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1  | INTRODUC TION

Stroke is the fifth leading cause of death in the United States. 
Unfortunately, limited treatment options are available in both acute 
and chronic settings. Although primary cell death is caused by acute 
deprivation of oxygen and nutrients, secondary cell death caused 
by inflammation plays an integral role in the disabling neurological 
deficits often observed in stroke patients. Therefore, mediating the 
post-stroke inflammatory response and preventing secondary cell 
death may be a valuable therapeutic target.

The mechanism underlying stroke progression was initially 
thought to be isolated to the central nervous system (CNS). However, 
increasing evidence points to the critical role of the peripheral ner-
vous system in secondary cell death post-stroke. Specifically, the 
gut-brain axis may be involved in stroke progression as evidenced 
by the abnormal increase of inflammation observed in the brain and 
the gut following stroke.1–3 Normal gut functions and structures are 
maintained by microorganisms and bacteria, including pro-inflamma-
tory microbiomes. Other peripheral microbiomes have been char-
acterized in the skin, oral cavity, vagina, and even the brain.4 Gut 
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Abstract
Various neurological disorders, such as stroke and Alzheimer's disease (AD), involve 
neuroinflammatory responses. The advent of the gut-brain axis enhances our under-
standing of neurological disease progression and secondary cell death. Gut micro-
biomes, especially those associated with inflammation, may reflect the dysbiosis of 
both the brain and the gut, opening the possibility to utilize inflammatory microbi-
omes as biomarkers and therapeutic targets. The gut-brain axis may serve as a con-
tributing factor to disease pathology and offer innovative approaches in cell-based 
regenerative medicine for the treatment of neurological diseases. In reviewing the 
pathogenesis of stroke and AD, we also discuss the effects of gut microbiota on cog-
nitive decline and brain pathology. Although the underlying mechanism of primary 
cell death from either disease is clearly distinct, both may be linked to gut-microbial 
dysfunction as a consequential aberration that is unique to each disease. Targeting 
peripheral cell death pathways that exacerbate disease symptoms, such as those aris-
ing from the gut, coupled with conventional central therapeutic approach, may im-
prove stroke and AD outcomes.
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dysbiosis caused by dysfunction of the immune system and altered 
metabolism may influence the interaction between the gut and brain 
during the onset of stroke.

While the enteric nervous system, or gastrointestinal (GI) tract, 
functions independently to the CNS, digestive activities involve 
parasympathetic and sympathetic control, which connects the CNS 
and the GI. Furthermore, neural fibers linking the brain and gut al-
lows for both the relay of sensory information to the CNS and CNS 
regulation of GI function. Following an insult to the CNS-like stroke, 
the gut-brain axis normally involved in maintaining homeostasis is 
activated to regulate dysbiosis.5 Inflammatory activity in the gut 
may be reflected in the brain microbiome6 in the ischemic penum-
bra, highlighting a mirrored activity in both the brain and gut and 
suggesting a new approach to stroke pathology and treatment. 
However, further investigations must be conducted to confirm the 
existence of brain microbiome and understand its potent applica-
tions in the gut-brain axis and neurological consequences.

This peripheral shift in treating cognitive disorders, specifically 
therapeutic strategies outside the CNS has been accepted by the 
field of stem cell-based regenerative medicine. Transplantation of 
cells, microvesicles, microRNAs, and other molecules has encour-
aged the incorporation of peripheral therapeutic targets in organs 
other than the brain.7–10 Characterizing gut and brain microbiomes, 
in addition to microbiomes located in other organs, using single-cell 
omics and transcriptomics11,12 will be the first step in elucidating the 
stroke pathology and progressing cell-based therapeutic strategies 
along with other neurological diseases.7 Furthermore, Parkinson's 
disease (PD) models have recently revealed the use of potent micro-
biomes both as a biomarker and therapeutic target,13,14 shifting from 
brain-focused neurological diagnosis and treatments to analysis of 
peripheral in the progression of PD.15 In fact, abnormal GI symptoms 
appear before motor symptoms in PD, suggesting that gut dysbiosis 
occurs prior to the onset of brain pathology.13,14 Therefore, investi-
gating and targeting the peripheral source of PD, if any, may be more 
effective than the palliative therapies used today.

