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We consider comparative effectiveness research (CER) from observational data
with two or more treatments. In observational studies, the estimation of causal
effects is prone to bias due to confounders related to both treatment and out-
come. Methods based on propensity scores are routinely used to correct for such
confounding biases. A large fraction of propensity score methods in the current
literature consider the case of either two treatments or continuous outcome.
There has been extensive literature with multiple treatment and binary outcome,
but interest often lies in the intersection, for which the literature is still evolv-
ing. The contribution of this article is to focus on this intersection and compare
across methods, some of which are fairly recent. We describe propensity-based
methods when more than two treatments are being compared, and the outcome
is binary. We assess the relative performance of these methods through a set of
simulation studies. The methods are applied to assess the effect of four com-
mon therapies for castration-resistant advanced-stage prostate cancer. The data
consist of medical and pharmacy claims from a large national private health
insurance network, with the adverse outcome being admission to the emergency
room within a short time window of treatment initiation.
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1 INTRODUCTION

Comparative effectiveness research (CER) assesses alternative interventions for a particular clinical condition.1 Random-
ized clinical trials are the gold standard for CER, but real-world evidence when drugs are released into the market is
increasingly being used to make health care decisions.2 CER for such observational data requires statistical methods for
causal inference that control for confounding variables. The current literature on these methods largely focuses on two
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treatments and continuous outcomes,3,4 but often interest lies in comparing more than two treatments and outcomes are
binary, for example, the occurrence of an event.5 We compare here causal inference methods when the outcome is binary
and there are more than two treatments.

Our motivating study concerns men who used at least one of four commonly prescribed drugs (docetaxel, abiraterone,
enzalutamide, sipuleucel-T) as a first-line therapy for metastatic castration-resistant prostate cancer (mCRPC). These four
drugs have increased survival for mCRPC patients in individual studies.6-9 We are interested in evaluating the possible
adverse effects of these drugs, by comparing patients’ risk of experiencing at least one emergency room (ER) visit shortly
after treatment initiation. Data are from the Optum Clinformatics Data Mart, a national private health insurance network.

In observational studies, the estimation of causal effects is prone to bias due to confounders related to both treatment
and outcome. Methods to correct for this bias can be classified into two broad categories. The traditional approach is to
model the multiple regression of the outcome on the treatment and measured potential confounders. This approach is
vulnerable to misspecification of the regression model. An alternative approach is to model the propensity score, defined
as the probability of being assigned to the treatment given a set of potential confounders. The treatment effect is then
estimated by matching,10,11 weighting,3,12-14 stratification,3,10,15 or regression16,17 on the estimated propensity scores. This
method was introduced by Rosenbaum and Rubin,10 who showed that propensity scores have a balancing property, such
that the conditional distribution of the potential confounders given the balancing scores are the same for treated and
control. This property implies that propensity score methods provide some protection against misspecification of the
outcome models. However, propensity score models are still required to be correctly specified.

Methods based on the propensity score were initially developed for comparing two treatments 10,11,15,18-20, and then
extended to the case of more than two treatment groups using generalized propensity scores (GPS),21,22 which consist of
the vector of conditional probabilities of being assigned to each treatment. However, propensity score methods become
more complex as the number of compared treatments increases, and the relative performance of propensity score methods
is much less studied than the two-treatment group case 13,23-26.

Matching is the most common propensity score method for two treatments.27 There are a variety of matching algo-
rithms (eg, nearest neighbor matching, full matching) corresponding to different causal estimands.28 With more than two
treatments, the number of subjects that can be matched goes down as the number of treatment groups increases, and the
complexity of the matching algorithm increases. Propensity score matching methods for multiple treatment comparison
built upon the framework of conventional matching methods include common-referent matching29 and “within-trio”
matching.30 In general, the study population of these methods consists of those receiving the reference treatment. By con-
trast, the method of matching with replacement24,25,31 yields inferences for the overall population (ie, population of those
receiving any of the treatment under comparison).

Abadie and Imbens31 proposed a matching procedure that uses a fixed number of matches and allows each unit to be
matched more than once, a method we label AI-type matching. They derived the large sample properties of the AI-type
matching estimators and proposed an estimator for the asymptotic variance. Yang et al24 extended AI-type matching
procedures to the multiple treatment case by matching on a scalar function of the GPS. Applications of these methods
to real studies appear limited.32 More common applied approaches include combining therapies with similar features as
a single group and then applying propensity score matching developed for binary treatment,33-35 or conducting pairwise
analysis, ignoring individuals not assigned to one of the treatment pair being compared.36

Propensity score weighting methods are more easily extended to the multiple treatment setting.37 The asymptotic
distributions of the weighting-based estimators can be characterized using the theory of M-estimation,38 which yields
estimated standard errors that incorporate the uncertainty associated with the estimation of propensity scores. A common
weighting scheme is to weight units in one group by their inverse probability of being in that group (IPW). Evaluations
of IPW are mainly confined to the two treatment setting, and suggest that the estimator is sensitive to extreme weights
and can have high variability.3,24,39

An important extension of IPW is the augmented inverse probability weighting (AIPW), where the IPW estimator
is augmented using predictions from an outcome regression (OREG) model. To implement AIPW method in a multiple
treatment setting, one can first obtain the estimated GPS, possibly from a multinomial logistic regression model, and then
the predicted outcomes for each treatment group from outcome models that describe the conditional expectation of the
outcome variable given measured covariates and treatment status. The resulting estimator is known as having a double
robustness (DR) property such that the estimator remains consistent as long as either the propensity score model or the
outcome model is correctly specified. AIPW estimator is asymptotically efficient within a broad class of estimators that
includes the IPW estimator.37 Lunceford and Davidian reviewed the theoretical properties of IPW, AIPW, and several other
propensity score weighting estimators in the context of two treatments and continuous outcome.3 Simulation studies
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indicated that weighting-based methods with correct propensity score modeling produced approximately unbiased point
estimates, and AIPW was more precise than IPW for sample sizes as small as 1000.

Other hybrid methods include OREG models weighted by inverse probability40 and postmatching sample adjusted
using overlap weights (OWs).14 A multiple imputation-based approach called penalized spline of propensity methods for
treatment comparison (PENCOMP), proposed by Zhou et al,17 estimates causal effects by imputing the missing potential
outcomes from a regression model for the outcome that incorporates splines of propensity scores as predictors. PENCOMP
was developed and evaluated in the context of two treatments and a continuous outcome, but is extended here to the case
with multiple treatments and binary outcome.

Studies of comparative effectiveness with continuous outcomes typically report an estimate of the average treatment
effect (ATE), which is the difference in average outcome if individuals were all assigned the treatment and the average
outcome if all the individuals were assigned the comparator treatment.41 In this article, we measure treatment effective-
ness by the risk difference,42,43 which is a measure of the ATE for a binary outcome, where the average outcome is the
proportion of successes.

