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Abstract 
Climate change, public health, and resilience to power outages are of critical concern to local 
governments and are increasingly motivating investments in on-site solar and storage. 
However, designing a solar plus storage system to co-optimize for climate, health, resilience, 
and energy bill benefits requires complex trade-offs that are not captured in current analyses. 
To fill this gap, we integrate climate and health benefits into the REopt Lite optimization model 
using forward-looking, location-specific marginal emissions factors and health costs. Using 
this novel framework, we quantify the impact of including energy bill, climate, health, and/or 
resilience benefits on the cost-optimal sizing, battery dispatch, and economic returns of solar 
plus storage on three public building types across fourteen U.S. cities. We find that monetizing 
and optimizing for climate and health benefits, as compared to only energy bill savings and 
resilience, increases the net present value of the modeled solar plus storage systems by $0.2 
million to $5 million. Due to changes in the cost-optimal battery dispatch, our expanded 
optimization results in additional climate and health benefits of $0.50 per dollar invested, as 
compared to optimizing for only energy bill savings and resilience. Our results illustrate 
significant differences across geographies and building types, highlighting the need for site-
specific analyses of the costs and benefits of solar plus storage.  
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1. Introduction 
In the United States, the electricity sector accounts for 25% of greenhouse gas emissions1 and 
11% of air pollution-induced premature mortalities.2 As extreme weather events increase,3 the 
U.S. power system is also seeing more frequent “major disturbances and unusual 
occurrences”—increasing tenfold from 2000 to 20204 and resulting in economic losses and 
loss of life.5,6 Moreover, the burdens of climate change, air pollution, and power outages result 
in stark inequities—having been shown to disproportionately impact people of color and less 
affluent communities.7–11    
 
With the ability to offset emissions from grid-purchased electricity and to provide power 
during blackouts, on-site solar photovoltaics and battery storage (solar plus storage) are well-
poised to simultaneously reduce climate, health, and outage damages along with the system 
owner’s energy bill costs. Grid-connected distributed solar installations in the U.S. have grown 
over the past two decades, from just under 800 annual installations in 2000 to over 374,000 in 
2019 (Figure 1).12 Meanwhile, the percentage of these systems that integrate storage has also 
increased to a respective 1.4% and 5% for small and large non-residential systems in 2019 
(Figure 1) and is expected to continue to grow.13,14  
 

   
Figure 1. (left) Number of annual installations of grid-connected distributed PV in the U.S. and 
(right) storage attachment as percentage of installed distributed PV systems (Source: LBNL Tracking 
the Sun 2020).12,14 

Given the increasing adoption of solar plus storage, many analyses quantify various costs and 
benefits of these technologies in diverse siting and operational contexts. A comprehensive 
understanding of the costs and benefits of solar plus storage can inform policy instruments 
(e.g., value of distributed energy resources (VDER) tariffs),15–17 insurance valuations,18 equity 
considerations,19–22 investment decisions,23–26 and operational strategies.27–29 However, 
capturing the collective impact of climate, health, resilience, and energy cost savings within 
the cost-optimal deployment of solar plus storage remains a challenge that has yet to be 
addressed.  
 
When paired with microgrid technologies (e.g., appropriate inverters, controls, and electrical 
infrastructure),30 solar plus storage can increase resilience, keeping critical loads powered 
when the primary grid is down. Particularly in the context of critical services and resilience 
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hubs, powering loads through an outage can reduce economic losses and mitigate suffering or 
loss of life. Considering resilience within solar plus storage system design can result in larger 
cost-optimal systems and increased resilience.23,24,31 The value of resilience is typically defined 
as the economic value of avoided outages, calculated as the quantity of load powered through 
an outage multiplied by a value of lost load (VoLL).18,24,32–35 Estimates of VoLL in the 
literature vary widely due to differences in methodologies (e.g., macroeconomic vs. 
willingness-to-pay studies), the end user-group studied, and the assumed outage duration.33 
Many previous studies have addressed and optimized for microgrid resilience.23,24,36–42 Laws 
et al. (2021) provides the first model to co-optimize microgrids for annual grid-connected and 
resilience benefits under uncertain outages, while accounting for additional islanding costs and 
arbitrary utility tariff structures.43 In this study, we build upon the work of Laws et al. (2021), 
which is implemented in the National Renewable Energy Laboratory’s (NREL’s) open source 
REopt Lite model,44 by further integrating climate and health impacts.  
 
Analyses of climate and health benefits of distributed energy resources (DERs) typically focus 
on solar energy (without the time-shifting ability of storage) and assume pre-determined 
system sizes.19,45–47 When assessing the emissions impacts of an incremental change in 
electricity consumption, it is recommended to assume an associated change in production from 
the marginal generator, rather than considering the average emissions intensity of the grid.48,49 
Many studies assume that the marginal generator is always a natural gas plant,16,17,50,51 while 
others assume that the marginal generator differs between off-peak and on-peak hours,52 varies 
hourly based on dispatch modeling results,53 or utilize regressions of historical generation and 
emissions levels to estimate marginal emissions factors.19,47 Studies that have addressed the 
combined emissions impact of solar plus storage have done so in the context of isolated 
microgrids,54–57 predefined schedules of demand response actions,58 while optimizing battery 
dispatch for alternative objectives (e.g., reducing grid reliance),27 or while considering general 
life cycle assessment emissions factors for technology components.59,60 Avoided CO2 
emissions are typically valued using the social cost of carbon from the U.S. Interagency 
Working Group.19,61–63 Avoided criteria air pollutants are typically valued as the compliance 
cost for emissions reductions from power plants or the estimated cost of medical expenses or 
mortality risk from emissions, although these damages are less frequently explicitly recognized 
in value of distributed solar literature and policies.15,16,64  
 
We extend the literature by incorporating climate and health impacts, along with resilience, 
into the cost-optimal sizing of grid-connected solar plus storage. In contrast to previous work, 
we use location-specific and forward-looking marginal emissions factors and location- and 
season-specific marginal health costs. Valuation of climate and health impacts is particularly 
relevant for local governments, who own numerous properties, are responsible for wellbeing 
of their constituency, and are increasingly making climate commitments.65 Resilience is also 
particularly salient for local governments, given that they must maintain power to critical 
infrastructure during blackouts, often provide the first line of response during disasters, and 
are well-poised to create resilience hubs to serve vulnerable community members.66,67  
 
Using our model, we quantify the impact of including climate, health, and/or resilience costs 
and benefits on the optimal system sizes, economic returns, and battery dispatch of solar plus 
storage projects for three public building types across 14 U.S. cities. Our analysis demonstrates 
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how local governments’ cost-optimal deployment of solar plus storage would change when 
considering the costs of emissions damages and power outages in conjunction with investment 
costs and energy bill impacts. 

2. Methods 
 
2.1 REopt Lite Modeling Framework 
 
To quantify climate and health impacts of solar plus storage, we incorporate forward-looking 
marginal emissions costs of grid-purchased electricity into the National Renewable Energy 
Laboratory’s (NREL’s) Renewable Energy Optimization (REopt) Lite model, an open-source 
Julia package.44 To quantify the value of resilience, we utilize the method from Laws et al. 
(2021).43  
 
When applied to solar plus storage systems, the REopt Lite model seeks to minimize the life-
cycle cost (LCC) of electricity purchases by determining optimal technology sizes and the 
hourly storage dispatch strategy. For the full formulation of REopt, see Cutler, et. al. (2017).68 
Within the model, the utility costs, building load, and renewable generation in year one are 
assumed to represent a typical year. REopt Lite thus solves a single-year optimization, ensuring 
operational constraints are met in each hour, to determine year one cash flows. Cash flows for 
subsequent years are adjusted based on user-supplied rates of change for future costs (e.g., 
utility and O&M costs) and are discounted to determine the LCC of an investment.  
 
