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Summary

We propose a Multi-step Screening Procedure (MuSP) for the recovery of sparse linear mod-

els in high-dimensional data. This method is based on a repeated small penalty strategy

that quickly converges to an estimate within a few iterations. Specifically, in each iteration,

an adaptive lasso regression with a small penalty is fit within the reduced feature space

obtained from the previous step, rendering its computational complexity roughly compa-

rable with the Lasso. MuSP is shown to select the true model under complex correlation

structures among the predictors and response, even when the irrepresentable condition

fails. Further, under suitable regularity conditions, MuSP achieves the optimal minimax

rate (q log n/n)1/2 for the upper bound of l2-norm error. Numerical comparisons show that

the method works effectively both in model selection and estimation, and the MuSP fit-

ted model is stable over a range of small tuning parameter values, eliminating the need

to choose the tuning parameter by cross-validation. We also apply MuSP to financial data

and show that MuSP is successful in asset allocation selection.
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1 INTRODUCTION

Sparse recovery is of paramount interest in high-dimensional statistical problems where many predictors are available yet the regression function
is well approximated by a few relevant covariates. A seminal contribution to this endeavor, the Lasso (R. Tibshirani 1996) simultaneously performs
model selection and parameter estimation through regularization with a convex penalty. Now widely used for sparse recovery in practice, further
extensions of the Lasso have enhanced its applicability and offered some theoretical guarantees, for example, see Bühlmann and Van De Geer
(2011); Efron, Hastie, Johnstone, and Tibshirani (2004); Fan and Lv (2010); Friedman, Hastie, and Tibshirani (2010); Hastie, Tibshirani, and
Wainwright (2015); Meinshausen and Bühlmann (2006); Zhao and Yu (2006); Zou (2006).

Although convex regularization methods such as the Lasso are computationally attractive and enjoy great performance in prediction, they
also lead to biased estimates and require rather restrictive conditions on the design matrix to obtain model selection consistency. Nonconvex
penalization procedures such as SCAD (Fan & Li 2001), MCP (C.-H. Zhang 2010) and the Spike-and-Slab Lasso (SSL) (Ročková & George 2018)
have been proposed to lessen the bias. Multi-step methods do this too, including T. Zhang (2010) who proposed the Capped−l1 regularization,
leading to a multi-step convex relaxation scheme which is shown to obtain the correct feature set after a certain number of iterations. Zou and
Li (2008) proposed a unified algorithm based on the local linear approximation (LLA) for maximizing the penalized likelihood, presenting a one-
step low-dimensional asymptotic analysis for justification. Fan, Xue, and Zou (2014) provided a unified theory to show how to obtain the oracle
solution via LLA. The theoretical properties of LLA highly rely on the initial estimates. Bühlmann andMeier (2008) proposed a method called multi-
step adaptive lasso (MSA-Lasso), which updates the adaptive weights and re-estimates the entire set of regression coefficients at each iteration until
convergence. Huang and Zhang (2012) showed that, under certain conditions, the multi-step framework can improve the solution quality. Further
work focusing on multi-step methods includes Liu, Yao, and Li (2016); Wang, Kim, and Li (2013); C.-H. Zhang and Zhang (2012).
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In spite of the fact that most nonconvex penalties do not require the irrepresentable condition to achieve model selection consistency (Fan & Li
2001; C.-H. Zhang 2010), identifying the relevant predictors in the presence of highly collinear predictors may still present numerical challenges,
as shown in Sections 4 and 5. Indeed, nonconvex penalties can introduce numerical difficulties in fitting models, becoming less computationally
efficient than convex optimization problems.

The main thrust of this paper, is to propose a Multi-step Screening Procedure (MuSP), a simple multi-step method with the following
characteristics:

(1) MuSP applies a single small penalty parameter, which remains fixed throughout, to minimize bias at each iteration. At each step, the active
set is shrunk by deleting the “useless” variables whose coefficients have been thresholded to 0. When dealing with high dimensional data,
this strategy will start off with a large model with many possibly incorrect variables and iteratively distinguish the nonzeros from zeros.

(2) This backward deletion strategy of MuSP significantly reduces the execution time of the multi-step method. As will be seen in simulations,
the computational complexity of MuSP is roughly comparable to the solution path of Lasso.

(3) With an inherently small estimation error bound, MuSP successfully recovers the true underlying sparse model even when the irrepre-
sentable condition is relaxed. Indeed, MuSP remains effective even when the irrelevant variables are strongly correlated with the relevant
variables. Note that although many nonconvex methods do not require restrictive conditions on the design matrix in theory, they may still
have difficulty in selecting the right model with finite samples. MuSP is much better able to deal with such data.

(4) It is seen in simulations that the MuSP fitted model is stable over a range of small tuning parameter values, eliminating the need to choose
the tuning parameter by cross-validation. The solution of this method is both sparse and stable.

This paper is organized as follows. Section 2 presents the method and discusses its relationship to other methods. Section 3 shows its theoretical
properties. The simulations in Section 4 and application in Section 5 assess the performance of the proposed method and compare it with several
existing methods. Technical details are provided in the Supplemqentary Material.

2 METHOD

In this section, we present the details of the MuSP algorithm and compare it with existing methods. We consider the linear regression problem:
y = Xβ + ε,

where y is an n response vector, X is an n× p matrix, β is a vector of regression coefficients and ε is the error vector. We are particularly interested
in the case where the number of parameters greatly exceeds the number of observations (n � p). We consider the q-sparse model, where β has
at most q nonzero elements. Components of the error vector ε are independently distributed from N(0, σ2). The data and coefficients are allowed
to change as n grows; meanwhile, p and q are allowed to grow with n. For notational simplicity, we do not index them with n.

Recall that the Lasso estimator (R. Tibshirani 1996)minimizes squared error loss regularizedwith the l1-penalty. Compared to least squares, Lasso
shrinks a particular set of coefficients to zero while shrinking the others towards zero. These two effects, model selection and shrinkage estimation,
are controlled only by a single tuning parameter, leading to its well-known estimation bias. Although Zhao and Yu (2006) and Meinshausen and
Bühlmann (2006) proved that the Lasso is model selection consistent under an irrepresentable condition, the condition is, however, quite restrictive.
To mitigate these drawbacks, we propose MuSP with two goals in mind: 1) recovery of the true sparse model when the irrepresentable condition
fails; and 2) “almost unbiased estimation” by lowering the influence of the shrinkage penalty.

The essential idea behind MuSP is to provide more precise estimation through iterated penalization with a smaller tuning parameter that is less
influential at each step. More precisely, the MuSP Algorithm proceeds as follows.

