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Abstract 

 

Planting cover crops provides many benefits, including mitigating soil erosion, increasing soil 

fertility, and managing weeds, yet there is limited understanding of where and when cover crops 

have been planted. In this study, we use the Harmonized Landsat Sentinel-2 (HLS) surface 

reflectance data product to map winter land cover, including cover crop species, across three sites 

in the lower Michigan peninsula using random forest models. Our results showed a moderate 

overall accuracy (66%) across all three sites, with individual level accuracies varying by region 

and land cover type. Considering which bands and time periods were most important for 

classification, we found that vegetation indices developed using the red edge bands in the early 

part of the growing season were particularly important. This work suggests that readily-available 

satellite data can be used to accurately map cover crop species, though accuracies are lower than 

previous products that simply created binary classifications of cover crop presence or absence. 

Future work should examine whether classification accuracies can be improved with increased 

training data available for the most difficult to classify land cover classes, and by using Sentinel-

2 data which may be able to provide red-edge data during the early part of the growing season 

due to an increased number of available clear-day scenes. 

 

 

Introduction 

 

The world’s population is expected to increase over the coming decades [1], and studies 

estimate that food production will have to increase by 70-100% in order to meet growing 

demand [2]. While yields have historically increased through agricultural intensification, the 

increased use of pesticides, inorganic fertilizers, and freshwater for irrigation has led to 

significant environmental externalities, including soil erosion, groundwater depletion, and 

eutrophication [3,4]. Such negative environmental externalities are particularly acute in the 

Midwestern United States, where excess nitrogen runoff has led to hypoxic conditions in the 

Gulf of Mexico and harmful algal blooms in the Great Lakes [5,6]. Such undesirable 

consequences of conventional agriculture have prompted the adoption of more sustainable 

agricultural practices, including crop rotations, reduced tillage, organic fertilizers, and cover 

crops [7]. Cover crops in particular can offer a wide range of benefits. Cover crops have been 

shown to mitigate erosion, reduce surface runoff, improve soil infiltration, retain soil moisture, 

and suppress weeds [8]. Despite such benefits, the adoption of cover crops among U.S. farmers 

has historically been low (< 5% of national cropland in 2012) [9], though there is evidence that 

the area under cover crops is increasing through time [10]. Yet to date it has been challenging to 

track where and when cover crops have been adopted, and whether farmers continue to use cover 

crops through time as it is challenging to collect spatially-explicit data annually through typical 

methods such as censuses.  

 

Remote sensing offers a viable way to map cover crop adoption and use at large spatial 

and temporal scales at low cost [11]. Previous studies have used Landsat and Sentinel-2 data to 

map cover crops in multiple regions across the globe, including the eastern and Midwest United 

States, Japan, and Spain [12,13,14]. While existing studies have mapped cover crop extent with 

high accuracies, they have focused on conducting binary classifications to determine the 

presence of any cover crop species. To date, studies have not attempted to map specific cover 



crop species at the landscape scale using satellite data. Yet, identifying which specific cover crop 

species have been planted and where is important given that different cover crop species can 

have different impacts on soil health, nitrogen runoff, and crop yields [15,16]. Furthermore, 

understanding where specific cover crop species have been planted can better reveal potential 

mechanisms driving cover crop adoption as farmers may prefer to plant different species for 

different reasons [17,18]. 

 

Previous studies that have mapped cover crops at scale have largely used Landsat and 

Sentinel-2 imagery. Sentinel-2 imagery is at a higher spatial resolution (10 m) and also contains 

additional spectral bands, such as red edge bands, compared to Landsat satellite data (30 m 

resolution). Red-edge bands in particular have been shown to be important when mapping crop 

type as they capture information in a part of the spectrum that can be used to identify vegetation 

due to its unique spectral signature in this region [19]. Previous studies have shown that using 

Sentinel-2 red-edge bands could help distinguishing between different crop types, suggesting 

they may be helpful in distinguishing between different cover crop types [20,21,22]. The 

temporal resolution of Sentinel-2 (5 days), however, is lower than that of Landsat (2-3 days). 

