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_____________________________________________________________________________
. EXECUTIVE SUMMARY .

Great Lakes ice cover has been regularly documented and reported only since the
1970s, while inconsistent records of ice cover began in the 1960s. These ice charts from
the 1960s and early 1970s had yet to be digitized from physical prints and preliminary
scans into a computer- and web-friendly format. Aerial surveys and satellite imagery of
the ice cover started in the 1960s; there were very few records of Great Lakes ice cover
before these surveys and ice charts began. Collection of weather data (temperature,
wind, precipitation, etc.) began in the 1800s in the region, but ice cover reports were
sparse and difficult to estimate. Using the surface air temperature data from 1897 to
1983, ice cover can be estimated and hindcasted back to the start of the weather record
for the Great Lakes. Another atmospheric component that influences ice cover on the
lakes is that of atmospheric teleconnections, such as the ENSO (El Niño Southern
Oscillation), NAO (North Atlantic Oscillation), and newer ABNA (Asian-Bering-North
American). While larger, more well-known teleconnections such as the ENSO and NAO
have been analyzed next to Great Lakes ice cover, ABNA had yet to be compared to the
lakes’ annual ice cover.

These gaps in the collection of Great Lakes ice research were filled through this
collaborative project between the University of Michigan School for Environment and
Sustainability (SEAS) and NOAA’s Cooperative Institute for Great Lakes Research
(CIGLR). The historical ice charts from 1963 to 1972 are now digitally available through
the University of Michigan’s Deep Blue repository for this project; the Great Lakes’ ice
cover has been hindcasted back to the winter of 1898, available here in Appendix II; and
the ABNA has been recreated and statistically compared to the Great Lakes’ Annual
Maximum Ice Cover (AMIC) values, and has proven to be a strong contender in
forecasting and hindcasting ice cover on the Great Lakes.

Great Lakes ice cover provides various ecosystem services in the Great Lakes,
from tourism, to ice caves, to supporting the spawning of fish by protecting their eggs
from wave action. At the same time, ice cover is a significant obstacle for winter
navigation in the Great Lakes. Federal and commercial icebreaking operations are thus
a vital aspect of wintertime shipping within the Great Lakes. Knowing ice conditions
ahead of the winter season, or even with a longer lead time, is critical in planning in all
these sectors.

However, seasonal or longer forecasting of Great Lakes ice conditions has been
challenging because of the strong year-to-year fluctuations in AMIC and little knowledge
in what teleconnection pattern(s) influence the weather across the Great Lakes region.
The deliverables of our project – the extended time series of AMIC, and identification of
the ABNA as an important teleconnection pattern – well address these needs and
provide a strong foundation to improve seasonal Great Lakes ice forecasting at NOAA
Great Lakes Environmental Research Laboratory, the client of this project.
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_______________________________________________________
. ABSTRACT .

The Laurentian Great Lakes are home to millions of Americans and supply
drinking water to over 40 million people in both Canada and the United States, as well
as recreational opportunities, commerce, and the region’s unique climate. An essential
part of the Great Lakes’ annual water cycle is winter ice cover, which has generally been
decreasing in recent decades as anthropogenic climate change advances further. It is
vital to understand the historical ice cover of the Great Lakes in order to better
understand this and forecast future ice cover on the lakes. Historical ice charts from
1963-1972 were collected and digitized for virtual accessibility and storage, as well as to
calculate each lake’s annual maximum ice cover (AMIC) for these years. These ice cover
values were then used with historical air temperature data to create AMIC models for
each of the Great Lakes. Historical air temperature data for the years 1898-1983 were
collected and manipulated into two different temperature proxies: cumulative freezing
degree-days (CFDD) and net melting degree-days (NMDD). The chosen temperature
proxy used for each lake was dependent on the lakes’ individual ice cover and
temperature trends. The same analysis was applied to the most recent weather and ice
data for the period of 2009-2020 to expand the AMIC model. The hindcasted AMIC
values for all five lakes for 1980-1983 and 2009-2020 were then compared to various
climate indices for teleconnection patterns affecting North American weather, including
the Pacific/North American teleconnection pattern, the North Atlantic Oscillation, and
the Asian-Bering-North American (ABNA) index. The ABNA is an atmospheric
teleconnection that influences temperature and pressure over the Great Lakes, Bering
Strait, and Asia. The monthly ABNA index was recreated to ensure its replicability and
stability. This study uses historical data while integrating new methods of analyses with
traditional ones in order to develop a hindcast of the Great Lakes AMIC that will provide
a better understanding of how this lake system develops ice coverage each winter.
Percent ice cover values from the historical ice charts were calculated, likely with
increased accuracy from the original documents, which were used here and can be used
in future analyses. Models for each of the lakes were created to hindcast historical AMIC
values, from moderate to high accuracy and R2 values. The AMIC values from these
estimation models can be used in future analyses as well, and were used to determine
the correlation between the ABNA index and AMIC on the Great Lakes. A moderate
correlation was found between the ABNA index and AMIC for the Great Lakes,
indicating that the ABNA index may serve as another way to estimate Great Lakes ice
cover annually.
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_____________________________________________________________________________
. INTRODUCTION, BACKGROUND, & RESEARCH SIGNIFICANCE .

The Laurentian Great Lakes are a vital part of the Midwest and Northeast United
States for commerce, recreation, and most importantly, regional climate. Each winter,
the Great Lakes develop ice cover, which affects these aspects of human life in the Great
Lakes Basin as well as the regional wildlife and seasonal processes (Dempsey et al.
2008). The lakes themselves are affected in turn by a variety of factors, such as
atmospheric teleconnections, the lakes’ ice cover, lake evaporation in previous seasons
(Van Cleave et al. 2014), and, unfortunately, anthropogenic climate change (Kling et al.
2003). It is therefore important to understand the impact of seasonal temperatures on
the lakes’ ice cover, especially as overall winter temperatures are becoming gradually
warmer, and potentially less predictable, with each passing year.

Ice cover on the Great Lakes has been regularly documented since the early
1960s, with improving chart coverage since the late 1960s. Since the start of the satellite
era in the 1970s, determining ice cover on the Great Lakes became much more feasible
and accurate, especially with minimal cloud cover (Assel, 1972, 1986, 2003; Wang et al.
2018). Having this lengthy record of ice cover from the 1960s to today allows for ice
cover models to be compiled for each of the five lakes, based on their influencing factors.
The older ice charts, compiled by Donald R. Rondy, Raymond A. Assel, and R. E.
Wilshaw in the 1960s and 1970s (Rondy, 1966-1972; Assel, 1972; Wilshaw and Rondy,
1965), have only been available thus far as paper charts, scanned images, or ebooks, and
before this study, had yet to be converted to web-friendly, exportable formats that could
be analyzed further. Converting these to digital ice charts also aided in estimating
historical ice cover for the Great Lakes for the years 1963-1972. It should be noted that
the ice cover on these charts is not necessarily representative of the AMIC for each of the
lakes, as surveys could not be conducted on a daily basis.

The Great Lakes’ ice cover is affected primarily by air temperature, which
influences the lake water temperature. When there are several cold days in a row or a
few extreme cold days over the Great Lakes, the threshold for cumulative
freezing-degree days (CFDDs) may be met for a given lake, and ice cover can start to
form and grow. This study uses methods developed and used in previous research, and
expands these methods to estimate historical AMIC for each of the Great Lakes. CFDD
was used in previous studies (Assel, 1986; 2003) to determine the severity of a given
winter season, but was not explicitly used to estimate historical ice cover for the Great
Lakes. Similarly, NMDD values were used in a much smaller scope; they were used by
Hewer & Gough (2019) to hindcast AMIC values for Lake Ontario, based only on
temperature data from Toronto, ON for the years 1840-2019. The work done here
widens the scope of these previous studies to estimate historical AMIC, based on CFDD
or NMDD values, for all five of the Great Lakes from 1898-1983.

North American winter temperature variations have primarily been attributed to
large-scale atmospheric circulation patterns such as Pacific North American (PNA)
teleconnection pattern, North Atlantic Oscillation (NAO) pattern, and, indirectly, the El
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Niño Southern Oscillation (ENSO). Geographically, the Great Lakes are located on the
edge of the two patterns; hence neither indices have shown a strong correlation with
AMIC independently. A slight distortion of the pattern and shift of the atmospheric
circulation centre may result in different ice cover responses (Assel and Rodionov 1998).
Other indices such as Arctic Oscillation (AO), Pacific Decadal Oscillation (PDO), and
West Pacific (WP) have also shown to be associated with anomalous ice cover on the
Great Lakes (Assel and Rodionov 1998). Bai and Wang (2012) showed negative NAO
/AO phase and negative PNA phase is associated with severe ice cover. A positive PNA,
El Nino, and NAO/AO are related to mild ice cover. Much of the current studies also
focus on how ENSO variability affects the North American climate (Trenberth et al.
1998). Some of the above indices, such as the PNA pattern, are heavily influenced by
ENSO events. Improving our understanding of tropical sea surface temperature (SST)
variation is important in enhancing NA climate prediction. However, recent studies
have also shown that extratropical circulation patterns, snow cover and SST anomalies
that are not directly attributable to ENSO have a significant effect on NA climate
variability. Multiple studies have found that stationary Rossby waves play an essential
role in interannual climate variability from Eurasia to NA (Yu et al. 2018; Ding et al.
2011; Wu et al. 2009).

In the study done by Yu et al. (2018), they showed the third atmospheric
teleconnections, termed Asian - Bering - North American (ABNA) patter, that heavily
affect NA winter temperature variability. Yu et al. (2016) developed the ABNA index and
found that this large atmospheric circulation pattern has an anomalous center over the
Great Lakes Region. There are two other anomalous centers, one located over the Bering
Strait, and the other over Siberia/Eurasia. With ABNA's strong influence over central
NA winter temperature variability and geopotential anomaly centre directly over the
Great Lakes, we speculate it may have a strong effect on Great Lakes AMIC. This study
component is novel in that it draws a connection between the recently-identified ABNA
index and historical AMIC values for the Great Lakes. While many other atmospheric
teleconnections have been compared to the Great Lakes ice cover, the ABNA index has
yet to be compared; it appears very promising and well-correlated with the AMIC values
calculated for this study. If the ABNA shows a strong, significant correlation with AMIC
seasonally, it may well improve the seasonal outlook for Great Lakes ice.
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_____________________________________________________________________________
. MAPPING ICE COVER 1963-1972 .

