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Abstract 
We consider comparative effectiveness research (CER) from observational data with two or more 
treatments. In observational studies, the estimation of causal effects is prone to bias due to 
confounders related to both treatment and outcome. Methods based on propensity scores are 
routinely used to correct for such confounding biases. A large fraction of propensity score methods 
in the current literature consider the case of either two treatments or continuous outcome. There 
has been extensive literature with multiple treatment and binary outcome, but interest often lies in 
the intersection, for which the literature is still evolving. The contribution of this paper is to focus 
on this intersection and compare across methods, some of which are fairly recent. We describe 
propensity-based methods when more than two treatments are being compared, and the outcome 
is binary. We assess the relative performance of these methods through a set of simulation studies. 
The methods are applied to assess the effect of four common therapies for castration-resistant 
advanced-stage prostate cancer. The data consist of medical and pharmacy claims from a large 
national private health insurance network, with the adverse outcome being admission to the 
emergency room within a short time window of treatment initiation. 
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1. Introduction 
 
Comparative effectiveness research (CER) assesses alternative interventions for a particular 
clinical condition.1 Randomized clinical trials are the gold standard for CER, but real-world 
evidence when drugs are released into the market is increasingly being used to make health care 
decisions.2 CER for such observational data requires statistical methods for causal inference that 
control for confounding variables. The current literature on these methods largely focuses on two 
treatments and continuous outcomes,3,4 but often interest lies in comparing more than two 
treatments and outcomes are binary, for example, the occurrence of an event.5 We compare here 
causal inference methods when the outcome is binary and there are more than two treatments.   
 
Our motivating study concerns men who used at least one of four commonly prescribed drugs 
(docetaxel, abiraterone, enzalutamide, sipuleucel-T) as a first-line therapy for metastatic 
castration-resistant prostate cancer (mCRPC). These four drugs have increased survival for 
mCRPC patients in individual studies.6–9 We are interested in evaluating the possible adverse 
effects of these drugs, by comparing patients’ risk of experiencing at least one emergency room 
visit shortly after treatment initiation. Data are from the Optum Clinformatics Data Mart, a national 
private health insurance network. 
 
In observational studies, the estimation of causal effects is prone to bias due to confounders related 
to both treatment and outcome.  Methods to correct for this bias can be classified into two broad 
categories. The traditional approach is to model the multiple regression of the outcome on the 
treatment and measured potential confounders. This approach is vulnerable to misspecification of 
the regression model. An alternative approach is to model the propensity score, defined as the 
probability of being assigned to the treatment given a set of potential confounders. The treatment 
effect is then estimated by matching,10,11 weighting,3,12–14 stratification,3,10,15 or regression16,17 on 
the estimated propensity scores. This method was introduced by Rosenbaum and Rubin,10 who 
showed that propensity scores have a balancing property, such that the conditional distribution of 
the potential confounders given the balancing scores are the same for treated and control. This 
property implies that propensity score methods provide some protection against misspecification 
of the outcome models. However, propensity score models are still required to be correctly 
specified.  
 
Methods based on the propensity score were initially developed for comparing two treatments (e.g. 
10,11,15,18–20), and then extended to the case of more than two treatment groups using generalized 
propensity scores (GPS),21,22 which consist of the vector of conditional probabilities of being 
assigned to each treatment. However, propensity score methods become more complex as the 
number of compared treatments increases, and  the relative performance of propensity score 
methods is much less studied than the two-treatment group case (e.g. 13,23–26).  
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Matching is the most common propensity score method for two treatments.27 There are a variety 
of matching algorithms, (e.g. nearest neighbor matching, full matching) corresponding to different 
causal estimands.28 With more than two treatments, the number of subjects that can be matched 
goes down as the number of treatment groups increases, and the complexity of the matching 
algorithm increases. Propensity score matching methods for multiple treatment comparison built 
upon the framework of conventional matching methods include common-referent matching29 and 
“within-trio” matching.30 In general, the study population of these methods consists of those 
receiving the reference treatment. In contrast, the method of matching with replacement24,25,31 
yields inferences for the overall population (i.e. population of those receiving any of the treatment 
under comparison).  
 
Abadie and Imbens proposed a matching procedure that uses a fixed number of matches and allows 
each unit to be matched more than once, a method we label AI-type matching.31 They derived the 
large sample properties of the AI-type matching estimators and proposed an estimator for the 
asymptotic variance. Yang et al. extended AI-type matching procedures to the multiple treatment 
case by matching on a scalar function of the GPS.24 Applications of these methods to real studies 
appear limited.32 More common applied approaches include combining therapies with similar 
features as a single group and then applying propensity score matching developed for binary 
treatment,33–35 or conducting pairwise analysis, ignoring individuals not assigned to one of the 
treatment pair being compared.36 
 
Propensity score weighting methods are more easily extended to the multiple treatment setting 
[39]. The asymptotic distributions of the weighting-based estimators can be characterized using 
the theory of M-estimation,37 which yields estimated standard errors that incorporate the 
uncertainty associated with the estimation of propensity scores. A common weighting scheme is 
to weight units in one group by their inverse probability of being in that group (IPW). Evaluations 
of IPW are mainly confined to the two treatment setting, and suggest that the estimator is sensitive 
to extreme weights and can have high variability.3,24,38 
 
An important extension of IPW is the augmented inverse probability weighting (AIPW), where 
the IPW estimator is augmented using predictions from an outcome regression model. To 
implement AIPW method in a multiple treatment setting, one can first obtain the estimated GPS, 
possibly from a multinomial logistic regression model, and then the predicted outcomes for each 
treatment group from outcome models that describe the conditional expectation of the outcome 
variable given measured covariates and treatment status. The resulting estimator is known as 
having a double robustness (DR) property such that the estimator remains consistent as long as 
either the propensity score model or the outcome model is correctly specified. AIPW estimator is 
asymptotically efficient within a broad class of estimators that includes the IPW estimator.39 
Lunceford and Davidian reviewed the theoretical properties of IPW, AIPW, and several other 
propensity score weighting estimators in the context of two treatments and continuous outcome.3 
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Simulation studies indicated that weighting-based methods with correct propensity score modeling 
produced approximately unbiased point estimates, and AIPW was more precise than IPW for 
sample sizes as small as 1000.  
 
Other hybrid methods include outcome regression models weighted by inverse probability40 and 
post-matching sample adjusted using overlap weights.14 A multiple imputation-based approach 
called penalized spline of propensity methods for treatment comparison (PENCOMP), proposed 
by Zhou et al,17 estimates causal effects by imputing the missing potential outcomes from a 
regression model for the outcome that incorporates splines of propensity scores as predictors. 
PENCOMP was developed and evaluated in the context of two treatments and a continuous 
outcome, but is extended here to the case with multiple treatments and binary outcome.  
 
Studies of comparative effectiveness with continuous outcomes typically report an estimate of the 
Average Treatment Effect (ATE), which is the difference in average outcome if individuals were 
all assigned the treatment and the average outcome if all the individuals were assigned the 
comparator treatment.41 In this paper we measure treatment effectiveness by the risk difference, 
42,43 which is a measure of the ATE for a binary outcome, where the average outcome is the 
proportion of successes.  
 
In section 2, we provide more detail on several of these methods. In section 3, we describe 
simulation studies that compare the finite sample performance of these methods. In section 4, we 
apply the methods to estimate comparative effectiveness of four common therapies for mCRPC 
patients, using claims data from the Optum Clinformatics Data Mart, with the outcome being 
admission to the emergency room within a short time window of treatment initiation. Conclusions 
and topics for future research are given in Section 5. 
 
2. Notation and Setup  
 

2.1 Estimands of Interest 
Suppose an observational study of J treatments is carried out on a sample of n individuals from a 
target population. For individual i, let 𝑌𝑌𝑖𝑖(𝑧𝑧), 𝑧𝑧 = 1,⋯ , 𝐽𝐽, denote the potential outcome if assigned 
treatment z, 𝑍𝑍𝑖𝑖 denote the treatment actually assigned, and 𝑿𝑿𝑖𝑖 denote a set of baseline covariates. 
The hypothetical complete data consist of {𝑿𝑿𝑖𝑖,𝑍𝑍𝑖𝑖 ,𝑌𝑌𝑖𝑖(1),⋯ ,𝑌𝑌𝑖𝑖(𝐽𝐽), 𝑖𝑖 = 1,⋯ ,𝑛𝑛}, the observed data 
consist of {𝑿𝑿𝑖𝑖,𝑍𝑍𝑖𝑖,𝑌𝑌𝑖𝑖(𝑍𝑍𝑖𝑖), 𝑖𝑖 = 1,⋯ ,𝑛𝑛}, and the outcomes {𝑌𝑌𝑖𝑖(𝑧𝑧), 𝑧𝑧 ≠ 𝑍𝑍𝑖𝑖} are missing, as in the 
potential outcome framework.41 For each pair (𝑧𝑧, 𝑧𝑧′) of treatments, we seek to estimate the average 
treatment effect (ATE),  

𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧, 𝑧𝑧′) = 𝐸𝐸[𝑌𝑌(𝑧𝑧′) − 𝑌𝑌(𝑧𝑧)] 
where the expectation is over the population of interest. When 𝑌𝑌 is binary, the ATE is the risk 
difference 
 

𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧, 𝑧𝑧′) = 𝑝𝑝𝑝𝑝{𝑌𝑌(𝑧𝑧′) = 1} − 𝑝𝑝𝑝𝑝{𝑌𝑌(𝑧𝑧) = 1}, 
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In addition to risk difference, one can also consider estimands on multiplicative scale for treatment 
group 𝑧𝑧, such as causal odds ratio 𝑝𝑝𝑝𝑝{𝑌𝑌(𝑧𝑧) = 1}𝑝𝑝𝑝𝑝{𝑌𝑌(𝐽𝐽) = 0} 𝑝𝑝𝑝𝑝{𝑌𝑌(𝑧𝑧) = 0}𝑝𝑝𝑝𝑝{𝑌𝑌(𝐽𝐽) = 1}⁄  and 
relative risk 𝑝𝑝𝑝𝑝{𝑌𝑌(𝑧𝑧) = 1} 𝑝𝑝𝑝𝑝{𝑌𝑌(𝑧𝑧) = 0}⁄ , where 𝐽𝐽  is the reference group. We focus on the 
additive scale primarily for two reasons. The first is that the ratio-scale estimands can be derived 
using the counterfactual probabilities we estimate in each treatment group.  The second is that the 
additive scale is more relevant to evaluating interventions as it directly yields the number of 
cases/deaths prevented by using one treatment as opposed to another.  
 
For a study with binary treatments, one quantity of possible interest is the average treatment effect 
on the treated (ATT), which refers to the treatment effect averaged across the group of individuals 
who received the treatment. When there are more than two treatment groups under comparison, 
one common way to define the ATT is to specify a reference group (𝑍𝑍 = 𝑧𝑧∗), possibly the one with 
the smallest sample size or of the greatest clinical interest.25 The ATT is defined as 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧, 𝑧𝑧′) =
𝐸𝐸[𝑌𝑌(𝑧𝑧′) − 𝑌𝑌(𝑧𝑧)|𝑍𝑍 = 𝑧𝑧∗], where 𝑧𝑧∗ is not necessarily the same as 𝑧𝑧 or 𝑧𝑧′. This implies that one can 
compare any treatment pair (𝑧𝑧, 𝑧𝑧′)  on any subpopulation, in this case, those who received 
treatment 𝑧𝑧∗. 
 
A more general form of ATE is the weighted average treatment effect14,44: 

𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴∗ (𝑧𝑧, 𝑧𝑧′) =
∫𝑤𝑤(𝒙𝒙)𝐸𝐸[𝑌𝑌(𝑧𝑧′) − 𝑌𝑌(𝑧𝑧)|𝑿𝑿 = 𝒙𝒙]𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙

∫𝑤𝑤(𝒙𝒙)𝑓𝑓(𝒙𝒙)𝑑𝑑𝑑𝑑
, 

where 𝑓𝑓(𝒙𝒙) is the density function of the covariates 𝑿𝑿 and 𝑤𝑤(𝒙𝒙) is a prespecified function of 𝒙𝒙. 
Different choices of 𝑤𝑤(∙) yield the ATE for different target populations, as discussed further in 
Section 4.2.  
 
Note that 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧, 𝑧𝑧′) is equivalent to 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴∗ (𝑧𝑧, 𝑧𝑧′) if 𝑤𝑤(𝒙𝒙) = 1, or if the treatment effect conditional 
on 𝒙𝒙, 𝐸𝐸[𝑌𝑌(𝑧𝑧′) − 𝑌𝑌(𝑧𝑧)|𝑿𝑿 = 𝒙𝒙], is the same for all 𝒙𝒙 (i.e. homogeneous), an unlikely event. When 
the treatment effect is heterogeneous, the ATE should always be defined with respect to a clearly 
specified study population. 
 
2.2 Assumptions 
In an observational study where treatment is not randomly assigned, valid inferences for the ATE 
require some standard assumptions: 
 Assumption 0. The individuals in the study are randomly sampled from the population. 

Assumption 1. (stable unit treatment value assumption, or SUTVA). For any individual 𝑖𝑖, 
𝑖𝑖 = 1,⋯ ,𝑛𝑛, if 𝑍𝑍𝑖𝑖 = 𝑧𝑧, then 𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑖𝑖(𝑧𝑧), for all 𝑧𝑧 ∈ {1,⋯ , 𝐽𝐽}. 
Assumption 2. (strong unconfoundedness). Assignment to treatment 𝑍𝑍  is strongly 
unconfounded if 𝑍𝑍𝑖𝑖 ⫫ �𝑌𝑌𝑖𝑖(1),⋯ ,𝑌𝑌𝑖𝑖(𝐽𝐽)� | 𝑿𝑿𝑖𝑖, for all 𝑧𝑧 ∈ {1,⋯ , 𝐽𝐽}. 
Assumption 3. (overlap). For all values of 𝑧𝑧  and 𝒙𝒙 , 0 < 𝑒𝑒𝑧𝑧(𝒙𝒙) < 1 , where 𝑒𝑒𝑧𝑧(𝒙𝒙) ≡

𝑝𝑝𝑝𝑝(𝑍𝑍𝑖𝑖 = 𝑧𝑧|𝒙𝒙) is the generalized propensity score.21 
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SUTVA states that the potential outcomes of one unit are not affected by the treatments received 
by other units, and there are no hidden treatment versions.46 Strong unconfoundedness and overlap 
are an extension of the strong ignorability assumption in Rosenbaum and Rubin10 to the case of 
multiple treatments. In some cases, a weaker version of unconfoundedness is sufficient for 
identifying the causal effect,21,24 namely 

Assumption 2*. (weak unconfoundedness). Assignment to treatment 𝑍𝑍  is weakly 
unconfounded if 𝐷𝐷𝑖𝑖(𝑧𝑧) ⫫ 𝑌𝑌𝑖𝑖(𝑧𝑧) | 𝑿𝑿𝑖𝑖, for all 𝑧𝑧 ∈ {1,⋯ , 𝐽𝐽}. 

 
Weak unconfoundedness only requires pairwise independence for each treatment rather than the 
independence between treatment assignment and the whole vector of potential outcomes. As 
commented by Imbens,21 though Assumption 2* is more relaxed in its form than Assumption 2, 
their difference has limited practical implications. Under these assumptions, the differences in 
outcomes among the treatment groups has a causal interpretation with respect to the target 
population. 
 
3. Generalized Propensity Score and its Estimation 
An important tool in comparing causal treatment effects of J treatment groups is the vector of 

generalized propensity scores (GPS), denoted as 𝒆𝒆(𝑿𝑿𝑖𝑖) ≡ �𝑒𝑒1(𝑿𝑿𝑖𝑖),⋯ , 𝑒𝑒𝐽𝐽−1(𝑿𝑿𝑖𝑖)�
𝑇𝑇
, where 𝑒𝑒𝑧𝑧(𝒙𝒙) ≡

𝑝𝑝𝑝𝑝(𝑍𝑍𝑖𝑖 = 𝑧𝑧|𝒙𝒙). In an observational study, the treatment assignment mechanism is unknown and 
therefore 𝒆𝒆(𝑿𝑿𝑖𝑖) needs to be estimated from the observed data. A common approach is to fit a 
multinomial logistic regression model for the treatment received as a function of the covariates, 
that is, to assume that 
 

log 
𝑝𝑝𝑝𝑝(𝑍𝑍𝑖𝑖 = 𝑧𝑧|𝑿𝑿𝑖𝑖)
𝑝𝑝𝑝𝑝(𝑍𝑍𝑖𝑖 = 𝐽𝐽|𝑿𝑿𝑖𝑖)

= 𝑿𝑿𝑖𝑖𝑇𝑇𝜷𝜷𝑧𝑧 (1) 

where 𝑧𝑧 = 1,⋯ , 𝐽𝐽 − 1, and 𝑿𝑿𝑖𝑖  includes an intercept term. The corresponding estimated GPS, 
denoted as GLMPS, is then  

𝑒𝑒𝑧𝑧,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑿𝑿𝑖𝑖;  𝜷𝜷�𝑧𝑧� =
exp�𝑿𝑿𝑖𝑖𝑇𝑇𝜷𝜷�𝑧𝑧�

1 + ∑ exp�𝑿𝑿𝑖𝑖𝑇𝑇𝜷𝜷�𝑗𝑗�
𝐽𝐽−1
𝑗𝑗=1

 

for 𝑧𝑧 = 1,⋯ , 𝐽𝐽 − 1, where 𝜷𝜷�𝑧𝑧 is the maximum likelihood estimate of 𝜷𝜷𝑧𝑧. For 𝑧𝑧 = 𝐽𝐽, the reference 
group, we replace the numerator by 1.  
 
