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ABSTRACT 

The ubiquitous presence of more than 80,000 chemicals in thousands of consumer products used on 

a daily basis stresses the need for screening a broader set of chemicals than the traditional well-

studied suspect chemicals. This High Throughput Screening combines stochastic chemical-product 

usage with mass-balance based exposure models and toxicity data to prioritize risks associated with 

household products. We first characterize product usage using the stochastic SHEDS-HT model and 

chemical content in common household products from the CPDat database, the chemical amounts 
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applied daily varying over more than six orders of magnitude, from mg to kg. We then estimate 

multi-pathways near- and far-field exposures for 5500 chemical-product combinations, applying an 

extended USEtox model to calculate product intake fractions ranging from 0.001 to ~1, and exposure 

doses varying over more than 9 orders of magnitude. Combining exposure doses with chemical 

specific dose-responses and reference doses shows that risks can be substantial for multiple home 

maintenance products, such as paints or paint strippers, for some home-applied pesticides, leave-on 

personal care products, and cleaning products. 60% of the chemical-product combinations have 

hazard quotients exceeding 1 and 9% of the combinations have lifetime cancer risks exceeding 10-4. 

Population-level impacts of household products ingredients can be substantial, representing 5 to 

100 minutes of healthy life lost per day, with users' exposures up to 103 minutes. It demonstrates 

large variations of up to 10 orders of magnitude in impact between both chemicals and product 

combinations, consumer products being responsible for high exposure and risks for users and thus 

for the general population. It also shows that prioritization based on hazard only would neglect 

orders of magnitude variations in both product usage and exposure that need to be quantified. To 

address this issue, present mass-balance based models are already able to provide exposure 

estimates for both users and populations. This screening study shows large variations of up to 10 

orders of magnitude between both chemicals and product combinations, demonstrating that 

prioritization based on hazard only is not acceptable and that the USEtox suite of mass-balance 

based models are already able to provide exposure estimates for thousands of product-chemical 

combinations for both users and populations. The present study calls for more scrutiny of most 

impacting chemical-product combinations, fully ensuring from a regulatory perspective consumer 

product safety for high-end users, and using protective measures for users.  



 

 

 

This article is protected by copyright. All rights reserved. 

 

3 

KEYWORDS:  high throughput exposure and risk screening, chemical 

ingredients, household products 

1. INTRODUCTION 

Chemicals are ubiquitously present in thousands of consumer products used on a daily basis. 

It is estimated that approximately 30,000 to 80,000 different chemicals are commonly used, but 

good quality and regulatory toxicity data is only available for a few thousand chemicals, and the 

product- and user-specific nature of exposure makes that many decisions are often taken on hazard-

based data only (Greggs et al., 2019). Wambaugh et al. (2014) showed that chemicals found at the 

highest concentrations in serum and urine human biomonitoring data are associated with chemical 

usage in consumer products, whereas chemicals only used in industrial processes or active 

ingredients in pesticides are generally associated with lower exposure levels. This stresses the need 

for screening a broader set of chemicals than the traditional well-studied suspect chemicals, 

accounting for both exposure and hazard, and considering both chemical and product properties. 

Recent developments in the assessment of near-field exposures (i.e., exposure pathways in 

the vicinity of product use) (Jolliet, Ernstoff, Csiszar, & Fantke, 2015; Huang and Jolliet; 2016, Isaacs 

et al., 2014) have framed the field towards a consistent inclusion of near-field human health 

assessment that is product-chemical combination specific into high-throughput risk and impact 

assessment studies. Data are becoming increasingly available to assess chemical content in products 

( Phillips, Wambaugh, Grulke, Dionisio, & Isaacs, 2017; Dionisio, Phillips, Price, Biryol, & Isaacs, 2018; 

Isaacs, Phillips, Biryol, Dionisio, & Price, 2018), and stochastic methods have been developed to 

predict population product usage patterns for many product categories (Isaacs et al., 2014). These 

data and product usage methods have been used within a screening-level exposure model to inform 
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chemical prioritization (Isaacs et al., 2014), which had some limitations on the exposure side, 

including lower-tier conservative assumptions that do not account for the mass-balance nature of 

competing processes, such as volatilization and dermal uptake on skin surface. On the other hand, 

more elaborate, higher-tier mass-balance based models have been developed to estimate transport, 

fate, exposure associated with multiple chemical emissions and usage along the life cycles of 

products and services (Fantke, Ernstoff, Huang, Csiszar, & Jolliet, 2016; Fantke, Huang, Overcash, 

Griffing, & Jolliet, 2020; Csiszar, Ernstoff, Fantke, Meyer, & Jolliet, 2016) for high throughput 

screening of cosmetics) and have been consolidated within an extended USEtox near-field and far-

field model, but to date have incorporated relatively limited data on chemical and product usage. 

The present paper aims to combine stochastic estimates of chemical-product usage with 

product-chemical mass-balance based exposure models and toxicity data to inform High Throughput 

Screening (HTS) of chemical risks associated with commonly used household products. More 

specifically, we aim to a) characterize the product usage and chemical content in commonly used 

household products, b) estimate multi-pathways near- and far-field exposures for thousands of 

chemical-product combinations, and c) screen and prioritize risk and health impact to identify 

product and substances of concern, using the estimated exposures in concert with available toxicity 

data and high-throughput toxicity estimates. This work demonstrates the feasibility of combining 

HTS estimates for chemical usage, exposure models and toxicity to identify and prioritize chemicals 

of concern that require further scrutiny, as well as main product usage that might lead to substantial 

exposures and impacts. This approach could be used in the context of either receptor-oriented 

methods like screening-level Risk Assessment (RA) to assess the order of magnitude of risks for 

product users and general population, or of product-oriented methods, such as Life Cycle 

Assessment (LCA) and Chemical Alternatives Assessment to identify substances that matter most 

during the product use life cycle stage. 



 

 

 

This article is protected by copyright. All rights reserved. 