NOAA’s Great Lakes Environmental Research Laboratory currently holds
digitized ice cover records for each lake ranging from 1973 to 2021. This data is available
both as time series values and maps of the estimated date of maximum ice cover. These
maps contain detailed ice cover concentration percentages to the nearest 5%, and also
estimate the maximum ice cover period to one specific date.

The 1963-1972 data digitized with ArcPro in this project from the U.S. Lake
Survey Center and National Ocean Survey reports, however, come from less advanced
resources and contain ice cover concentration percentages in 20% brackets. Similarly,
full-lake surveys could not be done in a single day and were conducted over the course of
a week or more, based on predictive estimates of ideal periods to survey the lake ice
freezing and melting timeframes.

Fig. 1 Sample of a new map generated from old reports [other years may be found in the Appendix].

A discrepancy between the older data being added in this report and the current
1973 and beyond data is that the current data selects a single date which represents the
overall maximum ice cover for the Great Lakes combined. However, each of the Great
Lakes has a slightly different freezing period, and they each reach maximum ice cover at
different times. Therefore, this presently recorded data is not a representation of each
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individual lake’s maximum ice cover, but rather the ice cover during the period of
combined maximum lake ice cover. The older data instead chooses two separate periods
during which half the lakes are most frozen. This may cause discrepancies in consistency
when trying to compare older ice maximums with the current maps.

Unfortunately, even with the old reports gathered, the data remains incomplete.
The page with the Northern map for 1966 is missing from the report, which would have
been for March 17-21. Additionally, despite pre-1971 maps containing two maps, for
each year, 1965 only has one, due to no data being captured for Lake Ontario.

From these digitized maps, total ice cover surface area was calculated and can be
found in the Appendix. The results did not precisely match the estimated maximum ice
cover described in the reports from which they came (Rogers, 1976). The method used
in the reports to generate their numbers is unspecified, but was likely not derived from
the calculation of area based on their images.
_____________________________________________________________________________
. HINDCASTING HISTORICAL ICE COVER, 1898-1983 .

A. Data

Historical weather data was collected from the National Snow and Ice Data Center
(NSIDC), compiled by Raymond Assel in the 1980s (Assel, 1995), to calculate surface air
temperature proxies for 25 stations (see Fig. 9) around the Great Lakes for the years
1897-1983. Unfortunately, some of the data from this source contained duplicate data
for a couple of the twenty-five stations due to missing data being replaced by data from a
precursory or successive year at the same station. Two different proxies for surface air
temperature were calculated using this data: 1) Cumulative freezing-degree days
(CFDD), as used by Assel in several studies, were used to approximate the severity of a
given winter based on how many days’ average temperatures were below-freezing, and
how far below freezing they were (see Eq. 1 on following page). 2) Net melting degree
days (NMDD), as developed and used by Hewer and Gough (2019), were also used to
approximate the severity of a given winter, but are based on daily temperatures both
above- and below-freezing temperatures; the mathematical difference between the ice
season’s melting degree-days (above-freezing temperatures) and freezing degree-days
(below-freezing temperatures) results in the NMDD value (Eq. 2). Which temperature
proxy was used for each lake was determined based on the correlation between the ice
cover estimates (calculated with each of the two proxies) and the actual ice cover
reports. Test data was collected for the years 1963-1972, as well as two extra years for
Lake Ontario for which there were anecdotal records of full ice cover on the lake. These
anecdotal values were published by Hewer & Gough (2019) in their study of Lake
Ontario’s ice cover trends using NMDD values.
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Fig. 2 Sample of Alpena, MI temperature data from NSIDC (Assel, 1995). Daily high and low
temperatures are provided by month.
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where Ti = surface air temperature departure from freezing (32°F, 0°C) for a given
date (Assel, 1980). Days that are colder than freezing have positive FDD values. When
the value for CFDD becomes negative, it resets to zero and begins accumulating again.

(2)𝑁𝑀𝐷𝐷 = 𝑀𝐷𝐷 − 𝐹𝐷𝐷
where MDD is melting degree-days, and FDD is freezing degree-days. In this case,
FDD does not use the inverse of the surface air temperature (Ti).

B. Analysis methods
a. Initial analysis

Both Python and Microsoft Excel were used in conjunction to calculate temperature
proxies, develop ice cover models based on the temperature proxies, and hindcast
historical ice cover back to the winter season of 1897-1898 (referred to by the second
year of each winter season). Python was accessed on a MacBook through the
programming applications Anaconda and Spyder, base 3.7.6, and through Anaconda3
on Windows. Both CFDD and NMDD values were used to model and estimate historical
ice cover for each of the Great Lakes as a whole before determining the stronger option.
Different time spans were also tested to determine the most influential months of the
winter season on ice cover for each of the lakes. Lastly, different regression models
(using lines of best fit) were tested based on each of the lakes’ ice cover and temperature
proxy scatterplots. These model tests were done for the years 1963-72 (“test data”) and
1963-83 (“complete test data”), with the 1963-72 test results considered more heavily in
choosing the model for each lake. The 1963-83 test data were considered primarily when
the 1963-72 model tests showed low R2 values, such as in Lake Erie’s models.

Based on the scatterplots for each Lake that compare both the CFDD-based and
the NMDD-based estimated ice covers to the available reported ice cover data, the
models used for each lake are the following: Lake Superior used a linear regression
model based on NMDD values from November to February; Lake Michigan used an
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exponential regression model based on NMDD values from November to February; Lake
Huron used a linear regression model based on CFDD values from October to May; Lake
Erie used a piecewise linear model based on CFDD values, with a cutoff value of 352
freezing degree-days, from October to May; and Lake Ontario used an exponential
regression model based on NMDD values from January to March.

Prior to finding Hewer and Gough’s 2019 study, it was noted that Lakes Erie and
Superior had intriguing outliers in their scatterplots comparing AMIC and maximum
seasonal CFDD values. In trying to account for these outliers, a method very similar to
NMDD was tested to explain these odd values. The CFDD calculation method used so
frequently by Assel was modified here to not reset when accumulated FDD values
became negative (i.e., warm temperatures for several days in a row or extremely warm
temperatures occurred), and the modified CFDD values were able to drop below zero to
display warming trends in a given winter season. These modified CFDD values were
unable to clear Superior or Erie of their outlier data, and therefore were unable to
account for it. The only improvement came in Lake Superior’s R2 values in its scatterplot
comparing modified CFDD values and maximum ice cover. The main difference
between the above method, developed here, and Hewer and Gough’s (2019) is that
NMDD values have opposite signs to this method; using NMDD, negative values
logically indicate colder temperatures, but using this modified CFDD method, negative
values indicate warmer temperatures. In realizing the similarity between the two
methods, NMDD values were tested for each lake rather than modified CFDD values,
based on the peer-reviewed nature of NMDD.

An additional method used in an attempt to improve these ice cover models was
to add additional weather station data from Environment Canada. The twenty-five
stations used by Assel, available on the NSIDC website, are heavily weighted towards
American stations, despite Canada sharing approximately half of the Great Lakes
shoreline. This method proved unhelpful in improving the models for ice cover, based
on the R2 values for each lake that this method was tested on. The original data was
therefore used for this section of the study.

b. Additional multivariate analysis

This analysis was done to provide additional insight into the connections between some
of the variables investigated in the Master’s Project, as well as provide other variables to
potentially investigate further. Ice cover data (AMIC), temperature proxy data (both
CFDD and NMDD), and the new ABNA index values from the main project were used in
the secondary analysis. Whether CFDD or NMDD was used was dependent upon which
equation was used for each lake (e.g., Lake Erie uses CFDD so that was used; Lake
Superior uses NMDD so that data was used). New data used in the analysis include
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Fig. 3 Sample of data used in multivariate analysis.

average wind speed for December to February over each of the Great Lakes (in meters
per second; from NOAA GLERL’s Great Lakes Dashboard) and August to October total
evaporation data for each of the Great Lakes (millimeters per month; also from NOAA
GLERL). Evaporation plays a strong role in ice cover on the Great Lakes every year, but
the main project did not look into evaporation as a factor in estimating historical ice
cover.

Before running any multivariate analyses, data were compiled into a singular .csv
file (Fig. 3), organized by lake and then by year. Data for the years 1951-1983 are used in
this analysis to ensure all variables being considered are consistent with one another,
and so true correlations can be determined among the variables. The lakes’ names are
included in the dataset as the singular qualitative variable, and an index for each sample
was created using the lakes’ first three letters and year for each sample, e.g., Lake
Ontario’s 1975 data is stored under the index Ont75.

The dataset was previewed in R, and the column of index values (displaying the
lake and year each row of data is for) were set as the row index to improve readability
and understandability of charts and tables produced from the analyses. A simple
correlation matrix was produced before running any analyses to get a sense for any
pre-existing correlations among the variables used here. Additionally, a pairs plot was
generated to display these correlations graphically, with the points color-coded by which
lake the data were for. Different variables offer more distinction between the lakes than
others, and certain variables have clear trends with one another, with varying levels of
correlation for each of the Great Lakes.

Based on the predominantly quantitative nature of this dataset, a Principal
Components Analysis (PCA) was performed to determine which components were most
influential and could be retained in a reduced dataset. The PCA was run on the five
quantitative variables to standardize them for further analysis: CFDD-NMDD (CFDD or
NMDD, depending on the lake), Ice Cover, Wind Speed, Evaporation, and ABNA. Six
charts were generated to visualize the significance of the first four components derived
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from these data, several of which are color-coded to indicate the quality of
representation for each data point.

C. Results
a. Initial analysis

Each of the Great Lakes has its own specific ice cover model, based on either CFDD or
NMDD values, from the nominal 1898-1983 winter seasons. Some of the lakes were
easier to model based on these temperature proxies than the others, likely due to
physical factors of each lake, such as depth and volume, as well as properties of each
lake’s mesoscale weather trends, such as average wind speed and direction. Factors such
as these should be investigated in some continuation of this study, as well as future
related studies.