Even moderate misspecification of the functional form for (1) may result in substantial bias in the 
estimates of treatment effects.47 Imai and Ratkovic proposed the Covariate Balancing Propensity 
Score (CBPS) for the comparison of two groups and provided an extension to the multiple 
treatment case.48 CBPS exploits the covariate balancing property of the GPS (i.e. 𝑿𝑿𝑖𝑖  ⫫ 
𝐷𝐷𝑖𝑖(𝑧𝑧) | 𝑒𝑒𝑧𝑧(𝑿𝑿𝑖𝑖) for 𝑧𝑧 = 1,⋯ , 𝐽𝐽21) by computing generalized method of moments estimates based 
on the covariate balancing moment conditions,  
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𝐸𝐸 �
𝐷𝐷𝑖𝑖(𝑧𝑧 + 1)𝑿𝑿𝑖𝑖
𝑒𝑒𝑧𝑧+1(𝑿𝑿𝑖𝑖)

−
𝐷𝐷𝑖𝑖(𝑧𝑧)𝑿𝑿𝑖𝑖
𝑒𝑒𝑧𝑧(𝑿𝑿𝑖𝑖)

� = 0, 

and the moment conditions derived from the score functions of a multinomial logistic model under 
the likelihood framework, 

𝐸𝐸 �
𝐷𝐷𝑖𝑖(𝑧𝑧)
𝑒𝑒𝑧𝑧(𝑿𝑿𝑖𝑖)

∙
𝜕𝜕𝑒𝑒𝑧𝑧(𝑿𝑿𝑖𝑖)
𝜕𝜕𝜷𝜷𝑇𝑇

� = 0, 

for 𝑧𝑧 = 1,⋯ , 𝐽𝐽. The CBPS is called just-identified if the model only uses the covariate balancing 
conditions and overidentified if both conditions are used in the estimation step. These two types 
of CBPS have different asymptotic and finite sample properties, and the authors examined both 
types of scores in their simulation studies.48 They showed that the use of CBPS, regardless of 
which conditions were involved, can improve the precision and reduce bias of some common 
weighting estimators (e.g. IPW and AIPW) compared to using propensity score estimated by GLM 
when both propensity score and outcome models were misspecified. In our study, we only evaluate 
the just-identified CBPS, because of computational limitations. The CBPS method can be 
implemented through the R package CBPS.49  
 
4. Methods for Estimating the Average Treatment Effect 
 
4.1 Matching methods based on the propensity scores 
The AI-type matching methods31 can be regarded as a group-by-group imputation procedure. The 
missing outcome 𝑌𝑌𝑖𝑖(𝑧𝑧), 𝑧𝑧 ≠ 𝑍𝑍𝑖𝑖, is imputed by the observed outcome 𝑌𝑌𝑘𝑘(𝑖𝑖,𝑧𝑧) for one of the units 
𝑘𝑘(𝑖𝑖, 𝑧𝑧) in the set of units, say 𝑆𝑆(𝑧𝑧), assigned to treatment z. That is, the observed or imputed 
outcome for unit i is 

𝑌𝑌�𝑖𝑖(𝑧𝑧) = �
𝑌𝑌𝑖𝑖, if 𝑍𝑍𝑖𝑖 = 𝑧𝑧
𝑌𝑌𝑘𝑘(𝑖𝑖,𝑧𝑧), if 𝑍𝑍𝑖𝑖 ≠ 𝑧𝑧 

The matched unit 𝑘𝑘(𝑖𝑖, 𝑧𝑧) is chosen to be the closest to unit i in 𝑆𝑆(𝑧𝑧) with respect to a matching 
metric m based on the values of 𝑿𝑿. That is, 𝑚𝑚�𝑿𝑿𝑖𝑖 ,𝑿𝑿𝑘𝑘(𝑖𝑖,𝑧𝑧)� ≤ 𝑚𝑚(𝑿𝑿𝑖𝑖,𝑿𝑿𝑙𝑙) for all 𝑙𝑙 ∈ 𝑆𝑆(𝑧𝑧). The 
matches are with replacement, so units in the matching set 𝑆𝑆(𝑧𝑧) can be reused. The resulting 
estimate of the ATE comparing treatments 𝑧𝑧 and 𝑧𝑧′ is 

𝜏̂𝜏𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧, 𝑧𝑧′) = 𝑛𝑛−1��𝑌𝑌�𝑖𝑖(𝑧𝑧) − 𝑌𝑌�𝑖𝑖(𝑧𝑧′)�
𝑛𝑛

𝑖𝑖=1

 

The standard error can be computed using the delta method. 
 
Ideally the matching units would be exact matches, that is, 𝑿𝑿𝑖𝑖 = 𝑿𝑿𝑘𝑘(𝑖𝑖,𝑧𝑧) for all 𝑖𝑖, 𝑧𝑧, which leads to 
unbiased estimates of ATEs under the strong unconfoundedness assumption. In practice, exact 
matching is rarely possible, especially with continuous covariates. With the Mahalanobis metric, 
𝑚𝑚(𝑿𝑿𝑖𝑖,𝑿𝑿𝑙𝑙) = �(𝑿𝑿𝑖𝑖 − 𝑿𝑿𝑙𝑙)𝑇𝑇𝐶𝐶𝑋𝑋−1(𝑿𝑿𝑖𝑖 − 𝑿𝑿𝑙𝑙) for 𝑙𝑙 ∈ 𝑆𝑆(𝑧𝑧), where 𝐶𝐶𝑋𝑋  is the covariance matrix of 𝑿𝑿𝑖𝑖 
and 𝑿𝑿𝑙𝑙, we label this method as MCOV. This method may not work well for high-dimensional 
𝑿𝑿𝑖𝑖.28 An alternative is to match on closeness of the estimated GPS vector under a postulated model, 
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𝒆𝒆�(𝑿𝑿𝑖𝑖) = �𝑒̂𝑒1(𝑿𝑿𝑖𝑖),⋯ , 𝑒̂𝑒𝐽𝐽−1(𝑿𝑿𝑖𝑖)�
𝑇𝑇

. The Mahalanobis distance 𝑚𝑚(𝑿𝑿𝑖𝑖,𝑿𝑿𝑙𝑙) =
�{𝒆𝒆�(𝑿𝑿𝑖𝑖) − 𝒆𝒆�(𝑿𝑿𝑙𝑙)}𝑇𝑇𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺−1 {𝒆𝒆�(𝑿𝑿𝑖𝑖) − 𝒆𝒆�(𝑿𝑿𝑙𝑙)} , where 𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺  is the covariance matrix of 𝒆𝒆�(𝑿𝑿𝑖𝑖)  and 
𝒆𝒆�(𝑿𝑿𝑙𝑙), is one measure of closeness. We label this method MGPSV. The balancing score property 
of the propensity score implies that, under strong unconfoundedness, it yields approximately 
unbiased estimates of ATEs. 
 
Yang et al. proposed a method that matches units on the closeness of the corresponding estimated 
propensity score for each treatment group (MGPSS).24 The matching metric for imputing the 
missing outcomes for treatment z for units assigned to treatments other than z is then 𝑚𝑚(𝑿𝑿𝑖𝑖,𝑿𝑿𝑙𝑙) =
|𝑒̂𝑒𝑧𝑧(𝑿𝑿𝑖𝑖) − 𝑒̂𝑒𝑧𝑧(𝑿𝑿𝑙𝑙)|, where 𝑙𝑙 ∈ 𝑆𝑆(𝑧𝑧). The resulting estimate of the ATE is approximately unbiased 
under the weak unconfoundedness assumption, because the definition of GPS implies that 

𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧, 𝑧𝑧′) = 𝐸𝐸{𝐸𝐸[𝑌𝑌𝑖𝑖|𝑍𝑍𝑖𝑖 = 𝑧𝑧′, 𝑒𝑒𝑧𝑧′(𝑿𝑿𝑖𝑖)]} − 𝐸𝐸{𝐸𝐸[𝑌𝑌𝑖𝑖|𝑍𝑍𝑖𝑖 = 𝑧𝑧, 𝑒𝑒𝑧𝑧(𝑿𝑿𝑖𝑖)]}.  
 
There are several differences between AI-type matching estimators and traditional matching 
estimators in applied research, such as nearest neighbor matching without replacement,28 
Traditional matching procedures address the issue of confounding by only including matches of 
high quality for the subsequent analysis. Normally each unit is only used once, as in a randomized 
control trial, and inferences on the matched data set do not account for matching error. On the 
other hand, AI-type matching allows reuse of each unit, and does not ensure overlap of covariates 
unless combined with methods for dealing with limited overlap, such as trimming.50 An advantage 
of the AI-type matching estimators is that their large-sample distributions can be characterized,31,51 
permitting calculation of variance estimates that take into account the uncertainty in the propensity 
score estimation and matching procedure. MCOV, MGPSV, and MGPSS estimate 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 while the 
estimand of traditional matching procedure may deviate from 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴.  
 