Previous studies have shown that high temporal information can be important for identifying 

crop types as it can help distinguish different phenologies for different crops [21]. The 

Harmonized Landsat Sentinel (HLS) data product combines Landsat and Sentinel-2 satellite data 

by aligning both data products on the same tiling system and aggregating Sentinel-2 data to the 

spatial resolution of Landsat. This data product provides global measurements at 30 m spatial 

resolution every 2-3 days. HLS may offer advantages over using individual sensors as it 

combines most of the key benefits of each sensor into one data product.   

 

In this study, we used the HLS dataset to classify winter cover, including cover crops, in 

lower Michigan. We specifically ask the following research questions: 

1) How effectively can HLS map winter cover, including cover crops, across multiple 

regions in Michigan? 

2) Can we develop a generalizable algorithm that can map winter cover accurately across 

multiple sites with varying climate, farm management practices, and soil types? 

3) Which bands, indices, and time periods are most important for classifying winter cover?  

Our study provides important insights into the ability of readily-available satellite 

imagery to map cover crops across Michigan, and the Midwestern United States more broadly. 

Mapping cover crop adoption across this region is of importance given that it is one of the 

world’s hotspots for nitrogen pollution and understanding the extent and consistency of cover 

crop adoption can help better understand how effective cover crops may be in reducing leaching 

and eutrophication of associated waterways.  

 

 

2. Methods 

2.1 Study area 

 

The study area is divided into three regions in the lower peninsula of Michigan: the 

southwest region (SW) spreads over three counties (Van Buren, St. Joseph, and a portion of 

Berrien), the southeast region (SE) contains two counties (Lenawee and Monroe), and the thumb 

region (TB) comprises five counties (portions of Huron, Tuscola, Sanilac, Lapeer, and St. Clair; 



Figure 1). We selected these three regiond because they contain counties with relatively large 

land areas planted unfrt cover crops according to the 2012 and 2017 USDA census of agriculture 

(e.g., from 5-27% of agricultural land in 2017), and span contrasting climate conditions, soil 

types, and management systems. Prior to initiating data collection, we met with extension agents 

from MSU and district conservationists in each region to finalize the choice of study sites. The 

two clusters in southern Michigan have high-input, row crop production systems that are 

significant sources of the N and P losses that cause eutrophication of the Great Lakes. The 

southwestern region has sandier soil types, while the southeastern region has heavier, clay soils. 

The Thumb region of Michigan has a growing presence of large-scale grain farms, but also has 

dairy production and the largest cluster of organic grain farmers in the state. Given that cover 

crops are relatively rare on Midwestern agricultural landscapes, we selected areas where we 

would be more likely to find multiple cover crop types, but within regions where simplified 

production systems are common.  
 

 
Figure 1: The three study regions, Southeast (SE), Southwest (SW), and the Thumb (TB). The red 

symbols denote the fields visited in April-June 2019 and blue symbols are the fields re-visited in 

July to distinguish between winter wheat and cereal rye cover crop fields. 

 

2.2 Field data 

We conducted field surveys in three stages across the three regions during April to July 2019. 

During the first stage of data collection (April 24 – May 3), we visited known cover crop 

locations using information provided by extension agents, researchers, and farmers. Extension 

contacts in each region shared information about our project through e-lists and newsletters, and 

farmers submitted field addresses or GPS points of fields with annual cover crops. For all three 

stages, data were collected using either handheld GPS units (Garmin eTrex 20), or the 

ArcCollector app (https://www.esri.com/en-us/arcgis/products/collector-for-arcgis/overview). 



Each field was classified by visual interpretation of the existing landcover type, with crops 

identified and assigned confidence levels to indicate certainty of identification (scale of 1 to 5, 5 

= highly certain). We listed all crops that were visible in mixed planted fields. We took photos of 

any fields classified as low to moderate certainty for reference.  

During the second stage of data collection (May 3 – June 2), we revisited all three regions to 

collect GPS points systematically for all types of winter plant cover. Specifically, field teams 

visited 320 pre-selected points per region, which were spatially distributed throughout each 

region. These points were selected using a stratified random sampling approach. First, we 

obtained Sentinel-2 imagery for the start of the cover crop growing season (from April 1-28, 

2019) prior to our field survey, and calculated maximum Normalized Difference Vegetation 

Index (NDVI) for each pixel. Next, we used the 2018 cultivated layer from the USDA, National 

Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) (USDA NASS, 2017) to 

mask out non-agricultural areas. We then examined histograms of NDVI for the unmasked pixels 

across our three study regions, and binned NDVI values into four relatively equal categories (< 

0.2, 0.2 - 0.4, 0.4 - 0.6 and > 0.6). We next used a road layer and selected 80 points per NDVI 

class that were within 50 meters of a road, resulting in 320 points per study region. Point 

sampling was conducted using ArcGIS software. 