In Section 2, we provide more detail on several of these methods. In Section 3, we describe simulation studies that
compare the finite sample performance of these methods. In Section 4, we apply the methods to estimate comparative
effectiveness of four common therapies for mCRPC patients, using claims data from the Optum Clinformatics Data Mart,
with the outcome being admission to the ER within a short time window of treatment initiation. Conclusions and topics
for future research are given in Section 5.

2 NOTATION AND SETUP

2.1 Estimands of interest

Suppose an observational study of J treatments is carried out on a sample of n individuals from a target popu-
lation. For individual i, let Y i(z), z = 1, · · ·, J, denote the potential outcome if assigned treatment z, Zi denote
the treatment actually assigned, and X i denote a set of baseline covariates. The hypothetical complete data con-
sist of {X i, Zi, Y i(1), · · ·, Y i(J), i = 1, · · ·, n}, the observed data consist of {X i, Zi, Y i(Zi), i = 1, · · ·, n}, and the outcomes
{Y i(z), z≠Zi} are missing, as in the potential outcome framework.41 For each pair (z, z′) of treatments, we seek to estimate
the ATE,

𝜏ATE(z, z′) = E[Y (z′) − Y (z)],

where the expectation is over the population of interest. When Y is binary, the ATE is the risk difference

𝜏ATE(z, z′) = pr{Y (z′) = 1} − pr{Y (z) = 1}.

In addition to risk difference, one can also consider estimands on multiplicative scale for treatment group z, such as
causal odds ratio pr{Y (z) = 1}pr{Y (J) = 0}/pr{Y (z) = 0}pr{Y (J) = 1} and relative risk pr{Y (z) = 1}/pr{Y (z) = 0}, where J is
the reference group. We focus on the additive scale primarily for two reasons. The first is that the ratio-scale estimands
can be derived using the counterfactual probabilities we estimate in each treatment group. The second is that the additive
scale is more relevant to evaluating interventions as it directly yields the number of cases/deaths prevented by using one
treatment as opposed to another.

For a study with binary treatments, one quantity of possible interest is the average treatment effect on the treated
(ATT), which refers to the treatment effect averaged across the group of individuals who received the treatment. When
there are more than two treatment groups under comparison, one common way to define the ATT is to specify a reference
group (Z = z*), possibly the one with the smallest sample size or of the greatest clinical interest.25 The ATT is defined as
𝜏ATT(z, z′) = E[Y (z′)−Y (z)|Z = z*], where z* is not necessarily the same as z or z′. This implies that one can compare any
treatment pair (z, z′) on any subpopulation, in this case, those who received treatment z*.

A more general form of ATE is the weighted ATE14,44:

𝜏∗ATE(z, z′) =
∫ w(x)E[Y (z′) − Y (z)|X = x]f (x)dx

∫ w(x)f (x)dx
,
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where f (x) is the density function of the covariates X and w(x) is a prespecified function of x. Different choices of w(⋅)
yield the ATE for different target populations, as discussed further in Section 4.2.

Note that 𝝉ATE(z, z′) is equivalent to 𝜏∗ATE(z, z′) if w(x) = 1, or if the treatment effect conditional on
x, E[Y (z′)−Y (z)|X = x], is the same for all x (ie, homogeneous), an unlikely event. When the treat-
ment effect is heterogeneous, the ATE should always be defined with respect to a clearly specified study
population.

2.2 Assumptions

In an observational study where treatment is not randomly assigned, valid inferences for the ATE require some standard
assumptions:

Assumption 0. The individuals in the study are randomly sampled from the population.

Assumption 1. (stable unit treatment value assumption, or SUTVA). For any individual i, i = 1, · · ·, n, if Zi = z, then
Y i = Y i(z), for all z∈ {1, · · ·, J}.

Assumption 2. (strong unconfoundedness). Assignment to treatment Z is strongly unconfounded if Zi ⫫
(Y i(1), · · ·, Y i(J)) | X i, for all z∈ {1, · · ·, J}.

Assumption 3. (overlap). For all values of z and x, 0< ez(x)< 1, where ez(x)≡ pr(Zi = z|x) is the GPS.21

SUTVA states that the potential outcomes of one unit are not affected by the treatments received by other units, and
there are no hidden treatment versions.45 Strong unconfoundedness and overlap are an extension of the strong ignor-
ability assumption in Rosenbaum and Rubin10 to the case of multiple treatments. In some cases, a weaker version of
unconfoundedness is sufficient for identifying the causal effect,21,24 namely

Assumption 2*. (weak unconfoundedness). Assignment to treatment Z is weakly unconfounded if Di(z)⫫Y i(z) ∣ X i, for
all z∈ {1, · · ·, J}.

Weak unconfoundedness only requires pairwise independence for each treatment rather than the independence
between treatment assignment and the whole vector of potential outcomes. As commented by Imbens,21 though
Assumption 2* is more relaxed in its form than Assumption 2, their difference has limited practical implications. Under
these assumptions, the differences in outcomes among the treatment groups has a causal interpretation with respect to
the target population.

3 GPS AND ITS ESTIMATION

An important tool in comparing causal treatment effects of J treatment groups is the vector of GPS, denoted as
e(X i)≡ {e1(X i), · · ·, eJ − 1(X i)}T , where ez(x)≡ pr(Zi = z|x). In an observational study, the treatment assignment mechanism
is unknown and therefore e(X i) needs to be estimated from the observed data. A common approach is to fit a multinomial
logistic regression model for the treatment received as a function of the covariates, that is, to assume that

log
pr(Zi = z|Xi)
pr(Zi = J|Xi)

= XT
i 𝜷z, (1)

where z = 1, · · ·, J − 1, and X i includes an intercept term. The corresponding estimated GPS, denoted as GLMPS, is then

ez,GLMPS(Xi; 𝜷z) =
exp(XT

i 𝜷z)

1 +
J−1∑
j=1

exp(XT
i 𝜷 j)

for z = 1, · · ·, J − 1, where 𝜷z is the maximum likelihood estimate of 𝜷z. For z = J, the reference group, we replace the
numerator by 1.
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Even moderate misspecification of the functional form for (1) may result in substantial bias in the estimates of treat-
ment effects.46 Imai and Ratkovic proposed the covariate balancing propensity score (CBPS) for the comparison of two
groups and provided an extension to the multiple treatment case.47 CBPS exploits the covariate balancing property of
the GPS (ie, X i ⫫Di(z) ∣ ez(X i) for z = 1, · · ·, J21) by computing generalized method of moments estimates based on the
covariate balancing moment conditions,

E
{

Di(z + 1)Xi

ez+1(Xi)
− Di(z)Xi

ez(Xi)

}
= 0,

and the moment conditions derived from the score functions of a multinomial logistic model under the likelihood
framework,

E
{

Di(z)
ez(Xi)

⋅
𝜕ez(Xi)
𝜕𝜷T

}
= 0,

for z = 1, · · ·, J. The CBPS is called just-identified if the model only uses the covariate balancing conditions and
overidentified if both conditions are used in the estimation step. These two types of CBPS have different asymp-
totic and finite sample properties, and the authors examined both types of scores in their simulation studies.47

They showed that the use of CBPS, regardless of which conditions were involved, can improve the precision and
reduce bias of some common weighting estimators (eg, IPW and AIPW) compared with using propensity score esti-
mated by GLM when both propensity score and outcome models were misspecified. In our study, we only evaluate
the just-identified CBPS, because of computational limitations. The CBPS method can be implemented through the
R package CBPS.48

4 METHODS FOR ESTIMATING THE ATE

4.1 Matching methods based on the propensity scores

The AI-type matching methods31 can be regarded as a group-by-group imputation procedure. The missing outcome Y i(z),
z≠Zi, is imputed by the observed outcome Y k(i, z) for one of the units k(i, z) in the set of units, say S(z), assigned to
treatment z. That is, the observed or imputed outcome for unit i is

Ŷi(z) =

{
Yi, if Zi = z

Yk(i,z), if Zi ≠ z
.