4.2 Propensity score weighting-based methods  
For weighting-based estimators, the problem of estimating 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 or 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴∗  can be generalized to the 
estimation of the (weighted) average potential outcome 𝜈𝜈𝑧𝑧 ≡ 𝐸𝐸[𝑤𝑤(𝑿𝑿)𝑌𝑌(𝑧𝑧)] 𝐸𝐸[𝑤𝑤(𝑿𝑿)]⁄  for each 
treatment separately. When 𝑤𝑤(𝒙𝒙) = 1 , 𝜈𝜈𝑧𝑧  is equivalent to the average potential outcome 𝜇𝜇𝑧𝑧 . 
Solving the estimating equation 

��
𝑤𝑤(𝑿𝑿𝑖𝑖)𝐷𝐷𝑖𝑖(𝑧𝑧)(𝑌𝑌𝑖𝑖 − 𝜈𝜈𝑧𝑧)

𝑒̂𝑒𝑧𝑧(𝑿𝑿𝑖𝑖)
�

𝑛𝑛

𝑖𝑖=1

= 0, (2) 

we are able to obtain a consistent estimator assuming correctly-specified GPS model, 

𝜈̂𝜈𝑧𝑧 = ���
𝑤𝑤(𝑿𝑿𝑖𝑖)𝐷𝐷𝑖𝑖(𝑧𝑧)
𝑒̂𝑒𝑧𝑧(𝑿𝑿𝑖𝑖)

�
𝑛𝑛

𝑖𝑖=1

�
−1

��
𝑤𝑤(𝑿𝑿𝑖𝑖)𝐷𝐷𝑖𝑖(𝑧𝑧)𝑌𝑌𝑖𝑖

𝑒̂𝑒𝑧𝑧(𝑿𝑿𝑖𝑖)
�

𝑛𝑛

𝑖𝑖=1

. 

 
The ATE between treatment 𝑧𝑧 and 𝑧𝑧′ can then be estimated by 𝜈̂𝜈𝑧𝑧′ − 𝜈̂𝜈𝑧𝑧. Different choices of 𝑤𝑤(𝒙𝒙) 
result in ATE with respect to different populations. In particular, 𝑤𝑤(𝒙𝒙) = 1 corresponds to the 
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inverse probability weighting (IPW) estimator, whose target population is the combined 
population all sampled groups. The target population of ATT discussed in section 2.1 is 
represented by units in a particular treatment group, say treatment 𝐽𝐽, and can be estimated by 
setting 𝑤𝑤(𝒙𝒙) to 𝑒𝑒𝐽𝐽(𝒙𝒙).  
 
Li and Greene12 proposed to specify 𝑤𝑤(𝒙𝒙) as the minimum of the probabilities of receiving 
treatment and control in the binary case, which they call matching weights (MW). MW can be 
extended to the case with more than two treatments13 with weights 

𝑤𝑤𝑀𝑀𝑊𝑊(𝒙𝒙) = min �𝑒𝑒1(𝒙𝒙),⋯ , 𝑒𝑒𝐽𝐽(𝒙𝒙)�. 
For the three treatment case, the MW estimator uses weights to mimic the 1:1:1 matching 
procedure without replacement and yields more efficient estimation of 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴∗ .12,13 The MW 
estimator and the estimator from 1:1:1 matching without replacement have asymptotically the 
same estimand,13 and therefore the corresponding target population of the MW estimator is the 
“matched” population of units that can be matched in 1:1:1 matching.  
 
Li et al.14 and Li and Li26 proposed weighting by the overlap weights (OW): 

𝑤𝑤𝑂𝑂𝑂𝑂(𝒙𝒙) = �1 � 𝑒𝑒𝑗𝑗(𝒙𝒙)
𝐽𝐽

𝑗𝑗=1
� � .−1 

We refer to the corresponding population as the overlap population. Both MW and OW upweight 
the units whose GPS is in the middle range, which have approximately equal chances of being 
assigned to any of the candidate treatments. 
 
Inversely-weighted estimators have a number of issues. The first is that their variance may be 
inflated if the weights are highly variable. The second issue is that they rely heavily on the correct 
specification of the propensity score model for valid inference. In addition, the inference for 
treatment group 𝑧𝑧 is made only based on individuals with 𝐷𝐷𝑖𝑖(𝑧𝑧) = 1, with individuals in other 
treatment groups not contributing. To improve the robustness to model misspecification and make 
more effective use of the available data, augmented versions of these estimators have been 
proposed.12,38 The estimating equation (2) is augmented by an extra term that involves a function 
of 𝒙𝒙. The resulting estimating equation is 

��
𝑤𝑤(𝑿𝑿𝑖𝑖)𝐷𝐷𝑖𝑖(𝑧𝑧)(𝑌𝑌𝑖𝑖 − 𝜈𝜈𝑧𝑧)

𝑒𝑒𝑧𝑧(𝑿𝑿𝑖𝑖)
−
𝑤𝑤(𝑿𝑿𝑖𝑖)�𝑒𝑒𝑧𝑧(𝑿𝑿𝑖𝑖) − 𝐷𝐷𝑖𝑖(𝑧𝑧)�

𝑒𝑒𝑧𝑧(𝑿𝑿𝑖𝑖)
ℎ(𝑿𝑿𝑖𝑖)�

𝑁𝑁

𝑖𝑖=1

= 0. 

The resulting estimator 𝜈̂𝜈𝑧𝑧  achieves the smallest asymptotic variance when ℎ(𝑿𝑿𝑖𝑖) = 𝐸𝐸(𝑌𝑌𝑖𝑖 −
𝜈𝜈𝑧𝑧|𝑍𝑍𝑖𝑖 = 𝑧𝑧,𝑿𝑿𝑖𝑖).39 We label the augmented versions of IPW, MW, and OW estimators as AIPW, 
AMW, and AOW, respectively. Besides asymptotic efficiency, as shown in the original set of 
papers,12,14 for any scalar outcome, the corresponding estimator has the property of double 
robustness, which means that only one of the propensity score and outcome models need to be 
correctly specified to obtain a consistent estimator for 𝜈𝜈𝑧𝑧. Semiparametric theory shows that these 
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estimators are asymptotically normal, and variances can be estimated using sandwich-type 
estimators or the bootstrap.3,38 
 
4.3 Outcome regression model methods 
The methods based on outcome regression directly models the relationship between the outcome 
and pre-treatment covariates by treatment groups. The unconfoundedness assumption implies that 
the ATE can be identified by positing a parametric model for 𝐸𝐸[𝑌𝑌𝑖𝑖|𝑍𝑍 = 𝑧𝑧′,𝑿𝑿𝑖𝑖] and 𝐸𝐸[𝑌𝑌𝑖𝑖|𝑍𝑍 = 𝑧𝑧,𝑿𝑿𝑖𝑖], 
obtaining the predicted values of 𝑌𝑌𝑖𝑖 under each treatment group for each 𝑋𝑋𝑖𝑖, and taking the average 
over the observed and predicted values for each treatment. For a binary outcome 𝑌𝑌𝑖𝑖, predictions 
can be based on a logistic regression model: 

log 
𝑝𝑝𝑝𝑝(𝑌𝑌𝑖𝑖 = 1|𝑍𝑍𝑖𝑖,𝑿𝑿𝑖𝑖)
𝑝𝑝𝑝𝑝(𝑌𝑌𝑖𝑖 = 0|𝑍𝑍𝑖𝑖,𝑿𝑿𝑖𝑖)

= 𝛾𝛾 + 𝑿𝑿𝑖𝑖𝑇𝑇𝜶𝜶 + �𝜃𝜃𝑗𝑗𝐷𝐷𝑖𝑖(𝑧𝑧),
𝐽𝐽−1

𝑧𝑧=1

 

where treatment 𝐽𝐽 is considered as the reference group. The coefficients 𝜽𝜽 = (𝜃𝜃1, … ,𝜃𝜃𝐽𝐽−1)  and 𝜶𝜶 
can be replaced by maximum likelihood estimates 𝜽𝜽� and 𝜶𝜶�. Many applied studies that use this 
conventional covariate-adjustment method report 𝜃𝜃�’s, which represent the odds ratios conditional 
on 𝒙𝒙 , as the estimated effect measure. Outcome regression (OREG) then estimates the risk 
difference between treatment 𝑧𝑧 and 𝑧𝑧′ as 
 

𝜏̂𝜏𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑧𝑧, 𝑧𝑧′) = 𝜇̂𝜇𝑧𝑧′ − 𝜇̂𝜇𝑧𝑧 ,  
where  

𝜇̂𝜇𝑧𝑧 =
1
𝑛𝑛
� expit�𝛾𝛾� + 𝜃𝜃�𝑧𝑧 + 𝑿𝑿𝑖𝑖𝑇𝑇𝜶𝜶��
𝑛𝑛

𝑖𝑖=1

 

for z = 1, …, J – 1, and  

𝜇̂𝜇𝑧𝑧 =
1
𝑛𝑛
� expit(𝛾𝛾� + 𝑿𝑿𝑖𝑖𝑇𝑇𝜶𝜶�)
𝑛𝑛

𝑖𝑖=1

 

for 𝑧𝑧 = 𝐽𝐽. The associated standard error can be estimated via bootstrap. 
 
