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ABSTRAC

M:

The ubiquitous presence of more than 80,000 chemicals in thousands of consumer products used on

I

a daily basis stresses the need for screening a broader set of chemicals than the traditional well-

studied sus @ micals. This High Throughput Screening combines stochastic chemical-product

usage with lance based exposure models and toxicity data to prioritize risks associated with

household products. We first characterize product usage using the stochastic SHEDS-HT model and

th

chemical ¢ common household products from the CPDat database, the chemical amounts

U
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applied daily varying over more than six orders of magnitude, from mg to kg. We then estimate

multi-pathways near- and far-field exposures for 5500 chemical-product combinations, applying an

t

¥

extended USEtox model to calculate product intake fractions ranging from 0.001 to ~1, and exposure
doses vary e than 9 orders of magnitude. Combining exposure doses with chemical

specificﬂo -responses and reference doses shows that risks can be substantial for multiple home

1

maintenancg,praducts, such as paints or paint strippers, for some home-applied pesticides, leave-on

C

personal ca cts, and cleaning products. 60% of the chemical-product combinations have

hazard qudtiedfs edceeding 1 and 9% of the combinations have lifetime cancer risks exceeding 10™.

$

Population acts of household products ingredients can be substantial, representing 5 to

U

100 minut lthy life lost per day, with users' exposures up to 10> minutes. It demonstrates

large variatiions of up to 10 orders of magnitude in impact between both chemicals and product

A

combinati mer products being responsible for high exposure and risks for users and thus

d

for the genefal ulation. It also shows that prioritization based on hazard only would neglect

orders of e variations in both product usage and exposure that need to be quantified. To

\

addres

resent mass-balance based models are already able to provide exposure

estimates for both users and populations. This screening study shows large variations of up to 10

{

orders of magnitude between both chemicals and product combinations, demonstrating that

prioritizatid @ on hazard only is not acceptable and that the USEtox suite of mass-balance
based mo ready able to provide exposure estimates for thousands of product-chemical

combinatigns for Qoth users and populations. The present study calls for more scrutiny of most

th

impacting product combinations, fully ensuring from a regulatory perspective consumer

igh-end users, and using protective measures for users.

U

product sa

A
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1. IN ON
|

Chemicals are ubiquitously present in thousands of consumer products used on a daily basis.
It is estima approximately 30,000 to 80,000 different chemicals are commonly used, but

good quality afd r@gulatory toxicity data is only available for a few thousand chemicals, and the

S

product- a pecific nature of exposure makes that many decisions are often taken on hazard-

U

based data eggs et al., 2019). Wambaugh et al. (2014) showed that chemicals found at the

highest coficentrations in serum and urine human biomonitoring data are associated with chemical

fl

usage in co roducts, whereas chemicals only used in industrial processes or active

d

ingredients ides are generally associated with lower exposure levels. This stresses the need

for screen oader set of chemicals than the traditional well-studied suspect chemicals,

M

accoun

exposure and hazard, and considering both chemical and product properties.

Regent developments in the assessment of near-field exposures (i.e., exposure pathways in

[

the vicinity uct use) (Jolliet, Ernstoff, Csiszar, & Fantke, 2015; Huang and Jolliet; 2016, Isaacs

a

etal., 2014 amed the field towards a consistent inclusion of near-field human health

assessmenfithat is product-chemical combination specific into high-throughput risk and impact

g

assess Data are becoming increasingly available to assess chemical content in products

( Phillips, h, Grulke, Dionisio, & Isaacs, 2017; Dionisio, Phillips, Price, Biryol, & Isaacs, 2018;

uft

Isaacs, Phillips, Biryol, Dionisio, & Price, 2018), and stochastic methods have been developed to

predict on product usage patterns for many product categories (Isaacs et al., 2014). These

data and product usage methods have been used within a screening-level exposure model to inform

3
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chemical prioritization (Isaacs et al., 2014), which had some limitations on the exposure side,
including lower-tier conservative assumptions that do not account for the mass-balance nature of
competinnges, such as volatilization and dermal uptake on skin surface. On the other hand,
more elab -tier mass-balance based models have been developed to estimate transport,
fate, exp-os_!reassociated with multiple chemical emissions and usage along the life cycles of
products and,serxices (Fantke, Ernstoff, Huang, Csiszar, & Jolliet, 2016; Fantke, Huang, Overcash,
Griffing, &U)ZO; Csiszar, Ernstoff, Fantke, Meyer, & Jolliet, 2016) for high throughput

screening of ca8metics) and have been consolidated within an extended USEtox near-field and far-

field mode:ﬂate have incorporated relatively limited data on chemical and product usage.

The paper aims to combine stochastic estimates of chemical-product usage with
product-ch ass-balance based exposure models and toxicity data to inform High Throughput
Screening mhemical risks associated with commonly used household products. More

specific to a) characterize the product usage and chemical content in commonly used

household pr , b) estimate multi-pathways near- and far-field exposures for thousands of
chemical-product combinations, and c) screen and prioritize risk and health impact to identify
product an! substances of concern, using the estimated exposures in concert with available toxicity
data and hDghput toxicity estimates. This work demonstrates the feasibility of combining

HTS estima hemical usage, exposure models and toxicity to identify and prioritize chemicals

of concerngat require further scrutiny, as well as main product usage that might lead to substantial
exposur“cts. This approach could be used in the context of either receptor-oriented
methods Ii@ing-level Risk Assessment (RA) to assess the order of magnitude of risks for
product users andggeneral population, or of product-oriented methods, such as Life Cycle
Assessn{nd Chemical Alternatives Assessment to identify substances that matter most
during the product use life cycle stage.