Parkinson's disease models have detected higher frequencies 
of α-synuclein in PD patients compared to healthy patients. Studies 
have also highlighted neuronal inflammation triggered by bowel 
inflammation, inducing neuronal loss, and enhancing PD symp-
toms.16,17 Beneficial anti-inflammatory bacterial species were shown 
to be present at significantly lower concentrations while pro-inflam-
matory bacteria, such as Ralstonia, were abundant in PD patients.18 
Our two recent studies identified three distinct gut microbiotas, 
namely LAB158, BAC303, and EREC482, that were overexpressed 
after neurotoxin lesions and abrogated by stem cell treatment. The 
idea that pro-inflammatory gut microbiomes and mechanisms may 
lead to neurodegeneration in PD16,18,19 introduces a possible reoc-
currence of similar dysbiotic gut-brain axis in secondary cell death 
observed in stroke.20 Therapeutic models have suggested that al-
tering gut microbiome populations may improve PD outcomes. 
Consuming fermented milk for approximately 4 weeks was seen 
to improve PD symptoms, such as constipation.21 Although an-
ti-TNF and immunosuppressant treatments were shown to reduce 

PD risks,22–24 limited evidence has supported the use of probiotics 
for PD treatment. However, emerging evidence from recent stud-
ies has highlighted anti-inflammatory and gut dysbiosis restoration 
mechanisms,25 proposing probiotic administration as a potential PD 
therapy.

Characterization of specific gut and brain microbiomes may un-
cover homeostasis and microenvironmental dysbiosis associated 
with a brain with normal, healthy functions and one that drives neu-
rodegeneration. Single-cell omics and stem cell therapy may serve as 
potent tools to examine the gut-brain axis in stroke and neurological 
disorders. With aberrant protein aggregation seen in PD also accom-
panying Alzheimer's disease (AD), and with AD-like cognitive impair-
ment recognized in stroke, understanding the role of the gut-brain 
axis in stroke and AD may reveal novel insights into the pathology 
and treatment of these diseases. Accordingly, this review focuses on 
the potential contribution of gut dysbiosis to stroke and AD with a 
focus on presenting microbiota and brain pathology that mediate the 
rampant cognitive decline in both diseases.

2  | PATHOLOGY OF CHRONIC STROKE 
PRESENTING A S COGNITIVE IMPAIRMENTS

Approximately 25%–30% of stroke patients develop immediate or 
delayed cognitive impairment or vascular dementia after suffering an 
ischemic stroke.26 Cognitive impairment or dementia after stroke is 
defined as dementia that primarily occurs three months after stroke 
onset. Risk factors for developing cognitive impairment or dementia 
include older age, family history, genetic variants, vascular comor-
bidities, and prior ischemic stroke or recurrent illness.26 Additionally, 
medical conditions such as hypertension, diabetes, obesity, and dys-
lipidemia are associated with a higher risk of cognitive decline and 
dementia.27 To reduce the burden of cognitive dysfunction after 
stroke, it is imperative to control vascular disease risk factors and 
understand the mechanisms of dementia after stroke injury. The 
neuroanatomical lesions in specific areas, such as the hippocampus 
and the white matter lesions (WMLs), caused by stroke and cerebral 
microbleeds (CMBs) due to small cerebrovascular diseases contrib-
ute to the pathogenesis of post-stroke cognitive impairment.28

Ischemic stroke-induced dementia has been considered to be 
caused by the neuroanatomical lesions as previously described. A 
past study conducted by Tomlinson et al. supported the notion that 
infarcts in specific areas of the brain, such as the hippocampus and 
entorhinal cortex, serve as a key factor for the mechanisms of cog-
nitive impairment and are associated with the severity of demen-
tia.29 Recent studies have demonstrated that WMLs serve as the 
common demonstrations of damage in the cerebral parenchyma due 
to the small cerebrovascular disease.28 Post-stroke survivors who 
exhibit white matter hyperintensities volumes are likely to experi-
ence shorter time to dementia onset and blood brain barrier (BBB) 
damage.26 Additionally, small vessel disease plays a prevalent role in 
stroke pathophysiology and is the leading cause of cognitive decline 
and functional loss, especially in older patients.27 Understanding 
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stroke pathology in terms of cognitive behavior may introduce new 
therapeutic approaches for stroke patients.

To assess strategic regions of the brain for post-stroke cognitive 
impairment, multivariate lesion-mapping can be used on ischemic 
stroke patients. Strategic structures for cognitive impairment after 
stroke include the left angular gyrus, left basal ganglia structures, 
and the white matter around the left basal ganglia.30 However, fur-
ther studies are needed to develop more comprehensive models for 
post-stroke cognitive impairment and better understand the brain 
histology.

Patients who suffer from a stroke have cerebral compromise 
and cognitive dysfunction.26 This causes stroke survivors to be at 
an increased risk for cognitive impairment.31,32 Secondary cell death 
caused by neuroinflammation and immunodepression promotes fur-
ther detrimental effects on the cognitive functions and physiological 
structure of the brain.33–37 Pro-inflammatory mechanisms may also 
contribute to the pathways leading to dementia.38 Specifically, cere-
bral atrophy causes microglia and astrocytes to exhibit a dampened 
cytokine response in stroke-induced dementia patients.39–41