 

5 

2. METHODS 

2.1. Assessment framework 
High throughput quantitative exposure assessment is performed according to the Product 

Intake Fraction (PiF) framework (Jolliet et al., 2015; Fantke et al., 2016; Fantke, Huang et al. 2020) 

and its implementation within the USEtox model, successively determining the amount of chemical 

applied in product per user and per day, the corresponding exposure in mg/kg/d and the associated 

risks, hazard quotient or health impacts (Fig. 1). It aims to determine the incremental or marginal 

increase in exposure and risks due to the considered household products and therefore does not 

include background exposures from environmental emissions or other products. This overall 

assessment framework is in line with current recommendations for characterizing chemical-related 

toxicity impacts (Fantke et al., 2018), and is executed according to the following stepwise procedure:  

2.1.1. Chemical used in product 

We first quantify the chemical mass of each substance i (mi,p , kgchemical/pers/d) that is used 

daily by a user of a specific product p: 

    
       

            (1) 

where 

  
    (kgproduct/pers/d) is the daily amount of product used by a user of this product, 

estimated with the High-Throughput Stochastic Human Exposure and Dose Simulation model 

(SHEDS-HT, Isaacs et al, 2014) and wfi,p, (in kgchemical/kgproduct) is the content of chemical i in product p 

taken from the U.S. Environmental Protection Agency’s (EPA) Chemicals and Products Database 

(CPDat, Dionisio et al., 2018), 
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Chemicals in product applied enter a defined compartment of entry, i.e. the compartment 

into which or within which a chemical is first applied or used within the considered product (e.g. 

‘skin surface’ for an ingredient in personal care products). The mass used is calculated both for one 

person using the product (         
    ), and for the average population, accounting for the SHEDS-

HT predicted fraction of the population using this product per day (    
           

     
     

  
        ⁄      

       
    ).  
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Fig. 1. Schematic description of the assessment framework and impact pathways, from mass 

in product to risk and impacts, illustrated with the example of ethylbenzene in paint. 

2.1.2. User and population exposure 

Second, the framework captures the multi-pathway transport and fate processes transferring 

chemicals among compartments in the near- and far-field environments, until finally reaching 

humans. Multimedia transfers are structured in a matrix of direct inter-compartmental transfer 

fractions (Fantke et al., 2016). By matrix inversion, we quantify cumulative multimedia transfer 

fractions and exposure route-specific (x: inhalation, ingestion, dermal)  product intake fractions 

defined as chemical mass taken in                 via multiple exposure pathways e (e.g. dust 

ingestion, dermal contact) by exposed humans h per unit mass of chemical in a product (Jolliet et al., 

2015):            ∑                
    ⁄ . Combining product intake fractions with chemical mass in the 

product, multiplying by a factor 1,000,000 kg_to_ mg conversion factor and dividing by the number 

of exposed humans in the considered subpopulation (Nh, persons) of users, non-user household 

members, or general population, and an average human body weight (BWh, kgBW/person) yields 

intake doses for exposure route x (        , mg/kgBW/d) as exposure estimates: 

          
    

                        

      
  (2) 

2.1.3. Risk characterization 

The third step is to assess and compare the risks and impacts associated with each of the chemical-

product combinations, combining exposure doses with toxicity data. First, carcinogenic risks (    , in 

probability of cancer for a lifetime exposure of user h by route x) are calculated by multiplying the 

dose by a route-specific cancer slope factor (CSFi,x, in incidence/(mg/kgBW/d), taken from the 

Carcinogenic Potency Database, see Eq. 5 below): 
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        ∑                  (3) 

This risk probability can then be compared to the acceptable lifetime cancer risk limit of 10-4 

to 10-6 for the general population depending on the jurisdiction.  Non-carcinogenic risks are 

characterized by comparing the dose with a reference dose (      , mg/kgBW/d, from Wignall et al., 

2018) and calculating the dimensionless cumulative hazard quotient as: 

        ∑               ⁄   (4) 

The cumulative hazard quotient should not be interpreted as a risk, but an HQ>1 (exposure 

dose higher than reference dose) may indicate potentially harmful chemicals that require further 

scrutiny.  

2.1.4. Impact characterization 

In addition to the risk screening, we also calculate comparative impact scores for both 

cancer and non-cancer toxicity impacts, according to latest LCA approaches, i.e multiplying the 

inventory flows by the substance intake fraction (fate and exposure factor in kgintake/kgemitted), the 

USEtox dose-response factors (DRFs, incidence/kgintake) and severity factors (SF, DALY/incidence). For 

the specific case of chemicals in consumer products, the cumulative impacts resulting from a daily 

usage of a mass of chemical in product (mi,p, kg/person/d) and (     , DALY/person/d for both cancer 

or non cancer effect e) via exposure route x is given by (Jolliet et al., 2015): 

           
     ∑ (                       )      (5) 

Where the sum on h is calculated considering the direct adult (or child) product user exposed, the 

other adult(s) and child in the household, composed by default of 2 adults and one child, as well as 

the general exposed background human population.  
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Risk and impacts are first determined for the product user and then extrapolated to an average risk 

or impact for the entire population accounting for the fraction of the population using this product. 

This impact-oriented representation enables us to analyze results either from a product perspective, 

summing up impacts for all chemicals in a given product, or from a substance perspective, summing 

up impacts for all products containing a given chemical. The next sections detail the data and models 

used for each of these three main steps. 

 

2.2. Chemical used in product - the SHEDS-HT model 
For determining daily chemical usage by product user and for the general population, we used the 

SHEDS-HT model (Isaacs et al., 2014), an integrated probabilistic exposure model for prioritizing 

exposures to chemicals. The model is run for 1777 unique chemicals in 289 individual product 

categories, including arts and crafts, auto, cleaning, home maintenance, home office, lawn and yard, 

personal care, pet, and home pesticide products; this results in 9700 product-chemical 

combinations. The SHEDS-HT input data include empirical chemical weight fraction distributions 

developed from EPA’s CPDat database (Dionisio et al., 2018) and use variables for individual product 

categories (e.g., population prevalence, frequency of use, mass per use) developed from a review of 

existing data sources or assumed where necessary (Isaacs et al., 2014; Isaacs, 2019). A population of 

25,000 individuals is simulated; distributions and means of the mass of product and mass of 

chemical used per day per person are obtained a) per user for product users only and b) per person 

for the entire population of simulated individuals, accounting for the SHEDS-HT predicted fraction of 

the population using this product per day. 
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User and population exposure 
To estimate product intake fractions, we build on the USEtox mass-balance based model 

