances 𝑑 satisfy 𝑑 ∈
D = D𝑖 = [ ˆ𝑑0.025, ˆ𝑑0.975], and use these invariant sets X𝑖,𝑐 = 𝐶inv

within an ITHA-based supervisor.

To quantify the conservativeness of using ITHA-based

responsibility-sensitive safety rules to supervise highway driving,
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Case Override percentage

Self-safety 10.09%

Responsibility: Trivial 𝜌 28.03%

Responsibility: Prioritized order 𝜌 2.30%

Table 2: Override statistics for HighD data-set supervision.

we calculate the number of times our supervisor overrides the

human control input on the trajectories observed in the data-set.

Specifically, we calculate the fraction of datapoints in which self-

safety (as defined in Definition 4) and 𝜌-responsibility (as defined in

Definition 6) are violated; we denote this the override rate, reported
in Table 2. A low override rate indicates that our supervisor will

not frequently engage and is not excessively conservative, which is

desirable since there are no crashes in the data-set. As mentioned,

we compare between two different 𝜌 over-approximations to eval-

uate responsibility: the first uses the trivial over-approximation

(8), while the second uses the ordering contract where any agent 𝑗

behind agent 𝑖 in the direction of travel must yield to the triggering

actions of agent 𝑖 (see Example 5 for more details).

Analyzing the override percentages in Table 2, we observe that

supervising self-safety with ITHA results in relatively low override

percentages, while the ordered contract outperforms the trivial

contract substantially. This is to be expected, since using the trivial

over-approximation leads to overrides being counted if the ego

car is changing lanes and there exists another car adjacent to the

new lane with similar longitudinal position as the ego car. This is

common behavior (i.e. many cars may simultaneously be at similar

longitudinal positions on the highway in different lanes). Note that

these override rates can be further improved by employing context-

dependent invariant sets generated with disturbance bounds com-

puted on different clusters of data (contexts), i.e. only on trajectories

recorded in the fast lane, or only on trajectories recorded at rush

hour. Further investigation of the impact of context-dependence on

the conservativeness of ITHA-based supervisor rules is an interest-

ing direction for future work.

Overall, this experiment suggests that an ITHA-based supervisor

can obtain low override rates on a real driving dataset, indicating

that driving data-sets can be used to calibrate an ITHA-based safety

supervisor and that such supervisors are permissive enough to avoid

excessive overrides (10% for self-safety and 2% for an appropriate

responsibility contract) and act as a useful safety supervisor.

6 DISCUSSION
In this section, we provide a few remarks on limitations and simple

extensions of our framework:

• ITHA is appropriate in modeling systems whose individ-

ual dynamics are decoupled but have additional triggering

actions for interaction. Our self-safety and responsibility

rules utilize this structure to provide sufficient conditions for

global safety. In comparison, existing compositional frame-

works, such as [5, 9, 14, 17, 19, 22, 23, 25], that give sufficient

conditions for global safety allow agents’ dynamics to be

coupled but do not allow for triggering actions.

• We note that our approach can be extended to guarantee

safety for settings in which individual systems may have

communication delays or sensor noise by leveraging recent

advances in invariant set computation [10, 12, 15, 29] for

systems with these imperfections.

• The increased complexity of our method over other

responsibility-sensitive safety frameworks for driving (i.e.

[7]) can be attributed in part to analyzing “second-order"

triggers, i.e. reasoning about the set of agents which can have

their feasible triggering set modified by the triggering action

of another agent. In the two-lane highway driving setting,

such behavior does not exist (which is what is considered

in most existing responsibility-sensitive highway driving

frameworks) since there are no “second-order" neighbors;

however, to guarantee safety when there are more than two

lanes of traffic, it is vital to consider second-order behavior.

• While we show communication and introducing an order for

triggering action selection can reduce conservativeness, it

can be further reduced by communicating control inputs. We

assume that agents evaluate responsibility using all inputs 𝑢

that the triggered agents can apply (see Eq. (7)); however, if

agents can communicate their state and input to the triggered

agent, we can relax this “for all inputs" condition to “there

exists an input" according to a similar priority.

• Finally, we note our framework allows for priorities between

agents which are not fixed a priori and dynamic orders can be

chosen to improve performance. For instance, in the proces-

sor example, agents within the same connected component

of the communication graph can mutually communicate

their state, and agents with the most remaining jobs can be

reassigned to have higher priority in recruiting other agents,

as they are closer to the throttle threshold. So, there is a

potential to employ distributed algorithms to select such

dynamic orders.