Lakes Erie and Ontario were the most difficult to hindcast, with low R2 values
when comparing the CFDD-based ice cover estimates to the test data (1963-72 ice
cover). Adding the two anecdotal winter seasons highlighted by Hewer & Gough (2019)
with full ice cover to Lake Ontario, though, proved extremely helpful in increasing the R2

for many of the models tested for this lake. This improvement came after much testing
of various models and methods of hindcasting ice cover for Lake Ontario, though. Lake
Erie’s frequent high ice cover winters are easy to model, but its less frequent low ice
cover winters are more difficult to estimate and hindcast.

Considering both tests of accuracy (years 1963-72 and 1963-83), the
best-modeled ice cover hindcasts, in order of highest to lowest R2 value, by lake are:
Superior, Michigan, Huron, then Erie and Ontario. The 1963-72 test data scatterplots
and correlations showed an impressive R2 value for Lake Superior of 0.8077, and
relatively high values for Huron (0.69), Ontario (when including the anecdotal data,
0.5301), and Michigan (0.4893). Lake Erie, though, had low R2 values when looking at
the 1963-72 scatterplots, with an R2 value of only 0.1186. When considering the
complete test data period (1963-83), two of the lakes saw improvement in their R2

values: Lakes Michigan (0.7286) and Erie (0.6617). Lake Michigan had an increase in R2

of nearly 0.24, whereas Lake Erie had an incredible increase in R2 of 0.54. Of course,
this is due largely in part to 1973-83 data being used to develop each of the lakes’
models; however, it is important to consider the reliability of each model for these years
as well. Lakes Superior (0.671), Huron (0.6349), and Ontario (0.3838) all saw decreases
in their R2 values when including the 1973-83 data.

The model equations used for each lake are provided below, as Equations 3-7; the
variable y represents ice cover, and x represents maximum CFDD or minimum NMDD,
indicated in the second column. The ice cover hindcast data for each lake from
1898-1983 are provided in Appendix III-A. Additionally, time series plots of hindcasted
ice cover are available in Appendix III-B; the hindcasted ice cover is plotted with a ±1
standard deviation ribbon against the CFDD or NMDD values the ice cover is derived
from.
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Lake Superior NMDD y = -0.0521x - 18.634 (3)

Lake Michigan NMDD y = 18.438*e-0.001x (4)

Lake Huron CFDD y = 0.0627x+3.1391 (5)

Lake Erie CFDD y = 0.4086*x - 43.534 (CFDD ≤ 352)
y = 0.0141*x + 84.755 (CFDD > 352)

(6a)
(6b)

Lake Ontario NMDD y = 13.871*e-0.002x (7)

b. Additional multivariate analysis

The preliminary covariance matrix indicates there are three sets of variables that are
moderately correlated: CFDD-NMDD and Evaporation (R = 0.389), Ice Cover and
Evaporation (R = 0.351), and Ice Cover and ABNA (R = -0.357). The variables Wind
Speed and Evaporation are the least correlated, with a correlation coefficient (R) of
-0.028, indicating little to no correlation. Other combinations of the variables have
varying degrees of correlations, but none as strong as CFDD-NMDD and Evaporation.
The stronger correlation between these two variables makes sense, as both are related to
winter air temperatures; CFDD-NMDD is a direct interpretation of over-lake air
temperature over a period of time, and evaporation amounts are strongly influenced by
over-lake air temperatures and lake water temperatures - when the air temperature is
much colder than the lake water temperature, evaporation is much higher than when
there is a smaller difference in temperature. Similarly, the moderate correlation between
Evaporation and Ice Cover makes sense as well, as ice cover is related to evaporation
and CFDD-NMDD - the more evaporation there is in the fall, the more ice cover there
may be in the following winter; once ice cover is present, though, there is greatly
decreased evaporation. Ice cover can also be estimated using CFDD-NMDD values, as
they indicate the air temperatures for a given winter, and colder air temperatures often
lead to more widespread ice cover. Lastly, the moderate correlation between Ice Cover
and the ABNA index is promising for the larger Master’s Project; the ABNA index may
be able to indicate the ice cover for a given year, with some adjustments. This
relationship is not heavily studied as of yet; it is one of the goals of the Master’s Project
to analyze and bring to light this new teleconnection’s relationship to Great Lakes ice
cover.

The pairs plot (Fig. 4, below) displays these correlations graphically, color-coded
by lake. It is much easier to see correlations between variables that depend on the lake
the data is for - most notably, the data for CFDD-NMDD vs Ice Cover differ between the
five Great Lakes, whereas Wind Speed vs Evaporation has less distinction among the
lakes and is more scattered about. One pronounced differentiation between the data for
each of the lakes is evaporation: Lake Erie stands out from the four other lakes with
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Fig. 4 Pairs plot of Great Lakes data, from multivariate analysis

much higher evaporation rates for the months of August through October. This may be
due to Lake Erie’s much smaller volume, also indicated by its frequent high-ice cover
values - Lake Erie becomes completely (or nearly completely) covered by ice more often
than the other lakes. Lake Ontario appears to have the highest average wind speed of the
five lakes, most visibly in the Wind Speed vs Evaporation or vs ABNA plots. Could this
be contributing to Lake Ontario’s ice cover values that are often lower than the other
four lakes? In the PCA, each of the five quantitative variables were standardized and
combined to make five principal components, in varying degrees and concentrations of
the original variables. Based on the summary() function in R (Fig. 5, below), the first
four components account for 92.0% of the variance in the dataset (the first three
account for 80.5%), indicating that PCA is a strong method of analysis for these data.
The Loadings section of the PCA output indicates that all five variables are important in
accounting for variability: component 1 is made up of scaled values from CFDD-NMDD,
Ice Cover, and Evaporation; component 2 is made up of scaled values for all five
variables; component 3 also uses all five variables, with different scales than component
2; lastly, component 4 uses scaled CFDD-NMDD, Wind Speed, and Evaporation for its
values. The fifth component uses all five variables at scaled values, however, it accounts
for the little remaining 8.0% of the dataset’s variance. This information is visualized in
the scree plot produced for the PCA, in Fig. 6 - once the first four components are
accumulated, there is little change in the variance that is accounted for.
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Fig. 5 R’s summary() function, which outputs the proportion of variance accounted for in a PCA,
by component

The individuals plot for the PCA shown in Fig. 7 indicates that data from Lake
Erie are strongly influenced by the first two principal components (PCs); Lakes Ontario
and Superior are also strongly influenced by these PCs, but in the opposite direction.
These data points are colored red and orange, indicative of this stronger influence.
Lakes Michigan and Huron are less influenced by the first two dimensions, and are thus
located closer to the plot origin and are colored in shades of yellow to blue. The two axes
of the plot, Dimensions 1 and 2, represent the first two components of the PCA, and also
contain the amount of variance they account for – 34.6% and 23.7%, respectively.

The variables correlation circle graphically displays the loadings for the variables
that were used to generate the PCs using vector arrows on a compass-like platform. PC1
is determined using CFDD-NMDD, Ice Cover, and Evaporation, each having
approximately equal loadings, as well as ABNA to a lesser degree. PC2 uses values from
ABNA, CFDD-NMDD, Evaporation, and Ice Cover, with ABNA being the strongest
factor of the four, then CFDD-NMDD, Evaporation, and Ice Cover having approximately
equal loadings, but Ice Cover values being in the negative direction.

Fig. 6 Scree plot of percent variance explained in the PCA, by component.
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Lastly, the biplots for the PCA displays both the individuals scatterplot and the
variables correlation plot in one encompassing chart for each pair of components.
Unfortunately, there are so many individuals in this dataset that their labels crowd out
much of the chart and make it quite difficult to read. Therefore, any conclusions to be
drawn from this chart can be done more efficiently by looking at the two separate
graphs.

D. Conclusion

Modeling Great Lakes ice cover to hindcast and extend the historical record is best done
with a combination of models, with each lake using its own specific trendline, timeline,
and input data. The two input data types that proved most helpful in hindcasting the
Lakes’ ice cover were CFDD and NMDD; which one depends on each lake’s winter
temperatures, depth and volume, and other properties that influence the growth of ice
on the lake. Three out of the five Great Lakes showed best results when using linear
models based on either CFDD or NMDD - the exceptions being Lakes Michigan and
Ontario, which showed the strongest results when using an exponential model. The two
most westerly lakes, Superior and Michigan, used NMDD, as well as Lake Ontario;
whereas the two middle lakes used CFDD; perhaps this is a factor of continentality: the
more land-locked lakes may be able to get colder winters. Lakes Superior and Michigan
also have the two largest volumes of the five Great Lakes; it may be that the NMDD
accounts for these lakes’ vast heat storage properties, sometimes referred to as a lake’s
“memory”. This has to do with the properties of water in terms of its heat capacity;

Fig. 7 Individuals plot from PCA for components 1 and 2. Note that the labels greatly crowd out the data
points.
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water has a heat capacity of 4.186 J/g•°C, giving it the ability to retain heat after air
temperatures decrease, or to retain its coldness after air temperatures increase. This
heat storage is likely why these two lakes did better with NMDD models, which had only
a four-month span as compared to the CFDD models, which mostly had an eight-month
span.
_____________________________________________________________________________
. RECENT ICE COVER 2009-2020 .

A) Ice Cover

More consistent and higher resolution data started becoming available in 2008,
and we have been able to collect fairly detailed information on ice cover progression and
melting over the season from November through May. These were plotted for the
available years, and it may be notable that, given the uneven distribution in surface area,
overall maximum correlates more strongly to periods during which the larger lakes are
at their maximums. Therefore, maximum ice cover date tends to neglect freezing
patterns of Lake Ontario, which rarely freezes, and Lake Erie, which freezes most
frequently and fully.

Fig. 8 Great Lakes ice cover percentage, 2019-2020
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B) CFDD

More recent weather data were also collected from NOAA GLERL CoastWatch for
the years 2009-2020, and were used to calculate CFDD values for these years.
Twenty-four out of twenty-five of the same stations used in the historical analysis period
were examined for this more recent period, as summarized below.