Prior to our work, REopt Lite’s solar plus storage life-cycle cost minimization included capital 
costs (Ccap), operations and maintenance costs (CO&M), the net cost of utility-purchased 
electricity (Celec), and resilience costs (Cmaxoutage and Cmg). We extend this optimization to 
include climate (Cclimate) and health (Chealth) costs such that our objective becomes: 
 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐿𝐶𝐶 = 𝐶!"# + 𝐶$&& + 𝐶'('! + 𝐶)"*$+,"-' + 𝐶)- + 𝐶!(.)",' + 𝐶/'"(,/ (1) 

 
The value of resilience is captured by Cmaxoutage, which represents the maximum outage cost 
and Cmg, which represents the cost to enable the microgrid system to operate in isolation from 
the grid.43 Cclimate and Chealth represent climate and health costs, respectively, associated with 
grid-purchased electricity. 
 
The net electricity cost (Celec) represents energy and demand charges minus compensation for 
net exports to the grid. The calculation of energy bill savings given an arbitrary utility tariff is 
described in the REopt Lite documentation.69 In this work, we incorporate traditional cost 
considerations, as well as resilience, but focus mainly on the valuation of climate and health 
benefits. 
 
Figure 2 provides high-level model inputs, data sources, and relevant sections of this paper.  
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Figure 2. Overview of model inputs and outputs, along with relevant sections of this paper related to 
the valuation of climate, health, and resilience benefits. 

The net present value (NPV) of a proposed investment is calculated as the difference between 
the “business-as-usual” (BAU) life-cycle costs (LCCBAU)—in which a building has neither 
solar nor storage—and the “investment case” life-cycle costs (LCCinv)—in which the model 
determines the optimal system sizes (Eq. 2).  
 

𝑁𝑃𝑉 = 𝐿𝐶𝐶012 −	𝐿𝐶𝐶.34 (2) 
 
If the given investment in solar and storage results lower lifetime costs than the BAU case, 
then the NPV will be positive, and the investment is considered cost optimal. Analogously, we 
define the net climate, health, and resilience benefits of solar plus storage as the difference 
between these respective costs in the BAU and investment cases.  
 
2.2 Valuing Benefits of Reduced Emissions 
 
We quantify the climate and health benefits of solar plus storage based on reduced emissions 
from grid-purchased electricity due to these technologies. We do not account for upstream or 
end-of-life emissions associated with solar or storage. We estimate the hourly costs (or 
damages) of CO2, SO2, and NOx as the product of each pollutant’s marginal emissions rate, 
marginal damage cost, and net load. The hourly net load reflects net grid purchases, i.e., grid-
purchased electricity minus any exports to the grid from the battery and/or PV system. 
 
2.2.1 Marginal emissions rates 
 
We assume a change in grid-purchased electricity in a given hour due to on-site solar and 
storage results in an associated increase or decrease in generation from the marginal energy 
source. We obtain forward-looking hourly marginal energy source data at the balancing area 
scale from NREL’s Cambium database.70 We utilize the marginal energy source (as opposed 
to marginal generator) to account for time-shifted generation needs resulting from energy-
constrained marginal generators (e.g., batteries).71 Cambium datasets are based on projected 
generator fleets from the Regional Energy Deployment System (ReEDS) model72 and hourly 
fleet operations from the PLEXOS production cost model.73 Modeled grid data are available 
for every other year between 2018 and 2050; we assume odd-numbered years have the same 
generation profile as the previous even-numbered year. We use results from the Mid-Case 
Scenario, which assumes default or median model inputs regarding the future generation mix 
and includes existing policies as of June 2020.74  
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From the hourly marginal energy source, we obtain marginal emissions rates for pollutants that 
impact the climate (carbon dioxide (CO2)) and public health (sulfur dioxide (SO2) and nitrogen 
oxides (NOx)), for each year of the analysis period (2021-2046).   
 
For climate damages, we consider only emissions of CO2. While pollutants such as methane 
(CH4) and nitrous oxide (N2O) also contribute to climate damages, the CO2-equivalent 
emissions of non-CO2 pollutants are relatively small for grid-sourced power.69 We utilize 
hourly short-run CO2 marginal emissions rates (SRMERs) from Cambium at the balancing 
area scale. The hourly SRMER (t CO2/kWhenduse) is the end-use emissions rate of the marginal 
energy source and is already adjusted for transmission, distribution, and efficiency losses in 
delivery to the end user.  
 
For health damages, we consider only the impacts of SO2 and NOx, which affect human health 
through their secondary formation of PM2.5. Together, these species account for 
approximately 82% of mortalities caused by power plant emissions (~75% from SO2 and 7% 
from NOx).75  Direct emission of PM2.5 also contributes a significant amount (~14%) to PM2.5 
exposure and associated mortalities from the electricity sector and should be considered in 
future work.75 Future marginal emissions rates for criteria air pollutants are not available from 
Cambium or other public datasets. Instead, we calculate historic plant-level emissions rates for 
SO2 and NOx using the U.S. Environmental Protection Agency’s (EPA’s) National Electric 
Energy Data System (NEEDS) v6 database of U.S. power plant characteristics.76 We calculate 
each plant’s SO2 and NOx emissions rates [t/kWh] as the heat rate [Btu/kWh] multiplied by 
the SO2 Permit Rate [lbs/mmBtu] and Mode 4 NOx Rate [lbs/mmBtu], respectively. We use 
the Mode 4 NOx Rate, which assumes state-of-the-art combustion controls are in place, in 
anticipation of these controls becoming more widely adopted. We subsequently calculate the 
average SO2 and NOx emissions rates by plant type and NEEDS region. NEEDS regions 
generally represent subdivisions of the 8 North American Electric Reliability Council (NERC) 
regions. We map region- and plant type-specific SO2 and NOx emissions rates to the 
corresponding hourly marginal energy source in the corresponding Cambium balancing area 
using the mapping scheme in Table B1.   
 
The resulting average hourly marginal emissions rates (merplant) for SO2 and NOx are 
subsequently adjusted for transmission and distribution losses using the hourly marginal 
distribution loss rate (Lyr,hr) as reported in the Cambium dataset.71 As a result, we obtain end-
use marginal emissions rates (merenduse) for SO2 and NOx for each hour (hr) of the year, for 
each year (yr) of the analysis period (Eq. 3). 
 

mer56,/6'38+9' = mer56,/6
#("3, ∗ 31 + 𝐿56,/65 (3) 

 
Since the REopt Lite model determines an optimal hourly battery dispatch strategy for a single 
year, we cannot utilize hourly marginal emissions rates with profiles that vary year to year. 
Instead, to account for both hourly variability and annual trends, we select the midpoint year 
of the analysis to represent the profile (or shape) of the marginal emissions rates for CO2, SO2, 
and NOx. We then scale the mid-point year hourly profiles based on the respective total 
marginal emissions of CO2, SO2, and NOx in each year of the analysis.  
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For a 25-year analysis beginning in year 2021, we thus have three sets of 25 marginal emissions 
profiles (merhr,yr ) that reflect the CO2, SO2, and NOx hourly marginal emissions shape of 2033 
(each hour is scaled from the corresponding hour in 2033), but maintain the total per kWh 
damage from marginal emissions over each analysis year. Figure 3 shows an example of the 
resulting hourly profiles over a 24-hour period for 2021-2046. Selecting the profile of the 
midpoint year accounts for the fact that more emissions-intensive generators are on the margin 
less often as the years progress from 2021 to 2046 and thus avoids over- or under-sizing the 
system. For further explanation and justification of this approach, see Appendix A.  
 

 
Figure 3. Example CO2 (left), SO2 (center), and NOx (right) hourly marginal emissions rates, scaled to 
reflect the shapes of the 2033 (mid-point year) hourly profiles. Example shown is for the city of 
Chicago for one day for the years 2021-2046.  