In the third stage of data collection during the first week of July (July 1 – July 7), we 

revisited and confirmed field classifications for cereal rye and winter wheat, given that these two 

crops were similar in appearance during the first two stages of data collection. Figure 1 depicts 

the fields surveyed during the first two stages as red symbols and the fields verified in the third 

stage as blue symbols. We overlaid the GPS data on high-resolution Google Earth imagery and 

manually digitized field boundaries using visual interpretation of field edges. We excluded field 

polygons where the confidence level of crop identification was 3 and below. The total number of 

fields that remained were 328 in SE, 414 in SW, and 350 in TB (Figure 2). We examined the 

NDVI phenologies for each cover type (Figure 3), and found that the NDVI phenologies were 

very similar for bare (B) and tilled (T) fields. Therefore, we aggregated these two classes 

together into one class bare/tilled (BT) for all analyses. 

 



 
Figure 2: Bar plots showing the counts of cover crops in sampled fields of the three regions. 

AL = alfalfa, BT= bare/tilled, CR = cereal rye, HP = hay forage/pasture,  WW=winter wheat, 

W = weeds, RG = ryegrass. 

 

 
Figure 3: Mean NDVI phenology with 95% confidence intervals across all available 

polygons of different land cover types. AL = alfalfa, B= bare, T= tilled, CR = cereal rye, HP 

= hay forage/pasture,  WW=winter wheat, W = weeds, RG = ryegrass. Month 3 represents 

March, and month 6 represents June. 

 

 



2.3 Satellite Data and Preprocessing  

 

We processed the Harmonized Landsat Sentinel-2 product (HLS) from March 1st to June 

30th, 2019 to encompass the main growing period for cover crops in our study region. The HLS 

data were downloaded from the HLS website (https://hls.gsfc.nasa.gov/) using the available 

batch script. We specifically downloaded the S30 data product (Sentinel-2 Multispectral 

Instrument (MSI) surface reflectance resampled to 30 m in the Sentinel-2 tiling system and 

adjusted to Landsat 8 spectral reflectances) and the L30 data product (Landsat OLI harmonized 

surface reflectance and TOA brightness temperature resampled to 30 m in the Sentinel-2 tiling 

system). The spectral bands for S30 and L30 are the same as those for the Sentinel-2 MSI and 

Landsat-8 OLI data products, respectively [23,24]. The cloud mask we used for the L30 product 

is based on the Quality Assessment (QA) layer. For the S30 data product, we did not use the QA 

layer as previous work and examination of our data show that it is inaccurate, often labeling non-

cloudy pixels as cloud covered [23]. Instead, we adapted a Sentinel-2 cloud mask algorithm 

developed in Google Earth Engine by Ian Housman (https://groups.google.com/g/google-earth-

engine-developers) and applied it in R project software. We then created monthly mosaics using 

L30 and S30 data for all bands that were common between the two datasets, and only S30 data 

for those bands that were specific to Sentinel-2. To create monthly mosaics, we selected the pixel 

that had the highest NDVI value across all available values within the month, and extracted all 

available bands for that image. We did not, however, extract data for the Coastal Aerosol and 

Cirrus bands as these do not measure surface reflectance characteristics. We found that there 

were many missing pixels in the S30 monthly mosaics for March and May. Therefore, we did not 

include S30 only bands for these two months in our final dataset. We calculated twelve spectral 

indices that have been shown to be important for monitoring agricultural crop characteristics in 

the previous literature (Table 1). All cloud masking, mosaicking, and index creation were 

performed using R Project software [25] and the ‘sf’ [26], ‘raster’[27], and ‘caret’[28] packages.  