Some of the data were missing for some dates, varying by station; a combination
of weather stations from CMAN and Surface Airway Stations was used to enhance
temporal coverage. The data from the CoastWatch and CMAN stations had majority
equal temperature values, and when unequal, were very similar, and so the more
comprehensive station’s data were used for a given location. The weather and ice cover
data collected for this portion of the study are predominantly continuous data, allowing
for season-long analysis, compared to the historical data’s snapshot analysis, with
maximum CFDD (minimum NMDD) and AMIC.

Fig. 9 Map of Great Lakes weather stations used in this project.
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Fig. 10 CFDD for Lake Erie’s stations, 2009-10

The CFDD calculations here used a slightly narrower winter season than the
CFDDs derived from the historical weather data; the season length used here extends
from November 1-April 30, whereas the historical data CFDD used a season from
October 1-May 31. However, let it be noted that temperatures from October for these
years did not contribute to any CFDD value accumulating to November 1st, and beyond
April, further temperature data only contributed to a continued decline in CFDD;
therefore, this difference should not affect CFDD values for the freezing period of any
lake.

These CFDD values were then compiled into spaghetti line plots by year and
station for each lake, and were used to estimate how well CFDD correlated to recorded
ice cover, as CFDD has been intended for use in historical weather data. Below, we first
see a sample of the 2010 freezing period for Lake Erie and then Lake Superior.

From the above, we can see that the accumulation of CFDD progresses similarly
in different lakes, but Lake Erie sharply drops after the peak, compared to Lake Superior
which slopes down gradually. Also note the difference in magnitude for CFDD, despite
Lake Erie freezing more frequently and fully than Lake Superior. Below, we look instead
at one station at Lake Erie (Detroit) and Lake Superior (Houghton) for all recent years.
Despite interannual variability, we can see the overall shape at each given location will
follow a consistent trend.
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Fig. 11 CFDD for Lake Superior’s stations, 2009-10

Fig. 12 CFDD for the Houghton station on Lake Superior from 2008-9 through 2019-20
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C) Ice Cover vs. CFDD

With both the ice cover and CFDD data for these years available, scatter plots
were made to analyze their relationship. Below we see the data for the full season
period, meaning both their freezing and melting periods. Each lake has its own unique
pattern of relationship, some with a more linear growth, while others closer to an
S-curve.

Fig. 13 Lake Erie CFDD vs ice cover (%) over the full ice season
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Fig. 14 Lake Superior CFDD vs ice cover (%) over the full ice season

Fig. 15 Lake Michigan CFDD vs ice cover (%) over the full ice season
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Fig. 16 Lake Ontario CFDD vs ice cover (%) over the full ice season

Fig. 17 Lake Huron CFDD vs ice cover (%) over the full ice season
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Each lake was then broken down to view only its freezing period, defined either by
the dates up to the maximum CFDD date or maximum ice cover date. Looking at an
example of Lake Huron below, we can see CFDD does not precisely capture the freezing
period, as the lake begins to melt even though the cumulative freezing value continues to
increase, since this method does not account for NMDD.

Fig. 18 Lake Huron CFDD vs ice cover (%), up until date of maximum CFDD

Fig. 19 Lake Huron CFDD vs ice cover (%), up until date of maximum ice cover
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Lake Michigan and Lake Ontario similarly have a stronger trend with the date
capped at the maximum ice cover date instead of the maximum CFDD date, observed
below. The R-squared value of the regression line was taken for the resulting points,
giving values of 0.984, 0.881, and 0.700 for Lake Huron, Michigan, and Ontario,
respectively.

Fig. 20 Lake Michigan CFDD vs ice cover (%) up until date of maximum ice cover
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Lake Superior and Erie were slightly more complicated. Though they both also
correlated best with capping at the maximum ice cover date, they each have unique
outliers. Below, we see outlier behavior in 2011 for Lake Superior. By removing this
outlier, we improve the R-squared value from 0.672 to 0.798.

Fig. 21 Lake Ontario CFDD vs ice cover (%) up until date of maximum ice cover
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Fig. 22 Lake Superior CFDD vs ice cover (%) up until date of maximum ice cover

Fig. 23 Lake Superior CFDD vs ice cover (%) up until date of maximum ice cover, without 2011 data
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Lake Erie has one specific outlier date which extends the time period beyond the
beginning of its melt period, meaning that ice cover decreased before increasing beyond
its earlier maximum within the same season. It is undetermined whether this is an
anomaly in the lake freezing patterns, or whether it is an error in the data collection. It is
currently observed only for one year at one lake, so if it was an anomaly, it is an isolated
or regional one. By removing this one date of increased ice cover after the melting
period initiated (March 6, 2014), the R-squared value improves from 0.797 to 0.867.

Fig. 24 Lake Erie CFDD vs ice cover (%) up until date of maximum ice cover
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Fig. 25 Lake Erie CFDD vs ice cover (%) up until date of maximum ice cover, without Mar 6, 2014 data

These scatter plots show us that the freezing patterns of the lakes are not
uniform, and each have unique relationships with the CFDD. This is consistent with
observations, as the lakes vary greatly in size and shape, and near-shore regions freeze
more easily than open water. As a result, the more elongated, narrow lakes of Ontario,
Erie, and Michigan have more linear trends. Lake Erie freezes quicker, and therefore the
line is more steep and levels off early on, whereas Lake Ontario never reaches its
threshold for full lake freezing, despite reaching CFDDs three times what was necessary
to freeze Lake Erie. Lake Huron also has a fairly linear trend despite its irregular shape,
because it still avoids large deep water sections, as the Georgian Bay connects almost as
a separate section and freezes much more frequently than the southern body of the lake.
The Georgian Bay along with the North Channel increases Lake Huron’s border-to-area
ratio, allowing the majority of its freezing pattern to match the narrow lakes.

Lake Superior has the most distinct S-curve, with a slow initial freezing rate
despite rapidly increasing CFDDs. However, this trend is the most cleanly consistent,
with little interannual variability. Overall, each lake has a fairly linear relationship
between CFDD and ice cover percentage, but with different thresholds of what CFDD is
sufficient to initialize the freezing and what CFDD is sufficient for full lake freezing.
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D) Coefficient of Determination

Each year’s date of maximum ice cover was plotted for its ice cover percentage
value versus its corresponding CFDD value. The R-squared value of the regression line
was then taken, with the following results for Lake Michigan, Huron, Superior, Ontario,
Erie respectively (greatest to least): 0.872, 0.796, 0.745, 0.688, 0.536. For the larger
lakes, the value is fair, but less so for Lake Ontario, which hardly freezes, and Lake Erie,
which almost always freezes. Lake Erie’s especially low R-squared value may be due to
unnecessarily high CFDDs being captured due to small increases in ice cover
percentage, despite having generally reached its full-freezing threshold. In Lake Erie,
the coastal bounds complicates the relation between the CFDD and ice coverage;
namely, once the ice coverage reaches ~95%, it no longer increases with the increasing
CFDD.

Another R-squared regression was observed between the dates of the maximum
ice cover and maximum CFDD. The resulting R-squared values for each of the lakes
were all under 0.5, with Lake Ontario the highest. This is an expected result, as CFDD
continues to increase even after the lake has fully frozen for all except Lake Ontario,
which has not fully frozen since 1979. Even in Lake Ontario though, using the date of the
maximum CFDD as a proxy for the date of maximum ice cover would be poor. We can
deduce from these results that, though CFDD and ice cover percentage do have a fair
relationship, the timing of their maximums do not.
_____________________________________________________________________________
. TELECONNECTION .

A) Data

We obtained the temperature and atmospheric circulation data from the National
Center for Environmental Prediction (NCEP) and the National Center for Atmospheric
Research (NCAR) to recreate the ABNA index. We obtained air temperature at 2 metres
(T2M) and 500 hPa geopotential height (Z500) from NCEP-DOE Reanalysis 2 model. It
is an improved version of the NCEP Reanalysis I model (NOAA). We removed the linear
seasonal trend from the global geopotential height data and the linear seasonal trend
from masked North American temperature data. The removal of the monthly means
gave us the anomalies for geopotential height and temperature. It was the first step in
assessing the interannual variability of the ABNA teleconnection index. The AMIC by
Lake is obtained through NOAA-GLERL. This dataset brings the basic units of data
together from 1973 to the present. Both the NCEP Reanalysis 2 data and AMIC data
could be found on the NOAA website.

B) Methods of Analysis

We used maximum covariance analysis (MCA) to analyze the NCEP geopotential
height and temperature data. MCA is similar to Empirical Orthogonal Function Analysis
(EOF) as they both deal with the decomposition of the covariance matrix. In EOF, the
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covariance matrix is based on a single spatial-temporal field, while in MCA, the
cross-covariance matrix is derived from two fields (Björnsson and Venegas, 1997).
Through the decomposition of a cross-covariance matrix, we isolated the spatial pattern
with the highest squared covariance. We used calculated leading modes of coupled
geopotential and temperature spatial patterns to identify the temperature anomalous
centres in NA and Z500 anomalous centres in the mid-high latitudes. We also calculated
the expansion coefficients(ECS) of T2m and Z500, termed EC1 and EC2. Both expansion
coefficients were regressed upon Z500 anomalies. They were also regressed upon Z500
anomalies with PNA signal linearly removed to reveal the significant Z500 anomalous
centres. Z500 anomaly was then normalized by its standard deviation and averaged
over the three regions of influence: A (45–60 °N, 80–110 °E), B (50–80 °N, 160E–150
°W), and C (40–60 °N, 100–70 °W). The ABNA index was constructed using Eq. 8
below (Yu et al. 2016):

(8)

Using the reconstructed ABNA, we performed linear regression between the
ABNA index and reported AMIC reports and proxies to determine the relationship
between the variables.

