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Key Points:

» |ICESat-2 photons penetrate surface melt lakeseftett from both the water surface
and the underlying ice, providing depth estimates.

* We compared depths from eight algorithms (six IGESand two image-based) for four
lakes present on Amery Ice Shelf in January 2019.

* Depths from ICESat-2 were more accurate than fraagery (30-70% too low); merging
these data will improve estimates ice-sheet wide.
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Abstract

Surface melting occurs during summer on the Antaestd Greenland ice sheets, but the volume
of meltwater stored has been difficult to quantifye to a lack of accurate depth estimates.
NASA'’s ICESat-2 laser altimeter brings a new caligbphotons penetrate water and are
reflected from both the water and the underlyirgg tbe difference provides a depth estimate.
ICESat-2 sampled Amery Ice Shelf on 2 January 20tPshowed double returns from surface
depressions, indicating meltwat€or four melt features, we compared depth estinfabes

eight algorithms: six based on ICESat-2 and twanfowincident Landsat-8 and Sentinel-2
imagery.All algorithms successfully identified surface wadt the same locations. Algorithms
based on ICESat-2 produced the most accurate deipghsnage-based algorithms
underestimated depths (by 30-70%). This implies tDBSat-2 depths can be used to tune
image-based algorithms, moving us closer to quantfstored meltwater volumes across
Antarctica and Greenland.

Plain Language Summary

Summer surface melting on Antarctica’s ice shelsessmall component of overall ice sheet
mass loss but can be important for individual itelges and may increase as climate warms.
However, the volume of meltwater has been diffitolimonitor because depth estimates are
challenging. NASA'’s ICESat-2 laser altimetry migsiarings a new capability to this problem.
ICESat-2 532 nm photons (green light) are ableassghrough water and reflect from both the
water surface and the underlying ice surface; ifierdnce in elevation provides meltwater
depth estimates. In this pilot study we compargatitgefrom eight algorithms (six ICESat-2 and
two image-based) over four Amery Ice Shelf meltwédkes for an ICESat-2 pass in early
January 2019. The ICESat-2 algorithms all produneck reliable depth estimates, and the
image-based algorithms underestimated the deptis.iffiplies that ICESat-2 water depths can
be used to tune image-based depth retrieval atgositenabling improved performance and
allowing us to estimate more accurately how mucfase melt is stored in melt ponds on the ice

sheets each summer.

1. Introduction
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Antarctica’s ice shelves are losing net mass tmt&an, mainly through iceberg calving and
basal meltingAdusumilli et al., 2020;Rignot et al., 2013). While surface melt does not yet
significantly impact overall mass balance, it islespread on Antarctica's ice shelves (e.g.,
Zwally and Fiegles, 1994;Trusd et al., 2012) and is predicted to increaseusdl et al., 2015).
Over the last decade, widespread and rapid chdrayesbeen observed in some regions of the
Antarctic Ice Sheet, including thinnin§hepherd et al., 2003,Fricker and Padman, 2012;Paolo

et al., 2015) and dramatic disintegration of Antarctioifsula ice shelves through hydrofracture
(Rott et al., 1996;Scambos et al., 2003). Although no major changes on this scale lteeen
identified in the East Antarctic Ice Sheet (EAIS)igh contains approximately 75% of the total
Antarctic ice sheet area, 85% of the volume, amd@ats for 52 m of potential sea-level rise
(Lythe et al., 2000)), there is a possibility thateas of the EAIS could become more vulnerable
to hydrofracture as atmospheric temperatures iseraad surface melt increasksngsiake et

al., 2017;Bdl et al., 2018;Lai et al., 2020). Therefordt is important to monitor amount of
meltwater current produced each year. Supraglidiak are one important destination for
surface meltwater; others include firn (via refiegzand storage in aquifers), and the ocean
(through dolines and off the front of ice shelv@3)erefore, one way to monitor the state of the
ice sheet’s supraglacial hydrology is to quantify amount of water stored in lakes, but this has
been challenging, due to lack of accurate depimeasts. Therefore, there are no comprehensive

estimates of total meltwater produced each mel@ea

Amery Ice Shelf experiences annual surface mett,mavious studies indicate interannual
variability in meltwater timing and duration ancetbxtent of the drainage systefhidlips,
1998;Jpergd et al., 2020). In this paper, we introduce a new techaiigu estimating melt water
depth from ICESat-2 data and demonstrate it on Arteer Shelf, EAIS, during the January 2019
melt season. We describe a pilot project with itigasors who contributed depth estimates for
four Amery melt lakes along a single ICESat-2 gbtnack. We used eight algorithms to
estimate the depth of meltwater stored in meltuiest six based on ICESat-2 data (five semi or
fully automated algorithms in various stages ofedepment, and one manual method, used as a
baseline for comparison in the absence of grourt)trand two based on imagery (Sentinel-2
and Landsat 8). We compared the results from tESHE-2 algorithms and then compared the
ICESat-2 depth estimates with depth estimates frantdsat 8 and Sentinel-2 satellite imagery.
Although ICESat-2 provides water depth estimatésl\galong its ground tracks and has limited
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spatial sampling of short-lived melt features, iBESat-2 derived depth estimates can provide a
training dataset for image-based methods, whicltloam be extended to provide depth estimates
across entire melt regions. This will significanitityprove our capability to estimate the volume

of surface melt stored in surface lakes on eackheet.
2. Previous observations of Amery surface melt