Neuroinflammation and unregulated immune response after 
primary stroke lesions promote secondary cell death, causing fur-
ther physiological damage to the brain and exacerbating cognitive 
dysfunction. Recent studies suggest that post-stroke inflammation 
and cognitive deficits may also be linked to GI microbiota via the 
bidirectional communication between the brain and gut. Studies 
observing the effect of colonizing germ-free mice with microbiota 
obtained from stroke mice showed that the recipient mice, after also 
experiencing cortical stroke, demonstrated larger infarct volumes 
when compared to nonrecipient mice. Additionally, recipient mice 
expressed higher levels of Th1 and Th17,42 the inflammatory T-cells 
that may be involved in the pathogenesis of stroke, thus demonstrat-
ing a possible relationship between stroke-induced neuroinflamma-
tion and gut microbiota. Specifically, altered microbiota may worsen 
post-stroke inflammation, thereby, exacerbating physiological and 
cognitive dysfunctions. Other studies demonstrated a therapeutic 
link between neuroinflammation and microbiota alterations. In par-
ticular, anti-inflammatory neuroprotective activities were revealed 
when antibiotics, specifically amoxicillin/clavulanic acid, were ad-
ministered before inducing stroke. Post-stroke infarct volume was 
reduced by 60% in administered mice compared to control groups.43 
Furthermore, regulatory T-cells were increased and levels of cells 
inhibiting effector T-cells IL-17+ γδ T decreased,43 promoting mech-
anisms of immune and neuroinflammation modulation. Although the 
effects of gut microbiome dysbiosis on post-stroke cognitive alter-
ations remain not well defined, an approach that reestablishes nor-
mal microbiome and enhances anti-inflammatory cytokines could be 
beneficial in preventing cognitive dysfunction caused by stroke or by 
other neurological diseases.

To further understand the gut-brain axis, evidence of stroke im-
pact on gut microbiota was also reviewed. 50% of stroke patients 
are diagnosed with GI complications,44 hinting to the bilateral com-
munication between the gut and brain. Signaling pathways involved 
in the gut-brain communication include the vagus nerves, damage 

associated molecular patterns (DAMPs), and cytokines of gut in-
flammation. After stroke-induced lesions occur, DAMPS and cyto-
kines are released from the brain, activating gut inflammation and 
immune cells.20 Diverse gut microbiomes are severely reduced after 
stroke,45,46 preventing the gut from maintaining homeostasis due 
to lack of communication between intestinal immune cells.47 Fecal 
samples of stroke patients reveal a significant change in the diversity 
of microbial populations in addition to increased intestinal barrier 
damage, which causes alterations in intestinal inflammatory and 
immune activity.42,48 Dysfunction of the intestinal immune system 
allows the activation of gut γδ T-cells which migrate to the stroke in-
jury and initiates pro-inflammatory cytokines to guide myeloid cells 
to the damage site, further inducing neuroinflammatory activity.49 
To summarize, the top-to-bottom (brain-to-gut) pathway involves 
neuronal DAMPs and cytokines to circulate and disrupt healthy gut 
functions. As a result, gut inflammation and immune response acti-
vate γδ T-cells that migrate to the brain in a bottom-to-top (gut-to-
brain) manner and exacerbate neuronal inflammation and cognitive 
dysfunctions. Therefore, we believe gut dysbiosis may be relevant in 
stroke pathology and may be a consequence of stroke that may fur-
ther induce neuroinflammation and cognitive impairment.45,48,50,51 
Targeting gut microbiota to mitigate further damage and regulate 
immune activity may be a potent stroke treatment.2,52

3  | GUT MICROBIOTA AND AL ZHEIMER’S 
DISE A SE

Based on the dominant stroke-induced dementia, investigations 
into Alzheimer's Disease, a neurodegenerative disease with a preva-
lent form of dementia that accounts for 50%–70% of all dementia 
cases,53 may provide a better understanding of this cognitive de-
cline in stroke. Indeed, stroke demonstrates cognitive decline and 
brain pathology reminiscent of AD,54–63 possibly due to the genetic 
similarities between AD and stroke.64 Consequently, stroke may also 
display alterations in the gut microbiome induced by AD-like cogni-
tive damage (Figure 1). Residing in the GI tract, the gut microbiome 
is composed of many highly influential microorganisms.65 Alteration 
of the gut microbiome population may exacerbate disease symp-
toms of gut disorders and CNS diseases, such as AD.15,25 Fluctuation 
in microbiota influences the brain via the gut-brain axis, a bidi-
rectional system with immune, endocrine, neural, and metabolic 
functions.65,66 Furthermore, dysbiotic microbiota populations may 
exacerbate BBB permeability, possibly mediating pathogenesis of 
AD and other CNS degenerative disorders.67 Bacterial secretion of 
amyloids and lipopolysaccharides may upregulate pro-inflammatory 
cytokines through the gut-brain axis or BBB.65 Elucidation of the un-
derlying mechanisms is imperative to provide effective therapy that 
addresses multiple factors underlying the pathogenesis of AD and 
other neurodegenerative diseases.