  

Table 1. Spectral bands and indices included in our mosaics 

 

  
Products 

Spectral Bands HLS L30 HLS S30 

Blue Band02 B02 

Green Band03 B03 

Red Band04 B04 

Red-Edge 1 - B05 

Red-Edge 2 - B06 

Red-Edge 3 - B07 

NIR Narrow Band05 B08A 

SWIR 1 Band06 B11 

SWIR 2 Band07 B12 

Spectral Indices Equation 

NDVI (NIR - R) / (NIR + R) 

GBNDVI (NIR - (G + B)) / (NIR + (G + B)) 

GRNDVI (NIR - (G + R)) / (NIR + (G + R)) 

NPCI (R - B) / (R + B) 



NDTI (SWIR1 - SWIR2) / (SWIR1 + SWIR2) 

NDSVI (NIR - G) / (NIR + G) 

GCVI (NIR / GREEN) - 1 

SIWSI1 (NIR - SWIR1) / (NIR + SWIR1) 

SIWSI2 (NIR - SWIR2) / (NIR + SWIR2) 

NDI 

 

(RE1 - R) / (RE1 + R) 

PSRI (R - G) / RE2 

CIRE RE3 / RE1 - 1 

 

 

2.4 Sampling and Classification 

 

We used random forest (RF), an ensemble tree-based classifier, to classify winter cover in 

this study [29]. We created separate models for each of the three regions (TB, SE, and SW), and 

one combined model for all regions together. We separated our ground truth polygons into 70% 

used for training and 30% used for validation across all models. To ensure that differences in 

field size did not affect our results, we selected 20 pixels at random from each polygon to use in 

our analyses, and these points were used consistently across all models. Before training the 

model, we used the findCorrelation function in the caret package [28] in R to remove highly-

correlated variables (r > 0.9). We then used GEE to extract band values for all sensors and for all 

pixels, and exported these data for further analyses in R.  

 

The random forest models were run using consistent parameters across all models, including 

using 10-fold cross validation for selecting training data, setting the ‘mtry’ parameter equal to the 

square root of the number of predictor variables included in the model, and setting ‘ntree’ equal 

to the default value of 500 [30, 31]. We ran random forest models using the caret [28] package in 

R project software [22]. We then used each model to predict winter land cover for all pixels in 

the validation dataset, and conducted validation at both the pixel and polygon scale. We 

classified each polygon using the majority class across all 20 selected pixels for each polygon. 

We used common metrics for validation, including overall accuracy, producer’s accuracy, user’s 

accuracy, and F1 scores [31, 32, 33]. In addition, we used the caret [28] package in R project 

software [22] to assess variable importance for each of the random forest models.  

 

3 Results 

3.1 Model accuracy 

 

For the full study region (MI), the overall pixel-level accuracy was 62.82% and the overall 

polygon-level accuracy was 65.93% (Table 2, Table S1). Among the three individual region 

models, the Thumb (TB) (Table S2) and Southwest (SW) (Table S3) regions had similar 

accuracies, with pixel-based accuracies of 62.81%  and 65.22%, respectively, and polygon-based 

accuracies of 67.31% and 68.29%, respectively (Table 2). The Southeast (SE) (Table S4) region 

had the lowest pixel and polygon-level accuracy of only 55.70% and 58.16%, respectively (Table 

2). Accuracies for all regions improved when conducting validation at the polygon level 

compared to the pixel level. 

 

Table 2. Overall accuracies 



Accuracies 
Regions 

MI TB SE SW 

Pixel Accuracy 62.82% 62.81% 55.70% 65.22% 

Polygon Accuracy 65.93% 67.31% 58.16% 68.29% 

 

Table 3 shows the F1 scores for each land use type for each random forest model. In the 

generalized all site model, alfalfa (AL), bare/tilled (BT), cereal rye (CR), and winter wheat 

(WW) had the highest F1 scores. These patterns, however, were not consistent across individual 

site models. In particular, CR had high classification accuracy in the SW region, but low 

classification accuracies in the TB and SE regions. AL also had only modest accuracy in the SW 

region. Finally, WW had only modest accuracies in the SE and SW regions. Considering F1 

scores for the generalized all site model, rye grass (RG) and weeds (W) had the lowest 

classification accuracies, and these classes showed low or modest accuracy in the individual site 

models.  