2.2.2 Climate benefits 
 
To monetize the social damages caused by CO2 emissions, we use the social cost of carbon 
dioxide (SC-CO2) from the U.S. government’s Interagency Working Group.63 For our baseline 
scenario, we utilize $52 per metric ton of CO2 (in $2020 assuming a three percent discount 
rate). Consistent with the literature, we assume marginal damage costs in each year of the 
system’s lifetime can be approximated by this 2020 marginal damage cost (prior to 
discounting).19,59,61 
 
We calculate the total climate damage cost (𝐶56	!(.)",') in each year (yr) of the analysis period 
(A) as: 

𝐶56!(.)",' = 𝑆𝐶-𝐶𝑂; ∗ 9 3𝑛𝑒𝑡𝑙𝑜𝑎𝑑/6 ∗ 𝑚𝑒𝑟/6,565
<=∈?=@

∀𝑦𝑟 ∈ 𝐴	

 

(4) 

where SC-CO2 is the social cost of CO2 [$2020/t] and merhr,yr is the marginal CO2 emissions 
rate [t CO2/kWh] in each hour (hr) and year (yr) in the analysis period (A), where A = {0, 1, 2, 
…,n}. The hourly net load (netloadhr) equals grid-purchased electricity, which accounts for 
building load met by solar generation and/or battery discharge, minus exports to the grid from 
the battery and/or PV system.  
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The total climate-related cost (Cclimate) is calculated as the NPV of the annual climate costs, 
using the electricity off-taker’s discount rate (d) (Eq. 5). This total cost is incorporated into the 
model objective in scenarios in which climate costs are considered. 
 

𝐶!(.)",' = 𝑁𝑃𝑉 = 9
𝐶56!(.)",'

(1 + 𝑑)56
56∈1

	

 

(5) 

The climate benefit (𝐵!(.)",') of a given system is the difference between the climate costs 
in the BAU (𝐶012!(.)",') and investment cases (𝐶.34!(.)",') (Eq. 6). The climate benefit can be 
negative.  
 

𝐵!(.)",' = 𝐶012!(.)",' −	𝐶.34!(.)",' 	
 

(6) 

2.2.3 Health benefits 
 
The marginal health damage of air pollutants is highly dependent on the local population and 
atmospheric conditions.77 These marginal damages are also highly seasonally-dependent, with 
a U.S. average of 80% of power plant mortality damages attributable to emissions from April 
to September.75 To estimate location- and season-specific marginal health damages for 
emissions of SO2 and NOx, we use the Estimating Air pollution Social Impact Using 
Regression (EASIUR) model.78 EASIUR utilizes reduced-form air quality modeling to 
estimate the increase in public health burden caused by a marginal increase (one additional 
metric ton) of PM2.5 precursor emissions (including SO2 and NOx) in a given location. Public 
health burden is calculated as an increase in mortality (premature deaths) in downwind 
populations caused by inorganic PM2.5 exposure, using a $8.6 M ($2010) value of statistical 
life (VSL) and a concentration-response relation from the American Cancer Society.77 The 
resulting marginal damage costs are available at a resolution of 36 km x 36 km, for each of the 
four seasons, for three emissions elevations (ground-level, 105 m, and 300 m). We assume 
emissions occur at the building location, given that the exact location of the marginal energy 
source is not available. We assume the income and population year is 2021 and adjust the 
results to $2020. We use seasonal estimates for 105 m elevation, given that most power plants’ 
stack heights are at or below this height.79 Similar to our approach to the SC-CO2, we assume 
that damage estimates in each year can be approximated by 2021 damage estimates (prior to 
discounting). Previous studies have shown annual damages obtained from EASIUR to be 
comparable to, yet slightly lower than, damage estimates obtained using other integrated 
assessment models, e.g., AP219 and AP3 and inMAP.61  
 
We calculate the annual health damage cost (𝐶56/'"(,/) for each year (yr) of the analysis period 
(A = {0, 1, 2,...,n}) as: 
 

𝐶!"#$%&'# =# # $mec(
)*! ∗ netload#" ∗ 𝑚𝑒𝑟+,,.,

/0! +𝑚𝑒c(
1*" ∗ netload#" ∗ mer#",!"

1*" 	5
#"∈)3"(∈)

∀yr ∈ A	

 

(7) 

where s indexes the season in S={winter, spring, summer, fall} and the seasonal marginal 
emissions costs for SO2 and NOx (mecSO2 and mecNOx) are in units of $2020/t of pollutant. The 
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marginal costs are each multiplied by the hourly net load (netload [kWh]) and hourly end-use 
marginal emissions rates (mecSO2 and mecNOx [t/kWh]), for each hour (hr) in the set of hours 
corresponding to each season (SHr). The annual health cost is the sum of damages from SO2 
and NOx over each hour of the year. 
 
The public health cost (Chealth) over the lifetime of the system is calculated as the NPV of the 
annual health costs (𝐶56/'"(,/), using the electricity off-taker’s discount rate (d) (Eq. 8). This 
total cost is incorporated into the model objective in scenarios in which health costs are 
considered. 
 

𝐶/'"(,/ = 𝑁𝑃𝑉 = 9
𝐶56/'"(,/

(1 + 𝑑)56
56∈1

 

 

(8) 

The health benefit (𝐵/'"(,/) of a given system is the difference between the health costs in 
the BAU (𝐶012/'"(,/) and investment cases (𝐶.34/'"(,/) (Eq. 9). The health benefit can be 
negative.  
 

𝐵/'"(,/ = 𝐶012/'"(,/ −	𝐶.34/'"(,/	
 

(9) 

 
2.3 Valuing Benefits of Increased Resiliency 
 
The methods used to value resilience within the REopt Lite Julia Package and the associated 
model constraints are described in previous work.43 Below, we summarize key components of 
the valuation approach with slight modifications considering the unique assumptions of this 
research. 
 
The outage cost is the maximum expected outage cost (Cmaxoutage) over set T of possible outage 
start times (t0). We assume the outage occurs annually and adjust the annual cost with a present 
worth factor (pwf):  
 

𝐶)"*A+,"-' = max
,4

𝔼 J𝐶,4
A+,"-'K ∗ 𝑝𝑤𝑓	,			∀𝑡B ∈ 𝑇	

 

(10) 

In our baseline scenario, we consider an outage of 15 hours, the average duration of major 
outages in 2020,4 occurring with 100% probability. Ideally, we would model the outage at each 
hour of the year for every scenario; however, this approach proved computationally intractable. 
To reduce the computational intensity of the models while still capturing the uncertain nature 
of major outages, we determine the set of outage start times (T) for each building that results 
in the 95th percentile of total unserved load in absence of a microgrid. That is, we simulate a 
15-hour outage in each hour of the year (assuming no microgrid exists), determine the 438 
hours that represent the 5% worst times to experience an outage, and use this set T in all 
optimization scenarios for that building. Appendix B includes histograms showing the outage 
start hours in set T by month and hour of the day. 
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The cost of each simulated outage is the value of lost load (VoLL) [$/kWh] multiplied by the 
total unserved load (UL) over all hours (hr) of the outage (where the outage starts at time t0 
and lasts until time t0+d): 

𝐶,4
A+,"-' = 𝑉𝑜𝐿𝐿 ∗ 9 𝑈𝐿/6

/6∈$+,"-'

	

 

(11) 

Estimates of the VoLL for public buildings are limited. Given the far-reaching impacts of an 
outage to public facilities—which may provide core health or safety services or be a resilience 
hub for residents66,80—we utilize economy-wide estimates of the VoLL. Several review papers 
show that economy-wide estimates for mid- to long-duration outages fall within $4-
$40/kWh81–84 (in varying dollar years) while others have estimated the cost of a 16-hour power 
outage in the U.S. to range from $70-$140/kWh (in $2020) when accounting for indirect 
impacts.81  
 
In this research, we draw upon these wide-ranging estimates and assume that the economy-
wide impacts of a mid-duration (15-hour) outage has a minimum cost of $4/kWh and a 
maximum cost of $140/kWh. We subsequently estimate outage costs for different public 
facility types based on whether they provide critical or emergency services and whether they 
will serve as a resilience hub for community members during an outage (Table 1). Critical or 
emergency facilities are assumed to incur costs at the high end of our defined range. We 
estimate the cost of an outage to a resilience hub to be the midpoint value and the cost to a non-
critical and non-resilience hub facility to be at the low end of the range. VoLL is assumed to 
be constant throughout the year. This approach to differentiating the VoLL is unique and is 
constrained by limited data for public facilities; future research in this area will be valuable.  
 