4
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2. METHODS

2.1. Hnt framework
Hig hput quantitative exposure assessment is performed according to the Product
Intake Fra mework (Jolliet et al., 2015; Fantke et al., 2016; Fantke, Huang et al. 2020)
I

and its im;Smentation within the USEtox model, successively determining the amount of chemical

applied in mer user and per day, the corresponding exposure in mg/kg/d and the associated
r I

risks, haza ent or health impacts (Fig. 1). It aims to determine the incremental or marginal
increase in and risks due to the considered household products and therefore does not
include bac@ exposures from environmental emissions or other products. This overall
assessment frzjzfork is in line with current recommendations for characterizing chemical-related

toxicity im tke et al., 2018), and is executed according to the following stepwise procedure:

2.1.1. Chermd in product

ntify the chemical mass of each substance i (m;, , k8chemicai/Pers/d) that is used

daily by a a specific product p:

ml_J,ser — le’lser X Wf'l,p (1)

. -
WhO
&ua/pers/d) is the daily amount of product used by a user of this product,

estimat High-Throughput Stochastic Human Exposure and Dose Simulation model
(SHEDS-HT, Isaacs et al, 2014) and wf;, (in kgchemical/K8product) is the content of chemical i in product p

taken fro Environmental Protection Agency’s (EPA) Chemicals and Products Database

(CPDat, Digai al., 2018),

This article is protected by copyright. All rights reserved.



Chemicals in product applied enter a defined compartment of entry, i.e. the compartment
into which or within which a chemical is first applied or used within the considered product (e.g.

‘skin surfai’ an ingredient in personal care products). The mass used is calculated both for one

user
Lp

HT predi-cti rraction of the population using this product per day (mz‘;erage PP = mier x

N;SEI‘/NPO@F X fpuser)_

4R NN NN NN NN NN NN AN AN NN NN NN NN NN NN NN NN NN AN AN IR AN ENENE NN NN NN NN NN ENENEREREREREN,
1]

Consumers (SHEDS-HT) Products Chemicals (cppat)
(stochastic usage patterns) ll (product attributes) | (chemical properties)

person usi ct (m;, = m;,"), and for the average population, accounting for the SHEDS-

Product amount used
e.g. [2.15 kgpaint/user/day]

Chemical weight fractions
[0-044 kgethylbenzene J’Ikgpaint]

Chemical used in product (77 users out of 25,000)
[0.095 Kgin proguct/user/d or 0.00029 Kgin proguct/average person/d]
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Fig. 1. Schematic description of the assessment framework and impact pathways, from mass

in product to risk and impacts, illustrated with the example of ethylbenzene in paint.

T

2.1.2. Usermtion exposure

Secondpth esfmamework captures the multi-pathway transport and fate processes transferring

chemicals *mpartments in the near- and far-field environments, until finally reaching

C

humans. Itimedia transfers are structured in a matrix of direct inter-compartmental transfer

fractions (R@ht al., 2016). By matrix inversion, we quantify cumulative multimedia transfer

S

fractions and exposure route-specific (x: inhalation, ingestion, dermal) product intake fractions

U

defined as mass taken in (I; , p o, kg/d) via multiple exposure pathways e (e.g. dust

ingestion, dermal contact) by exposed humans h per unit mass of chemical in a product (Jolliet et al.,

fl

2015): PiFmeex I; pne/Mi5". Combining product intake fractions with chemical mass in the
product, muli by a factor 1,000,000 kg_to_ mg conversion factor and dividing by the number
of expose s in the considered subpopulation (N,, persons) of users, non-user household

\

| population, and an average human body weight (BW,, kggw/person) yields

memb

intake doses for exposure route x (D; ,  x, mg/kgsw/d) as exposure estimates:

[

ip XPiFippxxkg_tomg

NpXBWp

(2)

A

2.1.3. Risk @haracterization

n

The thir ssess and compare the risks and impacts associated with each of the chemical-

[

product combinati@ns, combining exposure doses with toxicity data. First, carcinogenic risks (R; p, in

Ul

probability of r for a lifetime exposure of user h by route x) are calculated by multiplying the

dose by specific cancer slope factor (CSF;,, in incidence/(mg/kgsw/d), taken from the

A

Carcinogenic Potency Database, see Eq. 5 below):

7
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Ri,p,h = Zx Di,p,h,x X CSFi,x (3)

Thil risk E'bability can then be compared to the acceptable lifetime cancer risk limit of 10™

to 10°® for mpopulation depending on the jurisdiction. Non-carcinogenic risks are
characterized by comparing the dose with a reference dose (RfD; ,,, mg/kgsw/d, from Wignall et al.,
H I

2018) and @alculating the dimensionless cumulative hazard quotient as:

HQi,p,h = ‘x Di,p,)r/RfDi,x (4)

Thmive hazard quotient should not be interpreted as a risk, but an HQ>1 (exposure

dose higheﬁference dose) may indicate potentially harmful chemicals that require further

scrutiny.

2.1.4. Imp@terization

In o the risk screening, we also calculate comparative impact scores for both

cancer cer toxicity impacts, according to latest LCA approaches, i.e multiplying the
inventor he substance intake fraction (fate and exposure factor in kgintake/Kemittea), the
USEtox dose-response factors (DRFs, incidence/kgi.xe) and severity factors (SF, DALY/incidence). For
the specifimchemicals in consumer products, the cumulative impacts resulting from a daily
usage of a fifc hemical in product (m;,, kg/person/d) and (IS; ,, DALY/person/d for both cancer

or non cancer effect e) via exposure route x is given by (Jolliet et al., 2015):

M X Y xe(PiFipnx X DRF; 50 X SF,) (5)

Where the sum 05') is calculated considering the direct adult (or child) product user exposed, the

other adult(s) a hild in the household, composed by default of 2 adults and one child, as well as
the gen sed background human population.

8
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Risk and impacts are first determined for the product user and then extrapolated to an average risk

or impact for the entire population accounting for the fraction of the population using this product.

t

D

This impact-oriented representation enables us to analyze results either from a product perspective,
summing r all chemicals in a given product, or from a substance perspective, summing

up impeEts or all products containing a given chemical. The next sections detail the data and models

£

used for each of these three main steps.