The matched unit k(i, z) is chosen to be the closest to unit i in S(z) with respect to a matching metric m based on the
values of X . That is, m(X i, Xk(i, z))≤m(X i, X l) for all l∈ S(z). The matches are with replacement, so units in the matching
set S(z) can be reused. The resulting estimate of the ATE comparing treatments z and z′ is

𝜏ATE(z, z′) = n−1
n∑

i=1
{Ŷi(z) − Ŷi(z′)}.

The SE can be computed using the delta method.
Ideally the matching units would be exact matches, that is, X i = Xk(i, z) for all i, z, which leads to unbiased estimates of

ATEs under the strong unconfoundedness assumption. In practice, exact matching is rarely possible, especially with con-
tinuous covariates. With the Mahalanobis metric, m(Xi,Xl) =

√
(Xi − Xl)TC−1

X (Xi − Xl) for l∈ S(z), where CX is the covari-
ance matrix of X i and X l, we label this method as MCOV. This method may not work well for high-dimensional X i.28 An
alternative is to match on closeness of the estimated GPS vector under a postulated model, ê(Xi) = {̂e1(Xi), · · · , êJ−1(Xi)}T .
The Mahalanobis distance m(Xi,Xl) =

√
{ê(Xi) − ê(Xl)}TC−1

GPS{ê(Xi) − ê(Xl)}, where CGPS is the covariance matrix of ê(Xi)
and ê(Xl), is one measure of closeness. We label this method MGPSV. The balancing score property of the propensity score
implies that, under strong unconfoundedness, it yields approximately unbiased estimates of ATEs.
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Yang et al24 proposed a method that matches units on the closeness of the corresponding estimated propensity score
for each treatment group (MGPSS). The matching metric for imputing the missing outcomes for treatment z for units
assigned to treatments other than z is then m(Xi,Xl) = |̂ez(Xi) − êz(Xl)|, where l∈ S(z). The resulting estimate of the ATE
is approximately unbiased under the weak unconfoundedness assumption, because the definition of GPS implies that

𝜏ATE(z, z′) = E{E[Yi|Zi = z′, ez′ (Xi)]} − E{E[Yi|Zi = z, ez(Xi)]}.

There are several differences between AI-type matching estimators and traditional matching estimators in applied
research, such as nearest neighbor matching without replacement,28 Traditional matching procedures address the
issue of confounding by only including matches of high quality for the subsequent analysis. Normally each unit
is only used once, as in a randomized control trial, and inferences on the matched dataset do not account for
matching error. On the other hand, AI-type matching allows reuse of each unit, and does not ensure overlap of
covariates unless combined with methods for dealing with limited overlap, such as trimming.49 An advantage of the
AI-type matching estimators is that their large-sample distributions can be characterized,31,50 permitting calculation
of variance estimates that take into account the uncertainty in the propensity score estimation and matching proce-
dure. MCOV, MGPSV, and MGPSS estimate 𝝉ATE while the estimand of traditional matching procedure may deviate
from 𝝉ATE.

4.2 Propensity score weighting-based methods

For weighting-based estimators, the problem of estimating 𝝉ATE or 𝜏∗ATE can be generalized to the estimation of the
(weighted) average potential outcome 𝝂z ≡E[w(X)Y (z)]/E[w(X)] for each treatment separately. When w(x) = 1, 𝝂z is
equivalent to the average potential outcome 𝝁z. Solving the estimating equation

n∑
i=1

{
w(Xi)Di(z)(Yi − 𝜈z)

êz(Xi)

}
= 0, (2)

we are able to obtain a consistent estimator assuming correctly specified GPS model,

𝜈z =

( n∑
i=1

{
w(Xi)Di(z)

êz(Xi)

})−1 n∑
i=1

{
w(Xi)Di(z)Yi

êz(Xi)

}
.

The ATE between treatment z and z′ can then be estimated by 𝜈z′ − 𝜈z. Different choices of w(x) result in ATE with
respect to different populations. In particular, w(x) = 1 corresponds to the IPW estimator, whose target population is the
combined population all sampled groups. The target population of ATT discussed in Section 2.1 is represented by units
in a particular treatment group, say treatment J, and can be estimated by setting w(x) to eJ(x).

Li and Greene12 proposed to specify w(x) as the minimum of the probabilities of receiving treatment and control in the
binary case, which they call matching weights (MW). MW can be extended to the case with more than two treatments13

with weights

wMW(x) = min(e1(x), · · · , eJ(x)).

For the three treatment case, the MW estimator uses weights to mimic the 1:1:1 matching procedure without replace-
ment and yields more efficient estimation of 𝜏∗ATE.12,13 The MW estimator and the estimator from 1:1:1 matching without
replacement have asymptotically the same estimand,13 and therefore the corresponding target population of the MW
estimator is the “matched” population of units that can be matched in 1:1:1 matching.

Li et al14 and Li and Li26 proposed weighting by the OW:

wOW(x) =

(
1∕

J∑
j=1

ej(x)

)−1

.



YU et al. 1659

We refer to the corresponding population as the overlap population. Both MW and OW upweight the units whose GPS
is in the middle range, which have approximately equal chances of being assigned to any of the candidate treatments.

Inversely weighted estimators have a number of issues. The first is that their variance may be inflated if the weights
are highly variable. The second issue is that they rely heavily on the correct specification of the propensity score model
for valid inference. In addition, the inference for treatment group z is made only based on individuals with Di(z) = 1,
with individuals in other treatment groups not contributing. To improve the robustness to model misspecification
and make more effective use of the available data, augmented versions of these estimators have been proposed.12,39

The estimating equation (2) is augmented by an extra term that involves a function of x. The resulting estimating
equation is

N∑
i=1

{
w(Xi)Di(z)(Yi − 𝜈z)

ez(Xi)
−

w(Xi)(ez(Xi) − Di(z))
ez(Xi)

h(Xi)
}

= 0.