Table 1. Estimated VoLL for different public facility types for a 15-hour outage. 

Facility type VoLL ($2020/kWh) 
Critical or Emergency Service $140 

Resilience Hub $72 
Non-critical, Non-resilience Hub $4 

 
The resilience benefit (𝐵6'9.(.'3!') is calculated as avoided outage costs minus the microgrid 
upgrade cost.  
 

𝐵6'9.(.'3!' = (𝐶012
)"*$+,"-' − 𝐶.34

)"*$+,"-') − 	𝐶.34
)-	

 
(12) 

2.4 Model Application across United States 
 
We apply our model to three public building types (hospital, secondary school, and warehouse) 
in 14 U.S. cities (Albuquerque, Atlanta, Baltimore, Boulder, Chicago, Duluth, Helena, 
Houston, Los Angeles, Miami, Minneapolis, Phoenix, San Francisco, and Seattle). These 
building types serve differing roles during a power outage: a hospital provides critical services, 
a secondary school can serve as a community resilience hub, and a warehouse may serve no 
special role. For each building, we determine the cost-optimal solar plus storage system size 
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and economic outcomes when considering bill savings, resilience, climate, and/or health 
impacts (Table 2). Our 14 locations span unique climate zones and balancing areas (Figure 
4).71,85,86 We assume each building has already been deemed suitable for solar given, e.g., roof 
vintage and loading capacity.  

 

 
Figure 4. Locations for buildings modeled in this study along with balancing areas and reliability 
assessment zones used to develop Cambium datasets (Source: Cambium Documentation 202071). 
(MISO: Midcontinent Independent System Operator; NPCC: Northeast Power Coordinating Council; 
SERC: SERC Reliability Corporation; SPP: Southwest Power Pool; WECC: Western Electricity 
Coordinating Council) 

Table 2. Optimization scenarios, associated acronyms, and LCC calculations used in this study. 

Acronym 
Monetized 
value streams  Objective value (minimization) 

B Bill savings 𝐿𝐶𝐶 = 𝐶!"# + 𝐶$&& + 𝐶'('! 

BR Bill savings, 
resilience 𝐿𝐶𝐶 = 𝐶!"# + 𝐶$&& + 𝐶'('! + 𝐶)"*$+,"-' + 𝐶)- 

BRCH 
Bill savings, 
resilience, 
climate, health 

𝐿𝐶𝐶 = 𝐶!"# + 𝐶$&& + 𝐶'('! + 𝐶)"*$+,"-' + 𝐶)- + 𝐶!(.)",' + 𝐶/'"(,/ 

 
We hold several inputs constant across locations, including project finance assumptions (Table 
3); technical and cost assumptions for PV and battery storage (Table 4); anticipated outage 
characteristics (Table 5); available roof space for solar by building type (Table 6); critical load 
percentage by building type (Table 6); VoLL by building type (Table 6); and the social cost of 
carbon. Inputs we vary across locations are building loads (Table B2); marginal emissions 
costs (Figure 5); marginal emissions rates of grid-purchased electricity; utility tariff 
assumptions (Table B3); and net energy metering (NEM) rates. 
 
Given the 25-year life a PV system, we run our analysis from 2021 to 2046. We assume the 
projects are directly owned and entirely financed by the local governments, and thus we do not 

Boulder, CO

Houston, TX

Miami, FL

Atlanta, GA

Baltimore, MD

Chicago, IL

Minneapolis, MN

Duluth, MN
Helena, MT

Albuquerque, NM

Phoenix, AZ

Los Angeles, CA

San Francisco, CA

Seattle, WA
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consider tax benefits (e.g., MACRS and ITC). Incorporating alternative financing models, 
while outside the scope of this research, could make investments more financially attractive 
for local governments.  
 
In our baseline scenario, we assume an annual outage of 15 hours (the average duration of 
major U.S. outages in 20204). We estimate the critical load for each facility based on whether 
it provides critical services or could serve as a resilience hub during a power outage. The 
building-specific VoLL is accordingly assigned using the values from Table 1. 
 
Climate zone-specific building loads are generated from the U.S. DOE Commercial Reference 
Building (CRB) models for post-1980 construction for each site.85 We estimate the total roof 
area that is suitable for solar as the corresponding CRB total square footage (which is constant 
across climate zones) divided by number of floors. We assume 50% of the roof is available to 
host solar panels.  
 
We use a SC-CO2 of $52/t ($2020) for all analyses. Figure 5 shows the marginal health costs 
from EASIUR of SO2 and NOx by season and location. Marginal health costs are notably higher 
in Baltimore, Chicago, Los Angeles, San Francisco, and Seattle than the average across all 
cities, marked by the solid horizontal line. Average marginal CO2, SO2, and NOx emissions 
rates from 2021-2046 for each location are shown in Figure 6. While these averages illustrate 
the difference in emissions-intensity of grid electricity in the 14 locations, in our analysis we 
utilize hourly marginal emissions rates as described in Section 2.2.  
 
We model realistic utility rate structures by selecting an appropriate tariff for each building 
from the International Utility Rate Database, based on the likely utility company given the 
location and any applicable energy or demand limits87 (Table B3). Many of these rates include 
time-of-use components. The REopt Lite Julia package simplifies multi-tiered rates by using 
the first tier for energy rates and the last tier for demand rates.44 For the sake of comparison, 
Table B3 includes the average energy and demand rates in the base case (without solar or 
storage technologies). We assume net energy metering (NEM) is permitted for all buildings 
and that net excess generation is compensated at the retail rate. All model instances were solved 
using the IBM® CPLEX® Optimizer.  
 
Table 3. Financial assumptions for all buildings. All financial values are nominal. 

Parameter Value 
Analysis period 2021-2046 
Discount rate  8.3%* 
O&M cost escalation rate 2.5%* 
Electricity cost escalation rate 2.3%* 
Tax rate 0% 
ITC Not applied 
MACRS Not applied 

*These values are the REopt Lite default values, which draw largely from national averages. See documentation 
for sources and assumptions.69 
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Table 4. Technical and cost assumptions for PV, battery storage, and microgrid systems for all 
buildings. All financial values are nominal. 

PV Assumptions Value 
Technical 

Annual degradation 0.5%* 
Rooftop power density 10 watts / sf* 
Inverter efficiency  96%* 
System losses 14%* 
DC/AC ratio 1.2* 
PV tilt 10 degrees* 
Module type Standard* 
Azimuth 180 degrees*  
Hourly PV production Obtained from PVWatts using 

location and system characteristics  
Economic 

Installed cost $2.3/W** 
O&M cost $16/kW/year* 

Battery Assumptions Value 
Technical 

Inverter and storage replacement Year 10* 
Total AC-AC round trip efficiency 89.9%  

Internal efficiency 97.5%* 
Inverter efficiency 96%* 
Rectifier efficiency 96%* 

Minimum/initial state of charge 20% / 50%* 
Can grid charge battery? Yes 
Economic 

Installed cost $840/kW, $420/kWh* 
Replacement cost (year 10) $410/kW, $200/kWh* 

Microgrid Assumptions  
Economic 

Microgrid premium  30% of solar plus storage capital 
cost* 

*These values are the REopt Lite default values, which draw largely from national averages. See documentation 
for sources and assumptions.69 

**U.S.-wide median cost for large non-residential PV systems in 2019.14 
 

Table 5. Anticipated outage characteristics 

Parameter Value 
Outage length 15 hours  
Outage start times Hours in the 95th percentile of most 

unserved load in absence of microgrid  
Outage frequency Annual 

 
Table 6. Building type-specific inputs for maximum available roof space, critical load, and VoLL. 