SC

22. C used in product - the SHEDS-HT model
For determining daily chemical usage by product user and for the general population, we used the

H

SHEDS-HT aacs et al., 2014), an integrated probabilistic exposure model for prioritizing

n

als. The model is run for 1777 unique chemicals in 289 individual product

exposures

categoriesginc w

person

arts and crafts, auto, cleaning, home maintenance, home office, lawn and yard,

nd home pesticide products; this results in 9700 product-chemical

combinations HEDS-HT input data include empirical chemical weight fraction distributions

M

developed from EPA’s CPDat database (Dionisio et al., 2018) and use variables for individual product

categories (€.g., population prevalence, frequency of use, mass per use) developed from a review of

5

existing da s or assumed where necessary (Isaacs et al., 2014; Isaacs, 2019). A population of

O

25,000 indi Is simulated; distributions and means of the mass of product and mass of

chemical u§ed per day per person are obtained a) per user for product users only and b) per person

q

for the ation of simulated individuals, accounting for the SHEDS-HT predicted fraction of

{

the population usfag this product per day.

U

A

9
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User and population exposure
To estimate product intake fractions, we build on the USEtox mass-balance based model

(Rosenb 008) and extend it to the near-field environment to create an extended version

L

of the USE{O artment system that includes exposure to chemicals in consumer products. We

9

first popylaigagiaiitimedia transfer matrix T (nxn) with direct inter-compartmental transfer fractions
from each Lo each row. The first column of direct transfer fractions characterizes transfers
from the p@mpartment of entry into the near-field environment (e.g. an ‘object surface’ for
cleaning pr o the neighboring compartments (e.g. to indoor air via volatilization, and to
human epidermis via direct dermal contact between the user and the object surface) using the near-
field modemed in Table I. The other columns of the transfer matrix contain the direct transfer
fractions fr, mpartments to their neighboring environmental compartments and to an
additional uman exposure compartments. The environmental compartments include near-
person air m compartment to receive the fraction volatilized in direct proximity of the user),
indoor ilization to the rest of the user household air), as well as the already existing 11
USEtox o environmental compartments of urban, continental and global air, continental and
global freshwater, continental coastal marine water and global deep ocean, and continental and
global agriMnd natural soils. For these compartments, direct transfers are calculated as the

ratio of the @ partment transfer rate constant divided by the total removal rate constant of

the respecti n compartment. The human compartments correspond to a combination of
intake ts and exposure pathways (respiratory tract for inhalation, gastrointestinal tract
foringes d and drinking water, and for dust ingestion via hand to mouth, epidermis for

gaseous and direcSiermal exposure), for four subpopulations, namely one adult user, a second non-
user adult, o (optionally being a user) in the user household, and the general population of 1
billion peo ith 10 intake compartments/exposure pathways differentiated).

10
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As demonstrated by Fantke et al. (2016), the compartments are then combined and the cumulative
transfers accounting for all subsequent higher order transfers obtained by inverting the difference
betweerﬂy matrix | (with ones in the main diagonal and zeroes elsewhere) and T, yielding
the cumul s matrixT,,, = (I — T)L. The first column of matrix T, provides the
cumulaﬂleremlcal transfer fractions from the product to both the other indoor and outdoor

compartments apd to the different human compartments. The cumulative transfers to these human

C

compartm ctly correspond to the product intake fractions associated with different

exposure pathway,

An example of matices T and T..m is presented for our example chemical-product combination —

b

ethylbenze nt - in the SI2 tab of the supplementary information SI. In the first matrix, the

'

first colum s that 20% of ethylbenzene entering the household environment as a thin

coating is

la in the near-person compartment during the painting process, that 0.18% is

d

transfes ser epidermis during painting and that the remaining 79.82% are volatilized to

the rest of th r air over the 15 years defined exposure period. The near-person air column
indicates that 99.77% of the chemical is transferred to the rest of the household, whereas 0.33% is
inhaled bySe user. The first column of the second, cumulative transfer matrix indicates that 0.42%
of the appli benzene is inhaled by the user (thus a PiF of 0.0042), another 0.35% are inhaled

by the seco sehold adult and 0.20% by the household child, whereas a negligible fraction of

only 0.001¥% is inhaled by the one billion persons of the continent’s general population.

The direct !ans!er fractions from the compartment of entry to other various near-field

environmental cogipartments, to the USEtox far-field environmental compartments and to the three
human rec mpartments (respiratory tract, gastro-intestinal tract, and epidermis,
correspondi e three exposure routes) are calculated using a series of complementary

11

This article is protected by copyright. All rights reserved.



underlying models. Depending on the product application and the compartment of entry in the near-

field environment, four main models are included into our framework for calculating direct transfer

fractions, * ‘Direct emission’, ‘Article interior’, ‘Skin surface layer’, and ‘Object surface’. Table |
summarize transfer fractions that are determined by each model and the respective

exposur% pFi ways. Each of these models is then parametrized adapting required model parameters

(such as thickness of applied chemical on skin, surface applied, number of adult and children

exposed, a and child specific exposure factors e.g. for hand-to-mouth dust ingestion) to the

SHEDS-HT wategory The underlying models required chemical property estimates, which are

obtained f: OPEn structure-activity Relationship App (OPERA) quantitative structure-activity
relationshi

models (Mansouri, Grulke, Judson, & Williams, 2018). The availability of

chemical pgperties restricts results to 5500 of the 9700 chemical-product combinations. The
Suppleme rmation provides the list of the 5500 product-chemical combinations
characterized, her with their usage characteristics and the main resulting exposures, risks and

impacts.