The resulting estimator 𝜈z achieves the smallest asymptotic variance when h(X i) = E(Y i − 𝝂z|Zi = z, X i).37 We label
the augmented versions of IPW, MW, and OW estimators as AIPW, AMW, and AOW, respectively. Besides asymptotic
efficiency, as shown in the original set of articles,12,14 for any scalar outcome, the corresponding estimator has the property
of double robustness, which means that only one of the propensity score and outcome models need to be correctly specified
to obtain a consistent estimator for 𝝂z. Semiparametric theory shows that these estimators are asymptotically normal, and
variances can be estimated using sandwich-type estimators or the bootstrap.3,39

4.3 OREG model methods

The methods based on OREG directly models the relationship between the outcome and pretreatment covariates by treat-
ment groups. The unconfoundedness assumption implies that the ATE can be identified by positing a parametric model
for E[Y i|Z = z′, X i] and E[Y i|Z = z, X i], obtaining the predicted values of Y i under each treatment group for each Xi, and
taking the average over the observed and predicted values for each treatment. For a binary outcome Y i, predictions can
be based on a logistic regression model:

log
pr(Yi = 1|Zi,Xi)
pr(Yi = 0|Zi,Xi)

= 𝛾 + XT
i 𝜶 +

J−1∑
z=1

𝜃jDi(z),

where treatment J is considered as the reference group. The coefficients 𝜽= (𝜃1, … , 𝜃J − 1) and 𝜶 can be replaced by
maximum likelihood estimates �̂� and �̂�. Many applied studies that use this conventional covariate-adjustment method
report 𝜃’s, which represent the odds ratios conditional on x, as the estimated effect measure. OREG then estimates the
risk difference between treatment z and z′ as

𝜏OREG(z, z′) = 𝜇z′ − 𝜇z,

where

𝜇z =
1
n

n∑
i=1

expit(�̂� + 𝜃z + XT
i �̂�)

for z = 1, … , J − 1, and

𝜇z =
1
n

n∑
i=1

expit(�̂� + XT
i �̂�)

for z = J. The associated SE can be estimated via bootstrap.
Utilizing this idea, Zhou et al17 proposed PENCOMP, which estimates causal effects comparing two treatments for

a continuous outcome by imputing unobserved potential outcomes from the corresponding predictive distributions.
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PENCOMP incorporates splines of propensity scores as predictors in the outcome model, which gives it a double robust-
ness property for a continuous outcome such that the estimator for the marginal mean is consistent if (a) the prediction
models are correctly specified or (b) the propensity model and the relationship between the outcome and the splines are
correctly specified. We extend PENCOMP at a single time point to more than two treatments and a binary outcome, call-
ing the method PEN-GAM. The double robustness property for PEN-GAM has not yet been theoretically established.
However, our simulation studies shed light on its finite sample performance. The steps for PEN-GAM can be summarized
as follows:

(a) Generate a bootstrap sample S(b) for b = 1, · · ·, B, stratified on treatment groups, from the original dataset. For each
S(b), repeat steps (b)-(d).

(b) Estimate the GPS, possibly from a multinomial logistic regression model. Denote the estimated values as êi =
{̂e1(Xi; 𝜷

(b)
1 ), · · · , êJ−1(Xi; 𝜷

(b)
J−1)}T , where êz(Xi; 𝜷

(b)
z ) = pr(Z = z|X; 𝜷

(b)
z ) and 𝜷

(b)
z is the maximum likelihood estimate of

𝜷z for sample S(b). Define ê∗i = {̂e∗i1, · · · , ê∗i(J−1)}
T , where ê∗iz = log{̂ez(Xi; 𝜷

(b)
z )∕[1 − êz(Xi; 𝜷

(b)
z )]}.

(c) For z = 1, · · ·, J, fit a generalized linear regression model

log
pr(Yi(z) = 1|Zi = z,Xi,𝜽z,𝜶z)
pr(Yi(z) = 0|Zi = z,Xi,𝜽z,𝜶z)

= s(ê∗i |𝜽z) + g(Xi, ê∗i ;𝜶z) (3)

where s(ê∗i |𝜽z) denotes a penalized spline with fixed knots, and g(⋅) denotes a parametric function of the covariates and
propensity scores and has to be constrained to ensure identifiability. In this case, we assume truncated linear basis,

namely, s(ê∗i |𝜽z) =
∑J−1

z=1

{
𝜃0z + 𝜃1jê∗iz +

K∑
k=1

𝜃1zk(̂e∗iz − Qk)+
}

, where Q1, · · ·, QK are fixed knots, and (̂e∗iz − Qk)+ = ê∗iz − Qk

if ê∗iz > Qk, and (̂e∗iz − Qk)+ = 0 otherwise. Note that following Zhou et al,17 we fit different spline functions in (3) for each
treatment level z. For linear regression of Y i(j), the coefficients in the spline model can be estimated in a linear mixed
model framework51 and implemented using standard statistical software, as was done in Zhou et al17 In principal, the
coefficients of a generalized linear model with penalized spline terms as (3) can be obtained by fitting a generalized lin-
ear mixed models (GLMM). However, to the best of our knowledge, current GLMM implementation in R either does not
allow the specification of the structure of the covariance matrices or will take unreasonable running time. Therefore, we
instead fit a generalized additive model (GAM) using the gam function in the mgcv package in R.52

(d) For z = 1, · · ·, J, impute the values of Y (z) for subjects with D(z) = 0 in the original dataset with draws from the
Bernoulli distribution with predictive probability pr(Yi(z) = 1|Zi = z,Xi, �̂�

(b)
z , �̂�

(b)
z ), where �̂�

(b)
z and �̂�

(b)
z are estimates for

the coefficients 𝜽(b)
z and 𝜶

(b)
z , respectively, for the bth bootstrap replicate. For subjects with Di(z) = 1, Y i(z) = Y i. Denote

the estimates of treatment effects and associated pooled variances as 𝜏 (b) and v̂(b), respectively.
(e) Derive the estimated treatment effects and associated SE using Rubin’s Rules.53

For all methods discussed in this section, we refer the readers to the corresponding R packages developed by
the authors (Table 1). In the cases where there are no R packages available, we provide accessible code for easier
implementation at https://github.com/youfeiyu/multiTreatment.