C) Results

For this paper, we first recreated the ABNA index using the methods described
by Yu et al. (2016). We then performed a correlation analysis between the ABNA index
and the Great Lakes AMIC. The correlation analysis was based on linear regression. The
figures below show the two leading MCA modes of NA 2m temperature and large-scale
Z500 geopotential anomalies for NCEP Reanalysis II's DJF over 1980 – 2020. The first
MCA model explained 48.3% of the squared covariance, while the second MCA model
explained 31.9% of the squared covariance. Together, the two leading modes explain
80.2% of the total squared covariance. This is slightly lower than the 90.8% of the total
squared covariance calculated by Yu et al. (2016). We found a similar spatial pattern as
Yu et al.(2016) in the leading MCA pattern. It is characterized by warm anomaly over
most central NA and cold anomaly over Alaska and Queen Elizabeth Islands. We also
found a similar spatial pattern in the Z500 anomalies where the anomalous centres
resided over the Bering Strait and NA. However, our anomalous centres had smaller
amplitude compared to the results from Yu et al. (2016). The anomalous temperature
region is supported by the thermal advection of polar and mid-latitude air exchange (Yu
et al. 2016). The second leading MCA T2M pattern showed the above-average
temperature in the southeastern United States and below-average temperature in
northern Canada and Alaska; this is consistent with Yu et al. (2016). For the Z500
anomalies, we again found a similar spatial pattern with anomalous centres over
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mid-latitude Pacific, Atlantic and northern Canada with smaller amplitude in our
anomalous centre compared to the results from Yu et al. (2016).

Following the MCA, we calculated the expansion coefficients (ECs) of T2M and
Z500, termed EC1 and EC2. Both expansion coefficients were projected onto Z500
anomalies, as seen in the Figures below.

Interestingly, our EC1 only had an 18.6% correlation with PNA while EC2 had
-64.2% with PNA (both are significant at 5%) EC1 also had a 36.2% correlation with
NAO, while EC2 had a 38.4% correlation with NAO (significant). This shows that an
atmospheric circulation other than PNA directly influences the temperature variation in
NA. After removing the PNA signal through linear regression, we get a pattern seen in
the figure below. We see significant anomalous centres over the Great Lakes, Bering
Strait, and Eurasia. Compared to Yu et al.(2016)'s result, we see a stronger signal over
South Eastern China and Western Pacific. This could be the signal from a variation of
East Asian jet stream (EAJS) connected to the teleconnection pattern (Yang et al. 2002).
Ma et al. (2020) proposed that an intensified EAJS is associated with enhanced
stationary wave activity from Asia to NA. Furthermore, Song et al. (2016) proposed that
an anomalous East Asian trough event could lead to an eastward propagating Rossby
wave train from East Asia to NA, affecting the surface temperature.

Using the regression map without the PNA signal, we normalized the significant
Z500 anomalies by its standard deviation of the three regions over Eurasia, Bering
Strait, and NA to construct the ABNA teleconnection index. We also constructed a
second index using Z500 anomalies over just Bering Strait and NA. Using the ABNA
index constructed by Yu et al. (2016), our calculated ABNA index, and our new index
constructed using only two geopotential anomalous regions, we calculated its respective
correlation with recorded AMIC for each lake from 1980 to 2020. We found significant
results across all of the indices with various degrees of correlation with the AMIC of
each lake. The figure below shows that Dr. Yu's index has stronger correlation values
with AMIC of Lake Superior, Lake Michigan, and Lake Ontario. In contrast, our two
constructed indices have a stronger correlation with the AMIC of Lake Huron and Lake
Erie. Our new index and Dr. Yu's ABNA index have similar strength in correlation with
the AMIC of all of the lakes. Furthermore, we ran linear regression with both NMDD
and CFDD AMIC proxies and found significant results, as seen below. These high levels
of correlation will hopefully create more accurate forecasting for Great Lakes Ice
Coverage.
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Fig. 26 First mode of MCA of North America - Anomalies at 500 mb level

Fig. 27 Second mode of MCA of North America - Anomalies at 500 mb level

Fig. 28 First mode of MCA of North America T2M
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Fig. 29 Second mode of MCA of North America T2M

Fig. 30 Cumulative square covariance explained

Fig. 31 500 mb heights regressed upon EC1
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Fig. 32 500 mb heights regressed upon EC2

Fig.33 500 mb height regressed upon expansion coefficients from MCA. Significant result at 5%.
Highlighted regions A, B, and C are used to construct the ABNA Teleconnection Index. Regions B and C

are used to construct the new index.

35



Fig. 34 Correlation between AMIC and teleconnections

D) Discussion

In the third part of our project, we used NCEP-Reanalysis II Data to find the
leading modes of temperature and atmospheric circulation patterns over NA. After
removing the PNA signal, we used the normalized geopotential anomalous fields over
Eurasia, Asian-Bering Strait and the Great Lakes, to reconstruct the ABNA
teleconnection index. We also constructed a second index using the geopotential
anomalous field over the Bering Strait and the Great Lakes. The ABNA teleconnection
index is maintained by synoptic eddy forcing. Yu et al. (2016) showed similar
geopotential anomalies at Z250 where it exhibited anticyclonic forcing over NA and
central Asia, and cyclonic forcing over Bering Sea and Strait. This indicates that the
ABNA teleconnection is a zonally elongated synoptic-scale wave train with equivalent
barotropic structure in the troposphere (Yu et al. 2016). The high degree of correlation
between the ABNA index and the AMIC over the Great Lakes suggests that features from
the ABNA index could significantly improve the accuracy of annual ice forecasting.

One of the features that have shown promise in seasonal prediction is looking at
the Snow Water Equivalent (SWE). SWE anomalies from the previous season have
shown to be associated with the following season of ABNA teleconnection (Yu and Lin,
2019). There has also been studies that showed a significant correlation between snow
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cover over the Tibetan Plateau and temperature variation over North America (Lin and
Wu 2011, Qian et al. 2019). The anomalous Tibetan Plateau snow cover can persist into
the following winter through a positive feedback loop between the atmospheric
circulation and the snow cover. The autumn Tibetan Plateau snow cover also showed a
weak linkage with ENSO, making it a good predictor for ABNA and NA temperature.
Qian et al. (2019) also showed that snow cover over eastern Tibetan Plateau causes
perturbation near the core of the East Asian westerly jet. More research is needed to
identify the mechanism and relationship between anomalous Tibetan snow cover, East
Asian Westerly jet, and ABNA. Further research and quantitative analysis are also
required to evaluate the robustness of SWE driving the coherent variability of T2M over
North Asia and North America. If we could create a robust seasonal forecasting of the
ABNA index using Tibetan Plateau SWE, we could significantly improve the current
Great Lakes AMIC forecasting.

_____________________________________________________________________________
. CONCLUSION .

This portion of the Master’s Project — extending the data record to the 1890s and
identifying key teleconnections — works in conjunction with its other half, which uses
machine learning models, to accomplish the overarching goal of enriching the database
and improving the forecast of Great Lakes ice. In this half, we analyzed the past data to
connect ice cover patterns with other physical conditions, such as local weather and
climate and large-scale teleconnections. In the other half, we worked towards predicting
future outcomes using past data. Both are necessary for a holistic evaluation of how ice
cover has varied over time and will continue to develop in the near future.

The 2021 winter season, which concludes parallel to this report, has brought us
what appears to be the lowest ice cover in decades. Interannual fluctuations in percent
ice cover are a natural occurrence, but whether it is a part of a more significant trend
remains to be seen. With the most recent data, we hope this project contributes to the
extensive ongoing research in improving the linkage to past weather conditions, while
also creating insights into future ice cover trends.
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_______________________________________________________________________________

. NEW NOAA ICE COVER MAPS: 1963-1972 .

*1971 indicates the year reports switched from Rondy to Assel, with one ice cover maximum period now recorded
instead of two (one for the Northern lakes and one for the Southern lakes).

The chart above shows the original ice cover percentage recorded in the official lake reports,
compared with the calculated values of ice cover percentage based on the area of ice in the
newly generated maps below:
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__________________________________________________________________________________
. ICE COVER HINDCASTS, 1898-1983 .

A. Hindcasted ice cover (percent), by lake and year. Based on regression analysis.
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B. Hindcasted ice cover (± 1 standard deviation) and CFDD or NMDD time series
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. ICE COVER TIME SERIES 2009-2020 .
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. CFDD BY YEAR .

a. Lake Erie
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b. Lake Superior
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c. Lake Huron
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d. Lake Michigan
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e. Lake Ontario
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. CFDD BY STATION .

A. Lake Erie
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D. Lake Michigan
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E. Lake Ontario
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. CFDD VS. ICE COVER SCATTER PLOTS .

A. Lake Erie
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B. Lake Superior
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__________________________________________________________________________________

. CORRELATION PLOTS .

A. Ice Cover Percentage vs. CFDD for Maximum Ice Cover Dates for each year
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B. Maximum Ice Cover Percentage Date vs. Maximum CFDD Date for each year
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__________________________________________________________________________________

. ABNA INDEX .

A. Monthly ABNA Index from 1980 - 2020
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B. Monthly New Index from 1980 - 2020
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The correlation coefficients among our calculated teleconnection indices, ice cover proxies, and
recorded AMIC from 1951 and 1983.  The bold proxy is the better model. All values are significant at
5%.

The correlation coefficients among the Great Lakes AMIC and various teleconnection indices over the
DJFs of 1980 to 202. Numbers in bold represent a correlation significant at 5%.
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C. Sample Python Code

Full code can be found at https://github.com/InigoP/NOAA/blob/master/index_calculation.ipynb

1. Sample 1: NCEP Reanalysis II Data Parsing
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2. Sample 2: Maximum Covariance Analysis
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Abstract

The Laurentian Great Lakes (hereafter the Great Lakes), cover more than 94,000 square
miles in the United States and Canada and are interconnected by a series of rivers, straits, and
connecting channels, forming the world’s largest freshwater system. The Great Lakes waterway
is a system of natural channels and artificial canals which enable navigation between the Great
Lakes[1]. Among these waterways, St. Marys River is a key waterway that extends from Brush
Point in the southeast corner of Lake Superior to the northwest section of Lake Huron. The
massive Soo Locks and dredged channels, constructed in the St. Marys River, support
navigation activities including commercial shipping in the Great Lakes. This navigational lock
system is closed annually from late January to late March due to the development of ice cover
over the river. However, a notable year-to-year variability in ice condition exists in the transition
periods, namely when ice cover starts to form in early winter and melt in spring. This poses a
challenge to safe and effective planning of shipping and icebreaking operations around the
region. Consequently, it is significant to find a way to predict the ice coverage in order to help
the shipping community plan their schedule in advance.