(Rosenbaum et al., 2008) and extend it to the near-field environment to create an extended version 

of the USEtox compartment system that includes exposure to chemicals in consumer products. We 

first populate a multimedia transfer matrix T (nxn) with direct inter-compartmental transfer fractions 

from each column to each row. The first column of direct transfer fractions characterizes transfers 

from the product compartment of entry into the near-field environment (e.g. an ‘object surface’ for 

cleaning products) to the neighboring compartments (e.g. to indoor air via volatilization, and to 

human epidermis via direct dermal contact between the user and the object surface) using the near-

field models described in Table I. The other columns of the transfer matrix contain the direct transfer 

fractions from 17 compartments to their neighboring environmental compartments and to an 

additional 28 human exposure compartments. The environmental compartments include near-

person air (a one m3 compartment to receive the fraction volatilized in direct proximity of the user), 

indoor air (for volatilization to the rest of the user household air), as well as the already existing 11 

USEtox outdoor environmental compartments of urban, continental and global air, continental and 

global freshwater, continental coastal marine water and global deep ocean, and continental and 

global agricultural and natural soils. For these compartments, direct transfers are calculated as the 

ratio of the inter-compartment transfer rate constant divided by the total removal rate constant of 

the respective column compartment. The human compartments correspond to a combination of 

intake compartments and exposure pathways (respiratory tract for inhalation, gastrointestinal tract 

for ingestion of food and drinking water, and for dust ingestion via hand to mouth, epidermis for 

gaseous and direct dermal exposure), for four subpopulations, namely one adult user, a second non-

user adult, one child (optionally being a user) in the user household, and the general population of 1 

billion people (with 10 intake compartments/exposure pathways differentiated). 
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 As demonstrated by Fantke et al. (2016), the compartments are then combined and the cumulative 

transfers accounting for all subsequent higher order transfers obtained by inverting the difference 

between the identity matrix I (with ones in the main diagonal and zeroes elsewhere) and T, yielding 

the cumulative transfers matrix            . The first column of matrix Tcum provides the 

cumulative chemical transfer fractions from the product to both the other indoor and outdoor 

compartments and to the different human compartments. The cumulative transfers to these human 

compartments directly correspond to the product intake fractions associated with different 

exposure pathways. 

An example of matrices T and Tcum is presented for our example chemical-product combination – 

ethylbenzene in paint - in the SI2 tab of the supplementary information SI. In the first matrix, the 

first column indicates that 20% of ethylbenzene entering the household environment as a thin 

coating is volatilized in the near-person compartment during the painting process, that 0.18% is 

transferred to the user epidermis during painting and that the remaining 79.82% are volatilized to 

the rest of the indoor air over the 15 years defined exposure period. The near-person air column 

indicates that 99.77% of the chemical is transferred to the rest of the household, whereas 0.33% is 

inhaled by the user.  The first column of the second, cumulative transfer matrix indicates that 0.42% 

of the applied ethylbenzene is inhaled by the user (thus a PiF of 0.0042), another 0.35% are inhaled 

by the second household adult and 0.20% by the household child, whereas a negligible fraction of 

only 0.0011% is inhaled by the one billion persons of the continent’s general population. 

The direct transfer fractions from the compartment of entry to other various near-field 

environmental compartments, to the USEtox far-field environmental compartments and to the three 

human receptor compartments (respiratory tract, gastro-intestinal tract, and epidermis, 

corresponding to the three exposure routes) are calculated using a series of complementary 
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underlying models. Depending on the product application and the compartment of entry in the near-

field environment, four main models are included into our framework for calculating direct transfer 

fractions, namely ‘Direct emission’, ‘Article interior’, ‘Skin surface layer’, and ‘Object surface’. Table I 

summarizes the direct transfer fractions that are determined by each model and the respective 

exposure pathways. Each of these models is then parametrized adapting required model parameters 

(such as thickness of applied chemical on skin, surface applied, number of adult and children 

exposed, and adult and child specific exposure factors e.g. for hand-to-mouth dust ingestion) to the 

SHEDS-HT product category  The underlying models required chemical property estimates, which are 

obtained from EPA’s OPEn structure-activity Relationship App (OPERA) quantitative structure-activity 

relationship (QSAR) models (Mansouri, Grulke, Judson, & Williams, 2018). The availability of 

chemical properties restricts results to 5500 of the 9700 chemical-product combinations. The 

Supplementary Information provides the list of the 5500 product-chemical combinations 

characterized, together with their usage characteristics and the main resulting exposures, risks and 

impacts. 

Table I. Selected underlying USEtox near-field exposure models with main direct transfer fractions 

from compartment of entry, exposure pathways, model mechanisms, key parameters, and example 

products covered to determine Product Intake Fractions. 

Model Compartment 

of entry and 

main transfers 

and 

compartments 

considered 

Direct 

exposure 

pathways 

Model mechanism Key parameters Product 

example 

Direct 

emission 

(based 

on 

Emissions to 

near-person, 

indoor, urban 

or continental 

Inhalation 

and gaseous 

dermal 

uptake, 

Direct transfer fraction 

is the chemical mass 

emitted to a certain 

compartment divided by 

Half-lives and 

residence time in 

each 

environmental 

All chemical 

emissions to 

indoor and 

outdoor 
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Model Compartment 

of entry and 

main transfers 

and 

compartments 

considered 

Direct 

exposure 

pathways 

Model mechanism Key parameters Product 

example 

USEtox 

2.2) 

air, to surface 

water, 

agricultural and 

natural soil, 

WWTP1 and 

STP2 

ingestion 

pathways via 

drinking 

water, above 

ground 

produce, 

below 

ground 

produce, 

meat, milk 

and dairy 

products, 

and fish 

the original mass in 

product and is 

calculated as the ratio of 

transfer rate constant to 

total removal rate, using 

the USEtox rate 

constant K matrix 

(Rosenbaum et al., 

2008; Henderson et al., 

2011) 

compartment. 

Bioaccumulation 

factors 

environmental 

compartments 

Article 

interior 

 

Transfers from 

chemicals in 

article interior 

to near-person 

air or indoor 

air, to human 

epidermis via 

dermal contact, 

to human GI 

tract via dust 

ingestion and to 

STP2 at its end-

of-life. 