 

Table 3. F1 scores for winter cover crops 

Data set Region AL BT CR HP RG W WW 

HLS 

MI 0.744 0.740 0.751 0.571 0.300 0.523 0.829 

TB 0.750 0.746 0.364 0.718  0.333 0.870 

SE 0.800 0.742 0.154 0.000 0.600 0.419 0.647 

SW 0.500 0.720 0.824 0.333 0.625 0.627 0.667 

 

3.2 Important predictors 

 

Considering variable importance, there were several trends across models (Table 4, Figures 

S1-S4). Vegetation indices appeared as the top five most important variables across all models, 

with only two individual bands (NIR and green) appearing as the most important variables for 

some models. In addition, most important variables were from earlier in the growing season, 

particularly from the months of April and May. Images from June appeared to be more important 

for the SE region (Figure S4), as two of the five most important variables were from June. We 

found that six of twenty most important variables across all models include vegetation indices 

that use the red edge bands, highlighting the importance of these spectral bands for classification 

(Table 4). 

 

 

Table 4. Top 5 Important Variables for Classification Models 

Region 
Top Important Variables (Month) 

1 2 3 4 5 

MI NDTI (May) GCVI (May) NIR (May) CIRE (April) PSRI (April) 

TB GCVI (May) NIR (May) GCVI (June) PSRI (April) SWIR1 (May) 

SW NDTI (May) PSRI (April) NIR (May) CIRE (April) NDTI (April) 

SE GCVI (May) Green (June) PSRI (April) 
GBNDVI 

(May) 
GCVI (June) 

 

 

 



4 Discussion and Conclusion 

 

We used HLS satellite data to map winter cover, including cover crop species, across lower 

Michigan. We find that our random forest models produce moderate overall accuracies (66% 

across all three sites) across Michigan and in each site except for the Southeast site, where 

accuracies were 8% lower (58%). The classification accuracy varied across landcover classes, 

with the highest overall accuracies achieved for winter wheat, alfalfa, and bare/tilled fields. 

There was substantial variation in performance across land cover classes across sites, with some 

classes such as cereal rye performing well in some sites (82% in the Southwest site) and very 

poorly in others (15% in the Southeast site). Overall, we find that HLS data are able to map 

winter cover with moderate accuracies, and individual cover crop species with low to moderate 

accuracies depending on species and region.  

There was significant variation in overall accuracy across sites, with the Southwest site 

having the highest accuracy (68%), followed by the Thumb site (67%), and then followed by the 

Southeast site (58%; Table 3). There are several reasons that may explain this difference in 

accuracy. The Southeast site had relatively fewer training polygons for most land cover classes, 

other than winter wheat, compared to the other two sites (Figure 2). In addition, land 

management in the Southeast is more heterogeneous than in the other two regions, which could 

have made it difficult for the random forest models to classify each class accurately. The Thumb 

site may have had higher classification accuracies because the site did not contain any rye grass 

(Figure 2), which was a difficult land cover to classify (Table 4). Finally, the Southwest site may 

have had higher overall accuracies because classification of difficult land cover classes, such as 

cereal rye and weeds, had moderate to high classification accuracies in this site. This may be 

because we were able to get increased training data for these two difficult landcover classes in 

the Southwest region (Figure 2) [35], likely due to higher prevalence across the landscape. 

Future work should attempt to disentangle the role that the number of training data may play in 

variation in classification accuracies by collecting the exact same number of training data for all 

land cover classes in each region [35,37]. 

Considering which bands and time periods were most important for classification, we found 

that vegetation indices developed using the red edge bands were particularly important (Table 4). 

Six of the top 20 most important variables across all four models contained red edge bands. This 

is not surprising given that previous studies have shown that the red edge is particularly useful in 

classifying different vegetation types [38,39]. Considering time period, our results suggest that 

images from earlier in the growing season, particularly April and May, were most important for 

classifying winter cover. This makes sense given that the phenology plots that we created for 

each of the landcover types considered in our study showed the greatest differences during April 

and May (Figure 4). Unfortunately we were unable to include red edge bands for March and May 

due to high amounts of cloud cover in the S30 product, and it is possible that accuracies could 

improve if red edge bands for these months were available. Based on our examination of S30 

data in comparison to Sentinel-2 Level-2A data, we found that there were many clear day scenes 

that were available in the Sentinel-2 product that were not available using the S30 data product. 