Research utilizing animal AD models provide insight into how mi-
crobiome composition affects the brain. When fecal microbiomes 
and fecal short chain fatty acid composition (SCFAs) were compared 
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between AD-model mice and wild-type, results indicated significant 
differences in gut microbe populations, SCFAs level fluctuation, 
and structural abnormalities in AD mouse intestine.68 The AD mice 
showed decreased levels of SCFAs which may consequently modify 
30 metabolic pathways and further contribute to amyloid deposition, 
in turn, exacerbating the manifestation of AD.68 APP/PSI mice (AD 
mouse model) demonstrated a decline in spatial learning and mem-
ory, along with the presence of amyloid plaque and a distinct gut 
microbiome. As the APP/PSI mice aged, microbial diversity in the gut 
diminished. Compared to the wild-type mice, APP/PSI mice displayed 
increased levels of Helicobacteraceae and Desulfovibrionaceae, as 
well as genuses Odoribacter and Helicobacter.69 Mutated trans-
genes were inserted into mice to further elucidate the effect of AD 
on the gut microbiota composition. 5xFAD mice, transgenic mice 
containing AD-linked genes, were compared to wild-type mice over 
three stages. 5xFAD mice demonstrated decreased body weight as 
the early stages of AD progressed. There was a significant decrease 
in trypsin concentration of 5xFAD mice compared to wild-type, as 
well as alterations in microbiota as the mice aged. More importantly, 
genetic predisposal to AD may influence gut microbiota composi-
tion.70 Furthermore, when the gut-brain axis was examined in an 
AD Drosophila model, the findings suggested that gut dysbiosis as-
sociated with AD spurs a significant reduction of Acetobacter and 
Lactobacilli, as well as a substantial decrease of acetate, stemming 
from the activity of SCFAs.71

The link between the gut microbiota and the AD-afflicted brain seen 
in animal models can also be observed in patients. When compared to 

the control group, fecal samples from AD patients demonstrated sig-
nificant variation in gut microbiome taxonomy with differing quantities 
of Bacteroids, Ruminococci, Actinobacteriae, Lachnospiraceae, and 
Selenomonadales.72 Another patient study revealed that fecal samples 
collected from AD-induced dementia participants displayed signifi-
cantly lower levels of diversity in gut microbiota compared to those 
without AD-induced cognitive decline. The fecal samples from AD par-
ticipants revealed a lower number of Firmicutes and Bifidobacterium 
and higher levels of Bacteroidetes, indicating a substantial change in 
gut microbiome.73 Moreover, the altered gut microbiota can be associ-
ated with AD-biomarkers found in cerebrospinal fluid. Participants with 
mild cognitive impairment and those without cognitive decline under-
went two diets: modified Mediterranean-ketogenic diet (MMKD) and 
American Heart Association Diet (AHAD). In those afflicted with mild 
cognitive damage (MCI), the levels of Proteobacteria and cerebrospinal 
fluid AD-biomarkers Aβ-42 and Aβ-40 displayed a positive correlation. 
On the other hand, propionate and butyrate demonstrated a negative 
correlation with those same biomarkers. The two diets had varied im-
pacts on the gut microbiome among normal and cognitively injured 
participants. Both diets spurred an increase in phylum Tenericutes, es-
pecially in MCI subjects, which was associated with a decrease in Aß42 
in cerebrospinal fluid. MMKD-induced elevation of Enterboacterieae 
was correlated with a reduction of Aß42 in MCI participants.74

Due to overwhelming evidence highlighting the gut-brain axis, 
the purposeful alteration of the gut microbiome through diet or 
probiotics may be an effective therapeutic target to improve AD 
outcomes.75 Gut inflammation, escalated intestinal leakiness, and 
dysbiosis of the gut microbiome can be associated with aging-re-
lated illnesses, such as AD. When enterococcus strains from the 
guts of healthy infant mice were administered to aging mice, in-
testinal inflammation, leaky gut, dysbiosis, and motor dysfunction 
were ameliorated. The probiotics altered the gut microbiome such 
that tight junctions were reinforced, attenuating gut leakiness and 
inflammation. Additionally, probiotics also spurred the formation of 
tight junctions by bolstering bile salt hydrolase performance, leading 
to an elevation of taurine in the gut.52 Moreover, rats were subject to 
intracerebroventricular injection of β-amyloid with half of this group 
receiving probiotics. Compared to the non-probiotic administered 
group, the probiotic-treated group exhibited improved navigation 
in the Morris water maze. This group also displayed improved long-
term potentiation and enhanced antioxidant/oxidant biomarker bal-
ance.76 Furthermore, after exercise and administration of probiotics, 
APP/PS1TG mice demonstrated substantial cognitive and motor 
improvement, as observed in the Morris Maze Test. Notably, the 
amount of beta-amyloid plaques in the hippocampus was reduced. 
An increase in B.thetaiotaomicron and L.johnsonii bacteria in the gut 
microbiome could be associated with the cognitive amelioration in 
these mice.77 Moreover, altering the gut microbiome through pro-
biotic treatment shows significant therapeutic promise in alleviating 
gut dysbiosis and inflammation in neurological disorders such as AD.