Utilizing this idea, Zhou et al.17 proposed PENCOMP, which estimates causal effects comparing 
two treatments for a continuous outcome by imputing unobserved potential outcomes from the 
corresponding predictive distributions. PENCOMP incorporates splines of propensity scores as 
predictors in the outcome model, which gives it a double robustness property for a continuous 
outcome such that the estimator for the marginal mean is consistent if a) the prediction models are 
correctly specified, or b) the propensity model and the relationship between the outcome and the 
splines are correctly specified. We extend PENCOMP at a single time point to more than two 
treatments and a binary outcome, calling the method PEN-GAM. The double robustness property 
for PEN-GAM has not yet been theoretically established. However, our simulation studies shed 
light on its finite sample performance. The steps for PEN-GAM can be summarized as follows: 
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(a) Generate a bootstrap sample 𝑆𝑆(𝑏𝑏) for 𝑏𝑏 = 1,⋯ ,𝐵𝐵, stratified on treatment groups, from the 
original data set. For each 𝑆𝑆(𝑏𝑏), repeat steps (𝑏𝑏)-(𝑑𝑑). 

(b) Estimate the GPS, possibly from a multinomial logistic regression model. Denote the 

estimated values as 𝒆𝒆�𝑖𝑖 = �𝑒̂𝑒1�𝑿𝑿𝑖𝑖;  𝜷𝜷�1
(𝑏𝑏)�,⋯ , 𝑒̂𝑒𝐽𝐽−1�𝑿𝑿𝑖𝑖;  𝜷𝜷�𝐽𝐽−1

(𝑏𝑏) ��
𝑇𝑇

, where 𝑒̂𝑒𝑧𝑧�𝑿𝑿𝑖𝑖;  𝜷𝜷�𝑧𝑧
(𝑏𝑏)� =

𝑝𝑝𝑝𝑝�𝑍𝑍 = 𝑧𝑧|𝑋𝑋;  𝜷𝜷�𝑧𝑧
(𝑏𝑏)� and 𝜷𝜷�𝑧𝑧

(𝑏𝑏) is the maximum likelihood estimate of 𝜷𝜷𝑧𝑧 for sample 𝑆𝑆(𝑏𝑏). 

Define 𝒆𝒆�𝑖𝑖∗ = �𝑒̂𝑒𝑖𝑖1∗ ,⋯ , 𝑒̂𝑒𝑖𝑖(𝐽𝐽−1)
∗ �

𝑇𝑇
, where 𝑒̂𝑒𝑖𝑖𝑖𝑖∗ = log �𝑒̂𝑒𝑧𝑧�𝑿𝑿𝑖𝑖;  𝜷𝜷�𝑧𝑧

(𝑏𝑏)� �1 − 𝑒̂𝑒𝑧𝑧�𝑿𝑿𝑖𝑖;  𝜷𝜷�𝑧𝑧
(𝑏𝑏)��� �. 

(c) For 𝑧𝑧 = 1,⋯ , 𝐽𝐽, fit a generalized linear regression model  

log 
𝑝𝑝𝑝𝑝(𝑌𝑌𝑖𝑖(𝑧𝑧) = 1|𝑍𝑍𝑖𝑖 = 𝑧𝑧,𝑿𝑿𝑖𝑖 ,𝜽𝜽𝑧𝑧 ,𝜶𝜶𝑧𝑧)
𝑝𝑝𝑝𝑝(𝑌𝑌𝑖𝑖(𝑧𝑧) = 0|𝑍𝑍𝑖𝑖 = 𝑧𝑧,𝑿𝑿𝑖𝑖 ,𝜽𝜽𝑧𝑧 ,𝜶𝜶𝑧𝑧) = 𝑠𝑠(𝒆𝒆�𝑖𝑖∗|𝜽𝜽𝑧𝑧) + 𝑔𝑔(𝑿𝑿𝑖𝑖, 𝒆𝒆�𝑖𝑖∗;  𝜶𝜶𝑧𝑧) (3) 

where 𝑠𝑠(𝒆𝒆�𝑖𝑖∗|𝜽𝜽𝑧𝑧) denotes a penalized spline with fixed knots, and 𝑔𝑔(∙) denotes a parametric 
function of the covariates and propensity scores and has to be contrained to ensure 
identifiability. In this case we assume truncated linear basis, namely, 𝑠𝑠(𝒆𝒆�𝑖𝑖∗|𝜽𝜽𝑧𝑧) =
∑ �𝜃𝜃0𝑧𝑧 + 𝜃𝜃1𝑗𝑗𝑒̂𝑒𝑖𝑖𝑖𝑖∗ + ∑ 𝜃𝜃1𝑧𝑧𝑧𝑧(𝑒̂𝑒𝑖𝑖𝑖𝑖∗ − 𝑄𝑄𝑘𝑘)+𝐾𝐾

𝑘𝑘=1 �𝐽𝐽−1
𝑧𝑧=1 , where 𝑄𝑄1,⋯ ,𝑄𝑄𝐾𝐾 are fixed knots, and (𝑒̂𝑒𝑖𝑖𝑖𝑖∗ −

𝑄𝑄𝑘𝑘)+ = 𝑒̂𝑒𝑖𝑖𝑖𝑖∗ − 𝑄𝑄𝑘𝑘 if 𝑒̂𝑒𝑖𝑖𝑖𝑖∗ > 𝑄𝑄𝑘𝑘, and (𝑒̂𝑒𝑖𝑖𝑖𝑖∗ − 𝑄𝑄𝑘𝑘)+ = 0 otherwise. Note that following Zhou et 
al. 17, we fit different spline functions in (3)  for each treatment level 𝑧𝑧 . For linear 
regression of 𝑌𝑌𝑖𝑖(𝑗𝑗), the coefficients in the spline model can be estimated in a linear mixed 
model framework52 and implemented using standard statistical software, as was done in 
Zhou et al.17 In principal, the coefficients of a generalized linear model with penalized 
spline terms as (3) can be obtained by fitting a generalized linear mixed models (GLMM). 
However, to the best of our knowledge, current GLMM implementation in R either does 
not allow the specification of the structure of the covariance matrices or will take 
unreasonable running time. Therefore, we instead fit a generalized additive model (GAM) 
using the gam function in the mgcv package in R.53 

(d) For 𝑧𝑧 = 1,⋯ , 𝐽𝐽 , impute the values of 𝑌𝑌(𝑧𝑧) for subjects with 𝐷𝐷(𝑧𝑧) = 0  in the original 
dataset with draws from the Bernoulli distribution with predictive probability 

𝑝𝑝𝑝𝑝�𝑌𝑌𝑖𝑖(𝑧𝑧) = 1|𝑍𝑍𝑖𝑖 = 𝑧𝑧,𝑿𝑿𝑖𝑖 ,𝜽𝜽�𝑧𝑧
(𝑏𝑏),𝜶𝜶�𝑧𝑧

(𝑏𝑏)� , where 𝜽𝜽�𝑧𝑧
(𝑏𝑏)  and 𝜶𝜶�𝑧𝑧

(𝑏𝑏)  are estimates for the 

coefficients 𝜽𝜽𝑧𝑧
(𝑏𝑏) and 𝜶𝜶𝑧𝑧

(𝑏𝑏), respectively, for the 𝑏𝑏th bootstrap replicate. For subjects with 
𝐷𝐷𝑖𝑖(𝑧𝑧) = 1, 𝑌𝑌𝑖𝑖(𝑧𝑧) = 𝑌𝑌𝑖𝑖 . Denote the estimates of treatment effects and associated pooled 
variances as 𝜏̂𝜏(𝑏𝑏) and 𝑣𝑣�(𝑏𝑏), respectively. 

(e) Derive the estimated treatment effects and associated standard error using Rubin’s Rules.54 
 
For all methods discussed in this section, we refer the readers to the corresponding R packages 
developed by the authors (Table 1). In the cases where there are no R packages available, we 
provide accessible code for easier implementation at https://github.com/youfeiyu/multiTreatment. 
 
 
5. Simulation Studies 

https://github.com/youfeiyu/multiTreatment.
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We conducted simulation studies to assess the finite sample properties of the twelve estimators 
listed in Table 1 combined with the two GPS estimation methods (GLMPS and CBPS) discussed 
in Section 3. We used direct comparison of the proportions of each group as a benchmark, which 
is referred to as the naive estimator. We considered two levels of covariate overlap (good and poor), 
two functional forms for the true propensity score model (linear and nonlinear in covariates), two 
levels of associations for the outcome model (strong and weak), two levels of overall marginal 
outcome prevalence (common [0.3] and rare [0.1]) and two sample sizes (300 and 1500). 
Simulation results are presented in terms of bias from ATE, empirical standard deviation, average 
standard error, root mean squared error (RMSE), average width of 95% confidence intervals (CI), 
and 95% coverage rate. 
 