Dermal 

contact with 

article 

surface, dust 

ingestion in 

addition to 

inhalation 

and gaseous 

dermal 

uptake 

Diffusion-limited (for 

e.g. VOCs) or partition-

limited model (for e.g. 

SVOCs) for the transfer 

from article interior to 

indoor air. The 

diffusion-limited model 

accounts for the 

chemical’s internal 

diffusion inside the 

article via Fick’s 2nd 

Law, but does not need 

to account for the 

restricted long-term 

chemical’s sorption on 

other indoor surfaces, 

yielding a two 

exponential model 

applicable to most VOCs 

(Huang & Jolliet, 2016). 

The partition-limited 

Diffusion 

coefficient inside 

the article Dm, 

solid material-air 

partition 

coefficient Kma, 

material-water 

partition 

coefficient Kmw, 

which are 

predicted by 

Huang, Fantke, 

Ernstoff, and 

Jolliet (2017), 

Huang and Jolliet 

(2019a), Huang 

and Jolliet 

(2019b), 

respectively. 

Chemicals 

encapsulated 

in article 

interior (e.g., 

building 

materials, 

furniture, toys, 

or arts and 

crafts) 
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Model Compartment 

of entry and 

main transfers 

and 

compartments 

considered 

Direct 

exposure 

pathways 

Model mechanism Key parameters Product 

example 

model accounts for 

indoor sorption, but 

assumes the chemical is 

always evenly 

distributed inside the 

article since surface 

partitioning is limiting. 

The air is assumed in 

quasi steady state with 

the different surfaces. 

This yields a 

parsimonious two-

compartment mass-

balance model for 

article and indoor 

surfaces applicable to 

most SVOCs, solved into 

a two exponential 

explicit equation using 

eigenvalues and 

eigenvectors 

Skin-

surface 

layer 

 

Transfer from 

skin surface 

layer to near-

person air, to 

human 

epidermis, and 

to WWTP1 

Direct dermal 

aqueous 

uptake in 

addition to 

inhalation 

and gaseous 

dermal 

uptake 

The model uses a three-

compartment mass 

balance, whose 

compartments include 

skin, indoor air, and the 

product applied on the 

skin. The model 

assumes that 

volatilization and skin 

permeation are two 

competing loss 

processes for chemicals 

in the product applied 

Skin permeation 

coefficient via 

aqueous solution 

Kp_aq, total 

gaseous-skin 

permeation 

coefficient 

Kp_gas_total, which 

are calculated by 

the methods used 

by ten Berge 

(2009) as applied 

by Csiszar et al. 

Personal care 

products, hand 

dishwashing 
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Model Compartment 

of entry and 

main transfers 

and 

compartments 

considered 

Direct 

exposure 

pathways 

Model mechanism Key parameters Product 

example 

on skin. (Ernstoff et al., 

2016, Csiszar, Ernstoff, 

Fantke, & Jolliet, 2017). 

The fraction remaining 

on the skin at the end of 

the exposure period is 

washed-off to Waste 

Water Treatment Plant  

(2017). 

Object 

surface 

 

Transfer from 

object surface 

to near-person 

air, and indoor 

air, to human 

epidermis and 

to WWTP1 

Dermal 

contact in 

addition to 

inhalation 

and gaseous 

dermal 

uptake 

The model is a 

simplified version of the 

model from Earnest and 

Corsi (2013), as 

developed by  Wang, 

Huang, Nguyen, and 

Jolliet (2016), which 

uses a four-

compartment mass 

balance, whose 

compartments include 

near-person surface, 

near-person air, far-

person surface and far-

person air. In this 

model, a transfer rate 

constant between near-

person surface and the 

rest of the surface (far-

person surface) is used 

to simulate the 

movement of the 

person when cleaning 

surfaces 

Air-water partition 

coefficient Kaw, 

taken from the 

OPERA QSARs 

(Mansouri et al., 

2018). 

Surface 

cleaner 

detergents 
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1Wastewater treatment plant, 2Solid waste treatment plant such as landfill or incinerator, 3Semi-

volatile organic compounds. 

Toxicity data, risk characterization and impacts 
2.4.1 Cancer slope factor 

For cancer risks, cancer slope factors are calculated based on the Carcinogenic Potency 

Database (CPDB: https://toxnet.nlm.nih.gov/cpdb/) and its implementation for Life Cycle 

Assessment in USEtox (Rosenbaum et al., 2011), starting from the lowest (across animal species - 

after correction by the extrapolation factor for interspecies differences) harmonic mean of 

tumorigenic doses generating an additional risk of 50% over background in a chronic lifetime cancer 

test  (           mg/kgBW/d): 

        
         

         
, in 1/(mg/kg/d)  (6) 

where fa (dimensionless) is the extrapolation factor for interspecies differences between 

animal species a and humans (Rosenbaum et al., 2011, Table S3), and ft (dimensionless) is the 

extrapolation factor for differences in time of exposure, i.e. a factor of 2 for subchronic to chronic 

exposure and a factor of 5 for subacute to chronic exposure (Huijbregts, Rombouts, Ragas, & Van de 

Meent, 2005). Route specific harmonic means are determined separately when available for both 

ingestion and inhalation. In case no data are available for a specific exposure route, a route-to-route 

extrapolation is carried out, assuming equal slope factor between inhalation and ingestion route, 

and between dermal and ingestion route. Rosenbaum et al. (2011, SI section S3.2) indicates that 

cancer slope factors by inhalation might be underestimated, when a) the primary target site is 

specifically related to the route of entry (case of formaldehyde linked to nasal cancer) and b) when 

the expected fraction absorbed via inhalation is expected to be much higher than the fraction 

absorbed via ingestion with octanol-water partition coefficients Kow smaller than 2.5 10-2 or Kow 

larger than 1010. The slope factors for acrylonitrile, arsenic, benzene, benzidine, beryllium, 1,3-
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butadiene, cadmium, chromium VI and nickel by inhalation are directly taken from the human based 

data available via the IRIS database (http://www.epa.gov/iris/).  