• Initialize k = 1. Obtain a lasso solution β̂[1](λ0):
β̂[1] := argmin

{1

2
‖y −Xβ‖22 + λ0‖β‖

}
and let A[1] be the nonzero index set of β̂[1], i.e. A[1] = {j ∈ {1, ..., p} : β̂[1]

j 6= 0}.
• Repeat the following steps until convergence:

k ←− k + 1,

β̂[k] := argmin
β
(A[k−1])c=0

{1

2
‖y − Xβ‖2

2 + λ
∑

j∈A[k−1]

|βj/β̂
[k−1]
j |

}
,

where the active set A[k] is updated in every step, i.e. A[k] = {j ∈ {1, ..., p} : β̂[k]
j 6= 0}.
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At convergence, denote the active set by A and the solution by β̂. Note that the active sets obtained during the iterations are nested, i.e.
A[1] ⊇ A[2] ⊇ · · · ⊇ A[k] ⊇ · · · ⊇ A,

as in each iteration an adaptive lasso is fit using only the features selected by the previous step. This is key to control the computational time of
the algorithm as well as to maintain a rather small tuning parameter λ. We will provide more details on the choice of this small tuning parameter
in the theoretical results.

We use a simple example to demonstrate that many existing methods may not work as well as MuSP when irrelevant variables are highly
correlatedwith the relevant variables. Set (n, p) = (200, 400) and β with 4 nonzero entries. In this example there exists a variable which is irrelevant
but highly correlated with the relevant variables, hence the irrepresentable condition fails. Figure 1 shows eight methods’ (in)consistency in model
selection: MuSP, Lasso (R. Tibshirani 1996), LLA (Fan et al. 2014; Zou & Li 2008), MCP (C.-H. Zhang 2010), SCAD (Fan & Li 2001), Adaptive Lasso
(Zou 2006), OLS post Lasso (Belloni & Chernozhukov 2013) and Capped−l1 (T. Zhang 2010). As shown in Figure 1, except for MuSP, all other
methods pick up this irrelevant variable first and never shrink it back to zero. MuSP performs similarly when λ is large, but when λ is small, MuSP
obtains a stable, accurate estimates and selects the right model. More details of this data example with further comparisons can be found in the
simulation studies in Section 4.
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(a) MuSP
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(b) Capped−l1
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(c) LLA
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(d) Adaptive Lasso
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(e) Lasso
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(f) SCAD
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(g) MCP
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(h) OLS post Lasso

FIGURE 1 An example to illustrate eight methods’ (in) consistency in model selection. The solid lines stand for the relevant variables; the dashed
line stands for the variable which is irrelevant but highly correlated with the relevant variables; the dotted lines stand for other irrelevant variables.

2.1 Relationship to other methods

There are many widely used methods that estimate regression coefficients for sparse linear models well. In this section, we analyze the MuSP
solution and describe how our approach differs from these methods, more specifically, how MuSP can select the right model when there exist
strong correlations between the irrelevant and relevant variables.

This article is protected by copyright. All rights reserved.
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Normally, λ is the key to control the amount of regularization, but the proposed method intends to use the iterations to do the controlling rather
than using λ. Note for any y, X and λ, the solution of the kth iteration of MuSP is given by

β̂(A[k])c = 0 and β̂A[k] = (XT

A[k]XA[k] )
−1(XT

A[k]y −
λsA[k]

β̂
[k−1]

A[k]

),

where sA[k] is the vector of signs of β̂A[k] , and the equation on the right may be expressed as
β̂A[k] = β̂ols

A[k] −
λ(XT

A[k]XA[k] )−1sA[k]

β̂
[k−1]

A[k]

, (1)
where β̂ols

A[k] is the OLS estimator on the set A[k]. For j = 1, . . . , p, we make the following notes on the relevant and the irrelevant predictors
respectively:

• Assume βj = 0 and the first step of the MuSP algorithm (i.e. Lasso) did not shrink its estimate to zero. Reviewing the estimation properties
of the Lasso (Meinshausen & Yu 2009; Negahban, Ravikumar, Wainwright, & Yu 2012), under the restricted eigenvalue condition and the
proper choice of λ, this first iteration estimate is bounded by

|β̂[1]
j | = O((log p/n)1/2)

with high probability. At the same time, it is not difficult to verify that |β̂ols
j | has the same bound. According to (1), given λ, the penalty term

for the jth variable increases at the rate (n/ log p)1/2 while β̂ols
j is bounded by M(log p/n)1/2 with some positive constant M. Thus, the

associated variable will be deleted from the active set in a finite number of steps, which we have found is typically few.
• Assume βj 6= 0 satisfying the Beta-min condition for the nonzero coefficients (see (2) in the next section). Following the above argument,

there will be a gap between its estimate and 0. Since β̂ols
j is bounded away from zero and the penalty term will change little after several

iterations, the algorithm will stabilize when all the irrelevant variables have been deleted.
To explain the difference between our method and others, we consider two examples, MCP (C.-H. Zhang 2010) and LLA (Fan et al. 2014; Zou

& Li 2008) for illustration. For the MCP, the method essentially uses a large penalty for variables whose estimated coefficients are close to zero
and no penalty when the estimated coefficients are large. In the high-dimensional setting, however, by chance there often exist a few irrelevant
variables whose estimated coefficients are not close to zero, and this is especially the case when the irrelevant variables are strongly correlated
with the relevant variables. In practice, under such situations, a one-step procedure is often not sufficient to remove all irrelevant variables while
keeping all relevant variables. See Figure 1. LLA, on the other hand, is an iterative method, but in each iteration, the method deals with the entire
set of predictors, and since the number of irrelevant variables is always much larger than that of relevant variables, the iteration doesn’t really help
in terms of choosing an appropriate value of the tuning parameter in comparison with one-step methods, especially when irrelevant variables are
strongly correlated with relevant variables.

3 THEORETICAL RESULTS

We first define some notation.Without loss of generality, we assume the columns of X are standardized: XT1 = 0 and XT
j Xj/n = 1 for j = 1, . . . , p.

Let S ≡ {j ∈ {1, ..., p} : βj 6= 0}, |S| = q; let C = XTX/n, CSS = XT
S XS/n and CScS = XT

Sc XS/n. To state our theoretical results, we need the
following assumption.

(C.1) Restricted Eigenvalue (RE) condition: there exists a positive constant K2 that
vTCv > K2‖v‖22,

for all v ∈ G(S) where G(S) := {v ∈ Rp : ‖vSc‖1 6 3‖vS‖1}.
(C.1) is usually used to bound the l2-error between coefficients and estimates (Meinshausen & Yu 2009; Negahban et al. 2012), and is also the

least restrictive condition of similar types, e.g. the restricted isometry property (Candes & Tao 2007) and the partial Riesz condition (C.-H. Zhang
& Huang 2008). It has been proved that (C.1) holds with high probability for quite general classes of Gaussian matrices for which the predictors
may be highly correlated, in which case the irrepresentable condition or the restricted isometry condition may be violated with high probability
(Raskutti, Wainwright, & Yu 2010).