5 SIMULATION STUDIES

We conducted simulation studies to assess the finite sample properties of the 12 estimators listed in Table 1 combined with
the two GPS estimation methods (GLMPS and CBPS) discussed in Section 3. We used direct comparison of the proportions
of each group as a benchmark, which is referred to as the naive estimator. We considered two levels of covariate overlap
(good and poor), two functional forms for the true propensity score model (linear and nonlinear in covariates), two levels
of associations for the outcome model (strong and weak), two levels of overall marginal outcome prevalence (common
[0.3] and rare [0.1]) and two sample sizes (300 and 1500). Simulation results are presented in terms of bias from ATE,
empirical SD, average SE, root mean squared error (RMSE), average width of 95% confidence intervals (CIs), and 95%
coverage rate.

https://github.com/youfeiyu/multiTreatment
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T A B L E 1 Causal inference methods under comparison and their corresponding R implementation

Method Reference
R package/author
generated code

Which unconfoundedness
assumption is madea

NAIVEb N/A https://github.com/youfeiyu/
multiTreatment

N/A

OREG N/A https://github.com/youfeiyu/
multiTreatment

Assumption 2*

PENCOMPc Zhou et al17 https://github.com/youfeiyu/
multiTreatment

Assumption 2

Propensity score matching

MCOV Abadie and Imbens31 Matching,54 Matchit55,56 Assumption 2

MGPSV Yang et al24 https://github.com/youfeiyu/multiTreatmentAssumption 2

MGPSS Yang et al24 Multilevelmatching (https://github.
com/shuyang1987/
multilevelMatching/)

Assumption 2*

Propensity score weighting

IPW, AIPW Lunceford and Davidian,3

among others
https://github.com/youfeiyu/

multiTreatment
Assumption 2*

MW, AMW Li and Greene,12 Yoshida
et al13

https://github.com/youfeiyu/multiTreatmentAssumption 2*

OW, AOW Li and Li26 PSweight,57 or https://github.com/
youfeiyu/multiTreatment

Assumption 2*

Abbreviations: AIPW, augmented inverse probability weighting; IPW, inverse probability weighting; MW, matching weights; OREG,
outcome regression; PENCOMP, propensity methods for treatment comparison.
a Assumptions 2 and 2* are the strong and weak unconfoundedness assumption, respectively.
b NAIVE estimator refers to the direct comparison of the proportions of each treatment group.
c The authors developed PENCOMP in the context of binary treatment and continuous outcome. We extend it to the case of multiple
treatment and binary outcome.

5.1 Simulation design

Each simulated dataset contains six covariates. (Xi1, Xi2, Xi3)T follows a multivariate normal distribution
with mean (0, 0, 0)T and covariance matrix [(2, 1,− 1)T , (1, 1,− 0.5)T , (−1,− 0.5, 1)T], Xi4∼Bernoulli(0.5),
Xi5∼Bernoulli(0.75Xi4 + 0.25(1−Xi4)), and Xi6 follows a chi-squared distribution with 1◦ of freedom. Let
X i = (1, Xi1, Xi2, Xi3, Xi4, Xi5, Xi6)T . Three treatment groups are compared, and the true GPS model is given by

Zi ∼ Multinomial(e1(X̃i), e2(X̃i), e3(X̃i)),

where X̃i is a function of X i that corresponds to a model specification and ez(X̃i) = exp(X̃
T
i 𝜷z)∕

3∑
j=1

exp(X̃
T
i 𝜷 j). The potential

outcome Y i(z) was sampled from a binomial distribution with probability pr{Yi(z)|Xi} = expit(XT
i 𝜶z). We considered five

scenarios (Supplemental Table 1) with different specifications of GPS and outcome models:

(1) X̃i = Xi, good covariate overlap, weak outcome-covariate associations, and common outcome.
(2) X̃i = Xi, poor covariate overlap, weak outcome-covariate associations, and common outcome.
(3) X̃i = Xi, poor covariate overlap, strong outcome-covariate associations, and common outcome.
(4) X̃i = (Xi,X2

i2,Xi1 × Xi3)T , poor covariate overlap, weak outcome-covariate associations, and common outcome.
(5) X̃i = Xi, poor covariate overlap, weak outcome-covariate associations, and rare outcome.

The GPS were estimated in two ways, the first using a multinomial logistic regression and the second using the CBPS
framework that incorporates covariate balancing conditions.47 Since PENCOMP is computationally intensive, we only

https://github.com/youfeiyu/multiTreatment
https://github.com/youfeiyu/multiTreatment
https://github.com/youfeiyu/multiTreatment
https://github.com/youfeiyu/multiTreatment
https://github.com/shuyang1987/multilevelMatching/
https://github.com/shuyang1987/multilevelMatching/
https://github.com/shuyang1987/multilevelMatching/
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implemented GLMPS (not CBPS) for this method. We used 10 equally spaced knots on the logit scale for each GPS
component. We used 200 imputed datasets to estimate treatment effects and the associated standard errors and CIs.

For each scenario, we generated 2000 Monte Carlo datasets for each of two sample sizes, 300 and 1500. The true 1000
× ATEs (risk differences) for the estimands 𝝉ATE(1, 2), 𝝉ATE(1, 3), and 𝝉ATE(2, 3) were, respectively, 56, 46, and −10 for
scenario 3, −1, −24, and −23 for scenario 5, and 234, 76, and −158 for the other three scenarios, which were determined
over 106 sample units.

For estimation methods that involve only the GPS or the outcome model (IPW, MW, OW, MGPSV, MGPSS, and OREG),
we studied their performance when the corresponding model is correctly (c) and incorrectly (m) specified, respectively.
For augmented estimators (AIPW, AMW, AOW, PEN-GAM), we considered the following four cases:

(1) both GPS and outcome models are correctly specified denoted by (c, c),
(2) the GPS model is correct while the outcome model is incorrect denoted by (c, m),
(3) the outcome model is correct while the GPS model is incorrect denoted by (m, c),
(4) both models are misspecified denoted by (m, m).

For the first three scenarios, the misspecification of both models is caused by removing one of the confounders, Xi6,
from the corresponding models. For scenario 4 where the true GPS model is nonlinear in X i, the misspecified outcome
model omits Xi6, while the incorrect GPS model incorporates the whole set of covariates (X i) but ignores the higher order
and interaction terms. Similarly, we evaluated the performance of MCOV, which is free of parametric modeling, when
matching on all elements in X̃i (c), and on a subset of X̃i (m), where the subset being the same as the set of variables
adjusted in the GPS model.

The 95% CIs were calculated using: (1) bootstrapped standard errors from 200 bootstrap samples for OREG, IPW,
AIPW, MW, AMW, OW, AOW, and CBPS-based MGPSS; (2) Wald-type CI based on original data for NAIVE; (3) Abadie and
Imbens24,31 CI for MCOV and both GLMPS- and CBPS-based MGPSV; (4) Abadie and Imbens24,50 CI for GLMPS-based
MGPSS; (5) Rubin’s17 imputation rule for PEN-GAM.

5.2 Simulation results

The main results of the simulation studies for sample size 1500 are summarized in Figures 1 to 7. The complete results are
presented in Supplemental Tables 2 to 8 for sample size 1500, and Supplemental Figures 1 to 7 and Supplemental Tables
9 to 15 for sample size 300. In all scenarios, all estimators for 𝝉ATE with at least one model correctly specified yielded
smaller empirical bias compared with the naive estimator.

Three key takeaways from the simulation studies are summarized below:

1. The improvement in precision was limited for AIPW and PEN-GAM compared with IPW when (a) there was sufficient
covariate overlap or (b) the prevalence of the outcome was low.