Table I. Selected underlying USEtox near-field exposure models with main direct transfer fractions

from com;!rtment of entry, exposure pathways, model mechanisms, key parameters, and example

products c determine Product Intake Fractions.
Model |C ent |Direct Model mechanism Key parameters |Product
entry and exposure example
sfers |pathways

c ents

consider,
Direct issi to Inhalation Direct transfer fraction |Half-lives and All chemical
emissi erson, and gaseous |is the chemical mass residence time in |emissions to
(based ban |dermal emitted to a certain each indoor and
on or continental |uptake, compartment divided by|environmental outdoor

12
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Model |Compartment |Direct Model mechanism Key parameters |Product
of entry and exposure example
main traisfers pathways
cofipaiments
o
USEtox M| ;@i ace |ingestion the original mass in compartment. environmental
2.2) r pathways via |product and is Bioaccumulation |compartments
agrcultural and |drinking calculated as the ratio of{factors
tural s@il, water, above |transfer rate constant to
nd ground total removal rate, using
SgP’ produce, the USEtox rate
below constant K matrix
ground (Rosenbaum et al.,
i produce, 2008; Henderson et al.,
meat, milk  {2011)
and dairy
C products,
and fish
Article T@rom Dermal Diffusion-limited (for Diffusion Chemicals
interior, i in contact with |e.g. VOCs) or partition- |coefficient inside |encapsulated
interior |article limited model (for e.g. [the article D, in article
rson |surface, dust |SVOCs) for the transfer |solid material-air |interior (e.g.,
or ingestion in [from article interior to |partition building
air, to human |additionto |indoor air. The coefficient K., materials,
idermis via |inhalation diffusion-limited model |material-water furniture, toys,
Lntact, and gaseous |accounts for the partition or arts and
dermal chemical’s internal coefficient K, crafts)
uptake diffusion inside the which are

article via Fick’s 2nd
Law, but does not need
to account for the
restricted long-term
chemical’s sorption on
other indoor surfaces,
yielding a two
exponential model
applicable to most VOCs
(Huang & Jolliet, 2016).
The partition-limited

predicted by
Huang, Fantke,
Ernstoff, and
Jolliet (2017),
Huang and Jolliet
(2019a), Huang
and Jolliet
(2019b),
respectively.

13
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Model |Compartment

of entry and

main traisfers
cofparments
c @ d

Direct
exposure
pathways

Model mechanism

Key parameters

Product
example

-
O
%
-
C
(O
=
-

model accounts for
indoor sorption, but
assumes the chemical is
always evenly
distributed inside the
article since surface
partitioning is limiting.
The air is assumed in
quasi steady state with
the different surfaces.
This yields a
parsimonious two-
compartment mass-
balance model for
article and indoor
surfaces applicable to
most SVOCs, solved into
a two exponential
explicit equation using
eigenvalues and
eigenvectors

Skin- Tr, rom
surface |s e
layer layer®o near-
, to
epidermjs, and
t& WWTP'

e

Direct dermal
aqueous
uptake in
addition to
inhalation
and gaseous
dermal
uptake

The model uses a three-
compartment mass
balance, whose
compartments include
skin, indoor air, and the
product applied on the
skin. The model
assumes that
volatilization and skin
permeation are two
competing loss
processes for chemicals
in the product applied

Skin permeation
coefficient via
aqueous solution
Kp_aq, total
gaseous-skin
permeation
coefficient
Ko_gas_total, Which
are calculated by
the methods used
by ten Berge
(2009) as applied
by Csiszar et al.

Personal care
products, hand
dishwashing

14
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Model |Compartment |Direct Model mechanism Key parameters |Product
of entry and exposure example
main traisfers pathways
cofipaftments
o

I on skin. (Ernstoff et al., |(2017).

s 2016, Csiszar, Ernstoff,

Fantke, & Jolliet, 2017).
‘ ’ The fraction remaining

on the skin at the end of

the exposure period is
w washed-off to Waste

Water Treatment Plant

Object Tjrom Dermal The modelis a Air-water partition|Surface

surface |obj face |contactin simplified version of the |coefficient K., cleaner
tSnear—person additionto  |model from Earnest and |taken from the detergents
air, door |inhalation Corsi (2013), as OPERA QSARs

and gaseous
dermal
uptake

developed by Wang,
Huang, Nguyen, and
Jolliet (2016), which
uses a four-
compartment mass
balance, whose
compartments include
near-person surface,
near-person air, far-
person surface and far-
person air. In this
model, a transfer rate
constant between near-
person surface and the
rest of the surface (far-
person surface) is used
to simulate the
movement of the
person when cleaning
surfaces

(Mansouri et al.,
2018).

15

This article is protected by copyright. All rights reserved.




"Wastewater treatment plant, “Solid waste treatment plant such as landfill or incinerator, *Semi-
volatile organic compounds.

Mdata, risk characterization and impacts

2.4.1 Cance, actor

For cancer risks, cancer slope factors are calculated based on the Carcinogenic Potency
I
Database (Mps://toxnet.nIm.nih.gov/cpdb/) and its implementation for Life Cycle
Assessmer@:x (Rosenbaum et al., 2011), starting from the lowest (across animal species -
after correwhe extrapolation factor for interspecies differences) harmonic mean of
tumorigeni S

generating an additional risk of 50% over background in a chronic lifetime cancer

test (TD504; 4, kgew/d):

0 .
CSFix = ESOW, in 1/(mg/kg/d) (6)
wmmensionless) is the extrapolation factor for interspecies differences between

animal species a and humans (Rosenbaum et al., 2011, Table S3), and f; (dimensionless) is the

extrapolation for differences in time of exposure, i.e. a factor of 2 for subchronic to chronic

exposu or of 5 for subacute to chronic exposure (Huijbregts, Rombouts, Ragas, & Van de
Meent, ZOS). Route specific harmonic means are determined separately when available for both

ingestion a ation. In case no data are available for a specific exposure route, a route-to-route

extrapolati ried out, assuming equal slope factor between inhalation and ingestion route,
and betﬂal and ingestion route. Rosenbaum et al. (2011, Sl section S3.2) indicates that
cancer W by inhalation might be underestimated, when a) the primary target site is
specifically o the route of entry (case of formaldehyde linked to nasal cancer) and b) when

the expected fraction absorbed via inhalation is expected to be much higher than the fraction

yestion with octanol-water partition coefficients K,,, smaller than 2.5 102 or K,,,
larger than 10%. The slope factors for acrylonitrile, arsenic, benzene, benzidine, beryllium, 1,3-
16
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butadiene, cadmium, chromium VI and nickel by inhalation are directly taken from the human based

data available via the IRIS database (http://www.epa.gov/iris/).