We consider the following dimensions, in particular p = O(exp(nc1 )) and q = O(nc2 ) where c2 < 1/3 and 0 6 c1 + c2 < 1. As a preparatory
result, the following proposition shows that the first step of MuSP selects an active set A[1] containing the true set with high probability.

This article is protected by copyright. All rights reserved.
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Proposition 1. Suppose (C.1) holds. Set λ0 = 4σ(n log p)1/2. Assume there exists a positive constant K1 such that
min
j∈S
|βj | > K1

√
qλ0/

√
n. (2)

Considering the first step of MuSP, β̂[1](λ0) and the corresponding set A[1], we have
P (S ⊆ A[1]) > 1− 1/p. (3)

REMARK 1. Note that (2) requires a small gap between βS and 0. It allows |βj| → 0 when n → ∞ but at a rate that can be distinguished.
This is a condition that has been frequently used in the literature for proving model selection consistency, e.g. Lasso (Zhao & Yu 2006), Capped-l1
(C.-H. Zhang 2010) and LLA for sparse linear regression (Fan et al. 2014).

REMARK 2. Since the first step estimator of MuSP is the Lasso, Proposition 1 can be seen as proving a property for the Lasso estimator. We
obtain this result by using the bound of l2-norm error between β and β̂[1], which is known from past work, e.g. Meinshausen and Yu (2009) and
Negahban et al. (2012). Proposition 1 supports the backward deletion strategy of MuSP, which removes the variables that do not belong to A[1]

as they are irrelevant with high probability.
REMARK 3. We set λ0 = 4σ(n log p)1/2, which is the same as that for Lasso in order to achieve the error bound, while Lasso’s model selection

consistency requires a larger tuning parameter, i.e. Kn(1+c4)/2 where c1 < c4. Hence when n is large, the estimation accuracy and selection
consistency cannot hold at the same time for Lasso. We solve this problem using an iterative strategy.

Now we show results on the error bound and the sign consistency of MuSP.
Theorem 1. Under the same conditions of Proposition 1. Set λ = 4σ(n log n)1/2. For c1 + c2 6 c3 < 1 and (1 + 3c2)/2 < c3, with probability at
least 1− 1/n, the following error bounds for the estimate β̂ hold,

‖β̂ − β‖2 6
8σ

K2 · K3

(q log n

nc3

)1/2,
‖β̂ − β‖1 6

32σ · q
K2 · K3

( log n

nc3

)1/2, (4)

where K3 < K1, K1 and K2 are defined in (2) and (C.1) respectively. Further, we have:
P (sign(β̂) = sign(β)) > 1− 1/n.

REMARK 4. Note that λ and λ0 have different orders under the assumption that p = O(exp(nc1 )). If we consider another high dimensional
setting, where p = O(n), by setting λ0 = λ = 4σ(n log n)1/2, we would have the same result as in Theorem 1. For simplicity, we use the same
value for λ0 and λ in simulation studies and empirical analysis.

REMARK 5. The error bound of MuSP in (4) is influenced by the adaptive penalty. We allow βj to converge to 0 in (2), e.g., there exists c3 such
that the lower bound of βj is n(c3−1)/2 for j ∈ S. As a consequence, nc3/2 dominates the denominator of the error bound of MuSP rather than n1/2.
When c3 is close to 1, the l2-norm error bound is close to the rate (q log n/n)1/2.

Considering the following dimensions: p = O(exp(nc1 )) and q = O(nc2 ) where 0 6 c1 + c2 < 1 and 0 < c1 < 1/3, Corollary 1 shows that the
l1-error and the l2-error of the MuSP estimator achieve the rate q(log n/n)1/2 and (q log n/n)1/2, respectively.
Corollary 1. Suppose (C.1) holds. For the nonzero coefficients, let c = minj∈S |βj| and assume 1/c <∞. Set λ = 4σ(n log n)1/2. With probability
1− 1/n, the following error bounds hold for β̂:

‖β̂ − β‖2 6
8σ

cK2

(q log n

n

)1/2,
‖β̂ − β‖1 6

32σ · q
cK2

( log n

n

)1/2. (5)
Further, we have:

P (sign(β̂) = sign(β)) > 1− 1/n.

REMARK 6. Corollary 1 sets a lower bound for βS where c is allowed to be any positive constant. This condition has also appeared frequently in
the literature, e.g. Huang, Ma, and Zhang (2008).

REMARK 7. Note the Gaussian assumption on the error term in the linear regression model can be relaxed by a subgaussian assumption.
Specifically, there exist constants K, k > 0 such that for i = 1, . . . , n,

P (|εi| > t) 6 Ke−kt
2
, ∀t > 0.

This article is protected by copyright. All rights reserved.
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4 SIMULATION STUDIES

In this section, we use simulation studies to demonstrate the performance of the proposed method: 1) the first part illustrates MuSP’s consistency
in model selection; 2) the second part compares the performance of the proposedmethodwith those of several existing methods, and also analyzes
the stability of MuSP with respect to the tuning parameter λ; and 3) the third part evaluates the computational time of different methods.

Of the existing methods that are compared with the proposed method, we choose three one-step methods, Lasso (R. Tibshirani 1996), SCAD
(Fan & Peng 2004) andMCP (C.-H. Zhang 2010), and four multi(two)-step methods, Adaptive Lasso (Zou 2006) (denoted as Alasso), OLS post Lasso
(denoted as Plasso) (Belloni & Chernozhukov 2013), Capped−l1 (T. Zhang 2010) and LLA (Fan et al. 2014; Zou & Li 2008). In addition, we also
compare with a Bayesian method, SSL (Ročková & George 2018). We use the R package SSLASSO to run SSL; results of MCP, SCAD and LLA are
obtained using the R ncvreg package (Breheny & Huang 2011), and results of other methods are based on the R glmnet package (Friedman et al.
2010).

We consider the following linear regression model for simulation studies
yi =

p∑
j=1

xijβj + εi, i = 1, . . . , n,

where xij are generated from a multivariate normal distribution N(0,Σ) and εi is generated from N(0, 1). Four regression coefficients are set
as nonzero, specifically (β2, β3, β4, βp) = (2, 4, 4, 4), and others are set to zero. We consider the case where some irrelevant variable is highly
correlated with the relevant variables. Specifically, we set

xi1 =
7

8
xip +

3

8
xi2 +

1

8
xi3 +

1

8
xi4 +

1

8
xi5 +

1

8
xi6 +

1

8
xi7 +

1

8
ei,

where ei is generated from N(0, 1). Denote the covariance matrix of the last (p− 1) variables as Σ−1. We consider two scenarios: (1) Σ−1 = I, and
(2) Σjj′ = 0.5|j−j′|, where j = 2, . . . , p.