2. With moderate prevalence of the outcome (0.3 in our simulation setting) or relatively poor covariate overlap, AIPW
and PEN-GAM outperformed IPW and AI-type matching algorithms considered in this study in terms of RMSE across
the scenarios, as AIPW and PEN-GAM incorporate the outcome information, which tended to provide efficiency gains
over IPW and AI-type matching.

3. For a relatively small sample size, PEN-GAM with at least one model being correctly specified were noted to be slightly
biased away from the true risk difference. Moreover, PEN-GAM tended to show overcoverage and produce wider con-
fidence width than IPW when the outcome is sparse. One reason is that the fitting of spline models in PEN-GAM is
more unstable with low outcome prevalence and small sample size. The empirical bias and overcoverage tended to
disappear as the outcome prevalence and sample size increased.

Results of RMSE for each of the treatment comparisons averaged over 2000 datasets for sample size 1500 across all
methods that estimate 𝝉ATE are presented in Figures 1 to 3. Note that the corresponding estimands for MW, AMW, OW,
and AOW were in general different from 𝝉ATE, and the RMSE for these estimators are shown in Supplemental Tables 2
and 9. We report the ratio of RMSE to the RMSE of the GLMPS-based IPW estimator with correctly specified GPS model.
When both models were correctly specified and the overlap in covariate distributions was good (Figure 1, scenario 1),
OREG, IPW, AIPW, and PEN-GAM had similar RMSE. Matching methods had larger RMSE than GLMPS-based IPW,
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F I G U R E 1 Ratio of RMSE over RMSE of GLMPS-based IPW(c) for sample size 1500 across methods based on correctly specified
outcome and propensity models. The rows represent scenarios and columns represent pairs of comparison. Results were obtained using 2000
simulated datasets. IPW, inverse probability weighting; RMSE, root mean squared error [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 2 Ratio of RMSE over RMSE of GLMPS-based IPW(c) for sample size 1500 across methods based on a correctly specified
propensity model only. The rows represent scenarios and columns represent pairs of comparison. Results were obtained using 2000 simulated
datasets. IPW, inverse probability weighting; RMSE, root mean squared error [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 3 Ratio of RMSE over RMSE of GLMPS-based IPW(c) for sample size 1500 across methods based on a correctly specified
outcome model only. The rows represent scenarios and columns represent pairs of comparison. Results were obtained using 2000 simulated
datasets. IPW, inverse probability weighting; RMSE, root mean squared error [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 4 95% Coverage probability for sample size 1500 across methods based on correctly specified outcome and propensity
models. The rows represent scenarios and columns represent pairs of comparison. Results were obtained using 2000 simulated datasets
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 5 95% Coverage probability for sample size 1500 across methods based on a correctly specified propensity score or outcome
model. For methods that involve both models, the first and second letter in the parentheses correspond to the propensity and outcome model,
respectively. The rows represent scenarios and columns represent pairs of comparison. Results were obtained using 2000 simulated datasets
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


1668 YU et al.

F I G U R E 6 Ratio of mean 95% CI width over mean 95% CI width of GLMPS-based IPW(c) for sample size 1500 across methods based
on correctly specified outcome and propensity models. The rows represent scenarios and columns represent pairs of comparison. Results
were obtained using 2000 simulated datasets. CI, confidence interval; IPW, inverse probability weighting [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 7 Ratio of mean 95% CI width over mean 95% CI width of GLMPS-based IPW(c) for sample size 1500 across methods based
on a correctly specified propensity score or outcome model. For methods that involve both models, the first and second letter in the
parentheses correspond to the propensity and outcome model, respectively. The rows represent scenarios and columns represent pairs of
comparison. Results were obtained using 2000 simulated datasets. CI, confidence interval; IPW, inverse probability weighting [Colour figure
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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with the ratios ranging from 1.1 to 1.2. In this case, AIPW and PEN-GAM had similar empirical SD (and therefore RMSE)
to IPW (Supplemental Table 3). A study conducted by Austin showed similar results that AIPW provided little efficiency
gain over IPW.58

In the presence of poor covariate overlap (Figure 1, scenarios 2-4), OREG had the smallest RMSE, followed by
PEN-GAM and AIPW. We observed 6.3% to 16.5% reduction in RMSE for AIPW and PEN-GAM compared with
GLMPS-based IPW when the associations between the outcome and covariates was weak (scenario 2). Greater reduction
(14.1%-40.1%) was noted as the associations became stronger (scenario 3). When the prevalence of the outcome was low
(scenario 5), AIPW barely reduced RMSE compared with IPW, and PEN-GAM had larger RMSE than IPW. The increased
RMSE for PEN-GAM may result from the instability of model fitting with low prevalence. MGPSS had larger RMSE than
MGPSV, which was also observed for the scenario with good covariate overlap. For all scenarios considered, RMSEs of
GLMPS-based estimators were close to those of their CBPS-based counterparts (Figure 1 and Supplemental Table 2). One
exception is that for IPW, the use of CBPS tended to reduce RMSE compared with GLMPS when the covariate overlap
was poor.

When only the GPS model was correctly specified (Figure 2), PEN-GAM and AIPW in general had the lowest RMSEs
across the scenarios with moderate prevalence, and the RMSEs for PEN-GAM were close to or lower than those for AIPW.
When only the outcome was modeled correctly (Figure 3), the RMSEs for AIPW and PEN-GAM remained similar to
or lower than those for IPW with correctly specified GPS model. In scenario 4 where the misspecification of the GPS
model was caused by incorrect functional form, the use of GLMPS may lead to substantial RMSE for IPW (Figure 3) and
AIPW with misspecified outcome model (Supplemental Table 6) due to large empirical bias, which is consistent with
previous findings.46,47 The bias was greatly reduced and became close to zero when GLMPS were replaced by CBPS with
misspecified functional form, which leaded to smaller RMSEs. The RMSEs of the AI-type matching methods (MGPSS and
MGPSV) were noted to be smaller than those of GLMPS-based IPW in scenario 4, since the matching methods yielded
approximately unbiased estimates of ATE (Supplemental Table 6) even when the GPS model was incorrect but adjusted
for the whole set of confounders, which indicates that matching methods are more robust to the omission of higher order
and interaction terms in the GPS model than IPW.

The empirical coverage rates of 95% CI for sample sizes 1500 with both models correctly specified and either one
of the models misspecified are shown in Figures 4 and 5, respectively. The true values for MW, AMW, OW, and AOW
were determined using the true GPS based on 106 sample units and used to evaluate the corresponding coverage rates. In
general, when both models were correctly specified (Figure 4), all methods except MCOV had close to nominal coverage of
95% for moderate prevalence. Coverage for MCOV was far below nominal in scenarios 2 and 3 with moderate and strong
confounding, respectively. This undercoverage was primarily the result of empirical bias (Supplemental Tables 4 and 5).