I

2.4.2. Refem

ilEommenseamcer risk characterization, for ingestion, Reference Doses (RfD) are determined

starting fr t of departure and dividing them by the product of three uncertainty factors for

. L e N . POD
animal to )‘@trapolatlon, inter-individual variability and uncertainty: RfD, = < For

"~ 1 UF;

caIcuIatingw the points of departure are in general NOAEL or LOAEL taken from IRIS or other

regulatory;databases, retaining the RfDs used as training set by Wignall et al. (2018,

collected f Office of Pesticide Programs (OPP), Superfund Regional Screening Level Tables
(RSLs)], Ca!ornia EPA, Agency for Toxic Substances and Disease Registry (ATSDR) toxicological
profiles, U. ovisional Peer Reviewed Toxicity Values (PPRTV), U.S EPA Health Effects

AssessmentSu ry Tables (HEAST)). When not available, we use the in silico conditional toxicity

value (CT ictors from Wignall et al. (2018) to predict quantitative estimates of ingestion RfDs

(also us t for dermal uptake) and inhalation Reference Concentrations (RfCs). Inhalation
RfDs are then derived from multiplying RfCs by by an average breathing rate of 16 m*/person/d for a

middle age aau|! ,USEPA, 2011) and dividing by a standard human adult body weight of 70

kg/person. @ d RfDs are only retained if they are within the QSAR model applicability domain

(Wignall's dicator lower than or equal to 3, as reported in the supplementary information).
, that is for C icals representing 2,888 chemical-product combinations for inhalation-based

RfDs and fsﬁemicals representing 3,495 chemical-product combinations for ingestion RfDs.

<
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2.4.3. Dose-response and severity factors

For deteWcinogenic impacts, the DRFs are taken from the USEtox database as described by

) _ 0.5X fy X fyx10° .
Rosenbau @ 011): DRF; cancerx = D50 XNaXBW LT’ where BW is the average body

weight of humsammaedults, LT is the average lifetime of humans (70 years), Nq is the number of days

per year (3¥/ear). An average cancer severity factor of 11.5 DALY/incidence (Huijbregst et al.,

2005) is ta@erage over various cancer types.

Fo cafjcer impacts, DRFs are also taken from the USEtox database as described by

S

0.5X fy X fyX10°
TDSOi,a,non cancer,xXNdXBWXLT

Rosenbaum et al. 011): DRF; ;o cancerx = where TD50,; , is the toxic

Ul

dose extra ither from NOAEL (TD50; 4, = 9 X NOAEL, mg/kg/d) or from LOAEL

I

(TD50; 4 ’ LOAEL, mg/kg/d). An average non-cancer severity factor of 2.7

DALY/incid@nc ijbregst et al., 2005) is taken as average over various non-cancer effects. Since

a

there is seconds in a year, a WDALY could be interpreted as 31.5 second or 0.53 minutes

of healthy li er day.

A

3. RESULTS AND DISCUSSION

£

3.1. and product usage

From -HT, the mean total amount of chemical used per day per person is calculated as

the mu f three model output statistics: the mean amount of product used per day by a

no

{

user, th mical content or weight fraction in products used, and the fraction of the

population using thlis product for calculating an average daily chemical usage at population level.

9

Taking the e of ethylbenzene used in paint (Fig. 1), a user will apply 2.15 kgp.ini/user/d, which

A

contains a e value of 0.042 Kgethyibenzene/ K8paint, thus an application of 0.095 kgethyibenzene in

paint/ User/d. Considering that on a given day only 77 person out of 25,000 are using this product, this
18
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corresponds to a population average chemical application of 0.00029 kgethyibenzene in paint/ PErson/d. Fig.
2a shows the fraction of users, i.e fraction of the population, using a given product-chemical
combinatkHy. It varies from close to 1 (almost everybody uses it on a daily basis) for several
cosmetics ing products, down to 1 user out of 25,000 for some home maintenance
product?t Mw be used by a smaller fraction of the population compared to other products.
The following segtions first focus on the user and the other members of the household in which the
product is characterize risks associated with individual product-chemical usage. Average

populationfapplicafions are considered in a second stage to provide insights on the magnitude of the

population:rden of disease.

S

a) Fraction ct-chemical users in overall population
_— 1
£8 o
%_g- 0.01
s
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Fig. 2. Fraction of users (a), chemical and product usage (b), product intake fractions (c), exposure
doses (d), dnd health impacts (e) on the product user, for multiple product-chemicals combinations
of the 23 ¢ generating the highest cumulative impacts at population level.

d

rates the variability in chemical usage across users. The amount of chemical used

per user or a given product-chemical application varies by more than six orders of

M

magnitude, from mg to kg; across all applications, where the highest quantities used per user are for

home mai products.

or

3.2. P ntake fraction and user exposures
Producti ions and exposures were characterized for 846 chemicals in 270 unique

t

i

products al of 5465 product-chemical combinations.

U

3.2.1. Prod e Fractions (PiFs)

Applyin Etox-compatible PiF exposure modeling framework for each of the product-chemical

A

combination yields the Product Intake Fraction (PiF). In the case of ethylbenzene in paint, the

20
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inhalation PiF for the adult user amounts to 0.0042 Kgintake/ Kethylbenzene in paint- This means that for 1 g
of ethylbenzene used in product, 4.2 mg is taken in by the user. The dermal PiF for the user is twice
lower thmmon, at 0.0018 Kgintake/ K8ethyibenzene in paint- IN addition, the inhalation PiF for the
second ad jld in the household are still slightly lower than for the user but still
substanﬁalmglvaues of 0.0035 and 0.0020 respectively. In contrast, the inhalation PiF for the
general populatign is restricted to 1.1-10” for a billion exposed people. Fig. 2c shows that user PiFs
typically va ctor of 1000 between the various products considered, ranging from 1/1000 for
inhalation w to ingredients of many home maintenance products such as paint or paint
stripper, u to 1 for dermal exposure to ingredients of leave-on personal care products such
as body or:)n. Population exposure outside of the household remains minimal, on the order
of 1 ppm tszo ppm.