Amery Ice Shelf (area 70,000 Rpis EAIS’s largest ice shelf, and buttresses #ngdst drainage
basin in EAIS (Lambert-Amery system); this basiaids ~16% of the area and ~14% of the
volume of the EAIS, with 7.7 m of sea-level potah{linto et al., 2019). Located between 69°S
and 73°S, Amery Ice Shelf is far enough north thexperiences significant surface melting
each summerhillips, 1998;Kingslake et al., 2017), and it has been suggested that it may be
susceptible to breakup within a few decades ixfteziences warming trends similar to those
which took place on the Peninsuicgmbos et al., 2003). The onset date, freeze over date and
duration of surface melting vary from year to ydhese are all climate-related variables that can
be monitored with satellite remote sensiRbillips, 1998;Tedesco, 2007;van den Broeke,

2005).

Surface melt features on southern Amery Ice Shefevdocumented as early as 1960, when it
was noted that extensive summer melting took placeing rivers, melt lakes and dolines
(Mellor and Mackinnon, 1960). They have also been detected by aeriahedtsan, in synthetic
aperture radar (SAR) and Landsat satellite imagadyin satellite radar altimetry (e.g.
Swithinbank et al., 1988;Phillips, 1998). Surface melting occurs in the blue-iceezoear the
grounding line. Meltwater mostly collects in longiinal-to-flow topographic depressions
between glacier flowlines, which transport watewdstream towards the center of the ice shelf
as “meltstreams” (Figure 1). Surface melt feataresspatially extensive, and individual
meltstreams and lakes can be several km wide. Thelwater systems are active in most
summers, carrying large volumes of meltwater ardbéting considerable interannual
variability (Soergel et al., 2020).

A previous Amery studyRhillips, 1998) showed that meltwater in the surface depes
changes the shape of ERS-1 radar altimetry wavefoome meltstream was sufficiently wide

(~2 km) to create a bright target on the surfaeding to a specular return. Specular returns
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were detected in 3-day repeat data in the 19921831894/95 melt season; the short repeat time
allowed for a precise constraint on onset timedum@tion. This provided limited information
about interannual variability of melt onset, extant duration. However, this was only for two
melt seasons, and there was no estimate of mettadepe¢h, so it did not allow for monitoring

the surface volume.
| CESat-2 data over Amery meltwater lakes

ICESat-2 carries the Advanced Topographic Lasamilier System (ATLAS), which is a
photon-counting, 532 nm (green light) lidar opergtat 10 kHz. ATLAS splits the transmitted
laser pulse into six beams, to form three pairsi{gair containing one weak and one strong
beam, separated by 90 m) 3.3 km apart. Each beam ¢g@und-footprint of ~17 m in diameter
(estimated to be closer to ~11 m from on-orbit sssentsMagruder et al., in review), offset

by 0.7 m along-track. This beam configuration aogussition design provides a snapshot of
surface slope along each ground track, while atgaining six times more observations than a
single beam. ICESat-2’s 1387 unique reference groratks (RGTs) extend to 88°, and it
samples them four times a year (91-day repeat ciyctbe polar regions. ICESat-2 began
pointing to the planned RGTs in late March 2016eotlhe on-orbit pointing calibrations were
determined and updated within the on-board pointmgrol systemd\artino et al., 2019);

thus, the early ICESat-2 observations used here n@rrepeat tracks within the current 91-day
cycle. Over ice sheets, ICESat-2 has demonstraterithan 13 cm of surface measurement
precision (1-sigma standard deviation), based saszsnents of both the ATLO3 and ATL06
data productsBrunt et al., 2019).