With the outcome model being misspecified (Figure 5), all of the augmented estimators showed reasonable coverage.
Note that the corresponding estimands of MW, OW, and their augmented versions depend on the actual values of GPS.
Therefore, different specifications of GPS model lead to different estimands, while the estimands based on the true GPS
model were used for evaluating the coverage rates, which explains the undercoverage of AMW and AOW in some scenar-
ios when the GPS model was misspecified (Figure 5). For a small sample size (n = 300) or sparse outcome (scenario 5),
we consistently observed overcoverage for PEN-GAM methods across all scenarios regardless of the specifications of the
models, with some of the CIs achieving 99% coverage (Supplemental Figures 4 and 5, and scenario 5 in Figures 4 and 5).
This finding agrees with the overestimation of the standard errors for PEN-GAM observed in Supplemental Tables 7 and
10-14. The undercoverage for GLMPS-based MGPSS in scenario 3 (Supplemental Figure 4) was caused by the underesti-
mation of the standard errors using the asymptotic formula provided in Yang et al.24 Such undercoverage was remedied
as the sample size increased.

The average 95% CI widths for sample size 1500 are shown in Figures 6 and 7. When both models were correctly spec-
ified (Figure 6), the average widths of OREG, AIPW, and PEN-GAM were close to or smaller than those of GLMPS-based
IPW for common outcome. MGPSS and MGPSV tended to have wider CIs than IPW across all scenarios. The average
widths of CBPS-based estimators tended to be larger than those of their corresponding GLMPS-based ones. Figure 7 dis-
plays the results for the augmented estimators with either one of the models being misspecified. The relative relationships
among IPW, AIPW, and PEN-GAM were similar to the ones in Figure 6 where both models were correct. In general, for
all estimators considered in Figure 7, the CIs were wider when the outcome model was misspecified compared with the
case with a misspecified GPS model only. For n = 300, the CIs for PEN-GAM were in general wider than those of IPW
(Supplemental Figures 6-7). The average SEs of PEN-GAM were greater than their corresponding Monte Carlo standard
deviations for all scenarios (Supplemental Tables 10-14), suggesting that PEN-GAM tends to be more sensitive to small
sample size in terms of SE estimation compared with IPW and AIPW.
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MW, OW estimators and their augmented version provide stable estimates of 𝜏∗ATE, regardless of the over-
lap status in the covariate distribution of the original population (Supplemental Tables 3-7 and 10-14). This is
as expected since MW and OW artificially downweight the units with extreme GPS and upweight the units
whose GPS for each treatment are similar, the latter of which tend to have a common support in their covariate
distribution.

6 DATA ANALYSIS

6.1 Data analysis methods

We applied the methods in Table 1 to claims data of patients with mCRPC, which was obtained from a large
national private health insurance network (Optum Clinformatic Data Mart). Our data consisted of a subset of a
previously identified cohort,59-61 which included patients who had at least one diagnosis of prostate cancer from
January 1, 2010 to September 30, 2016 and used at least one of the six focus drugs (docetaxel, abiraterone, enzalu-
tamide, sipuleucel-T, cabazitaxel, and radium-233) after the diagnosis. Since radium-233 were approved by FDA and
released to the market later than the other five drugs, we restricted our cohort to patients who initiated treatment
after January 1, 2014 to give them a fair comparison and make the results more generalizable to the current mCRPC
population. We observed that the cabazitaxel and radium-233 groups had much fewer samples (ncabazitaxel = 11 and
nradium = 57) than the other four groups, and therefore we further dropped those patients who received the two drugs
as their first-lines therapy from our analysis. We assessed the safety of the four remaining drugs for mCRPC with
the outcome being the occurrence of postprescription ER visits during a fixed period of time. Specifically, we eval-
uated the risk difference of ER visits among the four drugs within 180-day time window of the initiation of each
therapy.

Medical and pharmacy claims pertaining to ER visits were identified by procedure code and type of service variables
in the database. In this study, we did not consider treatment sequence and hence were only interested in ER visits asso-
ciated with the first drug used. Patients who switched treatment or dropped out of the insurance plan within 180 days of
the first prescription with no events (ie, ER visits) occurring during the follow-up period were regarded as being censored.
Censored patients exhibited similar demographic and baseline clinical characteristics (Supplemental Table 16) to uncen-
sored ones and were dropped from the analysis. We first calculated the crude risks of at least one ER visit for 180-day
follow-up for each of the four focus drugs, and compared the risk among the four treatment groups using causal inference
methods described in the previous section.

The GPS for each subject was estimated from a multinomial logistic regression model adjusting for age, race, educa-
tion level, household income, geographic region, insurance product type, whether the insurance plan is administrative
services only, metastatic status of cancer, year of first prescription, comorbid conditions, and provider type. All covariates
were binary or categorical, and the categorization was summarized in Supplemental Table 17. We observed insufficient
overlap among the four treatment groups in terms of the logit propensity of receiving docetaxel, especially at the left
end of the distribution (Supplemental Figure 8A), which indicates that we may not be able to find a good match in doc-
etaxel users for some patients receiving abiraterone, enzalutamide, or sipuleucel-T. Similar patterns occurred for the logit
propensity of receiving the other three drugs (Supplemental Figure 8C,E,G). One can use trimming methods that discard
the tails of propensity score distributions to remedy the lack of overlap. Several trimming criteria for three or more treat-
ment groups are discussed in the literature.24,25,62 In our case, we trimmed the data using the criteria described in.25 In
brief, for each treatment z∈ {1, 2, 3, 4}, let lz = max

j
{min

i
(pr(Zi = z|Zi = j,Xi))} and uz = min

j
{max

i
(pr(Zi = z|Zi = j,Xi))},

where pr(Z = z|Z = j, X) is the treatment assignment probability for z among those receiving treatment j. Subjects with
ez(x)∉ [lz, uz] for any z were discarded. GPS were recalculated using the remaining subjects. One important step in propen-
sity score modeling is balance checking. Ways to check for balance in covariates and their corresponding results for the
methods considered are described in supplemental section 1. The log odds of the outcome was modeled as a linear com-
bination of the same set of covariates adjusted in the GPS model for each treatment group. The CIs for each method
were obtained in the same way as described in the simulation studies. Specifically, 200 bootstrap replicates were used for
OREG, PEN-GAM, and all weighting-based methods.

The data that support the findings of this study are available on request from the corresponding author. The data are
not publicly available due to privacy or ethical restrictions.
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T A B L E 2 Emergency room visits following the first prescription (N = 2628)

First-line therapy
Total number
of patients

Number of
uncensored patients
with complete covariates

At least 1 ER visit (%)
within 180 daysa

Docetaxel (Taxotere, Decefrez) 728 565 291 (51.5)

Abiraterone (Zytiga) 1039 783 314 (40.1)

Enzalutamide (Xtandi) 639 476 163 (34.2)

Sipuleucel-T (Provenge) 222 131 58 (44.3)

Abbreviation: ER, emergency room.
a Percentage was calculated using the number uncensored patients as the denominator.