2.4.2. Reference doses 

For non-cancer risk characterization, for ingestion, Reference Doses (RfD) are determined 

starting from a point of departure and dividing them by the product of three uncertainty factors for 

animal to human extrapolation, inter-individual variability and uncertainty:       
    

∏     
. For 

calculating the RfDs, the points of departure are in general NOAEL or LOAEL taken from IRIS or other 

regulatory oriented databases, retaining the RfDs used as training set by Wignall et al. (2018, 

collected from IRIS, Office of Pesticide Programs (OPP), Superfund Regional Screening Level Tables 

(RSLs)], California EPA, Agency for Toxic Substances and Disease Registry (ATSDR) toxicological 

profiles, U.S. EPA Provisional Peer Reviewed Toxicity Values (PPRTV), U.S EPA Health Effects 

Assessment Summary Tables (HEAST)). When not available, we use the in silico conditional toxicity 

value (CTV) predictors from Wignall et al. (2018) to predict quantitative estimates of ingestion RfDs 

(also used by default for dermal uptake) and inhalation Reference Concentrations (RfCs). Inhalation 

RfDs are then derived from multiplying RfCs by by an average breathing rate of 16 m3/person/d for a 

middle age adult (USEPA, 2011) and dividing by a standard human adult body weight of 70 

kg/person. Predicted RfDs are only retained if they are within the QSAR model applicability domain 

(Wignall's quality indicator lower than or equal to 3, as reported in the supplementary information). 

, that is for 344 chemicals representing 2,888 chemical-product combinations for inhalation-based 

RfDs and for 477 chemicals representing 3,495 chemical-product combinations for ingestion RfDs. 

 

 

http://www.epa.gov/iris/
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2.4.3. Dose-response and severity factors 

For determining carcinogenic impacts, the DRFs are taken from the USEtox database as described by 

Rosenbaum et al. (2011):               
             

                         
, where BW is the average body 

weight of human adults, LT is the average lifetime of humans (70 years), Nd is the number of days 

per year (365.25 d/year). An average cancer severity factor of 11.5 DALY/incidence (Huijbregst et al., 

2005) is taken as average over various cancer types. 

For non-cancer impacts, DRFs are also taken from the USEtox database as described by 

Rosenbaum et al.,(2011):                    
             

                             
 where           is the toxic 

dose extrapolated either from NOAEL                               or from LOAEL 

                               . An average non-cancer severity factor of 2.7 

DALY/incidence (Huijbregst et al., 2005) is taken as average over various non-cancer effects. Since 

there is 31.5 million seconds in a year, a µDALY could be interpreted as 31.5 second or 0.53 minutes 

of healthy life lost per day. 

3. RESULTS AND DISCUSSION 

3.1. Chemical and product usage 
From SHEDS-HT, the mean total amount of chemical used per day per person is calculated as 

the multiplication of three model output statistics: the mean amount of product used per day by a 

user, the mean chemical content or weight fraction in  products used, and the fraction of the 

population using this product for calculating an average daily chemical usage at population level. 

Taking the example of ethylbenzene used in paint (Fig. 1), a user will apply 2.15 kgpaint/user/d, which 

contains an average value of 0.042 kgethylbenzene/ kgpaint, thus an application of 0.095 kgethylbenzene in 

paint/user/d. Considering that on a given day only 77 person out of 25,000 are using this product, this 
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corresponds to a population average chemical application of 0.00029 kgethylbenzene in paint/person/d. Fig. 

2a shows the fraction of users, i.e fraction of the population, using a given product-chemical 

combination per day. It varies from close to 1 (almost everybody uses it on a daily basis) for several 

cosmetics and cleaning products, down to 1 user out of 25,000 for some home maintenance 

products that tend to be used by a smaller fraction of the population compared to other products. 

The following sections first focus on the user and the other members of the household in which the 

product is used, to characterize risks associated with individual product-chemical usage. Average 

population applications are considered in a second stage to provide insights on the magnitude of the 

population-level burden of disease.     

a) Fraction of product-chemical users in overall population 

 

b) Chemical usage per user per day 

 

c) Product intake Fraction (PiF) 

 

d) User exposure doses  
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e) Toxicity-related health impact per user per day 

 

Fig. 2. Fraction of users (a), chemical and product usage (b), product intake fractions (c), exposure 

doses (d), and health impacts (e) on the product user, for multiple product-chemicals combinations 

of the 23 chemicals generating the highest cumulative impacts at population level. 

 

Fig. 2b illustrates the variability in chemical usage across users. The amount of chemical used 

per user per day for a given product-chemical application varies by more than six orders of 

magnitude, from mg to kg; across all applications, where the highest quantities used per user are for 

home maintenance products. 

 

3.2. Product intake fraction and user exposures 
Product intake fractions and exposures were characterized for 846 chemicals in 270 unique 

products, for a total of 5465 product-chemical combinations. 

3.2.1. Product Intake Fractions (PiFs) 

Applying the USEtox-compatible PiF exposure modeling framework for each of the product-chemical 

combination yields the Product Intake Fraction (PiF). In the case of ethylbenzene in paint, the 
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inhalation PiF for the adult user amounts to 0.0042 kgintake/kgethylbenzene in paint. This means that for 1 g 

of ethylbenzene used in product, 4.2 mg is taken in by the user. The dermal PiF for the user is twice 

lower than for inhalation, at 0.0018 kgintake/kgethylbenzene in paint. In addition, the inhalation PiF for the 

second adult ad the child in the household are still slightly lower than for the user but still 

substantial with values of 0.0035 and 0.0020 respectively. In contrast, the inhalation PiF for the 

general population is restricted to 1.1∙10-5 for a billion exposed people. Fig. 2c shows that user PiFs 

typically vary by a factor of 1000 between the various products considered, ranging from 1/1000 for 

inhalation exposure to ingredients of many home maintenance products such as paint or paint 

stripper, up to close to 1 for dermal exposure to ingredients of leave-on personal care products such 

as body or face lotion. Population exposure outside of the household remains minimal, on the order 

of 1 ppm to 10 ppm. 

