

AUVSI-SUAS Autonomous Unmanned Vehicle Hardware System Honors Capstone

Matt French Hardware Systems Lead

Aaron Ridley Capstone Advisor

University of Michigan - Ann Arbor CoE 2020 Fall Design Expo December 3rd, 2020

AUVSI-SUAS Mission Objectives

- Simulated package delivery
- Autonomously navigate series of waypoints in 6 mile long path
 - Avoid GPS-based stationary obstacles and other aircraft
- Search for and classify targets using aerial photography and computer vision
- Drop payload of Unmanned Ground Vehicle (UGV) which must autonomously drive to delivery location
- Maximum of 30 minutes flight time

Autopilot

- Interface for sensors and servos
- Companion computer support (MAVLink)
- Configurable modes and tuning
- Separate power distribution board

Companion Flight Computer

- Using Raspberry Pi for peripheral tasks
- Payload drop
- Solution for dynamic detection and avoidance

Communications Design

Flight Communication Hardware

- 900 MHz Telemetry
- 5.8 GHz Imaging and Interop
- 2.4 GHz RC Control

RC Antenna Placement

Hardware: Communications Range Testing

Measured Range of Communications Links

Computer Vision: Camera

- Sony IMX219 Color CMOS
- 8 MP (3280x2464)
- 25.0mm CS lens
 - 16.7 degree FOV
- PiCamera Library

Wiring Harness

Airframe: Fuselage Layout

https://youtu.be/y3U0MILJsVc

https://youtu.be/6rynrRplypQ

Hardware: Link Budgets

Frequency	P _t (dBm)	G _t (dBi)	G (dBi)	L _{fs} (dBm)	P _r (dBm)	Sensitivity (dBm)	Margin (dBm)
900 MHz	20.0	3.0	5.0	-91.7	-63.7	-117.0	53.3
5.8 GHz	20.0	6.0	8.0	-107.7	-73.7	-80.0	6.3
2.4 GHz	10.0	2.0	2.0	-100.0	-86.0	-98.0	12.0

Margin =
$$P_r$$
 - Sensitivity
 $P_r = P_t + G_t + G_r - L_{fs}$

Air Delivery: Unmanned Ground Vehicle

Hardware

- $\circ\quad$ Arduino Nano microcontroller
- Navigates using GPS and compass heading
- 900 MHz telemetry using different channel than aircraft telemetry

Software

- Language: AVR C
- Motion control loop

Scoring Breakdown

Task	Task Weight	Subtask	Subtask Weight	Percentage
Mission Demonstration	60.00%	Timeline	10.00%	6%
		Autonomous Flight	10.00%	6%
		Obstacle Avoidance	20.00%	12%
		ODLC	30.00%	18%
		Air Drop	20.00%	12%
		Operational Excellence	10.00%	6%
Technical Design Paper	20.00%	Payload Design	40.00%	8%
		Autonomous Flight Design	40.00%	8%
		Safey, Risks, and Mitigations	20.00%	4%
Flight Readiness Review	20.00%	System Overview	20.00%	4%
		Developmental Testing	50.00%	10%
		Mission Testing	30.00%	6%