While the ice prediction for Great Lakes has been done in the past several years, most
of them applied statistical and numerical modeling methods, such as Regression analysis.
However, because of the focused geographical area and complex physics in the river system,
the St. Marys River area is not covered by these traditional models, including NOAA’s Great
Lakes Operational Forecast System.

Machine learning is a rising technique that is well developed and has been massively
applied in many scientific fields, like in medicine, finance, geophysics and climate research.
Previous studies have shown that compared with normal statistical methods, Machine learning
is more likely to detect the internal mechanisms among data, contributing to a higher prediction
accuracy. In this study, we applied two supervised Machine learning methods namely Long
Short-memory (LSTM) and Extreme Gradient Boost (XGBoost) and compared their predictive
abilities on the Great Lakes’ ice prediction. We trained these models by using the four weather
stations data around the St. Marys River from the Coastal Marine Automated Network and the
satellite-based ice coverage data from the NOAA Coastwatch Great Lakes node. Apart from
these machine learning algorithms, we use various packages implemented in Python, like
Datetime, Pandas, Sklearn for data processing and Matplotlib for data visualization.

After the respective models were built and prediction was conducted for the next 7 days :
Both the models accurately forecasted ice cover during stable phase. Based on the metrics of
mean absolute error and root mean square error, it was found that the model skill tended to be
worse in early winter and spring months compared with the mid-winter period because of highly
dynamic conditions in these periods. The differences between the original and predicted
ice-on/off date are within 3-5 days for both models. LSTM has a higher prediction accuracy than
XGBoost based on the result. XGBoost and LSTM have the potential to be used as a good
reference for the shipping community to help them plan safe and effective operations.
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1.Introduction

1.1. Overview of the Great Lakes and St.Marys River

Lake ice always plays an important role in the shipping industry in the Great Lakes (Fig.1). In
the Great Lakes, lake ice starts to form in late November and early December, and causes
severe problems in navigation from mid-December until early March (Figs. 1 and 2). Usually,
federal and commercial icebreakers help keep the shipping routes open in early winter and
spring. a In St. Marys river (Fig. 3), a key waterway in the Great Lakes, the navigational lock is
closed from mid January to late March. In the transition periods (i.e. when lake ice starts to form
and melts), the capability of ice forecasting with sufficient quality and lead time is of
considerable concern in lock operations, the shipping industry, and icebreaking operations

In any given year, the formation, movement, and timing of ice cover on the Great Lakes is
temperamental and changes substantially with shifts in weather and climate patterns. Extremely
cold air across the Great Lakes has been the major contributor to ice formation on the Great
Lakes. Air temperature and its yearly variability is a major factor in determining when and how
much ice cover develops. Other factors such as  El Nino in the Pacific Ocean, Lake effect snow
etc also affect ice cover in the Great Lakes.
In 2018, NOAA noted the downward trend in the Ice Cover on the Great Lakes since the 1970s.

Fig 1. Image of the Great Lakes taken on Feb. 14, 2020 shows significantly less ice cover compared to the average..
Taken by NOAA-NASA Suomi NPP/NASA Earth Observatory.
Source: https://www.ibtimes.com/noaa-nasa-satellite-image-shows-lower-average-great-lakes-ice-cover-2925431
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Fig 2. Great Lakes, MODIS, March 25, 2019.
Source:https://earthobservatory.nasa.gov/images/144747/a-clear-spring-view-of-the-great-lakes

Fig 3. Clipped area of St.Marys River from Fig. 2.
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1.2. Background on previous Ice Cover and analysis methods

Ice cover prediction has always been a topic of great concern in the Great Lakes and other cold
waters. Here is the background and some previously done research on ice prediction.
Chi and Kim[2] used a total of 446 months of monthly Arctic sea ice concentration data, acquired
from November 1978 to December 2015, for sea ice prediction in the Arctic using machine
learning modeling. The data acquired from November 1978 to December 2014 was used as the
training data and the data acquired from January 2015 to December 2015 was used as the test
data. The Machine learning models used in this research were Long Short-term Memory (LSTM)
and Extreme Gradient Boost (XGBoost), which generated good prediction results.  The special
aspect of this research is that both the input and output data are remote sensing images.
However, this research only includes one feature (previous ice value) in the model, without
considering other environmental features, such as air temperature. Geophysical Fluid Dynamic
Laboratory[3] developed a quasi-operational prediction system that is run every month and
produces seasonal forecasts of the climate system, including sea-ice extent.
In the Great Lakes, GLERL has conducted research on ice cover forecasting on two different
time scales, short term (1-5) days[4] and seasonal[5,6]. It has successfully forecasted the annual
maximum Great Lakes ice cover and the long term average annual maximum ice cover for the
whole Great Lakes as well as for each lake. And the main predictor of the forecast model is the
latest surface air temperature. However, these models for ice forecasting have not covered the
Great Lakes river systems or waterways mostly because of the computational challenges to
capture the detail, complex physics at these focused geographic scales at the same time as
they cover the lake-wide scale phenomena. As a result, the ice forecasting capability both at the
short-term and seasonal time scales for the key river systems and waterways has been a gap in
the Great Lakes.

1.3. Overview of Machine Learning models
Machine Learning techniques have been massively applied in many scientific fields, like

in medicine, finance, geophysics and climate research[7,8,9]. Machine Learning approaches are
being increasingly used to extract patterns and insights from the ever-increasing stream of
geospatial data which assist in the identification of useful connections in the climate system.
They are used to train statistical models which mimic the behavior of climate models and also to
identify and leverage relationships between climate variables. These trained statistical models
allow us to quantify non-linear relationships between the climate variables we input to train the
models .

However, current approaches may not be optimal when system behaviour is dominated
by spatial or temporal context. Contextual cues should be used as part of Machine learning (an
approach that is able to extract spatio-temporal features automatically) to gain further
understanding of climate science, thus improving the predictive ability of seasonal forecasting
and modelling of long-range spatial connections across multiple timescales.

In the Great Lakes, applications of machine learning models to date are limited, except
for a few pioneering works that focused on waves.[10,11] Based on the historical research, we
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know that machine learning models, such as LSTM and XGBoost are attractive modeling
approaches to examine in ice forecasting in lieu of numerical modeling. An obvious advantage
with use of a machine learning model against a numerical geophysical model is reduced
computational cost. This is particularly true for a small but complex system like Great Lakes
waterways.  Thus, the potential of machine learning modeling in Great Lakes ice forecasting
warrants pilot research: This includes finding the most appropriate machine learning model,
identifying the suitable features, and adjusting the best parameters for our prediction problems.
Such work is critical in order to support future products that can support decision making by lock
operators, vessel managers, ship captains, and Coast Guards around St Marys river water
system in a way that they can maximize their shipping time and avoid unnecessary cost.

1.4. Project Objectives
The general objective of our project is to address how we can apply Machine learning to

predict the ice cover in the St. Marys River system in the Great Lakes accurately.  The ultimate
goal is to build a pilot modeling framework that can support decision making of the stakeholders
around the St. Marys River system, one of the key waterways in the Great Lakes.

To achieve this objective, we address the following tasks:
● Prediction of ice cover on St Marys River using Long Short-Term Memory (LSTM) and

Extreme Gradient Boosting (XGBoost) models. Developing these models will help us
understand the relationships among Great Lakes ice cover, surface meteorology, and
climate indices inorder to inform better prediction.

● Compare the models’ prediction skills. Each of the models have their own learning
methods and capabilities in prediction. Identifying the conditions where each model
performs well is important to evaluate which model to use at what stage.

● Provide the prediction result for local shipping community

2.Methods
2.1. Model Selection

The main neural network models selected for this project are Long Short-Term Memory
(LSTM) and Extreme Gradient Boost (XGBoost). LSTM is a kind of neural network that is  widely
used for predicting the time series data. It has been widely used in climate science and got
great outcomes[12,13].XGBoost is a widely used Machine learning method that uses Gradient tree
boosting technique.

2.2. Data Preparation

2.2.1. Data Collection of Weather data

Weather data was collected from the National Oceanic and Atmospheric Administration's
National Data Buoy Center(NDBC) website. Station ID search was used to search for the
respective Station’s data. Data is found under ‘Historical data’, ‘Standard meteorological data’
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for each year. The historical data was downloaded as a text file for each of the weather stations
- SWPM4, LTRM4, WNEM4, RCKM4 and DTLM4 for the years 2007 to 2020 as shown below.

Fig 4. Weather stations’ (SWPM4, LTRM4, WNEM4, RCKM4 and DTLM4) locations on St.Marys River.
Refer to Appendix C for coordinates of the stations.

Though the station RCKM4 was present on St.Marys river, it was not considered in our study as
it had no data on Air Temperature(ATMP) that was needed specifically for our study.
The stations recorded data on several weather parameters as shown in Table 2 of Appendix C.
However, parameters relevant to our study such as Wind Direction (WDIR), Wind Speed
(WSPD), Gust speed (GST), Sea Level Pressure (PRES) and Air Temperature (ATMP) were
considered for the analysis.

2.2.2. Data Collection of Ice data

Ice data was collected from the National Oceanic and Atmospheric Administration’s CoastWatch
Great Lakes Node website. This data consists of Great Lakes ice concentration data obtained
from the US National Ice Center. The gridded ice analysis products are produced from available
data sources including Radarsat-2, Envisat, AVHRR, Geostationary Operational and
Environmental Satellites (GOES), and Moderate Resolution Imaging Spectroradiometer
(MODIS). Spatial resolution of the ice concentration data is 2.55 km in 2005, and 1.8 km from
2006–2017. The resulting NIC data set defines ice concentration values from 0 to 100% on 10%
The format of the ice data is netcdf, the package netCDF4 is used to read ice data.
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Trim the research area to the area of St Marys River by its latitude and longitude (46.05° N -
46.59° N, 84.65° W - 83.80° W)
We extracted the ice concentration value at the location of the above weather stations. The
average ice concentration over the St Marys River was also calculated. An average ice
concentration spatial map of St Marys River is shown below.

Fig 5. The spatial distribution of ice concentration in St Marys River on January 1st, 2020

2.3. Data Pre-processing(Data Wrangling) and Exploratory Data Analysis
Python programming and Jupyter Notebook IDE was used for the analysis of data and

Model development. Pandas was further used to convert the data into Machine readable format.
Relevant libraries(given below) were imported for the analyses.