Building type 
Available roof 

space [sf] 
Building purpose during 

outage 
Critical load [% 

of total load] 
Value of lost load 
[$/kWh in $2020] 

Hospital 24,100 Critical facility 85% $140 
Secondary School 52,700 Community resilience 

hub 
60% $72 

Warehouse 26,000 Non-critical 10% $4 
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Figure 5. Location- and season-specific marginal health costs for SO2 and NOx, assuming a stack 
height of 150 meters and income and population years of 2021. 
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Figure 6. Average marginal emissions rates for CO2, SO2, and NOx over the analysis period (2021-
2046).  

2.5 Sensitivity Analysis 
 
We explore the sensitivity of our results to several key assumptions, summarized in Table 7. 
 
Table 7. Parameters varied in the sensitivity analysis.  

Parameter Baseline value Sensitivity values 
Assumed outage length 15 hours • 3 hours 

• 48 hours 
NEM Assumptions Full retail rate • Wholesale rate in all locations 

 
Given differing planning priorities of local governments and the uncertainty of grid outages, 
we consider a short (3-hour) and multi-day (48-hour) assumed outage length. A 3-hour outage 
corresponds to the 2019 average Customer Average Interruption Duration Index (CAIDI) for 
U.S. utilities.88 This metric typically excludes major outage events but is frequently used to 
estimate the duration of future outages.23,24,31 Local governments may also wish to plan for 
long-duration outages that can have extremely damaging impacts to city operations and 
residents’ safety. To reflect this planning scenario, we assume an expected outage duration of 
48 hours.  
 
Given uncertainty regarding the future of NEM policies and to demonstrate the relative impact 
of NEM on investment decisions, we assume net excess generation is compensated at a 
location-specific static wholesale rate. This wholesale or locational marginal price (LMP) is 
calculated as the modeled LMPs in the Cambium Mid-Case Scenario for the corresponding 
balancing area, averaged over 2021-2046 (Table C1). 
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3. Results 
3.1 Cost-Optimal System Sizing 
 
Figure 7 illustrates the cost-optimal solar and storage system sizes by building type and 
optimization scenario. When only considering the benefits of bill savings within the 
optimization (Scenario B), it is not cost-optimal to invest in solar in all modeled locations 
except Los Angeles, Phoenix, and San Francisco.a The median cost-optimal battery sizing 
across locations in Scenario B is 6 kW/12 kWh for the hospitals and zero for the schools and 
warehouses. In locations in which storage is cost-optimal, demand cost savings tend to provide 
the largest proportion of total benefits.  
 

 

  
Figure 7. Box plots of cost-optimal solar and storage system sizes by building type and optimization 
scenario. The ends of each box indicate the lower and upper quartiles, the line inside the box marks the 
median, and the whiskers extend to the data minimum and maximum, with outliers shown as dots. 
Median values for each building type and objective scenario are called out. 
 

 
a This is likely due to a combination of strong solar irradiance and utility rate structures. All modeled buildings 
in Los Angeles, and the hospitals and schools in San Francisco and Phoenix have TOU energy and/or demand 
rates that align with typical solar generation profiles. The warehouses in San Francisco and Phoenix have 
relatively high energy rates.  
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When co-optimizing for resilience benefits (Scenario BR), it becomes cost-optimal to invest 
in the largest possible PV sizes given available space for the 11 of the 14 hospitals and 9 of the 
14 schools. The median cost-optimal battery sizes also increase significantly as compared to 
Scenario B, to 1.3 MW/22.3 MWh for the hospitals and 530 kW/7.4 MWh for the schools. 
This increase in optimal solar plus storage sizing is driven by the high cost of incurring an 
outage in the hospital and school buildings, given their high VoLL ($140/kWh and $72/kWh, 
respectively) and critical load percentage (85% and 60%, respectively). On the contrary, the 
warehouse has a low VoLL and critical load ($4/kWh and 10%), so including resilience in the 
optimization has no impact on system sizing. 
 
When additionally optimizing for climate and health benefits (Scenario BRCH), larger system 
sizes become cost optimal. The increases are relatively small for the hospital and school 
building types, for which large system sizes are already cost-optimal under Scenario BR. 
However, for the warehouses, the increases are relatively large, given that in most cases, solar 
and storage do not become cost-optimal until climate and health benefits are considered. For 
warehouses, the median cost-optimal system sizes increase from zero PV and battery in 
Scenario B to 183 kW PV and 27 kW/90 kWh battery in Scenario BRCH.  
 
3.2 System Economics 
 
In Scenario BRCH, the median NPV of the cost-optimal solar plus storage systems for the 
hospitals, school, and warehouses are $5M, $3.6M, and $0.2M greater than those of Scenario 
BR, respectively (Figure 8). The NPV calculation reflects only those benefits for which the 
system is optimized, thus illustrating the perspective of a local government decision-maker 
who, by choice or market forces, values bill savings only (Scenario B), or additionally values 
resilience (BR) and climate and health (BRCH).  

 
Figure 8. 25-year net present value (NPV) of cost-optimal solar plus storage systems by building type 
and optimization scenario. In each case, the NPV includes only those value streams included in the 
optimization objective. The ends of each box indicate the lower and upper quartiles, the line inside 
the box marks the median, and the whiskers extend to the data minimum and maximum, with outliers 
shown as dots. Median values for each building type and objective scenario are called out. 
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Our sensitivity analysis shows that compensating systems at the wholesale as opposed to net 
metering rate negligibly alters the NPV of the modeled systems because export benefits are a 
small portion of total benefits. Considering a shorter (3-hr) outage results in a lower NPV for 
the hospitals and schools due to lower resilience benefits. Unsurprisingly, a longer (48-hr) 
outage results in a higher NPV for the hospitals and schools due to greater resilience benefits. 
The NPVs of the warehouses are not influenced by the assumed outage duration due to our 
assumed low VoLL for this building type. Notably, the absolute increase in NPV from 
Scenarios BR to BRCH is similar to the base case across sensitivity cases. For the hospitals, 
optimizing for climate and health benefits (Scenario BRCH) resulted in an NPV increase 
ranging from $4.3M (in 3-hour outage case) to $7M (in the 48-hour outage case) as compared 
to Scenario BR. For the schools, the NPV increase ranged from $2.35 (in 3-hour outage case) 
to $4M (in the 48-hour outage case) (Figure C1).  
 
Even when not considered within the optimization, solar plus storage systems have climate 
and health impacts during their operation. Figure 9 illustrates the climate and health “return on 
investment (ROI)” by optimization scenario, calculated as: 
 
𝐶𝑙𝑖𝑚𝑎𝑡𝑒	𝑅𝑂𝐼 = 056789:;

C59<DC=&?DC8@	
	     and    𝐻𝑒𝑎𝑙𝑡ℎ	𝑅𝑂𝐼 = 0A;96:A

C59<DC=&?DC8@	
 

 

(13) 

Normalizing by investment costs gives an indication of the additional climate and health 
benefits that accrue due to operational strategies, rather than system size. Comparing the BR 
and BRCH cases is particularly illustrative, given that in both cases the value of bill savings 
and resilience are incorporated. The combined climate and health ROI is much larger for 
Scenario BRCH ($0.06 to $2.06 with a median value of $0.57) than for BR ($-0.07 to $1.71 
with a median value of $0.06) or B ($-0.07 to $1.71 with a median value of $0.13) (Figure 9). 
The median combined climate and health ROI is higher in Scenario B than in Scenario BR 
because in several cases solar, but not large storage or microgrid systems, are cost-optimal, 
leading to climate and health benefits at a much lower upfront investment cost. However, in 
Scenario B, resilience benefits (not depicted in Figure 9) are never incurred.  
 