We identified an ICESat-2 pass over the southererice Shelf during the 2018/2019 melt
season, that had contemporaneous Landsat-8 andebéhimagery: Track 0081 onJanuary
2019 We examined both Level-2 (ATLOBleumann et al., 2019) and Level-3a (ATLO6 Land
Ice Product3mith et al., 2019a) ICESat-2 products. ATLO3 data containftiiestream of
returned photondNeumann et al., 2019), geolocated and classified as high, lowmedium
confidence of representing the surface. ATLO3 datawed double returns located in surface
depressions, indicating meltwater (Figure 2). ATlda6a contain averaged elevations for one

surface only, based on ATLO3 data for 40 m oveilagpgegments at 20 m spacing, is optimized
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for ice surfaces, and was developed in the yeadirlg up to launch. ATLO6 heights cannot be
used to examine meltwater features that createandesurface (Figure 1); this application

requires analysis of the ATLO3 photon data, whtuires new algorithms.
| CESat-2 water depth estimates

ICESat-2 approaches to estimating lake depths regeparation of the water surface and
underlying ice topography from the ATLO3 photonudo We tested six algorithms for this
application that have been developed less tharyéaes since launch and are in various stages
of development (Table 1):

(i) Adapted ATL 08 algorithm: this approach is derived from an existing algonitteveloped for
the ATLO8 land and vegetation along-track prodidguenschwander & Pitts, 2019). ATLO8
leverages both the ATLO3 signal finding approactl an alternative method for noise filtering.
The algorithm work flow is unique amongst the ICE3along-track geophysical products with
its ability to segregate the return signal into tipleé surfaces. In the traditional ATLO8
implementation, these segregated surfaces represmmbpy heights and terrain heights
respectively, using statistical signal classificatfor each type. For application over melt ponds,
we implemented the ATLOS8 signal finding and surfatassification schemes based on ATLO3
input similar to the traditional approach, but apglthem in reverse order: the ground-finding
component to the water surface and the top of cahemht extraction to the melt lake bottom.
That is, we reconfigured the ATLO8 algorithm to foem top-down analysis for segregation of
water and underlying ice rather than the bottonaproach used for land and vegetation. Looking
forward, since ATLO8 identified points are indexedATLO03, the fundamental ATLO8 algorithm
components (signal finding, point classificatiordanulti-surface interpretation) can be further
optimized to exploit the observed bathymetric stgres associated with the water column and

radiometry of the water/lake bottom ratios at en§along-track resolutions.

(i) ATL 13-melt.v1: this method estimates along track depths at ds@eints using a modified
version of the operational depth algorithm devetbfoe the ATL13 Inland Water Data Product
(Jasinski et al., 2019). We assume that meltwater pond boundargesa@roximately known,
and exact boundaries are refined by anomaly asalgsirface mean height and standard

deviation are computed using a quasi-physicalssieéi model. Surface signal photons are
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analyzed for along-track, 50-signal photon shognsents, aggregated to longer segments as
necessary. Depth profile retrievals include dectautian of the ATLAS Impulse Response
Function from the observed profile. Bottom analysgins several surface height standard
deviations (default 12 sigma) or 6 m below the maamiace, whichever is deeper. Histograms of
the long segment vertical profiles are evaluatetirae elevation levels of confidence with the
highest confidence attributed to bottom. Depthoisiputed as the difference between the mean

surface and mean bottom elevations.

(iii) Lake surface-bed separation (L SBS; Fair et al., 2020): this method uses ATL03 data to
separate lake features into distinct arrays fostivéace and bed. LSBS is accomplished by
distributing ATLO3 data into elevation bins, withetexpectation that water surfaces are easily
identifiable in histograms of high confidence phoOnce a lake surface is identified,
statistical inference is used to derive an ingiaéss for the lake bed topography. To improve the
estimation, we also incorporate photon refinemeotedures developed for the ATLO6 surface
finding algorithm @mith et al., 2019). With this approach, the window for accbeaignal
photons is a function of the residuals of photalative to the regression. The accepted photons
then provide a “best guess” for the surface anddbedelt lakes, from which water depth is
calculated. (To compare witfair et al., 2020, our Lakes 1, 3 and 4 are their Figuregtdand

4d respectively).

(iv) Watta (Datta & Wouters, submitted): uses ATLO3 data to identify the surface and bottom
of a lake as well as potential intermittent icegiesy This method identifies the first three maxima
of an adaptive kernel density estimate of elevatimnes for photons over a moving along-track
footprint and then assigns types for (i) surfageide on surface (ii) subsurface ice (iv) bottom
based on the relative height and strength of tipeasi The algorithm has been tested with
ATLAS's strong and weak beams with a mix of photonfidence levels. It was developed and
evaluated over Western Greenland during the 2018smason, with lakes at all times
throughout the season. For 14 of these cases, veeabte to collect same-day high-resolution
imagery from Planet SI8at, which we used both to validate the surfacsedisas to extract total

melt volumes.
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(v) Surface Removal and Robust Fit (SURRF): This method requires as input a segment of
ATLO3 data that is known to contairsiagle melt lake. It finds the flat water surface in AT3.0
data by histogram-binning the entire segment amdirig the peak, then removes all photons
corresponding to that surface. Then, a smoothidifié to the remaining photon data (all ATLO3
photon confidences), using a robust, locally wesdhhoving average. For all locations where
the elevation of the final smooth line is lowerritthe elevation of the lake surface, the water
depth is the difference between the two. At alkotlocations, water depth is set to zero. See