A wide range of probiotics has been implemented as potential ther-
apies for gut dysbiosis in experimental models of AD. Administration 
of Morinda Officinalis-derived fructooligosaccharides (OMO) into 

F I G U R E  1   Stroke and Alzheimer's Disease possess similar 
cognitive behavior decline and brain pathology. Because gut 
microbiome is associated with cognitive impairments, such as 
AD-induced dementia, stroke may also manifest with altered gut 
microbiota
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AD-rodent models demonstrated ameliorative effects on AD symp-
toms. As a potential prebiotic, OMO was given to D-galactose- and 
Aβ1-42-induced deficient rats and behavioral experiments indicated 
significant improvement in both rat's memory and learning abilities. 
Upon sequencing, OMO supported diverse and stable microbe pop-
ulations in the gut. Furthermore, histological alterations exhibited a 
decrease in neuroinflammation, downregulation of AD-biomarkers, 
Tau and Aβ1-42, and amelioration of neuronal apoptosis.78 In addi-
tion, probiotics, such as Lactobacilli and Bifidobacteria, may effec-
tively attenuate the drastic metabolic permutations caused by insulin 
resistance in AD. Insulin resistance can spur the development of AD 
by inciting changes in serum levels of insulin and fasting blood sugar, 
as well as altering the lipid profile. When AD experimental models 
were given Lactobacilli and Bifidobacteria as probiotics, the glyce-
mic condition associated with AD was more efficiently regulated.79

Endogenous and microbial metabolites heavily influence sur-
rounding microbial populations and consequently, cognitive function. 
Specific metabolites produced from gut microbiota processes have 
been associated with AD-linked cognitive dysfunction. Succinic acid, 
DOPAC, and mannitol demonstrate a substantial correlation with 
AD-induced cognitive impairment. Another metabolite, D-proline, 
can be associated with a reduction in amyloid P in AD-afflicted ce-
rebrospinal fluid. Therapeutically, amyloids may be eliminated in the 
brain by capitalizing on d-proline producing bacteria, which in turn, 
would attenuate AD-induced cognitive dysfunction.80 Furthermore, 
modulation of endogenous metabolites via chemical agents may pro-
vide advantageous AD treatment options. Xanthoceraside's (XAN) 
therapeutic effects on treating AD were measured via behavioral 
testing and H&E staining observation. Sequencing fecal samples 
revealed reversal of AD-inducing gut dysbiosis due to the shift of 
bacterial population ratios such as the Firmicutes/Bacteroidetes. 
Metabolomics study indicated that XAN is also able to modulate en-
dogenous metabolites, heavily influencing microbe populations and 
consequently improving cognition.81 Notably, Bile acid (BA) produc-
tion and metabolism, regulated by the liver and gut microbiota, be-
comes defective during AD progression. When compared to normal 
participants, AD subjects demonstrated substantially lower levels 
of primary BA and significantly higher amounts of secondary BA. 
Upregulations of deoxycholic acid, along with its glycine and tau-
rine altered conformations were observed, indicating gut microbiota 
induced 7α-dehydroxylation of cholic acid, which is correlated with 
cognitive deterioration.82

The gut-brain axis is a preeminent phenomenon and provides 
an abundance of implications throughout the body bolstering its 
potential as a therapeutic mechanism. Targeted intervention of the 
gut-brain axis may give rise to favorable outcomes in AD and other 
neurodegenerative disorders. Gut microbiota influence many neuro-
physiological processes, such as maintenance of BBB integrity, neu-
ral development, aging, and CNS immune activation.83 Accumulating 
research indicates that modulation of microbial composition through 
prebiotics, probiotics, and metabolites, may reverse AD-linked dys-
biosis, thereby providing improvements in cognition and functional 
outcomes. Investigating the underlying mechanisms behind the 

promising findings may provide valuable insight into creating novel 
therapies for AD. Further elucidation is imperative in establishing 
optimal dosage, timing, and pre/probiotic agents.

4  | POTENTIAL TR ANSL ATION OF AD 
TRE ATMENT TO STROKE BY TARGETING 
GUT MICROBIOME

Knowledge of pathological similarities between stroke and AD may 
facilitate the diagnosis and treatment of dementia in stroke. Both are 
present with inflammation-induced cerebral atrophy and secondary 
neuronal cell death, consequently exacerbating cognitive impair-
ments and physiological damage.33–41,64,84 Additionally, the role of 
microglia in both stroke and AD may hint at overlapping pathologi-
cal mechanisms.40,41,85 The risk of stroke-induced dementia may be 
determined by the presence of prior ischemic injury, vascular comor-
bidities, WML’s, and genetic predisposition.28 Therefore, a deeper 
understanding of the underlying mechanisms behind AD will allow 
for more effective treatment. An approach targeting the gut microbi-
ome for diagnosis and treatment of stroke-induced dementia shows 
therapeutic promise. Like AD, stroke can spur gut leakiness and dys-
biosis, diminishing beneficial microbes and elevating opportunistic 
bacteria in the gut.78 In addition, white matter injury, associated with 
stroke and AD cognitive decline, can be linked to gut dysbiosis with 
a reduction of gut-microbial diversity.67,80 Furthermore, altering the 
gut microbiome may be therapeutic against stroke and AD cogni-
tive impairment, as the gut microbiome can play a neuroprotective 
role.83