3.2.2. Usem doses
User ex oses for each exposure route are obtained by combining the chemical mass in the
productaai e product intake fractions. Multiplying the amount of chemical used per day of 0.095

kgethylbenzene in paint/user/d by the inhalation PiF for the adult user of 0.0042 Kginhaled/ K8ethylbenzene in paint

and dividinhg,;w, we obtain for ethylbenzene a daily inhalation dose of 5.7 mg/kggw/d for the

adult user, @ rmal exposure of 2.4 mg/kggw/d. This is slightly higher than the exposure of the
second Ker household member (4.8 mg/kgsw/d) and lower than the per kg body dose for
the chil ehold (13.5 mg/kggw/d), but much higher than the daily exposure dose for the

backgroun! opulation, which amounts to 1.4-10™ mg/kg/d, due to the low PiF and high number of

exposed a i background population. Fig. 2d shows that depending on the considered
product-c combination, exposure doses vary by more than 5 orders of magnitude, from
0.001toatho mg/kg/d for a user using the product, with especially high doses when applying

21
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home maintenance products the entire working day. The contribution of each exposure route and

sub-population is further detailed for each of the 5500 chemical-product combinations in the SI1 tab

of the supse tary information file.

3.3 Risk characterization
3.3.1 Ri51 aracterization for users

Risks were @haract@rized for 665 chemicals in 228 unique products, for a total of 4229 product-
chemical combigations (Fig. 3). Predicted RfDs within the QSAR model applicability domain were
used for 3ﬂe1als representing 2,888 chemical-product combinations for inhalation-based RfDs

and for 477 chemig@als representing 3,495 chemical-product combinations for ingestion RfDs. For the

Ul

non-cancer, rization of the illustrative example of ethylbenzene in paint (Fig. 1), the user

n

dose of 5. is divided by a Reference Dose of 0.23 mg/kg/d (derived from a Reference

Concentration g/m?), yielding a Hazard Quotient of 25 for inhalation. Fig. 3 presents the non-

39

cancer ents in diagonal line, expressed as the ratio of the same exposure doses on the x-

axis and the r ce doses on the y-axis (reverse values). This prioritization exercise also identifies

W

multiple combinations with hazard quotients substantially higher than 1: for inhalation (Fig. 3a), the

highest exg@sures and hazard quotients are observed for ingredients of home maintenance

f

products, t ct-chemical combinations with highest hazard quotient deserving further

O

scrutiny in p . The ingestion reference doses tend to be higher than the inhalation one for the

majority of{ghe considered chemicals (Fig. 3b, inversed value on the y-axis). Two product categories

h

lead to ser HQ: the ingredients of home maintenance products with low ingestion RfDs,

{

and the ingredient of specific personal care products, such as body lotions, that have lower RfDs but

Ul

are taken in dermally at higher doses. Overall 60% and 12% of the chemical-product combinations

have h tients exceeding 1 and 100, respectively, up to more than 10*.

A
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Fig. 3. Haz ugifent (HQ) represented as diagonal lines determined as the product of exposure

dose for (a) inhalatiion, and (b) the sum of ingestion and dermal exposure of the adult user on the x-

axis, multi e inverse of reference doses (reversed values on the y-axis), for multiple

product-ch mbinations.

(O

For cancer, ta e example of ethylbenzene (Fig. 1), the user dose of 5.7 mg/kg/d is multiplied by
a cancezr of 4.2x107 [1/(mg/kg/d)] to yield a high cancer risk over lifetime of 2.4x107,
substantia! higher than the commonly acceptable range at population level of 10° to 10™. Fig. 4a
presents th ing estimates of carcinogenic risks for a lifetime use of each product-chemical
combinatio are shown as diagonal lines, representing for each considered product-chemical

combinati! the cancer slope factors as a function of the corresponding exposure doses. This

screeninﬁ iows tpt for multiple products, continuous exposures to these chemicals in products

can potentm high cancer risks for the user, exceeding 107 over lifetime, especially for
r

inhalation al exposures of ingredients in home maintenance and personal care products.

Substa the highest cancer slope factor of 1.5 to 4 [1/(mg/kg/d)] are chrysene,
formaldehyde, and 3,3'-Dimethylbenzidine dihydrochloride. They can lead to substantial lifetime
23
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risks for both inhalation and ingestion up to or higher than 10% when used on a regular basis. But

substances such as triethanolamine (CSF=4.2-10"%) or dichloromethane (CSF=3.8-10"%) with two to

three orde! agnitude lower CSF can lead to similar risks due to two to three orders of
magnitude sure doses.
I

This high—tSoughput screening analysis indicates that exposure to chemicals in products might lead

the same t

population level, i

from profe

ingestion t

to high exp@Sure regular product users for multiple product-chemical combinations and enable

us to identify c ical combinations inducing substantial risks and that deserve further scrutiny. At
a@solute user risks must be taken with care, since for chemicals with low usage at

s unlikely that these products will be used on a daily basis over lifetime, apart

age of e.g. paint strippers. Also, most dermal effect data are extrapolated from

ta and might overestimate real risks. Overall 14% and 9% of all the chemical-

product cns have user lifetime cancer risks exceeding 10° and 10 respectively (up to 10°

r data.

1), but t
with available
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1E-3 1E+0
Ingestion & dermal exposure dose (mg/kg-d)

1E+3

tions increase substantially to 94% and 60% when only considering the chemicals

Cancer risk=1e-6
Cancer risk=1e-3
Cancer risk=le-4
Cancer risk=1e-3
Cancer risk=1e-2
Personal care product
Cleaning product
Home maintenance
Other home product
Other products

cancer risks due to chemical exposures represented as diagonal lines (equi-

0 to 10°®), determined as the product of exposure dose for inhalation (a), and the



sum of ingestion and dermal exposure (b) of the adult user on the x-axis, multiplied by the Cancer

Slope Factor on the y-axis.

pt

3.3.2 Camcemmiskmehoracterization at population level

Consideringgha ly 77 persons are using ethylbenzene in paint out of the total considered

gl

population 0, cancer risks are reduced at population level, in the order of 10, which is still a

relevant risk fa¥ a

S

ntire population. Since there are large variations in product usage and

penetratio
population
highest po

products a

U

opulation (Fig. 2), Fig. 5 analyses how the user cancer risks translate at

vel as a function of the fraction of population using this products. It shows that the

1

ation risks are found for chemical usage in broadly used leave-on personal care

d

chemical usage,

of Fig. 5, see

tend to

V]

corner of Fig. 5).