7 CONCLUSIONS
In this paper, we introduce a novel modeling paradigm for multi-

agent systems, the inter-triggering hybrid automaton, and apply it

to two very different systems: parallel processing and autonomous

driving. We derive an approach for proving safety of these systems

using the notions of self-safety and 𝜌-responsibility, which we show

both theoretically and empirically result in guaranteed safe execu-

tion of the entire collection of agents. We also describe methods for

generating practical approximations of the resolution function, and

how local communication can be leveraged to improve these ap-

proximations. Finally, we demonstrate our approach on single- and

multi-agent control in the parallel processing and highway driving

scenarios, and furthermore evaluate the conservativeness of our

approach on a safety supervisor task using real highway driving

data. In future work, we wish to use assume-guarantee contracts

between different agents in an ITHA to allow more coordination

during resets. Also, we would like to extend our analysis to handle

collections of agents whose triggering actions take multiple time

steps to complete (i.e. non-instantaneous lane changes in the high-

way example) or have a delayed effect on the rest of the collection.

Finally, we conjecture that ITHA is a special (less expressive) type

of discrete-time hybrid I/O automaton [16] where each individual

agent and the resolution function are hybrid I/O automata. This

connection will be further investigated.
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A DEFINING THE RESETS AND RESOLUTION
FUNCTION FOR THE HIGHWAY EXAMPLE

In order to define the reset map and the resolution function for the

highway example, we need to introduce global states in a global co-

ordinate system for the overall system. Both the reset map and the

resolution function can be expressed as time-invariant functions of

these global states. On the other hand, we model the states of indi-

vidual vehicles in ITHA in some local coordinates in (5), Global-state

dependent reset maps and resolution functions can be converted to

time-varying variants on the individual states. Since the self-safety

and responsibility conditions are defined for time-varying reset

maps and resolution functions that depend on individual states, our

safety results are still applicable with this conversion. This section

clarifies what information each vehicle would need at a given time

to compute 𝜌 and to comply with condition (7).

Let agent 𝑖’s global state be defined as 𝑥𝑖 =
[
𝑣𝑖 𝑝𝑖 ℓ𝑖

]⊤ ∈
¯X𝑎 = [0, 𝑣𝑚𝑎𝑥 ] × [0,∞) × {1, ..., 𝑛ℓ } where ℓ𝑖 ∈ {1, ..., 𝑛ℓ } is the
current lane’s number, 𝑝𝑖 is the longitudinal position in the current

lane, and 𝑣𝑖 is the current longitudinal velocity in the direction

of the current lane (i.e. the same value in (5)). Here we take the

state spaces
¯X𝑎 of the vehicles to be identical for simplicity. Also,

by convention, we take the rightmost lane to have value 1. Let

{𝑥𝑖 } |I |𝑖=1
be the collection of all agents’ global states, with

¯X𝑔 ≜ ¯X |I |𝑎

denoting this state space, and
¯X𝑆 denoting the restriction of this

space to agents 𝑆 ⊂ I.
The dynamics of the global state can be written as:

𝑥𝑖 (𝑡 + 1) =


1 0 0

Δ𝑡 1 0

0 0 1

 𝑥𝑖 (𝑡) +

Δ𝑡
0

0

 𝑢𝑖 (𝑡) +

0

0

1

 𝑢𝜏𝑖 (𝑡),
≜ ¯𝑓𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡), 𝑢𝜏𝑖 (𝑡)),

(12)

where𝑢𝑖 is the acceleration, i.e., the same control input in the ITHA

representation, and

𝑢𝜏𝑖 (𝑡) =


1 𝜏𝑖 (𝑡) = left,

0 𝜏𝑖 (𝑡) = stay,

−1 𝜏𝑖 (𝑡) = right.

Note that it is more intuitive to define control invariant sets

over the local state space defined in (5) rather than in the global

state space of the global coordinates since safety depends only on

inter-vehicle distances. Thus, local reasoning is sufficient for the

proofs of this paper. However, to define the resets, local states are

not sufficient.

Let us define the following nearest leader of agent 𝑖 operator

𝐿𝑖 :
¯X𝑎 ×

⋃
𝑆⊂I ¯X𝑆 → I ∪ ∅. It is defined by the following simple

optimization:

𝐿𝑖 (𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈𝑆 ) = arg min

𝑗 ∈S\{𝑖 }
|𝑝𝑖 − 𝑝 𝑗 |

subject to 𝑝𝑖 ≤ 𝑝 𝑗
ℓ𝑗 = ℓ𝑖

(13)

In words, it finds the closest lead car within the set 𝑆 to agent 𝑖

on the same lane with it. Assuming that two cars cannot occupy

the same point on the highway (in this case, the same longitudinal

position and lane), the value of argmin will always be either a

singleton or the empty set. However, even if it is not a singleton,

picking any minimizer works for the purposes of the next lemma,

which relates the global states to individual (local) ones.