Despite the pathological similarities between stroke and AD,64 
such as cognitive decline and dementia, the mechanisms behind 
neuronal death in both diseases are distinctly different and compa-
rable. Stroke occurs when cerebral blood flow to the brain is inter-
rupted, depriving neuronal cells of oxygen and nutrients. Cell death 
in stroke involves various mechanisms, including apoptosis and ne-
crosis. Necrosis occurs within the first few minutes of damage when 
sudden decrease in blood flow leads to significant decrease in ATP, 
an essential molecule to maintain functioning Na+/K+ pumps in neu-
rons.86 The pumps fail to regulate ion concentrations with insuffi-
cient ATP, allowing sodium ions to accumulate within the neuron. 
Cellular edema develops, and the cell membrane ruptures, resulting 
in nuclei degradation. Additionally, accumulation of calcium ions may 
lead to mitochondrial dysfunction during ischemic stroke. Damaged 
mitochondria release cytochrome C to activate caspase and initiate 
cell death.87 The activated caspase may lead to either apoptosis or 
autophagy depending on the amount of energy in the cell.86,88 Post-
stroke cell death promotes inflammatory activity that causes second-
ary cell death, further damaging the brain. Unlike stroke, AD-induced 
cell death relies on amyloid β (Aβ) plaques.84 Aβ is often observed 
in senile plaques and is synthesized from amyloid precursor protein 
(APP) by cleavage of enzymes.89 When APP is metabolized by β- and 
γ-secretase in the plasma membrane, Aβ is released outside of the 
cell or broken down in lysozymes. Studies hypothesize that changes 
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in Aβ level promote cascades responsible for cell death. Additionally, 
Aβ activates pro-inflammatory cytokines, such as TNF-α and PIKA, 
in astrocytes and microglia.90 These pro-inflammatory mechanisms 
promote apoptosis and neurodegenerative symptoms. Due to the 
significant difference in the mechanisms of neuronal death, careful 
consideration is necessary when extending diagnoses and treat-
ments between diseases. Despite similar cognitive symptoms and 
the profound effects of gut microbiota in AD, careful evaluations 
must be considered before applying similar microbiota therapy from 
AD to stroke due to the mechanistic differences in the etiologies of 

these two diseases. Accordingly, utmost caution is necessary when 
assessing the converging cognition-relevant brain region (eg, hip-
pocampus) affected in both diseases that likely promotes the over-
lapping symptomatologic dementia. Similarly, careful consideration 
must be exercised when contemplating microbiome-based treat-
ments that will be possibly require disease-tailoring such therapy to 
stroke distinct from AD, and vice versa.

Cognitive deficits and dementia symptoms are present in both AD 
and stroke due to similarities in affected brain regions, despite the dif-
ference in origin of the diseases. Studies suggest that the hippocampus 

TA B L E  1   A summary of the mile-stone discoveries linking cognitive decline in stroke and AD pathology. Gut dysbiosis can be associated 
with both stroke and AD cognitive impairment and, therefore, may be an effective therapeutic target for treatment of these diseases

Studies Discovery

Yin et al. (2015) There is a correlation between stroke and gut dysbiosis. The gut microbiome of stroke and transient ischemic attack 
patients contained increased levels of opportunistic pathogens and decreased beneficial genera.48 These patients 
also exhibited reduced levels of trimethylamine-N-oxide (TMAO), a promoter of atherogenesis that is produced by gut 
microbiota. Decreased TMAO levels may be a mechanism of stroke induction.

Chen et al. (2016) White matter hyperintensities can be associated with cognitive impairment in stroke and dementia. In aged post-stroke 
patients, cognitive decline can be linked to astrocyte damage and dysfunction of gliovascular activity with the BBB.39 
Clasmatdendrosis may also be a factor inducing white matter hyperintensities, further exacerbating post-stroke cognitive 
injury and dementia.