5.1 Simulation Design 
 
Each simulated dataset contains six covariates. (𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2,𝑋𝑋𝑖𝑖3)𝑇𝑇  follows a multivariate normal 
distribution with mean (0, 0, 0)𝑇𝑇  and covariance matrix 
[(2, 1,−1)𝑇𝑇 , (1, 1,−0.5)𝑇𝑇 , (−1,−0.5, 1)𝑇𝑇] , 𝑋𝑋𝑖𝑖4~Bernoulli(0.5) , 𝑋𝑋𝑖𝑖5~Bernoulli�0.75𝑋𝑋𝑖𝑖4 +
0.25(1 − 𝑋𝑋𝑖𝑖4)�, and 𝑋𝑋𝑖𝑖6 follows a chi-squared distribution with 1 degree of freedom. Let 𝑿𝑿𝑖𝑖 =
(1,𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2,𝑋𝑋𝑖𝑖3,𝑋𝑋𝑖𝑖4,𝑋𝑋𝑖𝑖5,𝑋𝑋𝑖𝑖6)𝑇𝑇. Three treatment groups are compared, and the true GPS model is 
given by 

𝑍𝑍𝑖𝑖~Multinomial �𝑒𝑒1�𝑿𝑿�𝑖𝑖�, 𝑒𝑒2�𝑿𝑿�𝑖𝑖�, 𝑒𝑒3�𝑿𝑿�𝑖𝑖��, 

where 𝑿𝑿�𝑖𝑖  is a function of 𝑿𝑿𝑖𝑖  that corresponds to a model specification and 𝑒𝑒𝑧𝑧�𝑿𝑿�𝑖𝑖� =
exp�𝑿𝑿�𝑖𝑖𝑇𝑇𝜷𝜷𝑧𝑧� ∑ exp�𝑿𝑿�𝑖𝑖𝑇𝑇𝜷𝜷𝑗𝑗�3

𝑗𝑗=1� . The potential outcome 𝑌𝑌𝑖𝑖(𝑧𝑧)  was sampled from a binomial 
distribution with probability 𝑝𝑝𝑝𝑝{𝑌𝑌𝑖𝑖(𝑧𝑧)|𝑿𝑿𝑖𝑖} = expit(𝑿𝑿𝑖𝑖𝑇𝑇𝜶𝜶𝑧𝑧) . We considered five scenarios 
(Supplemental Table 1) with different specifications of GPS and outcome models: 

(1) 𝑿𝑿�𝑖𝑖 = 𝑿𝑿𝑖𝑖 , good covariate overlap, weak outcome-covariate associations, and common 
outcome. 

(2) 𝑿𝑿�𝑖𝑖 = 𝑿𝑿𝑖𝑖 , poor covariate overlap, weak outcome-covariate associations, and common 
outcome. 

(3) 𝑿𝑿�𝑖𝑖 = 𝑿𝑿𝑖𝑖 , poor covariate overlap, strong outcome-covariate associations, and common 
outcome. 

(4) 𝑿𝑿�𝑖𝑖 = (𝑿𝑿𝑖𝑖,𝑋𝑋𝑖𝑖22 ,𝑋𝑋𝑖𝑖1 × 𝑋𝑋𝑖𝑖3)𝑇𝑇, poor covariate overlap, weak outcome-covariate associations, 
and common outcome. 

(5) 𝑿𝑿�𝑖𝑖 = 𝑿𝑿𝑖𝑖, poor covariate overlap, weak outcome-covariate associations, and rare outcome. 
 
The GPS were estimated in two ways, the first using a multinomial logistic regression and the 
second using the CBPS framework that incorporates covariate balancing conditions.48 Since 
PENCOMP is computationally intensive, we only implemented GLMPS (not CBPS) for this 
method. We used 10 equally-spaced knots on the logit scale for each GPS component. We used 
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200 imputed datasets to estimate treatment effects and the associated standard errors and 
confidence intervals. 
 
For each scenario, we generated 2000 Monte Carlo datasets for each of two sample sizes, 300 and 
1500. The true 1000×ATEs (risk differences) for the estimands 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴(1, 2) , 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴(1, 3) , and 
𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴(2, 3) were respectively 56, 46, and -10 for scenario 3, -1, -24, and -23 for scenario 5, and 
234, 76, and -158 for the other three scenarios, which were determined over 106 sample units.  
 
For estimation methods that involve only the GPS or the outcome model (IPW, MW, OW, MGPSV, 
MGPSS, and OREG), we studied their performance when the corresponding model is correctly (c) 
and incorrectly (m) specified, respectively. For augmented estimators (AIPW, AMW, AOW, PEN-
GAM), we considered the following four cases:  

 
(1) both GPS and outcome models are correctly specified denoted by (c, c),  
(2) the GPS model is correct while the outcome model is incorrect denoted by (c, m),  
(3) the outcome model is correct while the GPS model is incorrect denoted by (m, c), 
(4) both models are misspecified denoted by (m, m). 

 
For the first three scenarios, the misspecification of both models is caused by removing one of the 
confounders, 𝑋𝑋𝑖𝑖6, from the corresponding models. For scenario 4 where the true GPS model is 
nonlinear in 𝑿𝑿𝑖𝑖 , the misspecified outcome model omits 𝑋𝑋𝑖𝑖6 , while the incorrect GPS model 
incorporates the whole set of covariates (𝑿𝑿𝑖𝑖) but ignores the higher order and interaction terms. 
Similarly, we evaluated the performance of MCOV, which is free of parametric modeling, when 
matching on all elements in 𝑿𝑿�𝑖𝑖 (c), and on a subset of 𝑿𝑿�𝑖𝑖 (m), where the subset being the same as 
the set of variables adjusted in the GPS model.  
 
The 95% confidence intervals were calculated using: (1) bootstrapped standard errors from 200 
bootstrap samples for OREG, IPW, AIPW, MW, AMW, OW, AOW, and CBPS-based MGPSS; 
(2) Wald-type confidence interval based on original data for NAIVE; (3) Abadie and Imbens (2006) 
confidence interval for MCOV and both GLMPS- and CBPS-based MGPSV24,31; (4) Abadie and 
Imbens (2016) confidence interval for GLMPS-based MGPSS24,51; (5) Rubin’s imputation rule for 
PEN-GAM.17 
 
5.2 Simulation Results 
 
The main results of the simulation studies for sample size 1500 are summarized in Figures 1-7. 
The complete results are presented in Supplemental Tables 2-8 for sample size 1500, and 
Supplemental Figures 1-7 and Supplemental Tables 9-15 for sample size 300. In all scenarios, all 
estimators for 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴  with at least one model correctly specified yielded smaller empirical bias 
compared to the naive estimator.  
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Three key takeaways from the simulation studies are summarized below: 

1. The improvement in precision was limited for AIPW and PEN-GAM compared to IPW 
when a) there was sufficient covariate overlap or b) the prevalence of the outcome was low. 

2. With moderate prevalence of the outcome (0.3 in our simulation setting) or relatively poor 
covariate overlap, AIPW and PEN-GAM outperformed IPW and AI-type matching 
algorithms considered in this study in terms of RMSE across the scenarios, as AIPW and 
PEN-GAM incorporate the outcome information, which tended to provide efficiency gains 
over IPW and AI-type matching. 

3. For a relatively small sample size, PEN-GAM with at least one model being correctly 
specified were noted to be slightly biased away from the true risk difference. Moreover, 
PEN-GAM tended to show over-coverage and produce wider confidence width than IPW 
when the outcome is sparse. One reason is that the fitting of spline models in PEN-GAM 
is more unstable with low outcome prevalence and small sample size. The empirical bias 
and over-coverage tended to disappear as the outcome prevalence and sample size 
increased. 

 
Results of RMSE for each of the treatment comparisons averaged over 2000 datasets for sample 
size 1500 across all methods that estimate 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴  are presented in Figures 1-3. Note that the 
corresponding estimands for MW, AMW, OW, and AOW were in general different from 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴, 
and the RMSE for these estimators are shown in Supplemental Tables 2 and 9. We report the ratio 
of RMSE to the RMSE of the GLMPS-based IPW estimator with correctly specified GPS model. 
When both models were correctly specified and the overlap in covariate distributions was good 
(Figure 1, scenario 1), OREG, IPW, AIPW, and PEN-GAM had similar RMSE. Matching methods 
had larger RMSE than GLMPS-based IPW, with the ratios ranging from 1.1 to 1.2. In this case, 
AIPW and PEN-GAM had similar empirical standard deviation (and therefore RMSE) to IPW 
(Supplemental Table 3). A study conducted by Austin showed similar results that AIPW provided 
little efficiency gain over IPW.55 
 
In the presence of poor covariate overlap (Figure 1, scenarios 2-4), OREG had the smallest RMSE, 
followed by PEN-GAM and AIPW. We observed 6.3%-16.5% reduction in RMSE for AIPW and 
PEN-GAM compared to GLMPS-based IPW when the associations between the outcome and 
covariates was weak (scenario 2). Greater reduction (14.1%-40.1%) was noted as the associations 
became stronger (scenario 3). When the prevalence of the outcome was low (scenario 5), AIPW 
barely reduced RMSE compared to IPW, and PEN-GAM had larger RMSE than IPW. The 
increased RMSE for PEN-GAM may result from the instability of model fitting with low 
prevalence. MGPSS had larger RMSE than MGPSV, which was also observed for the scenario 
with good covariate overlap. For all scenarios considered, RMSEs of GLMPS-based estimators 
were close to those of their CBPS-based counterparts (Figure 1 and Supplemental Table 2). One 
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exception is that for IPW, the use of CBPS tended to reduce RMSE compared with GLMPS when 
the covariate overlap was poor. 
 