3.2.2. User exposure doses 

User exposure doses for each exposure route are obtained by combining the chemical mass in the 

product with the product intake fractions. Multiplying the amount of chemical used per day of 0.095 

kgethylbenzene in paint/user/d by the inhalation PiF for the adult user of 0.0042 kginhaled/kgethylbenzene in paint 

and dividing by 70 kgBW, we obtain for ethylbenzene a daily inhalation dose of 5.7 mg/kgBW/d for the 

adult user, plus a dermal exposure of 2.4 mg/kgBW/d. This is slightly higher than the exposure of the 

second adult non-user household member (4.8 mg/kgBW/d) and lower than the per kg body dose for 

the child in the household (13.5 mg/kgBW/d), but much higher than the daily exposure dose for the 

background population, which amounts to 1.4∙10-11 mg/kg/d, due to the low PiF and high number of 

exposed adult in the background population. Fig. 2d shows that depending on the considered 

product-chemical combination, exposure doses vary by more than 5 orders of magnitude, from 

0.001 to a thousand mg/kg/d for a user using the product, with especially high doses when applying 
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home maintenance products the entire working day. The contribution of each exposure route and 

sub-population is further detailed for each of the 5500 chemical-product combinations in the SI1 tab 

of the supplementary information file. 

3.3 Risk characterization 
3.3.1 Risk characterization for users  

Risks were characterized for 665 chemicals in 228 unique products, for a total of 4229 product-

chemical combinations (Fig. 3). Predicted RfDs within the QSAR model applicability domain were 

used for 344 chemicals representing 2,888 chemical-product combinations for inhalation-based RfDs 

and for 477 chemicals representing 3,495 chemical-product combinations for ingestion RfDs. For the 

non-cancer characterization of the illustrative example of ethylbenzene in paint (Fig. 1), the user 

dose of 5.7 mg/kg/d is divided by a Reference Dose of 0.23 mg/kg/d (derived from a Reference 

Concentration of 1 mg/m3), yielding a Hazard Quotient of 25 for inhalation. Fig. 3 presents the non-

cancer hazard quotients in diagonal line, expressed as the ratio of the same exposure doses on the x-

axis and the reference doses on the y-axis (reverse values). This prioritization exercise also identifies 

multiple combinations with hazard quotients substantially higher than 1: for inhalation (Fig. 3a), the 

highest exposures and hazard quotients are observed for ingredients of home maintenance 

products, the product-chemical combinations with highest hazard quotient deserving further 

scrutiny in priority. The ingestion reference doses tend to be higher than the inhalation one for the 

majority of the considered chemicals (Fig. 3b, inversed value on the y-axis). Two product categories 

lead to the highest user HQ: the ingredients of home maintenance products with low ingestion RfDs, 

and the ingredients of specific personal care products, such as body lotions, that have lower RfDs but 

are taken in dermally at higher doses. Overall 60% and 12% of the chemical-product combinations 

have hazard quotients exceeding 1 and 100, respectively, up to more than 104.  
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Fig. 3. Hazard quotient (HQ) represented as diagonal lines determined as the product of exposure 

dose for (a) inhalation, and (b) the sum of ingestion and dermal exposure of the adult user on the x-

axis, multiplied by the inverse of reference doses (reversed values on the y-axis), for multiple 

product-chemical combinations. 

 

For cancer, taking the example of ethylbenzene (Fig. 1), the user dose of 5.7 mg/kg/d is multiplied by 

a cancer slope factor of 4.210-2 [1/(mg/kg/d)] to yield a high cancer risk over lifetime of 2.410-1, 

substantially higher than the commonly acceptable range at population level of 10-6 to 10-4. Fig. 4a 

presents the resulting estimates of carcinogenic risks for a lifetime use of each product-chemical 

combination. Risks are shown as diagonal lines, representing for each considered product-chemical 

combination the cancer slope factors as a function of the corresponding exposure doses. This 

screening shows that for multiple products, continuous exposures to these chemicals in products 

can potentially yield high cancer risks for the user, exceeding 10-2 over lifetime, especially for 

inhalation and dermal exposures of ingredients in home maintenance and personal care products. 

Substances with the highest cancer slope factor of 1.5 to 4 [1/(mg/kg/d)] are chrysene, 

formaldehyde, and 3,3'-Dimethylbenzidine dihydrochloride. They can lead to substantial lifetime 
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risks for both inhalation and ingestion up to or higher than 10-2 when used on a regular basis. But 

substances such as triethanolamine (CSF=4.2∙10-2) or dichloromethane (CSF=3.8∙10-2) with two to 

three orders of magnitude lower CSF can lead to similar risks due to two to three orders of 

magnitude higher exposure doses. 

This high-throughput screening analysis indicates that exposure to chemicals in products might lead 

to high exposure for regular product users for multiple product-chemical combinations and enable 

us to identify chemical combinations inducing substantial risks and that deserve further scrutiny. At 

the same time, absolute user risks must be taken with care, since for chemicals with low usage at 

population level, it is unlikely that these products will be used on a daily basis over lifetime, apart 

from professional usage of e.g. paint strippers.  Also, most dermal effect data are extrapolated from 

ingestion toxicity data and might overestimate real risks. Overall 14% and 9% of all the chemical-

product combinations have user lifetime cancer risks exceeding 10-6 and 10-4 respectively (up to 10-

1), but these proportions increase substantially to 94% and 60% when only considering the chemicals 

with available cancer data.  

 

 

Fig. 4. User lifetime cancer risks due to chemical exposures represented as diagonal lines (equi-

cancer risks of 10-2 to 10-6), determined as the product of exposure dose for inhalation (a), and the 
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sum of ingestion and dermal exposure (b) of the adult user on the x-axis, multiplied by the Cancer 

Slope Factor on the y-axis.  

 

3.3.2 Cancer risk characterization at population level 

Considering that only 77 persons are using ethylbenzene in paint out of the total considered 

population of 25,000, cancer risks are reduced at population level, in the order of 10-4, which is still a 

relevant risk for an entire population. Since there are large variations in product usage and 

penetration in the population (Fig. 2), Fig. 5 analyses how the user cancer risks translate at 

population level as a function of the fraction of population using this products. It shows that the 

highest population risks are found for chemical usage in broadly used leave-on personal care 

products and in a lesser extent in cleaning products, due to the combination of intermediate 

chemical usage, high PiFs, and broad usage of these products in the population (right upper corner 

of Fig. 5, see list in Supplementary Information, column AZ). The highest individual risks to the user 

tend to correspond to rarer product usages, that show lower risks at population level (left upper 

corner of Fig. 5).  
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Fig. 5. Population cancer risks (based on user exposure) represented as diagonal lines (equi-cancer 

risks of 10-2 to 10-6), determined as the product of fraction of population using the product-chemical 

combination, multiplied by the user cancer risk associated with chemicals in household products. 