Crapser et al. (2016) Infection after stroke is a major factor causing stroke-induced mortality, and risk of infection increases with age. In both 
young and aged MCAO mice, stroke spurred gut leakiness and bacterial translocation from the gut to surrounding organs. 
However, the young mice overcame the infection, while the aged mice endured worsened hypothermia, weight loss, and 
immune impairment, indicating sepsis.50

Singh et al. (2016) Stroke lesions cause gut microbiota alterations, consequently influencing stroke outcomes through immune mechanisms. 
Reduced diversity and augmented levels of bacteroidetes are common after stroke. Recolonization of germ-free mice 
with post-stroke microbiota increases lesion volume and functional deficits, and also upregulates T-cell polarization in the 
intestinal immune compartment and injured brain.45 Fecal transplantation of healthy microbiota improves stroke outcome 
and ameliorates brain-lesion induced dysbiosis.

Xu et al. (2016) AD-induced cognitive decline can be associated with metabolites produced by gut microorganisms. In AD, cognitive 
deterioration has been significantly correlated with Succinic acid, DOPAC, and mannitol. Since D-proline may diminish 
amyloid P in cerebrospinal fluid, utilizing d-proline producing bacteria as a therapeutic implement in AD may be 
effective.80

Vogt et al. (2017) Through the examination of fecal samples from AD patients with dementia and participants without AD-related cognitive 
impairment, AD’s effect on gut microbiota diversity was revealed.73 The gut microbiome became much less varied and 
developed lower levels of Firmicutes and Bifidobacterium as well as a high amount of Bacteroidetes.

Zhang et al. (2017) Microbiota composition and SCFA levels differ in AD mice compared to wild-type. SCFA fluctuation influences metabolic 
pathways and consequently exacerbates amyloid deposition and cognitive deficits.68

Singh et al. (2018) Microbiome composition modulates stroke outcomes. Germ-free mice were compared to recolonized Ex-GF and SPF mice 
and recolonization reduces stroke volumes and increased cytokine and microglia/macrophage amounts. Microbiome 
induced neuroprotection was not observed in lymphocyte deficient mice, indicating that lymphocytes play a role in 
microbiome-mediated neuroprotection.2

Spychala et al. (2018) When young mice underwent MCAO, their gut microbiome mirrored the gut flora of healthy elder mice. Further modifying 
the microbiome of young mice to match the aged mice exacerbated stroke symptoms, escalated mortality rates, and 
elevated inflammatory cytokine levels.51 On the other hand, changing the microbiome of stroke-afflicted aged mice to 
reflect a young mouse ameliorated symptoms and increased viability.

Wendeln et al. (2018) Peripheral immune stimulation, training and tolerance, modulates pathology of neurological diseases. In an AD mouse 
model, immune training furthers cerebral β-amyloidosis, and tolerance reduces it. Immune stimulation also alters post-
stroke pathology.96

Abraham et al. (2019) Pathogenesis of AD can be slowed exercise and probiotic treatment via the gut microbiome. APP/PS1TG mice were 
exercised and administered probiotics. Improvements were seen in the Morris Maze Test due to augmented B. 
thetaiotaomicron levels and decreased levels of beta-amyloid plaques in the hippocampus via L. johnsonii.77

Ahmadi et al. (2020) The administration of enterococcus strains from healthy infant mice to aging mice as a probiotic alleviated gut 
inflammation, endothelial leakiness, and motor impairment. The probiotics improved inflammation and gut leakiness by 
fortifying tight junctions through the elevation of bile salt hydrolase activity.52
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and neocortex are involved in early stages of AD where synaptic loss 
and neurodegeneration first occur,91 correlating to cognitive dys-
function involving memory. Symptoms of AD-induced dementia is 
associated with cerebral choline acetyltransferase (CAT) and acetyl-
cholinesterase (AChE) activity, which indicates Aβ levels and cognitive 
impairment.40,92 Patients with severe AD were observed to have an 
average of 25% to 33% decrease in cortical AChE activity. Additionally, 
mild and moderate severities of AD were found to have 30% AChE ac-
tivity in the cerebral cortex compared to the control groups.92,93 Based 
on the findings, AD-induced cognitive deficits and dementia arise from 
structural damage in the hippocampus, neocortex, and cerebral cor-
tex. Although the cellular mechanism of neuronal death and structural 
damage differs from AD, stroke-induced dementia and cognitive im-
pairments similar to AD arise in similar brain areas, specifically hippo-
campus and cerebral cortex.94 Dementia post-stroke can also occur 
when other brain structures, such as the thalamus and frontal lobe, are 
damaged either through secondary cell death via inflammation or pri-
mary lesions, which results in observable AD-like symptoms involving 
memory and cognition.