When only the GPS model was correctly specified (Figure 2), PEN-GAM and AIPW in general 
had the lowest RMSEs across the scenarios with moderate prevalence, and the RMSEs for PEN-
GAM were close to or lower than those for AIPW. When only the outcome was modeled correctly 
(Figure 3), the RMSEs for AIPW and PEN-GAM remained similar to or lower than those for IPW 
with correctly specified GPS model. In scenario 4 where the misspecification of the GPS model 
was caused by incorrect functional form, the use of GLMPS may lead to substantial RMSE for 
IPW (Figure 3) and AIPW with misspecified outcome model (Supplemental Table 6) due to large 
empirical bias, which is consistent with previous findings.47,48 The bias was greatly reduced and 
became close to zero when GLMPS were replaced by CBPS with misspecified functional form, 
which leaded to smaller RMSEs. The RMSEs of the AI-type matching methods (MGPSS, and 
MGPSV) were noted to be smaller than those of GLMPS-based IPW in scenario 4, since the 
matching methods yielded approximately unbiased estimates of ATE (Supplemental Table 6) even 
when the GPS model was incorrect but adjusted for the whole set of confounders, which indicates 
that matching methods are more robust to the omission of higher order and interaction terms in the 
GPS model than IPW.  
 
The empirical coverage rates of 95% confidence interval for sample sizes 1500 with both models 
correctly specified and either one of the models misspecified are shown in Figures 4 and 5, 
respectively. The true values for MW, AMW, OW, and AOW were determined using the true GPS 
based on 106 sample units and used to evaluate the corresponding coverage rates. In general, when 
both models were correctly specified (Figure 4), all methods except MCOV had close to nominal 
coverage of 95% for moderate prevalence. Coverage for MCOV was far below nominal in 
scenarios 2 and 3 with moderate and strong confounding, respectively. This under-coverage was 
primarily the result of empirical bias (Supplemental Tables 4 and 5).  
 
With the outcome model being misspecified (Figure 5), all of the augmented estimators showed 
reasonable coverage. Note that the corresponding estimands of MW, OW, and their augmented 
versions depend on the actual values of GPS. Therefore, different specifications of GPS model 
lead to different estimands, while the estimands based on the true GPS model were used for 
evaluating the coverage rates, which explains the under-coverage of AMW and AOW in some 
scenarios when the GPS model was misspecified (Figure 5). For a small sample size (n=300) or 
sparse outcome (scenario 5), we consistently observed over-coverage for PEN-GAM methods 
across all scenarios regardless of the specifications of the models, with some of the CIs achieving 
99% coverage (Supplemental Figures 4 and 5, and scenario 5 in Figures 4 and 5). This finding 
agrees with the overestimation of the standard errors for PEN-GAM observed in Supplemental 
Tables 7 and 10-14. The under-coverage for GLMPS-based MGPSS in scenario 3 (Supplemental 
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Figure 4) was caused by the underestimation of the standard errors using the asymptotic formula 
provided in Yang et al.24 Such under-coverage was remedied as the sample size increased. 
 
The average 95% CI widths for sample size 1500 are shown in Figures 6 and 7. When both models 
were correctly specified (Figure 6), the average widths of OREG, AIPW, and PEN-GAM were 
close to or smaller than those of GLMPS-based IPW for common outcome. MGPSS and MGPSV 
tended to have wider confidence intervals than IPW across all scenarios. The average widths of 
CBPS-based estimators tended to be larger than those of their corresponding GLMPS-based ones. 
Figure 7 displays the results for the augmented estimators with either one of the models being 
misspecified. The relative relationships among IPW, AIPW, and PEN-GAM were similar to the 
ones in Figure 6 where both models were correct. In general, for all estimators considered in Figure 
7, the CIs were wider when the outcome model was misspecified compared to the case with a 
misspecified GPS model only. For n=300, the CIs for PEN-GAM were in general wider than those 
of IPW (Supplemental Figures 6-7). The average standard errors of PEN-GAM were greater than 
their corresponding Monte Carlo standard deviations for all scenarios (Supplemental Tables 10-
14), suggesting that PEN-GAM tends to be more sensitive to small sample size in terms of standard 
error estimation compared to IPW and AIPW. 
 
MW, OW estimators and their augmented version provide stable estimates of 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴∗ , regardless of 
the overlap status in the covariate distribution of the original population (Supplemental Tables 3-
7 and 10-14). This is as expected since MW and OW artificially downweigh the units with extreme 
GPS and upweight the units whose GPS for each treatment are similar, the latter of which tend to 
have a common support in their covariate distribution.  
 
6. Data Analysis  
 
6.1 Data Analysis Methods 
We applied the methods in Table 1 to claims data of patients with metastatic castration-resistant 
prostate cancer (mCRPC), which was obtained from a large national private health insurance 
network (Optum Clinformatic Data Mart). Our data consisted of a subset of a previously identified 
cohort,56–58 which included patients who had at least one diagnosis of prostate cancer from January 
1, 2010 to September 30, 2016 and used at least one of the six focus drugs (docetaxel, abiraterone, 
enzalutamide, sipuleucel-T, cabazitaxel, and radium-233) after the diagnosis. Since radium-233 
were approved by FDA and released to the market later than the other five drugs, we restricted our 
cohort to patients who initiated treatment after January 1, 2014 to give them a fair comparison and 
make the results more generalizable to the current mCRPC population. We observed that the 
cabazitaxel and radium-233 groups had much fewer samples (𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 11 and 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
57) than the other four groups, and therefore we further dropped those patients who received the 
two drugs as their first-lines therapy from our analysis. We assessed the safety of the four 
remaining drugs for mCRPC with the outcome being the occurrence of post-prescription 
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emergency room (ER) visits during a fixed period of time. Specifically, we evaluated the risk 
difference of ER visits among the four drugs within 180-day time window of the initiation of each 
therapy.  
 
Medical and pharmacy claims pertaining to ER visits were identified by procedure code and type 
of service variables in the database. In this study, we did not consider treatment sequence and 
hence were only interested in ER visits associated with the first drug used. Patients who switched 
treatment or dropped out of the insurance plan within 180 days of the first prescription with no 
events (i.e. ER visits) occurring during the follow-up period were regarded as being censored. 
Censored patients exhibited similar demographic and baseline clinical characteristics 
(Supplemental Table 16) to uncensored ones and were dropped from the analysis. We first 
calculated the crude risks of at least one ER visit for 180-day follow up for each of the four focus 
drugs, and compared the risk among the four treatment groups using causal inference methods 
described in the previous section. 
 
The GPS for each subject was estimated from a multinomial logistic regression model adjusting 
for age, race, education level, household income, geographic region, insurance product type, 
whether the insurance plan is administrative services only, metastatic status of cancer, year of first 
prescription, comorbid conditions, and provider type. All covariates were binary or categorical, 
and the categorization was summarized in Supplemental Table 17. We observed insufficient 
overlap among the four treatment groups in terms of the logit propensity of receiving docetaxel, 
especially at the left end of the distribution (Supplemental Figure 8A), which indicates that we 
may not be able to find a good match in docetaxel users for some patients receiving abiraterone, 
enzalutamide, or sipuleucel-T. Similar patterns occurred for the logit propensity of receiving the 
other three drugs (Supplemental Figures 8C, 8E and 8G). One can use trimming methods that 
discard the tails of propensity score distributions to remedy the lack of overlap. Several trimming 
criteria for three or more treatment groups are discussed in the literature.24,25,59 In our case, we 
trimmed the data  using the criteria described in.25 In brief, for each treatment 𝑧𝑧 ∈ {1,2,3,4}, let 

𝑙𝑙𝑧𝑧 = max
𝑗𝑗

�min
𝑖𝑖
�𝑝𝑝𝑝𝑝(𝑍𝑍𝑖𝑖 = 𝑧𝑧|𝑍𝑍𝑖𝑖 = 𝑗𝑗,𝑿𝑿𝑖𝑖)��  and 𝑢𝑢𝑧𝑧 = min

𝑗𝑗
�max

𝑖𝑖
�𝑝𝑝𝑝𝑝(𝑍𝑍𝑖𝑖 = 𝑧𝑧|𝑍𝑍𝑖𝑖 = 𝑗𝑗,𝑿𝑿𝑖𝑖)�� , where 

𝑝𝑝𝑝𝑝(𝑍𝑍 = 𝑧𝑧|𝑍𝑍 = 𝑗𝑗,𝑿𝑿) is the treatment assignment probability for 𝑧𝑧 among those receiving treatment 
𝑗𝑗 . Subjects with 𝑒𝑒𝑧𝑧(𝒙𝒙) ∉ [𝑙𝑙𝑧𝑧 ,𝑢𝑢𝑧𝑧]  for any 𝑧𝑧  were discarded. GPS were recalculated using the 
remaining subjects. One important step in propensity score modeling is balance checking. Ways 
to check for balance in covariates and their corresponding results for the methods considered are 
described in supplemental section 1. The log odds of the outcome was modeled as a linear 
combination of the same set of covariates adjusted in the GPS model for each treatment group. 
The confidence intervals for each method were obtained in the same way as described in the 
simulation studies. Specifically, 200 bootstrap replicates were used for OREG, PEN-GAM, and 
all weighting-based methods. 
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The data that support the findings of this study are available on request from the corresponding 
author. The data are not publicly available due to privacy or ethical restrictions. 
 