In both scenarios, the RE condition (C.1) holds while the irrepresentable condition fails. Recall the irrepresentable condition states that: there
exists a positive constant η > 0 such that

‖CScSC
−1
SS sign(βS)‖∞ 6 1− η.

With XS = (X2,X3,X4,Xp) and XSc = (X1,X5, ...,Xp−1), it is not difficult to check that the irrepresentable condition does not hold. Figure 1 in
Section 2 shows the results from one typical simulation repetition when (n, p) = (200, 400) under scenario 1.

We compare both the estimation and selection performances of the nine methods mentioned above. The l2-norm (‖β̂ − β‖2) and the l1-norm
errors (‖β̂ − β‖1) are computed. We also report the estimated number of nonzero coefficients (NZ), as well as the false positive rate (FPR) and the
true positive rate (TPR), which are respectively defined as

FPR =
|j ∈ {1, ..., p} : β̂j 6= 0 and βj = 0|

|j ∈ {1, ..., p} : βj = 0|
,

TPR =
|j ∈ {1, ..., p} : β̂j 6= 0 and βj 6= 0|

|j ∈ {1, ..., p} : βj 6= 0|
.

4.1 Model selection

We consider three different dimensions, p=40, 400 and 4000, and n is fixed to be 200. Due to lack of space, we only show representative results
in the main manuscript and delay other results in the supplementary material. Specifically, Figure B1 shows the comparison between the proposed
MuSP, Capped-l1, LLA, MCP and SSL under Scenario 1, while Figure B2 shows the comparison between MuSP and Lasso, PLasso and SCAD under
Scenario 2. As we can see in Figure B1, when λ is large, the first 4 methods select the irrelevant variable X1 (as it is highly correlated with the
relevant variables and the response). When λ decreases, in the case of relatively low dimension (left column), LLA and MCP are able to shrink
the estimated coefficient for X1 to zero but at the same time select many other irrelevant variables; while in the case of relatively high dimension
(middle and right columns), LLA and MCP are not even able to shrink the estimated coefficient for X1 to zero. Capped-l1 performs slightly better
as it is able to shrink the estimated coefficient for X1 to zero in both low and high dimensional settings when λ is very small but at the same time
also selects many irrelevant variables. SSL chooses the correct model when p=40 and 400, however, when p becomes larger, SSL always selects
X1 as an important variable. As a comparison, MuSP chooses the exact correct model over a wide range of small values of λ in all settings.

The results in Figure B2 are similar as in Scenario 1: Lasso, PLasso and SCAD are able to shrink the estimated coefficient for X1 to zero when λ
is small and the dimension is relatively low, but at the same time select many other irrelevant variables, and completely fail to shrink the estimated
coefficient for X1 to zero when the dimension is relatively high. The proposed MuSP is again able to identify the correct model when λ is relatively
small in all three considered dimensional settings.

This article is protected by copyright. All rights reserved.
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TABLE 1 Performance comparison under Scenario 1.
Method l2-error l1-error NZ FPR TPR

(n, p) = (100, 50)
MuSP 0.19 ( 0.07 ) 0.33 ( 0.12 ) 4.00 ( 0.00 ) 0.00 ( 0.00 ) 1.00 ( 0.00 )
Lasso 2.05 ( 0.81 ) 2.16 ( 0.40 ) 19.47 ( 2.98 ) 0.34 ( 0.06 ) 1.00 ( 0.00 )
MCP 6.44 ( 0.12 ) 3.61 ( 0.06 ) 7.74 ( 1.22 ) 0.11 ( 0.02 ) 0.63 ( 0.13 )
SCAD 6.40 ( 0.11 ) 3.56 ( 0.06 ) 8.14 ( 1.29 ) 0.12 ( 0.03 ) 0.65 ( 0.12 )
SSL 0.31 ( 0.61 ) 0.73 ( 1.26 ) 9.94 ( 3.53 ) 0.13 ( 0.08 ) 1.00 ( 0.05 )
ALasso 0.38 ( 0.35 ) 0.79 ( 0.33 ) 5.56 ( 1.06 ) 0.03 ( 0.02 ) 1.00 ( 0.00 )
PLasso 1.13 ( 1.29 ) 1.46 ( 0.63 ) 8.46 ( 1.45 ) 0.10 ( 0.03 ) 0.99 ( 0.05 )
Capped-l1 2.05 ( 0.81 ) 2.16 ( 0.40 ) 19.47 ( 2.98 ) 0.34 ( 0.06 ) 1.00 ( 0.00 )
LLA 6.40 ( 0.11 ) 3.56 ( 0.06 ) 8.14 ( 1.29 ) 0.12 ( 0.03 ) 0.65 ( 0.12 )

(n, p) = (100, 200)
MuSP 0.25 ( 0.64 ) 0.44 ( 1.32 ) 4.02 ( 0.20 ) 0.00 ( 0.00 ) 1.00 ( 0.05 )
Lasso 3.50 ( 0.88 ) 7.66 ( 1.83 ) 21.53 ( 3.48 ) 0.09 ( 0.02 ) 1.00 ( 0.00 )
MCP 6.51 ( 0.70 ) 14.33 ( 1.65 ) 18.00 ( 2.66 ) 0.08 ( 0.01 ) 0.64 ( 0.13 )
SCAD 6.50 ( 0.22 ) 13.88 ( 0.74 ) 21.55 ( 3.73 ) 0.10 ( 0.02 ) 0.66 ( 0.12 )
SSL 2.77 ( 3.01 ) 6.41 ( 6.51 ) 24.88 ( 8.08 ) 0.11 ( 0.04 ) 0.88 ( 0.17 )
ALasso 1.19 ( 1.36 ) 2.23 ( 2.58 ) 5.11 ( 0.96 ) 0.01 ( 0.01 ) 1.00 ( 0.03 )
PLasso 4.89 ( 2.27 ) 9.66 ( 4.49 ) 6.01 ( 1.23 ) 0.02 ( 0.01 ) 0.76 ( 0.15 )
Capped-l1 3.50 ( 0.88 ) 7.66 ( 1.83 ) 21.53 ( 3.48 ) 0.09 ( 0.02 ) 1.00 ( 0.00 )
LLA 6.50 ( 0.22 ) 13.88 ( 0.74 ) 21.55 ( 3.73 ) 0.10 ( 0.02 ) 0.66 ( 0.12 )

We also want to note that, as one can see in both Figures B1 and B2, the MuSP solution is quite stable over a wide range of small values of λ.
This implies that MuSP requires little tuning, which is a convenient and useful property in practice and different from many other regularization
methods that require careful selection of the tuning parameter.