● Scientific Computing libraries (Pandas, NumPy)
● Visualisation library(Matplotlib)
● Algorithmic library(Statsmodels)

The screenshot of relative code can be found in Appendix A.

2.3.1 Data Preprocessing of Weather data
For each station, the downloaded data was read into dataframes for that station and column
names were assigned. Any missing information was replaced with Nan’s and interpolated.
Descriptive Statistics(summary functions) was used to understand the attributes of the data.The
features that had more than 30% of missing data could not be interpolated and were dropped.
Exploratory data analysis(EDA) was performed on each station. “DateTime” package in Python
was used to create  a “DateTime” feature that was used as a JoinKey to merge the different
data frames. It was later used as an Index to represent the parameters or features in the data
set. Since the weather data was collected at a 6 minute interval on a daily basis, a data frame
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was created for each day of the year using Groupby operation. “corr() method” was used to
create a correlation matrix to observe the feature across all stations.Air temperature and Ice
Cover were considered as important features.

2.3.2 Data Preprocessing of Ice data

The average ice concentration value was calculated across St Marys river from 2007 to 2020. A
dataframe for ice data was built that had the mean ice concentration (%) value for the whole
river as well as for the individual weather station for each day. Summary functions were used to
detect and remove anomalies in the data set. Ice concentration value was normalized as the
Machine Learning models are more sensitive to the normalized data. The dataframe was
exported into an Excel format. Weather data and Ice cover data for all the weather stations were
merged to be used for analysis.

2.4. Model Development

In both LSTM and XGBoost models, we used the surface weather data (see section 2.3.1) as
input data and ice concentration data (see section 2.3.2) as the target variable. Considering that
these are time series data, in which serial correlation exists between successive observations,
the usual approach of random assignment to the three partitions is not followed. Instead,
continuous periods of the time series are assigned to each partition. The data was divided into
the training set (2007-2015), the validation set (2016-2017), and the test set (2018-2019). With
the training set, reliable estimates of the trainable model parameters are achieved. The
validation set is used in the selection of model hyperparameters such as tree depth and to
check for overfitting on the training data. Finally, the test set is used to test how well
the ML models generalize to unseen conditions. The model specific configurations are
described in the sections 2.4.1 and 2.4.2.
Moreover, the data from Nov.01 to May.10 are further divided into Freezing Phase (Nov .01-Jan.
14), Stable Phase (Jan. 15–Mar. 25) and Melting Phase (Mar. 26–May 10). Apart from
predicting for the whole entire, we also conducted predictions based on these three phases and
observed the performance of our models in different phases.

2.4.1. LSTM

For LSTM, the number of features and time steps were two significant parameters that need to
be determined[14]. According to the data downloaded from the weather stations, there were five
relevant features.They are air temperature(ATMP), wind direction(WDIR), wind speed(WSPD),
gust speed(GST) and atmospheric pressure(PRES). Descriptions of the features are provided in
Appendix C. Along with previous ice value, these features and ‘day of year’ were considered.
We calculated how these features are related with the target value (ice value) using regression
(f_regression package in python) and found that previous ice value, air temperature and ‘day of
year’ have the most significant effect on our prediction, while atmospheric pressure, wind speed,
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wind direction and gust speed don’t have an obvious influence on the future ice value.
Consequently, we chose air temperature, previous ice value and ‘day of year’ as three features
for the LSTM input data. The graph that shows how accuracy changes with different
combinations of features can be found in Appendix B, figure 13.
Regarding the time steps (how many previous days of information are used for the input data),
we tried running the model from 1 day to 30 days time. The results showed that when time step
equals five days, which means that when we input 5 days of data into the model, the prediction
accuracy is highest. The graph that shows how accuracy changes with time steps can be found
in Appendix B, figure 15.
As for other hyper-parameters, we tried different functions and model structure (different hidden
layers and hidden units) but the accuracy did not change a lot. So we use the most widely used
ones. Relu was used as activation function, ‘mean squared error’ was used as the loss function
and RMSprop is used as the optimizer. Our model has one hidden layer with ten hidden units in
it. And the batch size is set as 32, the specific code used for constructing the LSTM model can
be found in Appendix A, figure 10.

2.4.2. XGBoost

Packages for XGBoost were imported. Sklearn(or Scikit-learn) library was used for the model
selection.  Daily lags (for 7 days) and moving averages or Rolling Means (for 3,4,5 and 6 days
respectively) for Air Temperature and Ice Cover were created as additional features in the
dataset (in addition to existing features WDIR, WSPD, GST, PRES, ATMP and Ice Cover). This
is normal given that XGBoost is not set up for Time series data (like an LSTM is). So providing
lags and rolling means of ICE is essential to achieve decent models. Feature engineering and
feature importance was determined as explained in Appendix B figure 14.
The input variables to be predicted (Ice Cover) and the variables to be used for training (the
remaining features in the dataset) were identified. The model was trained using training data
and then it was tested on the testing data. “Time Series split cross validation” method was used
in which no future observations can be used in constructing the forecast. “GridSearchCV''
function was used to create multiple splits in training data across different time periods with the
training data expanding in each field. segments.The forecast accuracy is computed by
averaging over the tests.
XGBoost Regressor model was run to predict the ice cover based on the weather data.
XGBoost regressor was run with a wide range of hyper parameters( Learning_rate, max_depth,
subsample, colsample_bytree, n_estimators) and 5 cross validation time series splits. The
specific code used for XGBoost can be found in Appendix A, figure 11. Mean absolute error was
used to find the difference between the prediction and actual values (test data). In order to
forecast the ice cover in the future days using the predicted value on any day, the latter was
used as the “ground truth” for forecasting for the former. In our case the predicted ice cover
value on 01 Jan 2019 was used to forecast the ice cover for the next 14 days or 2 weeks from
2-15 Jan 2019. XGBoost models were built for individual stations and the outputs were used to
create the forecast for all the stations merged together.
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2.5 Evaluation methods
The following evaluation methods were used to evaluate the accuracy and predictive power of
the Models. Both evaluation metrics are calculated for LSTM, XGBoost and our baseline.

1. Root Mean Squared Error (RMSE) and Mean Absolute Error(MAE) on the test set.
2. Differences between the original and predicted ice-on/off date.

Definition of baseline:  In order to verify our predictions do perform better than simply taking the
average of the ice concentrations in the previous years, we use the average of the
ice-concentrations in the past 9 years as our baseline. This baseline provides the approximate
information of ice coverage at a given time of a season in the ‘normal’ year. If the error for our
model is lower than the baseline, it indicates that our models do have predictive ability better
than using the normal-year information as forecast.

Definition of ice-on/off date: If consecutive 3 days that have ice cover more than 10% and less
than 10%, it will be chosen as Ice on and Ice off date respectively. Figure 12 in Appendix B can
be used for understanding ice-on/ice-off dates.

3.Results

3.1 Time series of ice cover on the test set

Fig 6. Time series of ice cover on the test set

This time series plot compares the relationship among the original ice value, the prediction
result of XGBoost, the prediction result of LSTM and our baseline from 2018 - 2019 (test set).
The blue, orange,green and red curves represent the original ice value, LSTM predicted ice
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value , XGboost predicted ice value and the baseline, respectively. According to the plot, it is
clear that compared with the red curve (baseline), the variation trend of the orange curve
(LSTM) and green curve (XGBoost) are both much more similar to the blue curve, which
indicates that the predictions by our models are much more accurate than simply taking the
average of the past several years.
Apart from that, we can also locate where the prediction error comes from. According to this
time series plot, the orange curve and the green curve overlap with the blue curve for most of
the time, except for December and April for each year.
During these two periods, we can see that the blue curve (original) contains some small
fluctuations, which indicates that the ice value varies dramatically in a short period of time.
During such a period, we can see the orange curve and the green curve fall apart with the blue
curve (original), which means such periods should be the main source of our prediction. After
our analysis, this period may be caused by a drastic change in the local air temperature, which
is hard to predict by using the previous weather data, especially when the predicted interval is
large.
As for the comparison between LSTM and XGBoost, it is hard to judge which one performs
better only based on this plot as they are very similar and close to each other. Consequently, we
calculated the MAE and RMSE of these two models so that we can compare them
quantitatively. The comparison section will be explained in more detail in the next section

3.2 Prediction error (RMSE and MAE) on test set

Table 1: Prediction error (RMSE and MAE) on test set with 7 predict interval

MAE RMSE

Metric XGBoost LSTM Baseline XGBoost LSTM Baseline

Freezing
Phase

5.99% 7.50% 9.54% 9.82% 15.17% 17.21%

Stable
Phase

5.19% 2.89%` 10.27% 7.73% 3.38% 10.53%

Melting
Phase

4.50% 7.11% 9.33% 7.82% 12.44% 16.22%

The Whole
Year

4.57% 2.90% 6.73% 7.78% 8.71% 13.38%

This table compares the MAE and RMSE among the XGBoost, LSTM and the Baseline when
the prediction is conducted for the next 7 days. According to the table, the prediction result of
both Machine learning models are better than the baseline. This indicates that our prediction
models do have better accuracy than simply taking the average of the ice cover value in the
previous several years.
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For the prediction in different phases, we can observe that both models accurately forecast the
ice cover during the stable phase, while the accuracy in freezing and melting phase are
relatively low. After our analysis, the reason for the low prediction accuracy for these two phases
might be the ice cover changes frequently and drastically, which makes the prediction to be
difficult.
For the comparison between LSTM and XGBoost, We can see that for the stable phase, the
RMSE and MAE of LSTM are smaller than those of XGBoost, which indicates that LSTM
performs better during the stable phase. However, for freezing phase and melting phase, the
RMSE and MAE of the XGBoost is smaller. This means XGBoost is better at predicting when
the ice changes more frequently.