In Scenario BRCH, health benefits typically exceed climate benefits in the cost-optimal 
systems (for all but five of the 42 buildings). In fact, in the case of the Seattle hospital, the 
cost-optimal system in Scenario BRCH incurs additional climate damages (amounting to 
$340k) compared to BAU operations while accruing $3.8M in health benefits.  
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Figure 9. Climate and health return on investment (ROI) for each modeled building by optimization 
scenario. Note that systems accrue additional non-emissions benefits (i.e., bill savings and/or 
resilience), not included in this ROI calculation. A combined climate and health ROI of $1.00 or 
greater indicates that with these benefits alone, the system pays itself back. 

Previous work accounts for the value of resilience in cost-optimal solar plus system sizing.43 
We thus evaluate the additional costs and benefits incurred when co-optimizing for climate 
and health (i.e., we compare Scenarios BR and BRCH) in Figure 10. Additional health and 
climate benefits vary by location and building type; co-optimizing for these benefits in some 
cases results in additional costs. The additional benefits incurred when moving from scenario 
BR to BRCH are largely driven by avoided health costs, which range from $463k-$16.3M in 
added benefits for the hospitals, $139k-$5.1M for the schools, and $0-$1.2M for the 
warehouses. Our sensitivity analysis shows that these additional climate and health benefits 
are not sensitive to the assumed outage length or net export compensation rate (Figure C2).  
 
Averaging across the three building types, the combined additional climate and health benefits 
(in Scenario BRCH as compared to BR) are relatively high (exceeding $6M) in Chicago, 
Atlanta, Duluth, and Minneapolis and relatively low (below $1M) in Albuquerque, Boulder, 
Los Angeles, and Phoenix. The locations on the high end of the spectrum have marginal SO2 
health costs that are higher than the sample mean in at least one season (Figure 5) and higher 
than average SO2 and CO2 average marginal emissions rates (Figure 6). The locations that see 
lower additional climate and health benefits (in Scenario BRCH compared to Scenario BR) 
have CO2 (with the exception of Boulder) and SO2 average marginal emissions rates that are 
lower than the sample mean, and lower than average SO2 and NOx costs (with the exception 
of Los Angeles).  
 
For 60% of the modeled buildings, the cost optimal systems in Scenario BRCH have lower 
energy bill savings than those of Scenario BR. Across all buildings, an average of $0.27M in 
lifetime energy bill savings are forgone when co-optimizing for climate and health benefits 
(Scenario BRCH) as compared to Scenario BR. For many of the modeled warehouses, it is not 
cost-optimal to invest in solar and storage until climate and health are considered in the 
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objective, and thus additional capital and O&M costs, along with climate, health, and bill 
savings benefits are accrued in Scenario BRCH case as compared to Scenario BR.  
 

 
Figure 10. Additional costs and benefits accrued in Scenario BRCH as compared to Scenario BR by 
building type and location. Net resilience is calculated as avoided outage costs minus the microgrid 
upgrade cost. 

3.3 Optimal Battery Dispatch  
 
The battery dispatch strategy strongly influences the climate and health benefits of a solar plus 
storage system. The dispatch strategies vary between the three optimization scenarios (Figure 
11). In all scenarios, the minimum state of charge (SOC) is 20% and the battery can be charged 
by the grid or solar but cannot discharge to the grid.  
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Figure 11. Example optimal battery state of charge profiles for the modeled Miami hospital under 
Scenario B, BR, and BRCH.  

In Scenario B, the battery charges and discharges to avoid peak demand charges and/or high 
TOU energy rates. Similar to Scenario B, in Scenario BR the battery discharges to avoid peak 
and TOU charges, but also is rewarded for maintaining a high SOC to avoid outage costs in 
cases where the VoLL and critical load are high. In Scenario BRCH, battery operations are 
influenced by bill savings, outage costs, and the emissions intensity of the grid, and thus the 
battery dispatches much more frequently and to greater depths. 
 
To illustrate the intensity of use of the battery systems under each optimization scenario, we 
compare the annual battery SOC “mileage” by building type and optimization scenario (Figure 
12). We calculate the SOC mileage as the sum of the absolute change in battery SOC between 
each hour, where T is the set of hours in a year:  
 

𝑆𝑂𝐶	𝑚𝑖𝑙𝑒𝑎𝑔𝑒 = 9|𝑆𝑂𝐶/6 − 𝑆𝑂𝐶/6EF|
/6∈G

 (14) 

    

 
Figure 12. Box plot of annual battery state-of-charge (SOC) mileage by modeled building type and 
optimization scenario. Results are shown only for buildings for which batteries are cost optimal. The 
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SOC mileage shows total use (charge and discharge) of the battery and can be conceptualized as units 
of equivalent full (100%) battery charges (or discharges). The ends of each box indicate the lower and 
upper quartiles, the line inside the box marks the median, and the whiskers extend to the data 
minimum and maximum with outliers shown as dots. Median values for each building type and 
objective scenario are called out. 

The intensity of use decreases from Scenario B to BR for the hospitals and schools, likely due 
to larger solar and battery system sizes in Scenario BR and the reward for keeping a high SOC 
to avoid outage damages. The SOC mileage is identical for the warehouses in Scenario B and 
BR due to identical system sizes and the low VoLL (making it cost-optimal to incur outage 
costs). Conversely, the intensity of use increases from Scenario BR to BRCH, as the median 
SOC mileage is 3.3 times higher for the hospitals, 2.1 times higher for the schools, and 5.4 
times higher for the warehouses. The frequency and/or depth of battery discharge is greater in 
Scenario BRCH as compared to Scenario BR due to the incentive to avoid grid purchases 
during hours with relatively higher marginal health and climate costs.  

4. Discussion 
To illustrate how the monetization of additional value streams would change local 
governments’ decision-making, we developed a novel approach to optimize solar plus storage 
systems for climate, health, resilience, and energy bill benefits. Our methods integrate hourly, 
forward-looking marginal emissions rates and location- and season-specific marginal health 
costs into the REopt Lite model to provide detailed estimates of avoided climate and health 
damages from grid-purchased electricity. 
 
Our analysis of three building types across 14 U.S. locations shows that larger solar and storage 
systems become cost-optimal when co-optimizing for climate, health, resilience, and bill 
savings and that the NPV of these systems (from the decision-maker’s point of view) increases 
dramatically compared to optimizing for bill savings only or for bill savings and resilience. 
When co-optimizing for climate, health, and resilience benefits, health benefits largely 
outweigh climate benefits, and health and climate benefits are greater in areas with higher 
marginal emissions rates and higher marginal emissions costs. As compared to optimizing for 
bill savings and resilience, additionally co-optimizing for climate and health results in 2.1-5.4 
times greater utilization of battery storage, due to the incentive to avoid grid-purchases in high 
emissions times. 
 
These findings could have significant implications for local, state, and federal policymaking, 
as these entities increasingly seek to meet climate pledges, increase resilience to natural 
disasters, and improve public health. Cities such as Ann Arbor, MI are already developing 
climate action plans that include proposals for internal carbon pricing and resilience hubs.89 
Similarly, a recent U.S. Government Executive Order declares it essential that agencies 
“capture the full costs of greenhouse gas emissions as accurately as possible,” while the 
proposed $2 trillion American Jobs plan specifically addresses economic losses from power 
outages.90 This work shows how a granular carbon price and monetization of avoided outage 
damages would alter investments in solar and storage, and provides motivation for local and 
federal stakeholders to additionally consider health damages of grid-purchased electricity. Our 
methods can also support the design of more tailored value of distributed energy resource 
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(VDER) rates, which tend to focus solely on solar generation without consideration of the load 
shifting capabilities of storage, and infrequently account for health impacts along with 
climate.15,16,64  
 
Fully accounting for climate and location-specific health damages of emissions, which 
disproportionately burden communities of color, can support a transition to a more just energy 
system by decreasing distributional injustices.91 While negative externalities of emissions are 
not currently incorporated into hourly energy tariffs, new technologies (e.g., WattTime92) will 
enable storage to shift energy consumption to lower-emissions times. Local governments can 
be first movers in this space; providing internal incentives to decrease inequitable societal 
damages that result from power consumption of public facilities. Local governments can 
further advance recognition and distributional justice by differentiating the value of lost load 
used in solar plus storage assessments to reflect the degree of vulnerability of the surrounding 
community to power outage damages. Our work provides a framework to quantify the costs 
and benefits of addressing both emissions and resilience inequities through investments in solar 
plus storage.  
 