4.2 Performance comparison

We consider two settings, (n, p) = (100, 50) and (n, p) = (100, 200). While cross-validation is not needed for SSL, the tuning parameter for all
other methods is selected using 10-fold cross-validation. Each simulation is repeated 100 times. The results are summarized in Tables 1 and 2. It
can be seen that MuSP uniformly outperforms other methods in both estimation accuracy and model selection.

Figure 4 shows the estimation error of MuSP when λ varies under the same simulation setting of Table 2, i.e. Scenario 1 with (n, p) = (200, 40),
(200, 400) and (200, 4000) respectively. As one can see, the estimation error of MuSP is low and stable over a range of small λ values. The
results under Scenario 2 are similar and thus omitted. This implies that cross-validation may not be necessary for MuSP in practice; setting λ at
an appropriately small value often works well, for example, we found λ = (1/5)(n log n)1/2 is a reasonable choice after standardizing the design
matrix and the response variable.

4.3 Computational cost

To compare the computational cost of different methods, we considering the following settings: n = (100, 1000) and p =

(100, 1000, 10000, 100000) under Scenario 1. Each running time involves 100 different λ values covering a wide range. For MuSP, Lasso, ALasso,
LLA, Cappled-l1 andMSA, we used the R glmnet package (Friedman et al. 2010); for SSL, we used the SSLASSO package (Ročková & George 2018),
and for SCAD and MCP, we used the R ncvreg package (Breheny & Huang 2011).

Table 3 summarizes the results. As one can see, the computational cost of MuSP is in general larger than that of Lasso, but becomes more
comparable as both n and p increase. In comparison with non-convex one-step methods, including MCP and SCAD, MuSP is slower when n and p

are small, but faster when n and p are large. Further, the computational cost of MuSP is much lower than that of SSL and those of other multi(two)-
step methods, including the Adaptive Lasso, LLA, Capped-l1 and MSA; this is because the MuSP only deals with the high-dimensional data in the
first step, while other methods deal with the entire data set in every step.
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(i) LLA, p = 4000
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(l) MCP, p = 4000
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FIGURE 2 Results for Scenario 1 under three different dimensions. The dashed line corresponds to X1, which is irrelevant; the dotted lines
correspond to other irrelevant variables; the solid lines correspond to the relevant variables.
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(b) MuSP, p = 400
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(c) MuSP, p = 4000
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(d) Lasso, p = 40
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(f) Lasso, p = 4000
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(g) PLasso, p = 40
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(h) PLasso, p = 400
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(i) PLasso, p = 4000
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(j) SCAD, p = 40
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(k) SCAD, p = 400
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(l) SCAD, p = 4000

FIGURE 3 Results for Scenario 2 under three different dimensions. The dashed line corresponds to X1, which is irrelevant; the dotted lines
correspond to other irrelevant variables; the solid lines correspond to the relevant variables.
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TABLE 2 Performance comparison under Scenario 2.
Method l2-error l1-error NZ FPR TPR

(n, p) = (100, 50)
MuSP 0.22 ( 0.09 ) 0.37 ( 0.17 ) 4.00 ( 0.00 ) 0.00 ( 0.00 ) 1.00 ( 0.00 )
Lasso 1.82 ( 0.78 ) 4.91 ( 1.74 ) 25.87 ( 3.14 ) 0.48 ( 0.07 ) 1.00 ( 0.00 )
MCP 6.46 ( 0.19 ) 13.14 ( 0.50 ) 7.89 ( 1.52 ) 0.12 ( 0.03 ) 0.63 ( 0.13 )
SCAD 6.43 ( 0.17 ) 13.44 ( 0.50 ) 13.60 ( 2.35 ) 0.24 ( 0.05 ) 0.69 ( 0.11 )
SSL 0.23 ( 0.09 ) 0.43 ( 0.19 ) 5.67 ( 1.84 ) 0.04 ( 0.04 ) 1.00 ( 0.00 )
ALasso 0.61 ( 0.55 ) 1.15 ( 1.06 ) 4.88 ( 0.90 ) 0.02 ( 0.02 ) 1.00 ( 0.00 )
PLasso 1.14 ( 1.08 ) 2.63 ( 2.24 ) 9.18 ( 1.79 ) 0.11 ( 0.04 ) 0.99 ( 0.04 )
Capped-l1 1.82 ( 0.78 ) 4.91 ( 1.74 ) 25.87 ( 3.14 ) 0.48 ( 0.07 ) 1.00 ( 0.00 )
LLA 6.43 ( 0.17 ) 13.44 ( 0.50 ) 13.60 ( 2.35 ) 0.24 ( 0.05 ) 0.69 ( 0.11 )

(n, p) = (100, 200)
MuSP 0.28 ( 0.63 ) 0.49 ( 1.28 ) 4.01 ( 0.10 ) 0.00 ( 0.00 ) 1.00 ( 0.05 )
Lasso 2.96 ( 1.11 ) 2.67 ( 0.43 ) 33.50 ( 4.38 ) 0.15 ( 0.02 ) 1.00 ( 0.03 )
MCP 6.48 ( 0.12 ) 3.62 ( 0.05 ) 7.67 ( 1.74 ) 0.03 ( 0.01 ) 0.55 ( 0.10 )
SCAD 6.45 ( 0.12 ) 3.59 ( 0.05 ) 8.66 ( 2.24 ) 0.03 ( 0.01 ) 0.56 ( 0.10 )
SSL 1.55 ( 2.53 ) 3.24 ( 5.25 ) 9.73 ( 4.32 ) 0.03 ( 0.02 ) 0.93 ( 0.16 )
ALasso 0.89 ( 1.28 ) 1.14 ( 0.71 ) 6.57 ( 1.77 ) 0.01 ( 0.01 ) 1.00 ( 0.04 )
PLasso 2.01 ( 2.15 ) 1.95 ( 0.93 ) 10.43 ( 2.29 ) 0.03 ( 0.01 ) 0.95 ( 0.11 )
Capped-l1 2.96 ( 1.11 ) 2.67 ( 0.43 ) 33.50 ( 4.38 ) 0.15 ( 0.02 ) 1.00 ( 0.03 )
LLA 6.45 ( 0.12 ) 3.59 ( 0.05 ) 8.66 ( 2.24 ) 0.03 ( 0.01 ) 0.56 ( 0.10 )
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(c) (n, p) = (200, 4000)

FIGURE 4 Illustration of the stability of MuSP with respect to λ under Scenario 1.