S

t

ser extent in cleaning products, due to the combination of intermediate

gh PiFs, and broad usage of these products in the population (right upper corner

upplementary Information, column AZ). The highest individual risks to the user

o rarer product usages, that show lower risks at population level (left upper
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Fig. 5. Population cancer risks (based on user exposure) represented as diagonal lines (equi-cancer

risks of 107 to 10°®), determined as the product of fraction of population using the product-chemical

I

combinati Itiplied by the user cancer risk associated with chemicals in household products.

3.3 Impact characterization by product
Impacts-w e estimated for 129 chemicals in 233 unique product, for a total of 1148 product-

£

chemical combinations.

3.3.1. Impacts ogausers

SC

Since expo tion of users is not very well defined over lifetime, the impact-oriented

Lk

approach ight be more adapted to look at impacts of single daily usage, enabling a first

comparisofifoetween cancer and non-cancer impacts. For ethylbenzene, the inhalation dose of 5.7

N

mg/kg/d is ied by a dose-response factor of 0.024 cancer incidence/Kginke, an standard

human bo

a

of 70 kg and an average cancer severity factor of 11.5 DALY/incidence (Fig. 1) to

yield a rcinogenic impact by inhalation of 107.5 uDALY/user/d, whereas the dermal intake

amoun

M

0 0.5 uDALY/user/d due to a two orders of magnitude lower dose-response factor of

2.6 10™. The corresponding non-cancer impact amounts to 6.9 uDALY/user/d, yielding an overall

[

user impa DALY/user/d or 60 minutes of healthy life lost per day, and an average
populatiof 0.35 uDALY/person/d for the main user, plus another 0.35 uDALY/person/d
associated wi other adults and the child of the household assumed to be present in the home
during

Fig. 2e sho oduct-chemical combination for the 23 chemicals with highest impacts,
expressing acts in uDALY/user/d and selecting combinations with impacts higher than 0.1

uDALY/ qﬂ irst, for a given chemical, impacts vary by more than three orders of magnitude
depending on the product usage, emphasizing the importance to look at both chemical and product
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usage and properties. Second, while some of the usual suspect chemicals, such as formaldehyde,
1,4-dichlorobenzene, ethylbenzene and toluene, were expected among the highest impacting
chemicammbinations, this high-throughput screening suggests that other broadly used
chemicals, jethanolamine, hydroquinone or D-limonene, could lead to substantial risks at
user IevEI a!m further scrutiny. Third, though high-throughput screening tools are primarily
designed fortelative comparisons, analyzing the order of magnitude of the impacts is nevertheless
of interest. of chemical-product combinations range here from 0.1 up to 100 uDALY/user/d
or 50 minuwalthy life potentially lost per user per day. This is in the same order of magnitude

as other ri; included in the global burden of disease study series, such as nutrition-related
e

risks (e.g. s of life lost per serving of processed meat - Stylianou et al., 2016; Stylianou,

Fulgoni III,!Jolliet, 2020).

Fig. 6a premimpacts associated with the different ingredients of the 20 household products

with theghi acts on users. The products with the highest user impacts are home

maintenance cts such as adhesive remover, paint stripper, concrete cleaner and home applied
pesticides, with substantial impacts of the order of magnitude of 1000 uDALY/user/d or 500 minutes
of healthy Se lost per day. This emphasizes the importance of using protective equipment for such
home mai tasks to limit impacts. Personal care products and cleaning products are also
found amo 3 most impacting chemicals on users, but rather in the order of a 100

uDALY/usid or 50 minutes of healthy life lost per day. 14 main contributing chemicals are found in

Fig. 6a Mserve further investigation beyond the present screening, including

tetrachloroetEy!es, dichloromethane, furfuryl alcohol, D-limonene, formaldehyde, butyl benzyl
phthalate for homg maintenance products, as well as diazinon and 1,4 dichlorobenzene for use of
pestici¢ Diazinon has been one of the most widely used insecticides in the U.S. for
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household but was phased out for residential use in early 2000 and would rather represent usage of

products kept over long period on consumers' shelves.

Q.

3.3.2. Henlthmimapaets at population level

L

Since the fw the population using each product vary widely depending on each household

product an ct category, we also study the products and chemicals contributing most to the

populatiowf disease. Multiplying impact per user per day by the fraction of the population

using the Temical combination and summing up over all ingredients of a product yields the

cumulative impacts at population level associated with the consumer use of that product (Fig. 6b).

In this scre;essment, products with the highest population burden of disease are primarily

personal care & cts, and in particular body lotions and creams, due to the combination of high
fractio he population and high quantities of product applied directly on the skin. Home
mainteEcts and pesticides are also found among the 20 most impacting chemicals at
population level, but with reduced impacts compared to user impacts due to their lower usage at

populationSveI. The chemicals that deserve further investigations include hydroquinone,

triethanolo@well the ingredients identified above for the user impacts of home maintenance

products an e applied pesticides.
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pacts on human health associated with chemicals in household products,
in contributing chemicals of the 20 household products with highest impacts for

cts and b) average population impacts accounting for the fraction of users in the

populatj the change in scale between the first five products and the others.
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4. CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS

This hig

{

t screening of risks and impacts associated with chemicals in consumer products

enables thon of the chemical-product combinations with highest impacts to be further

scrutiniﬁdwy. It demonstrates large variations of up to 10 orders of magnitude in impact
between bkticals and product combinations, consumer products being responsible for high

exposure afd risksfior users and thus for the general population. It also shows that prioritization

€

based on hagar, ly would neglect orders of magnitude variations in both product usage and

S

exposure that'ne€d to be quantified. To address this issue, present mass-balance based models are

already able to praVide exposure estimates for both users and populations.