Lemma 2. There exists a unique mapping from the global state
{𝑥𝑖 } |I |𝑖=1

to the states {𝑥𝑖 } |I |𝑖=1
of the individual vehicles in the ITHA

representation.

Proof. To map the global state {𝑥𝑖 } |I |𝑖=1
to the ITHA states

{𝑥𝑖 } |I |𝑖=1
, consider the mapping for one agentH𝑖 :

𝑥𝑖 =




𝑣𝑖

∞
𝑣𝑚𝑎𝑥

 𝐿𝑖 = ∅


𝑣𝑖

𝑝𝐿𝑖 − 𝑝𝑖
𝑣𝐿𝑖

 otherwise

(14)

where 𝐿𝑖 is the abbreviation of 𝐿𝑖 (𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈I ). □

We define a localized version of the mapping (14), denoted

G𝑆 :
¯X𝑆 →

∏
𝑖∈𝑆 X𝑖 , to be the mapping when 𝐿𝑖 is taken to be

𝐿𝑖 (𝑥𝑖 , {𝑥 𝑗 } 𝑗 ∈𝑆 ). We denote by G𝑖
𝑆

:
¯X𝑆 → X𝑖 the component of G𝑆

corresponding to agentH𝑖 .

Now we will define the resolution functions 𝜌𝑖 :
¯X𝑔 × T1 × · · · ×

T|I | → 2
I
and reset maps 𝑅𝑖 :

¯X𝑔 × X𝑖 × U𝑖 × 2
I → 2

X𝑖
that

depend on the global quantities
3
. We have

𝜌𝑖 : ({𝑥𝑖 } |I |𝑖=1
, 𝜏1, · · · , 𝜏 |I |) ↦→

{ 𝑗 ∈ I | 𝜏 𝑗 ≠ stay, ℓ𝑗 = ℓ𝑖 , 𝑝 𝑗 ≥ 𝑝𝑖 }∪
{ 𝑗 ∈ I | 𝜏 𝑗 ≠ stay, ℓ𝑗 + 𝑢𝜏 𝑗 = ℓ𝑖 + 𝑢𝜏𝑖 , 𝑝 𝑗 + 𝑣 𝑗Δ𝑡 ≥ 𝑝𝑖 + 𝑣𝑖Δ𝑡}.

In words, the resolution function 𝜌𝑖 maps the global state and

the triggering actions to the set of all agents that use a non-null

triggering action that are on the same lane with agent 𝑖 and ahead of

it and those whose triggering action will put them on the same lane

with agent 𝑖 ahead of it in the next step. Then, the trivial resolution

over-approximation 𝜌𝑖 (𝑡) used in our experiments considers, in the

worst-case, all agents ahead of agent 𝑖 on the same lane at time 𝑡

and all agents that can be on the same lane with agent 𝑖 ahead of

it at time 𝑡 + 1. However, many of these combinations 𝑆 of reset-

triggering agents appearing as an output of 𝜌𝑖 (𝑡) lead to the same

reset value, as defined by:

𝑅𝑖 ({𝑥𝑖 } |I |𝑖=1
, 𝑥𝑖 , 𝑢𝑖 , 𝑆) = G𝑖𝑆′ ({ ¯𝑓𝑗 (𝑥 𝑗 , 𝑢 𝑗 , 𝑢𝜏 𝑗 )} 𝑗 ∈𝑆′),

where 𝑆 ′ = { 𝑗 ∈ I | ℓ𝑗 + 𝑢𝜏 𝑗 = ℓ𝑖 + 𝑢𝜏𝑖 , 𝑝 𝑗 + 𝑣 𝑗Δ𝑡 ≥ 𝑝𝑖 + 𝑣𝑖Δ𝑡}.
By construction, 𝜏 𝑗 = stay for 𝑗 ∈ 𝑆 ′ \ 𝑆 . Therefore, the triggering
actions of the agents in 𝑆 ′ ∩ 𝑆 is sufficient for estimating 𝑅𝑖 at time

𝑡 , in addition to the estimates of other arguments. Note that the

first set in the 𝜌𝑖 definition does not directly seem to contribute to

the reset map but it captures the agents leaving in front of agent 𝑖 ,

which in turn affect who the lead car will be in the next step. At

run-time, the local controller 𝛾𝑖 does not need the knowledge of

the entire global states but needs to know the lanes and relative

positions (𝑝𝑖 (𝑡) − 𝑝 𝑗 (𝑡)) and relative velocities (𝑣𝑖 (𝑡) − 𝑣 𝑗 (𝑡)) of
agents 𝑗 for which 𝑖 ∈ 𝜌 𝑗 (𝑡).
3
To be precise, the actual value the state is reset to, depends on the triggering actions,

states, and inputs of agents in 𝜌𝑖 rather than the agents’ indices as mentioned in

footnote 1.
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