3.3 Impact characterization by product 
Impacts were estimated for 129 chemicals in 233 unique product, for a total of 1148 product-

chemical combinations. 

3.3.1. Impacts on users 

Since exposure duration of users is not very well defined over lifetime, the impact-oriented 

approach of Eq. 5 might be more adapted to look at impacts of single daily usage, enabling a first 

comparison between cancer and non-cancer impacts. For ethylbenzene, the inhalation dose of 5.7 

mg/kg/d is multiplied by a dose-response factor of 0.024 cancer incidence/kgintake, an standard 

human body weight of 70 kg and an average cancer severity factor of 11.5 DALY/incidence (Fig. 1) to 

yield a daily carcinogenic impact by inhalation of 107.5 µDALY/user/d, whereas the dermal intake 

amounts only to 0.5 µDALY/user/d due to a two orders of magnitude lower dose-response factor of 

2.6 10-4. The corresponding non-cancer impact amounts to 6.9 µDALY/user/d, yielding an overall 

user impact of 115 µDALY/user/d or 60 minutes of healthy life lost per day, and an average 

population impact of 0.35 µDALY/person/d for the main user, plus another 0.35 µDALY/person/d 

associated with the other adults and the child of the household assumed to be present in the home 

during painting.  

Fig. 2e shows the product-chemical combination for the 23 chemicals with highest impacts, 

expressing the impacts in µDALY/user/d and selecting combinations with impacts higher than 0.1 

µDALY/user/d. First, for a given chemical, impacts vary by more than three orders of magnitude 

depending on the product usage, emphasizing the importance to look at both chemical and product 
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usage and properties. Second, while some of the usual suspect chemicals, such as formaldehyde, 

1,4-dichlorobenzene, ethylbenzene and toluene, were expected among the highest impacting 

chemical-product combinations, this high-throughput screening suggests that other broadly used 

chemicals, such as triethanolamine, hydroquinone or D-limonene, could lead to substantial risks at 

user level and need further scrutiny. Third, though high-throughput screening tools are primarily 

designed for relative comparisons, analyzing the order of magnitude of the impacts is nevertheless 

of interest. Impacts of chemical-product combinations range here from 0.1 up to 100 µDALY/user/d 

or 50 minutes of healthy life potentially lost per user per day. This is in the same order of magnitude 

as other risk factors included in the global burden of disease study series, such as nutrition-related 

risks (e.g. 35 minutes of life lost per serving of processed meat - Stylianou et al., 2016; Stylianou, 

Fulgoni III, & Jolliet, 2020). 

Fig. 6a presents the impacts associated with the different ingredients of the 20 household products 

with the highest impacts on users. The products with the highest user impacts are home 

maintenance products such as adhesive remover, paint stripper, concrete cleaner and home applied 

pesticides, with substantial impacts of the order of magnitude of 1000 µDALY/user/d or 500 minutes 

of healthy life lost per day. This emphasizes the importance of using protective equipment for such 

home maintenance tasks to limit impacts. Personal care products and cleaning products are also 

found among the 23 most impacting chemicals on users, but rather in the order of a 100 

µDALY/user/d or 50 minutes of healthy life lost per day. 14 main contributing chemicals are found in 

Fig. 6a and would deserve further investigation beyond the present screening, including 

tetrachloroethylene, dichloromethane, furfuryl alcohol, D-limonene, formaldehyde, butyl benzyl 

phthalate for home maintenance products, as well as diazinon and 1,4 dichlorobenzene for use of 

pesticides at home. Diazinon has been one of the most widely used insecticides in the U.S. for 
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household but was phased out for residential use in early 2000 and would rather represent usage of 

products kept over long period on consumers' shelves.  

 

3.3.2. Health impacts at population level 

Since the fraction of the population using each product vary widely depending on each household 

product and product category, we also study the products and chemicals contributing most to the 

population burden of disease. Multiplying impact per user per day by the fraction of the population 

using the product-chemical combination and summing up over all ingredients of a product yields the 

cumulative impacts at population level associated with the consumer use of that product (Fig. 6b).  

In this screening assessment, products with the highest population burden of disease are primarily 

personal care products, and in particular body lotions and creams, due to the combination of high 

fraction of users in the population and high quantities of product applied directly on the skin. Home 

maintenance products and pesticides are also found among the 20 most impacting chemicals at 

population level, but with reduced impacts compared to user impacts due to their lower usage at 

population level. The chemicals that deserve further investigations include hydroquinone, 

triethanolamine as well the ingredients identified above for the user impacts of home maintenance 

products and home applied pesticides. 
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a) 

 

b) 

 

Fig. 6. Cumulative impacts on human health associated with chemicals in household products, 

differentiated by main contributing chemicals of the 20 household products with highest impacts for 

a) product user impacts and b) average population impacts accounting for the fraction of users in the 

population. Note the change in scale between the first five products and the others.  

 



 

 

 

This article is protected by copyright. All rights reserved. 

 

30 

4. CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS 

This high-throughput screening of risks and impacts associated with chemicals in consumer products 

enables the identification of the chemical-product combinations with highest impacts to be further 

scrutinized in priority. It demonstrates large variations of up to 10 orders of magnitude in impact 

between both chemicals and product combinations, consumer products being responsible for high 

exposure and risks for users and thus for the general population. It also shows that prioritization 

based on hazard only would neglect orders of magnitude variations in both product usage and 

exposure that need to be quantified. To address this issue, present mass-balance based models are 

already able to provide exposure estimates for both users and populations. 

 

Results show that both individual and population exposures need to be considered when prioritizing 

chemicals. Prioritization mostly based on biomarker levels in the population (Wambaugh et al., 2014, 

Ring et al., 2019) might neglect substantial exposures of individuals using certain products that are 

only used by a small fraction of the population, which are unlikely to show up as being important 

when sampling the general population.  