6.2 Data Analysis Results 
A total of 2,628 mCRPC patients with at least 180 days of continuous enrollment prior to the 
receipt of the first focus drug were identified. The average and median length of the enrollment 
period that covers January 1, 2014 is 6.16 and 4.75 years, respectively. Among the 2,628 patients, 
670 (25.5%) were censored and 4 (0.2%) had incomplete covariates. We further excluded these 
patients from the analysis. The demographic and baseline clinical data of the remaining 1,955 
patients are presented in Supplemental Table 17. Table 2 presents the crude risks of at least one 
ER visit during 180-day follow up among uncensored patients for each of the four treatment groups. 
The unadjusted risk was the highest in the docetaxel group (51.5%), followed by Sipuleucel-T 
group (44.3%). Enzalutamide users had the lowest risk (25.5%) of at least one ER visit within 180 
days.  
 
We observed imbalance in some of the covariates (Supplemental Table 1.1 and Supplemental 
Table 17). For example, patients who received abiraterone or enzalutamide tend to be older than 
those receiving docetaxel. Sipuleucel-T users tend to have more pre-treatment osteoporosis (16.0%) 
than patients receiving the other three drugs (5.3% for docetaxel, 8.4% for abiraterone, and 9.0% 
for enzalutamide). 
 
To improve the covariate overlap among the treatment groups, we applied data trimming25 with 
criteria discussed previously, which left us with 1,777 subjects. Results of data analysis are 
presented in Figure 8 and Supplemental Table 18. Direct comparison of the four groups (naive 
method) revealed that docetaxel users had significantly higher risk of at least one ER visits within 
180 days of follow up than users of abiraterone (risk difference = 0.130 [0.073, 0.186]), 
enzalutamide (risk difference = 0.177 [0.115, 0.239]), and sipuleucel-T (risk difference = 0.099 
[0.001, 0.197]). The directions of the average effects between docetaxel and the other drugs were 
preserved for the other methods, though the effect sizes varied. The 95% CIs for the average causal 
effects between docetaxel and enzalutamide consistently excluded 0 for all methods. However, for 
the Sipuleucel-T-docetaxel comparison, only MCOV showed a significant difference. For the 
enzalutamide-abiraterone comparison, all methods considered indicated a higher risk for 
enzalutamide, while none of these estimated risk differences were significant. For the sipuleucel-
T-abiraterone comparison, PEN-GAM yielded negative point estimates (indicating higher risk for 
abiraterone), while the other methods indicated a reversed relationship. Again, none of the 
corresponding CIs excluded 0. In general, there was a larger uncertainty in regard to the direction 
and magnitude of the risk differences that involve the Sipuleucel-T group due to its smaller sample 
size. Notably, PEN-GAM tended to have wider CIs than the other methods, which was consistent 
with the simulation results for small sample size. The results of MW, AMW, OW, and AOW were 
close to one another in terms of point estimates as well as standard errors for all pairwise 
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comparisons, possibly because their corresponding target populations were similar. This finding 
aligns with what was observed in the simulation studies. The results of our data analysis agree well 
with the clinical evidence in current literature.56–58 The naive method yielded results that were 
highly consistent with those of the methods that adjust for potential confounding, suggesting that 
the treatment effects were relatively strong compared to the confounding effects.  
 
7. Discussion 
This paper has reviewed and compared a set of causal inference strategies that account for 
confounding for multiple treatment comparison with a binary outcome variable. Some of these 
methods, for example, MGPSS24 and PENCOMP,17 were recently proposed and less explored 
under the setting of binary outcome in current literature. Our simulation studies show that when 
there is sufficient overlap in covariate distributions, MGPSS, and in general all AI-type matching 
methods, are less efficient than the conventional inverse probability weighted (IPW) estimator. 
The gain in precision of AIPW over IPW that has been observed for continuous outcomes3,60 was 
less evident in our simulations for a binary outcome and good covariate overlap. Thus, while 
augmentation was still useful for the robustness of estimating the causal effect, it was less useful 
for improving efficiency. When there was lack of common support, PEN-GAM and AIPW 
provided more precise estimation than IPW. The improvement in precision increased as the 
associations of the outcome with baseline covariates became stronger. With moderate outcome 
prevalence, PEN-GAM tended to perform better than AIPW in terms of RMSE when only the 
propensity model was correctly specified. One possible reason was that when the covariate overlap 
is poor, the weights tend to have large variations and some individuals may receive extreme 
weights, which results in highly variable estimates. PEN-GAM avoids weights by adjusting for 
the splines of propensity scores (in logit scale) in the outcome model. When the outcome model 
was misspecified, the estimates relied more on the use of propensity scores. On the other hand, 
when the outcome was sparse, the fitting of the spline models tended to be unstable, which leads 
to larger RMSE for PEN-GAM than AIPW.   
 
For propensity score-based methods, correctly modeling the propensity scores is the key to 
yielding valid inference. The generalized linear model based on maximum likelihood (GLMPS) is 
sensitive to both unmeasured confounders and misspecified functional form, which tend to lead to 
large bias in ATE estimation. Efforts have been made to improve the robustness of propensity 
score estimation and the Covariate Balancing Propensity Scores (CBPS), which utilizes the 
covariate balancing property of the propensity scores and achieves robustness in the presence of 
incorrect functional forms, in one of the examples.48 In particular, when the GPS model has 
misspecified functional form but adjusts for the whole set of confounders, the use of CBPS can 
reduce the bias of the ATE estimates compared to using GLMPS. In addition to CBPS, methods 
based on machine learning technique have also been proposed for propensity score estimation.61 
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Our focus in this paper has remained on simple parametric models. There is extensive literature on 
using machine learning methods62–64 to capture potential nonlinearities and higher-order 
interactions. The relative gain by using such flexible methods depends on the sample size, the 
number of predictors, and the true structure of the underlying models (the propensity model or the 
outcome model). 
 
The computational time for each of the methods considered in the simulation studies for a sample 
size of 1500 and 3 treatment groups is reported in Supplemental Table 19. All simulations were 
run on an Intel® Xeon® Gold 6138 Processor (2.00 GHz). The average run time of over-identified 
CBPS was almost twice as much as that of just-identified CBPS. The average run time of PEN-
GAM for one bootstrap replicate was around 2 seconds. The projected computational time for 200 
bootstrap replicates is approximately 7 minutes.  
 
The methods examined in this study only accounts for the selection bias associated with 
differences in the covariates. However, the outcome of the data we used is also subject to censoring, 
which may introduce another layer of selection bias. In particular, approximately 30% of the 
patients in our data set were censored due to treatment switch or dropout within 180 days of 
treatment initiation. Weighting-based methods have been proposed to achieve unbiased estimation 
of average causal effect in the presence of right-censored observations under certain 
assumptions.65–67  
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Table 1. Causal inference methods under comparison and their corresponding R implementation 
Method Reference R package/author generated code Which 

unconfoundedness 
assumption is madec 

NAIVEa N/A https://github.com/youfeiyu/multiTreatment N/A 
OREG N/A https://github.com/youfeiyu/multiTreatment Assumption 2* 
PENCOMPb Zhou et al.17 https://github.com/youfeiyu/multiTreatment Assumption 2 
Propensity Score Matching 

 

MCOV Abadie and 
Imbens 31 

Matching 68, Matchit 69,70 Assumption 2 

MGPSV Yang et al. 24 https://github.com/youfeiyu/multiTreatment Assumption 2 
MGPSS Yang et al. 24 Multilevelmatching 

(https://github.com/shuyang1987/multilevel
Matching/) 

Assumption 2* 

Propensity Score Weighting 
 

IPW, AIPW Lunceford and 
Davidian 3, 
among others  

https://github.com/youfeiyu/multiTreatment Assumption 2* 

MW, AMW Li and Greene 
12, Yoshida et 
al. 13 

https://github.com/youfeiyu/multiTreatment Assumption 2* 

OW, AOW Li and Li 26 PSweight 71, or 
https://github.com/youfeiyu/multiTreatment 

Assumption 2* 

aNAIVE estimator refers to the direct comparison of the proportions of each treatment group. 
bThe authors developed PENCOMP in the context of binary treatment and continuous outcome. We 
extend it to the case of multiple treatment and binary outcome. 
cAssumptions 2 and 2* are the strong and weak unconfoundedness assumption, respectively.  

 
 
 
Table 2. Emergency room visits following the first prescription  (N=2628) 

First-line therapy Total number of 
patients 

Number of uncensored 
patients with complete 

covariates 

At least 1 ER visit (%) 
within 180 days* 

Docetaxel (Taxotere, 
Decefrez) 728 565 291 (51.5) 

Abiraterone 
(Zytiga) 1039 783 314 (40.1) 

Enzalutamide (Xtandi) 639 476 163 (34.2) 
Sipuleucel-T 
(Provenge) 222 131 58 (44.3) 
*Percentage was calculated using the number uncensored patients as the denominator. 
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