J

Results shg % oth individual and population exposures need to be considered when prioritizing

chemic tion mostly based on biomarker levels in the population (Wambaugh et al., 2014,

Ring et al., 20 ght neglect substantial exposures of individuals using certain products that are

only used by a small fraction of the population, which are unlikely to show up as being important

when sam!ng the general population.

O

The preseIcreenlng shows substantial risks and impacts for household users of several home

maintenanﬁ, perinal care and cleaning products, whose exposure to their ingredients might

exceed ref gulatory doses by several orders of magnitude. This is primarily related to the

high intak xperienced by users exposed to chemicals in consumer products rather than to

toxicity@it dose: The median intrinsic toxicity of compounds in the considered household
30
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products being a factor 3 to 10 lower than the median of USEtox chemicals, and the most toxic being

a factor 10000 less toxic than 2,3,7,8 tetrachlorodibenzodioxin (TCDD).

pt

The scope efthespresent assessment is limited to screening and prioritization purposes and

therefore *veral limitations. First, the present study focuses on the incremental or marginal

C

increase in\@xposufie due to the considered household products and does not include background

exposures fi€i om environmental emissions, nor from other products (building products, food

S

contact materials, articles, textiles, etc.), which could increase the absolute carcinogenic risks or

U

non-carcin i zard quotients. Second, for fate and exposure, the models are only presently

applicable 6 organic substances, and their validity for polar or ionizable chemicals needs to be

C

further investigated, along with developing methods for addressing inorganic chemicals, which

o

cannot cur characterized (Kirchhibel and Fantke, 2019). The present paper focused on

adult e e, children being only considered for background exposures, with specific exposure

param contact to articles and building materials (Fantke et al., 2016). We however

\]

acknowledge the need to carry out dedicated studies on children exposure to chemicals in various

I

children pr uch as carried out by Aurisano, Huang, Mila | Canals, Jolliet, and Fantke (2020)

for toys, w w the same exposure framework as proposed in the present study. Further

research is ded to improve the quantitative estimates for several exposure pathways, in

1

particul outhing, dermal contact and gaseous dermal exposures to chemicals in

t

consumer products. Third, for more than half of the chemicals, human toxicological data were not

U

available or estimates were outside of the QSARs’ applicability domain. These require additional

research ef risk related to these chemicals is currently underestimated. The uncertainty on

A

the toxicity high, with mean value prediction absolute error of 1 order of magnitude for
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ingestions RfDs, and 1.5 orders of magnitude for RfCs (factor 30), for which less data are available to
train the in silico model (Wignall et al., 2018). The route-to-route extrapolation is also associated
with a fact#tmcertainty (Rosenbaum et al, 2011), and has limited validity in case toxicokinetic
and adsor iffer substantially by route, and ingestion reference doses and dose-response
data we?e T to evaluate dermal exposures. There is therefore a need to take advantage of
the growing amaunt of toxicological data that are becoming available on e.g. the Comptox
dashboard comptox.epa.gov/dashboard) or ECHA (https://echa.europa.eu/information-on-
chemicals)@ndito derive best available values for comparative assessment. This might require

additional;lated to data interpretation, quality control and aggregation, since data from
()

different s me with different levels of quality, scrutiny and details (Fantke, Aurisano et al.,
2020). Thir!: further investigations are required for evaluating the impacts of products and
chemicals m by the present screening with the highest user and population impacts,

analyzing in'de ach steps of the impact pathway from product usage up to exposures and

toxicity data® xample, high impacts are associated here with triethanolamine, due to
carcino ince triethanolamine is found with positive cancer responses in mouse in the

carcinogenic potency database (https://files.toxplanet.com/cpdb/index.html). Further investigation

is however neeaea, since this chemical is considered as not classifiable as to its carcinogenicity to

humans bnational Agency for Research on Cancer (IARC-Group 3). Main sources of

uncertainti assessment include the market penetration of different ingredients for a given
product, chemical content inside the products, the exposure estimates for recently identified

exposure such as gaseous dermal uptake, and the determination of chemical specific
toxicologic esponses for the large number of ingredients used here. This results in typical
uncertaj two to three orders of magnitude, which remains discriminant for prioritization

purposes and fo ntifying product-chemical combination that needs further scrutiny, when
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considering the more than 10 orders of magnitude variation in risk across all chemical-product

combinations considered in the present study.

The trams|atiemefsimpacts into uDALY/user/d and minutes of healthy life potentially lost per user per

day also o;hpossibility to compare impacts of chemicals in consumer products with other

C

types of i cts agsociated with e.g. air pollution, pesticides, nutrition, occupational exposure or

physical actfivi ards an exposome-based approach. The present study suggests that impacts due

S

to exposure of users to chemicals in household products are substantial, in the order of 100

U

UDALY/use rsonal care products to even a 1000 uDALY/user/d for some home maintenance

products. This Is in the same range as the main risks factors from the global burden of disease, such

£

as nutrition-related risks (e.g. 70 uDALY per serving of processed meat - Stylianou et al., 2016;

Stylianou eQal. ) or occupational risks (e.g. 200 to 1000 uDALY/user/d — Kijko, Margni, Partovi

a

Nia, & J , and substantially higher than the average impacts due to general population

exposu sticides residues estimated at between 0.01 and maximum 5 uDALY/user/d (Fantke,

M

Friedrich, & Jolliet, 2012). This emphasizes the importance to include the use of household consumer

[

products i uch as NHANES, in order to be able to perform epidemiological studies of the

impacts of 8ledients. It also calls for more scrutiny from a regulatory perspective, in order to

ensure the el of safety that has been implemented for limiting pesticide residues in

n

produc ning diazinon from residentially used products as discussed above), applying

|

systematically alternatives assessment approaches (Fantke and lliner, 2019; Tickner et al. 2019) to

substitute in priorify chemicals with highest potential impacts. Finally, at the user level, the

3

magnitude ntial impacts calls for the use of protective measures, such as the systematic

usage of glo n cleaning, the use of respiratory protective masks when using home

A
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maintenance products such as paint or paint strippers containing VOCs, and the reduction of the

applied quantities of chemicals as body lotions, by e.g. using more natural products such as coconut

oil for moi!ur' ing purposes.
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