 

The present screening shows substantial risks and impacts for household users of several home 

maintenance, personal care and cleaning products, whose exposure to their ingredients might 

exceed reference regulatory doses by several orders of magnitude. This is primarily related to the 

high intake doses experienced by users exposed to chemicals in consumer products rather than to 

toxicity level per unit dose: The median intrinsic toxicity of compounds in the considered household 
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products being a factor 3 to 10 lower than the median of USEtox chemicals, and the most toxic being 

a factor 10000 less toxic than 2,3,7,8 tetrachlorodibenzodioxin (TCDD). 

 

The scope of the present assessment is limited to screening and prioritization purposes and 

therefore suffers several limitations. First, the present study focuses on the incremental or marginal 

increase in exposure due to the considered household products and does not include background 

exposures neither from environmental emissions, nor from other products (building products, food 

contact materials, articles, textiles, etc.), which could increase the absolute carcinogenic risks or 

non-carcinogenic hazard quotients. Second, for fate and exposure, the models are only presently 

applicable to organic substances, and their validity for polar or ionizable chemicals needs to be 

further investigated, along with developing methods for addressing inorganic chemicals, which 

cannot currently be characterized (Kirchhübel and Fantke, 2019). The present paper focused on 

adult exposure, children being only considered for background exposures, with specific exposure 

parameters for contact to articles and building materials (Fantke et al., 2016). We however 

acknowledge the need to carry out dedicated studies on children exposure to chemicals in various 

children products, such as carried out by Aurisano, Huang, Mila I Canals, Jolliet, and Fantke (2020) 

for toys, which follow the same exposure framework as proposed in the present study. Further 

research is also needed to improve the quantitative estimates for several exposure pathways, in 

particular for child mouthing, dermal contact and gaseous dermal exposures to chemicals in 

consumer products. Third, for more than half of the chemicals, human toxicological data were not 

available or estimates were outside of the QSARs’ applicability domain. These require additional 

research efforts as risk related to these chemicals is currently underestimated. The uncertainty on 

the toxicity QSAR is high, with mean value prediction absolute error of 1 order of magnitude for 



 

 

 

This article is protected by copyright. All rights reserved. 

 

32 

ingestions RfDs, and 1.5 orders of magnitude for RfCs (factor 30), for which less data are available to 

train the in silico model (Wignall et al., 2018). The route-to-route extrapolation is also associated 

with a factor 50 uncertainty (Rosenbaum et al, 2011), and has limited validity in case toxicokinetic 

and adsorption rate differ substantially by route, and ingestion reference doses and dose-response 

data were also used to evaluate dermal exposures. There is therefore a need to take advantage of 

the growing amount of toxicological data that are becoming available on e.g. the Comptox 

dashboard (https://comptox.epa.gov/dashboard) or ECHA (https://echa.europa.eu/information-on-

chemicals) and to derive best available values for comparative assessment. This might require 

additional efforts related to data interpretation, quality control and aggregation, since data from 

different sources come with different levels of quality, scrutiny and details (Fantke, Aurisano et al., 

2020). Third, further investigations are required for evaluating the impacts of products and 

chemicals identified by the present screening with the highest user and population impacts, 

analyzing in depth each steps of the impact pathway from product usage up to exposures and 

toxicity data. For example, high impacts are associated here with triethanolamine, due to 

carcinogenic effect since triethanolamine is found with positive cancer responses in mouse in the 

carcinogenic potency database (https://files.toxplanet.com/cpdb/index.html). Further investigation 

is however needed, since this chemical is considered as not classifiable as to its carcinogenicity to 

humans by the International Agency for Research on Cancer (IARC-Group 3). Main sources of 

uncertainties in this assessment include the market penetration of different ingredients for a given 

product, the chemical content inside the products, the exposure estimates for recently identified 

exposure pathways, such as gaseous dermal uptake, and the determination of chemical specific 

toxicological dose-responses for the large number of ingredients used here. This results in typical 

uncertainties of two to three orders of magnitude, which remains discriminant for prioritization 

purposes and for identifying product-chemical combination that needs further scrutiny, when 
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considering the more than 10 orders of magnitude variation in risk across all chemical-product 

combinations considered in the present study.  

 

The translation of impacts into µDALY/user/d and minutes of healthy life potentially lost per user per 

day also opens the possibility to compare impacts of chemicals in consumer products with other 

types of impacts associated with e.g. air pollution, pesticides, nutrition, occupational exposure or 

physical activity towards an exposome-based approach. The present study suggests that impacts due 

to exposure of users to chemicals in household products are substantial, in the order of 100 

µDALY/user/d for personal care products to even a 1000 µDALY/user/d for some home maintenance 

products. This is in the same range as the main risks factors from the global burden of disease, such 

as nutrition-related risks (e.g. 70 µDALY per serving of processed meat - Stylianou et al., 2016; 

Stylianou et al., 2019) or occupational risks (e.g. 200 to 1000 µDALY/user/d – Kijko, Margni, Partovi 

Nia, & Jolliet, 2015), and substantially higher than the average impacts due to general population 

exposure to pesticides residues estimated at between 0.01 and maximum 5 µDALY/user/d (Fantke, 

Friedrich, & Jolliet, 2012). This emphasizes the importance to include the use of household consumer 

products in survey such as NHANES, in order to be able to perform epidemiological studies of the 

impacts of their ingredients. It also calls for more scrutiny from a regulatory perspective, in order to 

ensure the same level of safety that has been implemented for limiting pesticide residues in 

products (in e.g. banning diazinon from residentially used products as discussed above), applying 

systematically alternatives assessment approaches (Fantke and Illner, 2019; Tickner et al. 2019) to 

substitute in priority chemicals with highest potential impacts. Finally, at the user level, the 

magnitude of potential impacts calls for the use of protective measures, such as the systematic 

usage of gloves when cleaning, the use of respiratory protective masks when using home 



 

 

 

This article is protected by copyright. All rights reserved. 

 

34 

maintenance products such as paint or paint strippers containing VOCs, and the reduction of the 

applied quantities of chemicals as body lotions, by e.g. using more natural products such as coconut 

oil for moisturizing purposes.  
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