It is possible that if we were to use Sentinel-2 Level-2A data directly, we may have had enough 

clear scenes available to create a viable mosaic of red edge bands. Future work should examine 

how well Sentinel-2 data can be used to classify winter cover in this region. 

In conclusion, we found that HLS data were able to map winter land cover, including cover 

crops, with moderate accuracy across the three sites considered across lower Michigan. This 



work suggests that readily-available satellite data can be used to accurately map cover crop 

species, though accuracies are lower than previous products that simply created binary 

classifications of cover crop presence or absence. Future work should examine whether 

classification accuracies can be improved with increased training data available for the most 

difficult to classify land cover classes, and by using Sentinel-2 data which may be able to provide 

red-edge data during the early part of the growing season. 
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Supplementary 
 

Table. S1 HLS Confusion matrix for MI region (polygon) 

Polygon  Reference  

Total 

User 

Accurac

y 
AL BT CR HP RG W WW 

P
re

d
ic

ti
o
n

 

AL 29 0 1 9 0 2 1 42 0.690 

BT 1 77 17 0 4 24 0 123 0.626 

CR 0 3 24 1 1 0 1 30 0.800 

HP 4 1 1 18 2 2 0 28 0.643 

RG 0 0 0 0 3 1 0 4 0.750 

W 1 4 6 5 6 29 2 53 0.547 

WW 1 0 5 2 0 0 29 37 0.784 

 Total 36 85 54 35 16 58 33   

 Produce

r 

Accurac

y   

0.806 0.90

6 

0.444 0.514 0.188 0.500 0.879  0.659 

 

 

 

 

 

Table. S2 HLS Confusion matrix for TB region (polygon) 

Polygon  Reference  

Total 

User 

Accurac

y 
AL BT CR HP W WW 

P
re

d
ic

ti
o
n

 

AL 15 0 0 3 1 0 19 0.790 

BT 0 25 8 0 6 1 40 0.615 

CR 0 3 4 1 0 1 9 0.444 

HP 5 0 0 14 2 0 21 0.667 

W 1 0 0 0 3 1 5 0.600 

WW 0 0 1 0 0 10 11 0.909 

 Total 21 27 13 18 13 12   

 Produce

r 

Accurac

y 

0.714 0.88

9 

0.308 0.778 0.250 0.769  0.673 

 

 

 

 

 

 

 

 



Table. S3 HLS Confusion matrix for SW region (polygon) 

Polygon  Reference  

Total 

User 

Accurac

y 
AL BT CR HP RG W WW 

P
re

d
ic

ti
o
n

 

AL 3 0 0 3 0 0 0 6 0.500 

BT 1 27 3 0 2 10 0 43 0.628 

CR 1 3 28 1 1 2 0 36 0.778 

HP 1 0 1 3 0 1 1 7 0.429 

RG 0 0 0 1 5 0 0 6 0.833 

W 0 2 0 2 2 16 0 22 0.727 

WW 0 0 0 1 0 0 2 3 0.667 

 Total 6 32 32 11 10 29 3   

 Produce

r 

Accurac

y   

0.500 0.84

4 

0.875 0.273 0.500 0.552 0.667  0.683 

 

 

 

 

 

 

 

Table. S4 HLS Confusion matrix for SE region (polygon) 

Polygon  Reference  

Total 

User 

Accurac

y 
AL BT CR HP RG W WW 

P
re

d
ic

ti
o
n

 

AL 10 0 0 5 0 0 0 15 0.667 

BT 0 23 2 0 1 9 0 35 0.657 

CR 0 1 1 0 0 0 0 2 0.500 

HP 0 0 1 0 0 0 1 2 0.000 

RG 0 0 0 0 3 0 0 3 1.000 

W 0 3 3 2 2 9 6 25 0.360 

WW 0 0 4 0 1 0 11 16 0.688 

 Total 10 27 11 7 7 18 18   

 Produce

r 

Accurac

y   

1.000 0.85

2 

0.091 0.000 0.429 0.500 0.611  0.582 

 

 

 

 

 

 

 



 

 
Figure S1. Variable Importance for MI region (HLS) 

 



 
Figure S2. Variable Importance for TB region (HLS) 

 



 
Figure S3. Variable Importance for SW region (HLS) 
 



 
Figure S4. Variable Importance for SE region (HLS) 

 
 

 

 

 

 
 

 

 

 