5 EMPIRICAL ANALYSIS: INDEX TRACKING

In this section, we apply the proposed method to the important and useful index tracking problem in financial modeling. Roughly speaking, index
tracking aims to replicate the movement of a financial index using a small set of financial assets, e.g. stocks, and is the core of the index fund. This
is a high dimensional data modeling problem as the number of stocks that one can choose from is often on the order of hundreds or thousands,
while the number of observations (days) is on the order of tens or hundreds. Further, due to transactional cost, one only wishes to select a few
rather than many stocks (i.e. a sparse model) to mimic the behavior of the index.
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TABLE 3 Comparison of average running time in seconds
(n, p) Lasso MCP SCAD MuSP ALasso SSL LLA Capped-l1 MSA
(102, 102) mean 0.01 0.05 0.04 0.71 0.28 0.78 1.02 1.46 1.48

sd 0.01 0.01 0.01 0.02 0.03 0.09 0.41 0.26 0.24
(102, 103) mean 0.02 0.04 0.07 0.58 0.89 0.77 2.01 4.64 4.04

sd 0.01 0.01 0.01 0.02 0.07 0.42 0.14 0.75 0.87
(102, 104) mean 0.25 0.52 0.38 0.59 7.67 4.10 16.47 21.04 18.02

sd 0.02 0.04 0.03 0.04 0.42 1.58 1.44 2.65 3.76
(103, 103) mean 0.33 4.08 4.83 2.03 7.31 76.15 95.76 216.24 24.16

sd 0.02 0.60 0.58 0.09 0.51 3.57 6.13 53.04 4.84
(103, 104) mean 1.21 7.79 4.28 3.77 43.87 81.75 282.58 388.00 148.18

sd 0.17 0.70 0.29 0.17 1.67 17.72 36.03 46.56 6.15
(103, 105) mean 10.96 33.22 32.30 14.48 644.87 302.12 1387 1508 1535

sd 0.08 3.30 0.22 0.23 29.73 86.47 126 196 224

We consider the S&P500 index and the following model: yt =
∑p

j=1 βjxjt + εt, where yt denotes the return of the S&P500 index on day t, xjt

denotes the return of stock j on day t and βj is the weight of stock j. We consider 19 rolling periods from January 2016 till December 2017 and
divide each period into training (=100 days) and testing (=20 days) parts. The training period is used to select stocks and estimate the corresponding
βj’s and then the testing part is used to evaluate the performance.

We compare 4 methods, including MuSP, LLA, Capped-l1 and ALasso, as these four methods had better performances in simulation studies. To
measure the performance of different methods, we use the tracking error (Meade & Salkin 1989), which is a standard measure used in the financial
industry to assess the performance of tracking. It is defined as

TrackingErroryear = √252×
√∑

(errt −mean(err))2/(T − 1),

where errt = yt − ŷt, with yt and ŷt being the daily return of the index and the daily return of the constructed index on day t respectively.
We did not use the validation or cross-validation approach to select the tuning parameter; instead, we chose the tuning parameter for each

method such that the number of selected stocks is 20, which is often the way done in practice. Figure 5 shows the 19 tracking errors for both
training and testing sets over time. As can be seen, MuSP always produces lower and more stable errors than other methods, except for one rolling
period.
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FIGURE 5 Tracking errors for both training (left) and testing (right) sets by different methods.
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APPENDIX

A PROOF OF MAIN THEOREMS

Let vector β̂[1] be the solution to
β̂[1] := argmin

{1

2
‖y −Xβ‖22 + λ0‖β‖1

}
.

We set û[1] = n1/2(β̂[1] − β) and W = XTε/n1/2. Let û
[1]
S , β̂[1]

S , βS, WS and û
[1]
Sc , β̂[1]

Sc , βSc , WSc denote the S and Sc entries of û[1], β̂[1], β and W

respectively. We first provide the following lemma that shows û[1] ∈ G(S) needed for (C.1).
Lemma 1. Assume εi are i.i.d. Gaussian random variables with mean 0 and variance σ2, i = 1, . . . , n. Conditional on{

2‖W‖∞ 6
λ0

n1/2

}
,

we have
‖û[1]Sc‖1 6 3‖û[1]S ‖1.

Proof of Lemma 1. Based on the definition of β̂[1], we have the following inequality:
1

2
‖y −Xβ̂[1]‖22 + λ0‖β̂[1]‖1 6

1

2
‖y −Xβ‖22 + λ0‖β‖1.

We also have
‖β̂[1]‖1 = ‖β̂[1]

S ‖1 + ‖β̂[1]
Sc‖1

and
‖β̂[1]
S ‖1 + ‖β̂[1]

S − βS‖1 > ‖βS‖1.

By the three inequalities above, the following inequality holds:
‖X(β̂[1] − β)‖22 + 2λ0‖β̂[1]

Sc‖1 6 2εTX(β̂[1] − β) + 2λ0‖β̂[1]
S − βS‖1. (A1)

Further, conditional on {2‖W‖∞ 6 λ0/n1/2}, we have
2εTX(β̂[1] − β) 6 λ0‖β̂[1] − β‖1 = λ0‖β̂[1]

S − βS‖1 + λ0‖β̂[1]
Sc ‖1. (A2)

Combining (A1) and (A2), we have
‖X(β̂[1] − β)‖22 + 2λ0‖β̂[1]

Sc‖1 6 3λ0‖β̂[1]
S − βS‖1 + λ0‖β̂[1]

Sc‖1,

and hence
‖β̂[1]
Sc‖1 6 3‖β̂[1]

S − βS‖1.

Next we provide control on û[1], measured in l2-norm.

This article is protected by copyright. All rights reserved.
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Lemma 2. Assume εi are i.i.d. Gaussian random variables with mean 0 and variance σ2. Suppose (C.1) holds and set λ0/n1/2 = 4σ(log p)1/2.
Conditional on {2‖W‖∞ 6 λ0/n1/2}, we have with probability exceeding 1− 1/p:

‖û[1]‖2 6
12σ

K2
(q log p)1/2.

Proof of Lemma 2. According to the Gaussian tail bound, we have for t > σ,
P (|ε| > t) < exp(−

t2

2σ2
),

then we have the tail probability bound of W:
P
(
‖W‖∞ > 2σ(log p)1/2

)
< p · exp(−

4σ2 log p

2σ2
) =

1

p
.

Set
F (β) =

1

2
‖y −Xβ‖22 + λ0‖β‖1.

Define V(u) = F(β̂[1])− F(β). We have
V (u) =

1

2
uTCu− uTW + λ0

∑
j∈S

(∣∣∣βj + uj

n1/2

∣∣∣− |βj |)+ λ0
∑
j∈Sc

∣∣∣βj + uj

n1/2

∣∣∣. (A3)
The solution β̂[1] can, for each value of λ0, be written as β̂[1] = β + û[1]/n1/2, where

û[1] = argminV (u).

Since the value of the function V(u) is 0 when u = 0, it follows that V(û[1]) 6 0. For the first term on the right hand of (A3), according to (C.1) and
Lemma 1, the following inequality holds:

1

2
(û[1])TCû[1] >

K2

2
‖û[1]‖22.