3.3 Ice season duration with 7 Predict Interval

Fig 7. Ice season duration with 7 predict interval

Figures 7 show the relationship between the original ice-on/ice-off dates and the predicted
ice-on/ice-off dates when the prediction is conducted for the next 7 days. The black, red and
blue line represents original ice-on/ice-off dates and ice-on/ice-off dates of LSTM and
ice-on/ice-off dates of XGBoost, respectively. To be noted, because the weather station only
contains data from 2008, the ice-on/ice-off dates for XGBoost in 2007-2008 are missing.
Considering the fact that the local shipping community may be more concerned about when the
ice will freeze and melt, this evaluation method might have more reference value in this project.
As this plot shows, the differences between the original and predicted ice-on/off dates for both
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models are small, mostly within 3-5 days, even when predicting the ice cover after 1 week.
However, for the small ice periods (very short black lines in the plot), both models can’t predict
them accurately, which is what we need to improve way forward.
In general, both models can control the error of ice-on/ice-off almost within 5 days when the
predicted interval equals 1 week, which can absolutely provide helpful information for the local
shipping communities.

3.4 Predictions accuracy with predicted interval

Fig 8. How prediction error changes with predict interval on the test set using LSTM

For prediction problems, the final concern is how long our predict interval could be. And the
graph shows how the prediction error (RMSE)  changes with the predict interval on the test set.
As the graph in Fig. 9 shows, when the predict interval increases from 1 to 5, the RMSE of our
model increases quickly. However, as the predict interval continues to increase (from 5 days to
30 days), RMSE increases quite slowly.  According to the graph, we can conclude that as long
as the predict interval is less than 15 days (around 2 weeks), our prediction result will not cause
much error. When the predicted interval is less than 3 days, the result will be very accurate.
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4.Achievement & Outreach
Due to the unexpected pandemic situation, we faced a few challenges in executing the planned
outreach activities. First, because of the travel restrictions placed in 2020, we had to cancel the
in-person visit to the Soo Lock and a meeting with lock operators of the U.S. Army Corps of
Engineers (USACE). Second, the summer internship at GLERL that was originally anticipated,
but it had to be converted to a virtual setting due to the restrictions in building access.
However, we managed to adjust our activities in order to achieve meaningful outreach from our
work. First, we routinely communicated with Dr. Philip Chu, the client contact at GLERL and held
a virtual seminar to showcase our findings on April 22, 2021. Second, the faculty advisor
Fujisaki-Manome continues to communicate with professionals at USACE and NOAA on the
project progress and seek potential continuation of the work. Third, most importantly, we
presented our study at the 101st AMS(American Meteorological Society) Annual Meeting and
hosted virtually during 10-14 January 2021. We also presented our study at the AMS 20th
Annual Student Conference in the form of a poster (snapshot shown in Fig. 10) and recorded
hosted virtually during 9-10 January 2021.

The AMS is a global community committed to advancing weather, water, and climate science
and service. Atmospheric scientists, oceanographers, hydrologists, earth system scientists,
students, practitioners from Science and Engineering, academia etc. are members of the AMS
community. Conferences and events are facilitated to meet, share ideas and collaborate on
research and implementation.

Our presentation received positive reviews and some suggestions for improvement. We made
modifications to our analyses and incorporated the reviews accordingly.
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Fig 9. Poster presented at 101st AMS Annual Meeting and 20th Student Conference

5.Discussion & Conclusions
Based on our analyses, it can be observed that in general, LSTM has a higher prediction
accuracy than XGBoost in stable phase. The three significant features in the LSTM model are
temperature, previous ice cover and the day of year. And the input data contain the information
in five consecutive days. The performance of LSTM is  better when predicting for the mid ice
phase, while the performance for the freezing and melting phase can still be improved. And the
error of ice-on and ice-off dates can be controlled within 3-5 days even when we predict 1 week
later.

For XGBoost, After executing the forecasting model using XGBoost using best feature
combination and predicting for next 14 days it can be concluded that, the XGBoost model
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performs well and accurately during the mid winter season(Feb and March)  and when the ice
cover is constant i.e either always low or always high. Thus, the XGBoost model can be used
for 60-70 days during the mid-winter to reliably predict the Ice Cover. For early winter months
and late winter months, the model does not perform as well as it does in the mid winter season.
This is because we are using one day’s ground truth to create features for making predictions.
Rolling means which is an important feature/variable always has lag1 data which affects the
predictability.
Both models outperformed the basic forecast using the normal-year condition. In conclusion,
XGBoost and LSTM can be used as a good reference for the shipping community to help
themplan safe and effective operations.

The limitations of our project are identified as follows. Limitation of Machine learning modelling
in general as compared to Physics based learning is that these models cannot predict any
unprecedented event since the model forecasts based on past data. For example, the XGBoost
models are largely unable to extrapolate target values beyond the limits of the training data
when making predictions.  Another limitation of our project is that the ice data and some part of
weather data are both contained from the satellite image, which is pixel based. If the spatial
resolution of the satellite image is not high enough (in other words, one small pixel represents a
large area), the data we obtain will then be highly inaccurate.
Our model only performs well when predicting for the whole St Marys river. In terms of predicting
for a small area, such as the location of an individual weather station, the performance of the
model decreases because the weather and ice value change more often in a small area.

In terms of the way forward, our project has future scope to be worked upon and developed.
Some potential areas are :

● User engagement and co-design the study along with the end users and customise the
project as per their need. For example, making changes to our analyses based on
requirements such as:

○ Need for analysis on a specific point in the region instead of the whole St. Marys
river

○ Need for analysis for a broader region
○ Users need the forecast of ice thickness instead of percentage of ice cover

● Inclusion of Spatial analysis and predictions in the study
● Hyper parameter tuning that was done in this project can be worked upon further more.

For example in XGBoost model hyper-parameters include things like the maximum depth
of the tree, the number of trees to grow, the number of variables to consider when
building each tree, the minimum number of samples on a leaf, the fraction of
observations used to build a tree etc. For LSTM the list includes the number of hidden
layers, the size (and shape) of each layer, the choice of activation function, the drop-out
rate and the L1/L2 regularization constants etc.
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7.Appendices

Appendix A - Screenshots of Code

Fig 10. Python code for building LSTM neural network
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Fig 11. Python code for building XGBoost model

Appendix B - QA/AC

Fig 12. Ice-on/Ice off dates in time series plot
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Fig 13. Feature selection for LSTM

Feature importance indicates how useful each feature was in the construction of decision trees
within the model. The more the feature is used to make a decision, the higher is its relative
importance.The trained XGBoost model calculated the feature importance on the predictive
modeling problem. The XGBoost model was run again using the important features identified
along with Ice Cover data and showed better accuracy.For XGBoost model:

● The Air temperature (ATMP) feature showed seasonality across the years of our study
2007-2019. The features Gust Speed (GST) and Wind Speed(WSPD) showed strong
correlation and indicated that they be used as supporting data to predict ATMP. No
correlation was observed between other variables. In general, ATMP correlations
between the stations DTLM4, SWPM4, WNEM4 and LTRM4 were positive and were
greater than 0.97. This shows us that we can explain the variation in ATMP at one
station by understanding the variation in ATMP at another station.Highest correlation
was between stations WNEM4 and LTRM4. Lowest was between SWPM4 and DTLM4.

● Feature engineering indicates creating or deriving additional predictive features . For
XGBoost, additional features were created that could potentially aid in improving the
RMSE of the XGBoost model. The following features were engineered to run the model:

○ The initial models were built by calculating the mean of features for the day. Built
models with median values as well.

○ From the Wind Direction (WDIR), which is in degrees from North, exact direction
of wind was created. That is, if the wind direction is 90, it is considered East. 180
is South, 270 is West etc.

○ For PRES feature, z scores were generated as a feature.
It was observed that these features did not contribute significantly to improve the
XGBoost model. The other features do not have predictive power. Ice data is more
significant than ATMP for prediction. When the XGBoost model was run using only the
significant variables it performed well. The error showed similar variance in test and train
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data sets. There was also no overfitting of the model. Using features too far in the past
does not add much value to increase the predictive power of the XGBoost model.

Fig 14. Feature importance for XGBoost

Fig 15. How accuracy changes with time steps on the test set for LSTM
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Appendix C - Additional Information

1. Weather Stations’ on St.Marys River coordinates:
● SWPM4 : S.W. Pier, MI, 46°30'5" N 84°22'20" W
● LTRM4: Little Rapids, MI, 46°29'9" N 84°18'6" W
● WNEM4 : West Neebish Island, MI, 46°17'5" N 84°12'35" W
● RCKM4 : Rock Cut, MI, 46°15'51" N 84°11'28" W
● DTLM4 : De Tour Village, MI, 45°59'33" N 83°53'54" W

2. Feature description:

Table 2 : Weather Station features and their description.

WDIR Wind direction (the direction the wind is coming from in degrees clockwise from true N)
during the same period used for WSPD.

WSPD Wind speed (m/s) averaged over an eight-minute period for buoys and a two-minute
period for land stations. Reported Hourly.

GST Peak 5 or 8 second gust speed (m/s) measured during the eight-minute or two-minute
period. The 5 or 8 second period can be determined by payload.

WVHT Significant wave height (meters) is calculated as the average of the highest one-third of
all of the wave heights during the 20-minute sampling period.

DPD Dominant wave period (seconds) is the period with the maximum wave energy.

APD Average wave period (seconds) of all waves during the 20-minute period.

MWD The direction from which the waves at the dominant period (DPD) are coming. The units
are degrees from true North, increasing clockwise, with North as 0 (zero) degrees and
East as 90 degrees.

PRES Sea level pressure (hPa). For C-MAN sites and Great Lakes buoys, the recorded
pressure is reduced to sea level using the method described in NWS Technical
Procedures Bulletin 291 (11/14/80). ( labeled BAR in Historical files)

ATMP Air temperature (Celsius). For sensor heights on buoys, see Hull Descriptions. For
sensor heights at C-MAN stations, see C-MAN Sensor Locations

WTMP Sea surface temperature (Celsius). For buoys the depth is referenced to the hull's
waterline. For fixed platforms it varies with tide, but is referenced to, or near Mean Lower
Low Water (MLLW).
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DEWP Dewpoint temperature taken at the same height as the air temperature measurement.

VIS Station visibility (nautical miles). Note that buoy stations are limited to reports from 0 to
1.6 nmi.

PTDY Pressure Tendency is the direction (plus or minus) and the amount of pressure change (hPa)for a
three hour period ending at the time of observation. (not in Historical files)

TIDE The water level in feet above or below Mean Lower Low Water (MLLW).
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