6.2 Data analysis results

A total of 2628 mCRPC patients with at least 180 days of continuous enrollment prior to the receipt of the first focus drug
were identified. The average and median length of the enrollment period that covers January 1, 2014 is 6.16 and 4.75 years,
respectively. Among the 2628 patients, 670 (25.5%) were censored and 4 (0.2%) had incomplete covariates. We further
excluded these patients from the analysis. The demographic and baseline clinical data of the remaining 1955 patients are
presented in Supplemental Table 17. Table 2 presents the crude risks of at least one ER visit during 180-day follow-up
among uncensored patients for each of the four treatment groups. The unadjusted risk was the highest in the docetaxel
group (51.5%), followed by Sipuleucel-T group (44.3%). Enzalutamide users had the lowest risk (25.5%) of at least one ER
visit within 180 days.

We observed imbalance in some of the covariates (Supplemental Tables 1.1 and 17). For example, patients who received
abiraterone or enzalutamide tend to be older than those receiving docetaxel. Sipuleucel-T users tend to have more pre-
treatment osteoporosis (16.0%) than patients receiving the other three drugs (5.3% for docetaxel, 8.4% for abiraterone, and
9.0% for enzalutamide).

To improve the covariate overlap among the treatment groups, we applied data trimming25 with criteria discussed
previously, which left us with 1777 subjects. Results of data analysis are presented in Figure 8 and Supplemental Table
18. Direct comparison of the four groups (naive method) revealed that docetaxel users had significantly higher risk of at
least one ER visits within 180 days of follow-up than users of abiraterone (risk difference = 0.130 [0.073, 0.186]), enza-
lutamide (risk difference = 0.177 [0.115, 0.239]), and sipuleucel-T (risk difference = 0.099 [0.001, 0.197]). The directions
of the average effects between docetaxel and the other drugs were preserved for the other methods, though the effect
sizes varied. The 95% CIs for the average causal effects between docetaxel and enzalutamide consistently excluded 0 for
all methods. However, for the Sipuleucel-T-docetaxel comparison, only MCOV showed a significant difference. For the
enzalutamide-abiraterone comparison, all methods considered indicated a higher risk for enzalutamide, while none of
these estimated risk differences were significant. For the sipuleucel-T-abiraterone comparison, PEN-GAM yielded neg-
ative point estimates (indicating higher risk for abiraterone), while the other methods indicated a reversed relationship.
Again, none of the corresponding CIs excluded 0. In general, there was a larger uncertainty in regard to the direction and
magnitude of the risk differences that involve the Sipuleucel-T group due to its smaller sample size. Notably, PEN-GAM
tended to have wider CIs than the other methods, which was consistent with the simulation results for small sample size.
The results of MW, AMW, OW, and AOW were close to one another in terms of point estimates as well as standard errors
for all pairwise comparisons, possibly because their corresponding target populations were similar. This finding aligns
with what was observed in the simulation studies. The results of our data analysis agree well with the clinical evidence in
current literature.59-61 The naive method yielded results that were highly consistent with those of the methods that adjust
for potential confounding, suggesting that the treatment effects were relatively strong compared with the confounding
effects.

7 DISCUSSION

This article has reviewed and compared a set of causal inference strategies that account for confounding for multiple
treatment comparison with a binary outcome variable. Some of these methods, for example, MGPSS24 and PENCOMP,17
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F I G U R E 8 Results for treatment effects of the four focus drugs and associated 95% confidence intervals. Data were obtained from
Optum Clinformative Data Mart, with the outcome interest being the occurrence of emergency room visit within 180 days of treatment
initiation. Total sample size is N = 1777 (NA = 699, ND = 519, NE = 438, NS = 121). Confidence intervals that exclude zero are highlighted in
orange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T [Colour figure can be viewed at wileyonlinelibrary.com]

were recently proposed and less explored under the setting of binary outcome in current literature. Our simulation studies
show that when there is sufficient overlap in covariate distributions, MGPSS, and in general all AI-type matching methods,
are less efficient than the conventional IPW estimator. The gain in precision of AIPW over IPW that has been observed
for continuous outcomes3,63 was less evident in our simulations for a binary outcome and good covariate overlap. Thus,
while augmentation was still useful for the robustness of estimating the causal effect, it was less useful for improving
efficiency. When there was lack of common support, PEN-GAM and AIPW provided more precise estimation than IPW.
The improvement in precision increased as the associations of the outcome with baseline covariates became stronger.
With moderate outcome prevalence, PEN-GAM tended to perform better than AIPW in terms of RMSE when only the
propensity model was correctly specified. One possible reason was that when the covariate overlap is poor, the weights
tend to have large variations and some individuals may receive extreme weights, which results in highly variable estimates.
PEN-GAM avoids weights by adjusting for the splines of propensity scores (in logit scale) in the outcome model. When
the outcome model was misspecified, the estimates relied more on the use of propensity scores. On the other hand, when
the outcome was sparse, the fitting of the spline models tended to be unstable, which leads to larger RMSE for PEN-GAM
than AIPW.

For propensity score-based methods, correctly modeling the propensity scores is the key to yielding valid inference.
The generalized linear model based on maximum likelihood (GLMPS) is sensitive to both unmeasured confounders and
misspecified functional form, which tend to lead to large bias in ATE estimation. Efforts have been made to improve the
robustness of propensity score estimation and the CBPS, which utilizes the covariate balancing property of the propensity
scores and achieves robustness in the presence of incorrect functional forms, in one of the examples.47 In particular, when
the GPS model has misspecified functional form but adjusts for the whole set of confounders, the use of CBPS can reduce

http://wileyonlinelibrary.com
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the bias of the ATE estimates compared with using GLMPS. In addition to CBPS, methods based on machine learning
technique have also been proposed for propensity score estimation.64

Our focus in this article has remained on simple parametric models. There is extensive literature on using machine
learning methods65-67 to capture potential nonlinearities and higher-order interactions. The relative gain by using such
flexible methods depends on the sample size, the number of predictors, and the true structure of the underlying models
(the propensity model or the outcome model).

The computational time for each of the methods considered in the simulation studies for a sample size of 1500 and
three treatment groups is reported in Supplemental Table 19. All simulations were run on an Intel Xeon Gold 6138 Pro-
cessor (2.00 GHz). The average run time of overidentified CBPS was almost twice as much as that of just-identified CBPS.
The average run time of PEN-GAM for one bootstrap replicate was around 2 seconds. The projected computational time
for 200 bootstrap replicates is approximately 7 minutes.

The methods examined in this study only accounts for the selection bias associated with differences in the
covariates. However, the outcome of the data we used is also subject to censoring, which may introduce another
layer of selection bias. In particular, approximately 30% of the patients in our dataset were censored due to treat-
ment switch or dropout within 180 days of treatment initiation. Weighting-based methods have been proposed to
achieve unbiased estimation of average causal effect in the presence of right-censored observations under certain
assumptions.68-70
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