Then we have for u satisfying (C.1) that
V (u) >

K2

2
‖u‖22 − uT

SWS −
λ0

n1/2
‖uS‖1 +

[ λ0

n1/2
− ‖WSc‖∞

]
‖uSc‖1.

By λ0/n1/2 = 4σ(log p)1/2 and conditional on {2‖W‖∞ 6 λ0/n1/2}, we have{
2‖WS‖2 6 q1/2

λ0

n1/2

}
.

Then it is straightforward to see that
K2

2
‖u‖22 − uT

SWS −
λ0

n1/2
‖uS‖1 > ‖uS‖2

{
K2

2
‖u‖2 −

3

2
q1/2 ·

λ0

n1/2

}
and [ λ0

n1/2
− ‖WSc‖∞

] ∑
j∈Sc

|uj | > 0.

The two inequalities above imply that when
‖û[1]‖2 >

3λ0q1/2

K2n1/2
=

12σ

K2
(q log p)1/2,

we have V(û) > 0, which implies that the minimum of V(u) is not attained. Hence,
‖û[1]‖2 6

12σ

K2
(q log p)1/2.

The following result shows that the initial step of the algorithm (i.e. Lasso) would not shrink the estimate of the nonzero coefficients to zero
with high probability.
Proof of Proposition 1. According to Lemma 1 and Lemma 2, we have with probability 1− 1/p:

‖β̂[1] − β‖2 6
12σ

K2
(q log p/n)1/2.

The bound on the l2-norm implies trivially the same bound on the l∞-norm between β̂[1] and β. When (2) holds, since p = O(exp(nc1 )) and
q = O(nc2 ) where c1 + c2 < 1, it implies for j ∈ S, sign(β̂[1]

j ) = sign(βj). Then we have
P (S ⊆ A[1]) > 1− 1/p.
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Proof of Theorem 1. We begin by stating the uniqueness of the Lasso solution. The sufficient condition for uniqueness has appeared many times
in the literature, e.g. Candès and Plan (2009); R. J. Tibshirani (2013); Wainwright (2009). We summarize the result as the following: For any y, X

and λ > 0, if the predictor matrix X is drawn from a continuous probability distribution, then the Lasso solution is unique and the solution has at
mostmin{n, p} nonzero components. Hence after the first step of the algorithm, we have |A[1]| 6 n and with probability at least 1− 1/p that

(β̂[2] − β)XTε = (β̂
[2]

A[1] − βA[1] )X
T

A[1]ε.

By WA[1] = XT

A[1]ε/n1/2, we have
P (‖WA[1]‖∞ > 2σ(logn)1/2) < n exp(−

4σ2 logn

2σ2
) = 1/n.

By λ/n1/2 = 4σ(log n)1/2, with probability at least 1− 1/n, we have
2‖WA[1]‖∞ 6 λ/n1/2.

We now consider the estimate of the second step of the algorithm:
β̂[2] := argmin

β
(A[1])c

=0

{1

2
‖y −Xβ‖22 + λ

∑
j∈A[1]

|βj/β̂
[1]
j |
}
.

Set û[2] = n1/2(β̂[2]−β). We first prove û[2] ∈ G(S) of (C.1). Following the same arguments as the proof of Lemma 1, the following inequalities hold:
1

2
‖y −Xβ̂[2]‖22 + λ

∑
j∈A[1]

∣∣∣ β̂[2]
j

β̂
[1]
j

∣∣∣ 6 1

2
‖y −Xβ‖22 + λ

∑
j∈A[1]

∣∣∣ βj
β̂
[1]
j

∣∣∣
and

‖X(β̂[2] − β)‖22 + 2λ
∑

j∈A[1]/S

∣∣∣ β̂[2]
j

β̂
[1]
j

∣∣∣ 6 2εTX(β̂[2] − β) + 2λ
∑
j∈S

∣∣∣ β̂[2]
j − βj

β̂
[1]
j

∣∣∣. (A4)
By Lemma 2, the following inequality holds with probability at least 1− 1/p:

‖β̂[1] − β‖2 6
12σ

K2
(
q log p

n
)1/2

and when n is large, we have
max
j /∈S
|β̂[1]
j | < 1.

Further, conditional on {β̂[2]

(A[1])c
= β(A[1])c = 0} and {2‖WA[1]‖∞ 6 λ/n1/2}, we have

2εTX(β̂[2] − β) 6 λ‖β̂[2] − β‖1

= λ‖β̂[2]
S − βS‖1 + λ‖β̂[2]

A[1]/S
‖1

<
λ

max
j/∈S
|β̂[1]

j |

(
‖β̂[2]

S − βS‖1 + ‖β̂[2]

A[1]/S
‖1

)
. (A5)

Combining (A4) and (A5) yields
λ

max
j/∈S
|β̂[1]

j |
‖β̂[2]

j∈A[1]/S
‖1 6 2λ

∑
j∈A[1]/S

∣∣∣ β̂[2]
j

β̂
[1]
j

∣∣∣− λ

max
j/∈S
|β̂[1]

j |
‖β̂[2]

A[1]/S
‖1

6
λ

max
j/∈S
|β̂[1]

j |
‖β̂[2]

S − βS‖1 + 2
λ

min
j∈S
|β̂[1]

j |
‖β̂[2]

S − βS‖2.

According to (2) and the l∞-norm bound on the difference between β̂[1] and β, when n is large, we have
λ

min
j∈S
|β̂[1]
j |

<
λ

max
j /∈S
|β̂[1]
j |

and the following inequality holds:
‖β̂[2]
Sc‖1 6 3‖β̂[2]

S − βS‖1. (A6)
By û[2] = n1/2(β̂[2] − β), (A6) implies ‖û[2]

Sc ‖1 6 3‖û[2]
S ‖1. According to (C.1), we have

(û[2])TCû[2] > K2‖û[2]‖22.

Using the similar notation of Lemma 2, the solution β̂[2] can be written as β̂[2] = β + û[2]/n1/2, where
û[2] = argminV (uA[1] , 0)
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and with uA[1] satisfying (C.1), we have
V(uA[1] , 0) =

1

2
uT

A[1]CuA[1] − uT

A[1]WA[1] + λ
∑

j∈A[1]

(|βj +
ûj

n1/2
| − |βj|)/|β̂

[1]
j |

> L1 + L2,

where
L1 =

K2

2
‖uA[1]‖2

2 − uT
S WS −

λ

n1/2

‖uS‖1

min
j∈S
|β̂[1]

j |
,

L2 =
λ

n1/2

‖uA[1]/S‖1

max
j/∈S
|β̂[1]

j |
− uT

A[1]/S
WA[1]/S.

Again, with probability 1− 1/p we have
n1/2‖β̂[1] − β‖2 6

12σ

K2
(q log p)1/2.