In this work, we consider the use-phase climate and health impact of solar plus storage based 
on avoided grid emissions, but do not consider the impact of battery inefficiencies, which have 
been shown to be significant.27 Further, the manufacture and disposal of these technologies can 
result in climate and health damages, which should be incorporated in future work and should 
be considered in the interpretation of these results. Our optimization model assumes the battery 
has perfect information, e.g., regarding future marginal emissions rates, in order to determine 
an optimal dispatch strategy. Future work could explore models in which the battery system 
lacks perfect information, as in Fares and Webber (2017).27 Finally, while this work focuses 
on solar plus storage, a similar approach to valuing hourly health and climate damages could 
be applied to other demand side management (DSM) interventions58,93,94 and could be used to 
draw comparisons to fossil fuel-based microgrid technologies. Notwithstanding these 
limitations, our analysis reveals stark differences between the “optimal” deployment of solar 
plus storage on public facilities when climate, health, and resilience value streams are or are 
not monetized within the cost-optimization of these systems.  
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Appendix A: Discussion of marginal emissions rates scaling approach 
Due to the fact that REopt Lite models a single year timeseries of battery operation, in this 
work we scale the CO2, SO2, and NOx annual marginal emissions profiles (shapes) of the 
midpoint analysis year (2033) to the total marginal emissions of the respective pollutants in 
each year of the analysis (2021-2046).  
 
An alternative approach would be to assume that the emissions profile of a single year repeats 
for the entire analysis period. Below, we demonstrate a sample of optimal outcomes using this 
alternative approach by assuming the emissions profiles in every year (2021-2046) are the 
same as those in 2021, 2033, and 2046, respectively (Table A1). Because Cambium’s marginal 
emissions rates decrease from 2021-2046,70 using the first and last year of the analysis period 
provides a lower and upper bound to the assumed emissions intensity of the grid and, 
accordingly, the cost-optimal system sizing to avoid climate and health damages from grid-
purchased electricity.  
 
Assuming marginal emissions in each year of the analysis are the same as marginal emissions 
in 2021 results in an over-sizing of the battery system and an over-estimate of the climate and 
health benefits of the solar plus storage system. Assuming year 2046 emissions in each of the 
analysis (2021-2046) results in under-sizing of the storage system and an under-estimate of the 
climate and health benefits. Our results are similar to those obtained assuming 2033 emissions 
in each year, indicating that marginal emissions rates decline somewhat linearly between 2021-
2046.  
 
Table A1. Sample of optimal results under Scenario BRCH under differing annual emissions 
assumptions.   

Optimal result 2021 emissions for 
all years 

2033 emissions 
for all years 

2046 emissions 
for all years 

2033 emissions 
scaled to each year* 

Atlanta Warehouse 
PV 260 kW 260 kW 260 kW 260 kW 

Battery 72.8 kW / 345 kWh 60 kW / 224 
kWh 

57 kW / 216 
kWh 

61 kW / 238 kWh 

Health Benefit $1.24M $873,914 $743,596 $936,421 
Climate Benefit $158,875 $148,587 $128,067 $150,964 

Seattle Warehouse 
PV 227 kW 226 kW 240 kW 226 kW 

Battery 42 kW / 60 kWh 17 kW / 26 kWh 0 kW / 0 kWh 18 kW / 28 kWh 
Health Benefit $876,376 $751,776 $721,759 $763,374 

Climate Benefit $58,763 $84,482 $82,835 $79,241 
*Approach used in this study.  
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Appendix B: Supplementary tables and figures 
 
Table B1. Marginal energy source types reported in NREL’s Cambium database and associated plant 
types reported in EPA’s NEEDS v6.   

Marginal energy source in 
Cambium Plant type in NEEDS 

battery Energy Storage 

biomass Biomass 

canada* n/a 

coal Coal Steam 

coal-ccs* n/a 

csp Solar Thermal 

distpv Solar PV 

dropped_load n/a 

gas-cc Combined Cycle 

gas-cc-ccs* n/a 

gas-ct Combustion Turbine 

geothermal Geothermal 

hydro Hydro 

nuclear Nuclear 

o-g-s O/G Steam 

phs Pumped Storage 

upv Solar PV 

wind-ofs Offshore Wind 

wind-ons Onshore Wind 

* SO2 and NOx emissions data from NEEDS are not available for these energy sources reported 
in Cambium; however, these plant types are rarely (or never, in the case of CCS) on the margin 
across the locations considered in this analysis, and thus we do not seek alternative estimates 
for these emissions rates. 
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Figure B1. Histogram of hours, by hour of day and month of year, that make the 95th% cutoff for 
total unserved load during a 15-hour outage in the modeled hospital building type in each of the 
fourteen cities considered in this study. These hours represented in this histogram constitute the set T 
in Eq. 10. 
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Figure B2. Histogram of hours, by hour of day and month of year, that make the 95th% cutoff for 
total unserved load during a 15-hour outage in the modeled school building type in each of the 
fourteen cities considered in this study. These hours represented in this histogram constitute the set T 
in Eq. 10. 
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Figure B3. Histogram of hours, by hour of day and month of year, that make the 95th% cutoff for 
total unserved load during a 15-hour outage in the modeled warehouse building type in each of the 
fourteen cities considered in this study. These hours represented in this histogram constitute the set T 
in Eq. 10. 
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Table B2. Climate zones, annual building loads, balancing area (per Cambium), and region (per 
NEEDS v6) for each site. 

City 

CRB 
Climate 
Zone86 

Hospital 
Annual Load 

[kWh] 

Secondary 
School 

Annual Load 
[kWh] 

Warehouse 
Annual Load 

[kWh] 

Cambium 
Balancing 

Area70 
NEEDS 
Region76 

Albuquerque, NM 4B 8,468,546 2,588,879 228,939 31 WECC_NM 
Atlanta, GA 3A 9,054,747 2,849,901 223,009 94 S_SOU 
Baltimore, MD 4A 8,895,223 2,698,987 229,712 123 PJM_SMAC 
Boulder, CO 5B 8,281,865 2,441,588 243,615 33 WECC_CO 
Chicago, IL 5A 8,567,087 2,568,086 245,750 80 PJM_COMD 
Duluth, MN 7 8,134,328 2,333,466 256,575 43 MIS_MNWI 
Helena, MT 6B 8,068,698 2,357,548 252,245 18 WECC_MT 
Houston, TX 2A 9,634,661 3,421,024 221,593 67 ERC_REST 
Los Angeles, CA 3B-Coast 8,498,389 2,584,380 182,085 10 WEC_LADW 
Miami, FL 1A 10,062,043 4,074,081 202,082 102 FRCC 
Minneapolis, MN 6A 8,425,063 2,498,647 249,332 43 MIS_MNWI 
Phoenix, AZ 2B 9,265,786 3,503,727 241,585 28 WECC_AZ 
San Francisco, CA 3C 7,752,817 2,327,074 185,889 9 WEC_CALN 
Seattle, WA 4C 7,912,504 2,282,972 210,300 1 WECC_PNW 
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Table B3. Selected utility rates and average energy and demand costs for each building. 