Alterations of gut microbiota demonstrated lower levels of neu-
roinflammatory activity in AD, and similar anti-inflammatory mech-
anisms may be present for stroke-induced inflammation in the same 
brain region, alleviating symptomatologic dementia similar to AD, 
due to the similar pathogenesis of AD and stroke in regards to gut 
microbiome (Table 1). Microbiota is evidently associated with inflam-
matory activity in the brain due to the communication between the 
gut and brain. Physiological changes in the brain induce pro-inflam-
matory immune T-cells to circulate from the GI tract into the brain 
towards the damage site,42,73 promoting inflammatory activity and 
exacerbating neuronal cell death. Treatments targeting therapeutic 
alterations to the gut microbiome has not only restored healthy gut 
functions and alleviated gut inflammation, but also slowed AD cog-
nitive decline.52,77,95 Additionally, cognitive dysfunction in AD was 
seen to be associated with metabolites produced by gut microbiota, 
including Succinic acid, DOPAC, and mannitol.80 Furthermore, probi-
otic treatments that alter microbiota diversity decrease levels of Aβ 
plaque, which lowers inflammatory activity and pro-inflammatory 
cytokines.68,77,90,96 Clearly, microbiota alterations possess therapeu-
tic mechanisms that reduce AD outcomes. Through careful exam-
ination, AD therapy targeting gut microbiota may also be effective 
in alleviating post-stroke dementia and AD-like cognitive symptoms. 
Post-stroke dementia may benefit from gut microbiome therapy 
used in AD due to evidence of relationship between stroke and gut 
microbiome via gut-brain axis,44–46 correlation between post-stroke 
inflammation and microbiota,42,43 and converging brain regions in-
volved in both diseases that cause similar dementia and cognitive 
symptoms.91,92,94 However, due to the clear difference in the pathol-
ogy of cell death and the onset of both diseases, studies are clearly 
warranted to test whether AD gut treatment can be extended to 
post-stroke dementia therapy. Notwithstanding, we are not claim-
ing that gut-microbial dysfunction is the primary causation of AD 
or stroke. Rather, we believe microbial dysfunction is the peripheral 
consequence of the neurological diseases due to the gut-brain axis, 

which may worsen existing disease symptoms by promoting further 
neuroinflammatory activity. Therefore, restoring gut deficit may im-
prove disease outcomes in the brain.

Targeting the gut microbiome may represent one of many potent 
therapeutic modalities for AD and stroke. Gut microbiome may help 
alleviate neuroinflammation, improve cognitive functions or retard 
neurodegeneration and cognitive deficits inherent in both AD and 
stroke. Treatment strategies incorporating microbiota treatment, 
such as prebiotics and probiotics, have demonstrated promising 
results for AD by reducing hippocampal Aβ plaques and improving 
cognitive performance in mouse models56,77,78,81,82; the same may 
potentially translate over to stroke. Probiotic treatments, such as 
Lactobacillus Plantarum ZDY2013, Clostridium butyricum, or probiotic 
mixtures, and bacterial metabolites were seen to improve stroke-re-
lated disorders.97,98 However, these supplementary treatments were 
not beneficial in more severe stroke cases. Complete repopulation 
of the GI tract via fecal microbiota transplantation may be most suit-
able in severe stroke-induced deficits.51

5  | CONCLUSION

The pathogenesis of stroke parallels AD in terms of cognitive impair-
ment, dementia, and its associated brain pathology. Both demonstrate 
secondary neuronal cell death due to uncontrolled inflammatory re-
sponse, causing structural damage to the brain and leading to cog-
nitive deficits. In stroke, pro-inflammatory activity induces cerebral 
atrophy, which is similar to the neurodegenerative mechanisms seen 
in AD. With AD being the more prevalent type of dementia, AD re-
search demonstrating a correlation between microbiome populations 
and cognitive impairments may be similarly extended to stroke-in-
duced dementia. Additionally, gut microbiome regulation may be uti-
lized as a possible therapeutic strategy to treat both AD and stroke. 
Due to the correlation between microbiome populations and CNS 
diseases, altering gut microbiome populations through diet modula-
tion or probiotics may improve cognitive functions. Gut microbiomes 
that closely approximate AD-like cognitive impairment may manifest 
as the same gut microbiota altered in stroke, and targeting specific 
pro-inflammatory microbiota may improve cognitive symptoms in CNS 
diseases. However, due to the disease-specific cell death mechanisms 
in stroke and AD, microbiota alterations in AD treatment may not 
translate effectively over to stroke treatment, and vice versa. Careful 
and rigorous investigations are required to evaluate the applicability of 
microbiome-based treatment to each disease. Additionally, gut micro-
biota is neither the key factor in stroke and AD pathology nor the only 
treatment target for CNS diseases. Gut dysbiosis is the consequence 
of CNS diseases possibly due to the gut-brain axis that worsens cogni-
tive impairment,99–101 and it is one of many potent treatment targets 
that may regulate neuroinflammation and reduce stroke outcomes. 
Elucidating the key role of gut microbiomes in CNS disease pathol-
ogy may elucidate new potential targeted candidates for stroke ther-
apy. Recognizing the gut as a major source of inflammation in stroke 
pathology warrants integration of the gut in addition to the brain in 
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pre-existing stroke tools for diagnosis and treatment. In particular, 
distinct gut microbiomes may precipitate stroke dementia, resembling 
AD cognitive decline, and suggests a cross-disease exploration of their 
pathologies and therapies.
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