According to (2), there exists a constant 0 < K3 < K1 such that, for c1 + c2 6 c3 and j ∈ S,
|β̂[1]
j | > K3n

(c3−1)/2

and for i /∈ S,
|β̂[1]
j | 6

12σ

K2
(
q log p

n
)1/2.

Hence with λ/n1/2 = 4σ(log n)1/2 and {‖WA[1]‖∞ 6 2σ(log n)1/2}, we have
L1 >

K2

2
‖uA[1]‖2

2 − 2σ(q log n)1/2‖uS‖2 −
4σ

K3
(q · n1−c3 log n)1/2‖uS‖2

2

> ‖uS‖2
2

{K2

2
‖uA[1]‖2 − 2σ(q log n)1/2 −

4σ

K3
(q · n1−c3 log n)1/2

}
and

L2 >
(K2

3
·
(n logn

q log p

)1/2
− 2σ(logn)1/2

)
· ‖ûA[1]/S‖1 > 0.

Following the arguments as the proof of Lemma 2, when
‖û[2]
A[1]‖2 >

8σ

K2 ·K3
(q · n1−c3 logn)1/2,

it implies V(uA[1] , 0) > 0, and we have V(û
[2]

A[1] , 0) 6 0. Hence, with probability at least 1− 1/n, we have
‖û[2]‖2 6

8σ

K2 ·K3
(q · n1−c3 logn)1/2. (A7)

According to (2), following the arguments as the proof of Proposition 1, we have
S ⊆ A[2]. (A8)

Similarly, one can prove that (A7) and (A8) hold at the (k+ 1)th step when they hold at the kth step. Thus, by induction, they hold for k = 2, 3, . . . .
When the iteration converges, denote the set that A[k] converges to as A, and β̂ is written as β̂ = β + û/n1/2 where

û = argminV (uA, 0)

and
‖û‖2 6M,

where M = (8σ/K2K3)(q · n1−c3 log n)1/2. Then according to c3 > (1 + 3c2)/2 and c2 < 1/3, the following inequalities hold uniformly over
{u ∈ Rp : ‖u‖2 6 M, uSc 6= 0},

V(u)− V(uS, 0) > uT
S CSSc uSc + uT

Sc CScSc uSc − uT
Sc WSc + λ

∑
j∈Sc

uj

M

>
∑

j∈A/S

|uj|
(
λ/M− ‖WA‖∞ − q1/2‖uS‖2

)
>
∑

j∈A/S

|uj|
(
λ/M− 2σ(log n)1/2 − q1/2M

)
> 0. (A9)

Since V(0) = 0, (A9) implies that the minimum of V(u) cannot be attained at any u satisfying uSc 6= 0. Thus we have
P (sign(β̂) = sign(β)) > 1− 1/n→ 1 as n→∞
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and with probability at least 1− 1/n,
‖β̂ − β‖2 6

8σ

K2 ·K3

( q logn
nc3

)1/2
.

Note that ‖β̂ − β‖1 6 4‖β̂S − βS‖1 6 4q1/2 · ‖β̂S − βS‖2, then with probability 1− 1/n, we have
‖β̂ − β‖1 6

32σ · q
K2 ·K3

( logn
nc3

)1/2
.

Proof of Corollary 1. We omit the discussion about the first step estimation and directly consider the estimate of the second step. Following the
arguments as the proof of Theorem 1, the solution β̂[2] can be written as β̂[2] = β + û[2]/n1/2, where

û[2] = argminV (uA[1] , 0)

and
V(uA[1] , 0) > L1 + L2, (A10)

when n is large enough and where
L1 =

K2

2
‖uA[1]‖2

2 − uT
S WS −

λ

n1/2

‖uS‖1

c
,

L2 =
λ

n1/2
·
‖uA[1]/S‖1

max
i/∈S
|β̂[1]

i |
− uT

A[1]/S
WA[1]/S.

This is because c is a positive constant and we have
‖β̂[1] − β‖2 6

12σ

K2

( q log p
n

)1/2
→ 0 as n→∞.

Set λ = 4σ(n log n)1/2. We have L2 > 0 and
L1 > ‖uS‖2

{K2

2
‖uA[1]‖2 − 2σ(q logn)1/2 −

4σ

c
(q logn)1/2

}
.

For V(u
[2]

A[1] , 0) 6 0, we have with probability 1− 1/n,
‖û[2]‖2 6

8σ

cK2
(q logn)1/2.

Hence
‖β̂[2] − β‖2 6

8σ

cK2

( q logn
n

)1/2 (A11)
and

S ⊆ A[2]. (A12)
By induction, (A11) and (A12) hold for k = 2, 3, . . . . When the iteration converges, β̂ satisfies

‖β̂ − β‖2 6
8σ

cK2

( q logn
n

)1/2
and

‖β̂ − β‖1 6
32σ · q
cK2

( logn
n

)1/2
.

Write β̂ as β̂ = β + û/n1/2 where
û = argminV (uA, 0).

Set M = (8σ/cK2)(q log n)1/2. According to 0 < c2 < 1/3, the following inequalities hold uniformly over {u ∈ Rp : ‖u‖2 6 M, uSc 6= 0},
V(u)− V(uS, 0) > uT

S CSSc uSc + uT
Sc CScSc uSc − uT

Sc WSc + λ
∑
j∈Sc

uj

M

>
∑

j∈A/S

|uj|
[
λ/M− 2σ(log n)1/2 − q1/2M

]
> 0.

It follows that the minimum of V(u) cannot be attained at any u satisfying uSc 6= 0. Then we have
P (sign(β̂) = sign(β)) > 1− 1/n→ 1 as n→∞.
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B ADDITIONAL SIMULATION RESULTS

Figure B1 shows the comparison of the proposed MuSP with Lasso, PLasso and SCAD under Scenario 1, and Figure B2 shows the comparison of
the proposed MuSP with Capped-l1, LLA, MCP and SSL under Scenario 2.
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(g) PLasso, p = 40
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(h) PLasso, p = 400
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(i) PLasso, p = 4000
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(j) SCAD, p = 40
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(k) SCAD, p = 400
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(l) SCAD, p = 4000

FIGURE B1 Results under Scenario 1 for three different dimensions. The dashed line corresponds to X1, which is irrelevant; the dotted lines
correspond to other irrelevant variables; the solid lines correspond to the relevant variables.
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(d) Capped-l1, p = 40
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(e) Capped-l1, p = 400
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(f) Capped-l1, p = 4000
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(g) LLA, p = 40
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(h) LLA, p = 400
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(i) LLA, p = 4000
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(j) MCP, p = 40
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FIGURE B2 Results under Scenario 2 for three different dimensions. The dashed line corresponds to X1, which is irrelevant; the dotted lines
correspond to other irrelevant variables; the solid lines correspond to the relevant variables.This article is protected by copyright. All rights reserved.
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