City and 
building type Utility and rate name  

Average 
energy 
cost 
[$/kWh]* 

Average 
monthly 
demand cost 
[$/kW]** 

Albuquerque    

    Hospital 
Public Service Co of NM: 3B General Power TOU (PNM-Owned 
Transformer) $0.029 $20.732 

    School 
Public Service Co of NM: 3B General Power TOU (PNM-Owned 
Transformer) $0.031 $20.950 

    Warehouse 
Public Service Co of NM: 3B General Power TOU (PNM-Owned 
Transformer) $0.030 $21.099 

Atlanta    

    Hospital 
Georgia Power Co: SCHEDULE TOU-HLF-5 TIME OF USE - HIGH 
LOAD FACTOR $0.038 $0.000 

    School 
Georgia Power Co: SCHEDULE TOU-HLF-5 TIME OF USE - HIGH 
LOAD FACTOR $0.043 $0.000 

    Warehouse 
Georgia Power Co: SCHEDULE TOU-MB-4 TIME OF USE - 
MULTIPLE BUSINESS $0.075 $0.000 

Baltimore    

    Hospital 
Baltimore Gas & Electric Co: Schedule GL General Service Large - 
Secondary $0.077 $6.510 

    School 
Baltimore Gas & Electric Co: Schedule GL General Service Large - 
Secondary $0.083 $6.510 

    Warehouse Baltimore Gas & Electric Co: Schedule G - Secondary $0.042 $0.000 
Boulder    
    Hospital Public Service Co of Colorado: SG - Secondary General Service $0.032 $16.152 
    School Public Service Co of Colorado: SG - Secondary General Service $0.032 $14.926 
    Warehouse Public Service Co of Colorado: SG - Secondary General Service $0.032 $15.641 
Chicago    
    Hospital Commonwealth Edison Co: RDS - Watt-Hour Delivery Class $0.032 $0.000 
    School Commonwealth Edison Co: RDS - Watt-Hour Delivery Class $0.032 $0.000 
    Warehouse Commonwealth Edison Co: RDS - Watt-Hour Delivery Class $0.032 $0.000 
Duluth    

    Hospital 
Minnesota Power Inc: RIDER FOR STANDBY SERVICE (General 
Service-Primary Distribution) $0.016 $8.233 

    School 
Minnesota Power Inc: RIDER FOR STANDBY SERVICE (General 
Service-Primary Distribution) $0.016 $8.462 

    Warehouse 
Minnesota Power Inc: RIDER FOR STANDBY SERVICE (General 
Service-Primary Distribution) $0.016 $8.328 

Helena    
    Hospital NorthWestern Corporation: GSEDS-1 Secondary Demand $0.010 $7.200 
    School NorthWestern Corporation: GSEDS-1 Secondary Demand $0.010 $7.200 
    Warehouse NorthWestern Corporation: GSEDS-1 Secondary Demand $0.010 $7.200 
Houston    
    Hospital Entergy Texas Inc.: Large General Service (Secondary) $0.038 $14.299 
    School Entergy Texas Inc.: General Service (Secondary) $0.057 $7.511 
    Warehouse Entergy Texas Inc.: General Service (Secondary) $0.057 $7.511 
Los Angeles    
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    Hospital 
Southern California Edison Co: GS-1 TOU A General Service Non-
Demand Three Phase (At 220 kV) $0.114 $0.000 

    School 
Southern California Edison Co: GS-1 TOU A General Service Non-
Demand Three Phase (At 220 kV) $0.118 $0.000 

    Warehouse 
Southern California Edison Co: GS-1 TOU A General Service Non-
Demand Three Phase (At 220 kV) $0.116 $0.000 

Miami    
    Hospital Florida Power & Light Co.: GSLD-1 (General Service Large Demand) $0.044 $13.630 
    School Florida Power & Light Co.: GSLD-1 (General Service Large Demand) $0.044 $13.630 
    Warehouse Florida Power & Light Co.: GSD-1 (General Service Demand) $0.049 $11.240 
Minneapolis    

    Hospital 
Northern States Power Co - Minnesota: General Service Time-of-Day 
Metered (A15) Secondary Voltage $0.072 $14.050 

    School 
Northern States Power Co - Minnesota: General Service Time-of-Day 
Metered (A15) Secondary Voltage $0.074 $14.283 

    Warehouse 
Northern States Power Co - Minnesota: General Service (A14) 
Secondary Voltage $0.086 $13.787 

Phoenix    

    Hospital 
Arizona Public Service Co: Large General Service TOU (E-32 L) 
Secondary $0.055 $19.879 

    School 
Arizona Public Service Co: Large General Service TOU (E-32 L) 
Secondary $0.057 $19.808 

    Warehouse 
Arizona Public Service Co: Medium General Service (E-32 M) 
Secondary $0.090 $10.645 

San Francisco    

    Hospital 
Pacific Gas & Electric Co: E-20 Maximum demand of (1000 KW or 
more) (Secondary) $0.110 $34.978 

    School 
Pacific Gas & Electric Co: E-19 Medium General Demand TOU 
(Secondary) $0.123 $36.640 

    Warehouse 
Pacific Gas & Electric Co: A-1-Small General Service-Non-Time of Use 
Rate (Poly-Phase) $0.244 $0.000 

Seattle    

    Hospital 
City of Seattle, Washington (Utility Company): Schedule LGD - Large 
Network General Service (Transformer Investment Discount) $0.075 $7.460 

    School 
City of Seattle, Washington (Utility Company): Schedule MDC - 
Medium Standard General Service: City $0.077 $3.857 

    Warehouse 
City of Seattle, Washington (Utility Company): Schedule SMC - Small 
General Service: City $0.100 $0.000 

*The average energy cost is calculated as total annual energy charges divided by annual energy grid electricity 
use in the BAU case (i.e., no solar or storage)  
**The average demand cost is calculated as total annual demand charges divided by the sum of monthly peak 
demands.  
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Appendix C: Sensitivity analysis  
Sensitivity analysis scenarios are outlined in Table 7 of the main text.  
 
Table C1. Average locational marginal price (LMP) over the analysis period (2021-2046) for each 
city considered in this study. Hourly LMP data (energy_cost_enduse) were obtained from the 
Cambium Mid-Case Scenario for the balancing authority corresponding to each city.71 These LMP 
values are used in the “wholesale rate” sensitivity analysis. 

City Average LMP [$/kWh] 
Seattle $0.0322 

Houston $0.0313 
San Francisco $0.0344 

Los Angeles $0.0343 
Chicago $0.0333 
Helena $0.0306 

Phoenix $0.0327 
Atlanta $0.0352 

Albuquerque $0.0312 
Boulder $0.0317 

Miami $0.0346 
Duluth and Minneapolis $0.0304 

Baltimore $0.0343 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 40 

 
Figure C1. 25-year net present value (NPV) of cost-optimal solar plus storage systems under 
Scenario B, BR, and BRCH for each sensitivity analysis (wholesale rate (WHL) compensation, 3-
hour outage, 48-hour outage). In each case, the NPV includes only those value streams included in the 
optimization objective. The ends of each box indicate the lower and upper quartiles, the line inside 
the box marks the median, and the whiskers extend to the data minimum and maximum, with outliers 
shown as dots.  Compare to Figure 8 in the main text. 
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Previous work has accounted for the value of resilience in cost-optimal solar plus system 
sizing.43 We thus evaluate the additional costs and benefits incurred when co-optimizing for 
climate and health in addition to resilience and bill savings. Figure C2 shows that the additional 
climate and health benefits in Scenario BRCH versus BR are not very sensitive to the assumed 
outage duration or compensation rate for net excess generation. 
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Figure C2. Box plots of additional climate (left) and health (right) benefits when co-optimizing for 
bill savings, resilience, climate, and health (Scenario BRCH) versus solely bill savings and resilience 
(Scenario BR) across all modeled locations. The ends of each box indicate the lower and upper 
quartiles, the line inside the box marks the median, and the whiskers extend to the data minimum and 
maximum.   
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