Text S1 for a complete description of this algarith

(vi) Manual picking: this is amanual approach used to generate a manual basssiasguide

for true water depth in the absencero$itu ground truth data/e created an interactive tool in
which users can draw their own best-guess estiofatee melt lake surface and bottom
elevations on ATLO3 photon data plots. For eactirdmution, both elevations were interpolated
to a fine common grid and depth was calculatedhaslifference. We received a total of 56
depth estimates, twelve of which came from reseaschn the ICESat-2 Science Team or
members of their groups who work with ATL0O3 dateg#\cknowledgements). The differences
in depth between the mean of these 12 “expert at#sh and the mean of the remaining
estimates were insignificant, with a bias of 2.2amd a standard deviation of 6.6 cm. Therefore,
we used all 56 manual estimates to construct setivees ensemble estimate, to compare with all
other algorithms. To make this ensemble robusttbers, we used the mean of all depth

estimates falling within the middle quartiles atle#ocation.

I mage-based water depth estimates

We used a light attenuation algorithm physicallgdrhmodel widely used for supraglacial lake
depth retrieval in Greenland and Antarctica (eSgeed & Hamilton, 2011;Tedesco & Seiner,
2011). We applied the following expression to Latesand Sentinel-2 multi-spectral imagery:

z=[In(Ac—R-) — In(Rv—Rx)]/ g,

where A is the albedo of the lake bed, B the reflectance of optically deep water (>40 Ry)
is the observed water reflectanzés water depth, and g is a two-way attenuaticeffoment.
The values of A R. and g depend on the imagery and band used. Wifiderake pixels by
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thresholding théNormalized Difference Water Index (NDWIMoussavi et al., 2020), and
estimated A by averaging reflectances over a three-pixel-widg around each lake and. Rs

the 5th percentile Top Of Atmosphere (TOA) reflec&in nearby coastal tiles that included
ocean pixels. In Landsat-8 images, we ugéérived from depth measurements from Greenland
and Antarctic lakesRope et al., 2016;Pope, 2016;Moussavi €t al., 2020), and averaged the
depthsfrom the red band and the panchromatic band toym®the final depth estimatéle

used Landsat-8 images from 2 January 2019. In8=liimages (also 2 January 2019), we
estimated depths from the red band, ugm@.83 Wlliamson et al., 2018).

Comparison of water depth estimates

We used ATLO3 Release 003 ddtjmann et al., 2020) for the central strong beam (GT2L) of
a single repeat of ICESat-2 Track 81 acvbsgery Ice Shelf2 Jan 2019. The acquisition time
was near the peak of the melt season, andhvasame day as available Landsat-8 and Sentinel-
2 images. The track sampled several locations suiistantial surface water bodies and we
selected four of these, as highlightedMagruder et al. (2019) (Figure 1). These four melt lakes
represent a variety of widths (~800 m to 2 km) dapths (~1 m to 6 m).

For some of the melt lakes there is an “after éyavittich manifests as an apparent second flat
return surface located between 0.5 and 4.2 m b#lewvater surface (e.g. Figure 1, Lake 2).
These are the result of the ATLAS transmit pulsspghand the instrument response when the
detectors are temporarily saturated by strong senfeturns. For the purposes of this analysis we

ignored these subsurface returns.

We ran all of the ICESat-2 depth retrieval algarighover this 150 km section of track. We also
ran depth estimates for the two Landsat-8 and &&lr2iimages that were acquired across the
region sampled by the track on the same day, d@edomlated the image-based results to the

ground track locations for comparison with the I@ES3 depth retrievals.

Since the image-based depth estimates are of @ter @epth, we multiplied them by the
refractive index for freshwater at 532 nm (1.Barrish et al., 2019) so that they could be

qualitatively compared against the “manual baséljregure 2). For quantitative comparison of
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absolute depth values, however, we performed tim®ction in the opposite way: i.e., we

corrected the ICESat-2 depths for refractive index.
Results and Discussion: differences between water depth estimates

Accuracy of manual baseline data: The manual picking method tends to place the ledeat the
elevations below the flat water surface at whichtph density first increases significantly again
(Figure 2), while the ICESat-2-based algorithmsltenplace it closer to the second peak in
photon densityi(e. deeper). Over land-ice surfaces, the ATLO6 alparitises the latter
approach, and has been validated to be accuratdter than 3 cm with better than 9 cm of
surface measurement precisi@nynt et al., 2019). However, while traveling through water,
many photons in the ICESat-2 laser beams are dubjeaultiple scattering, which biases those
photons’ registered elevations towards lower elemat While the effect of multiple scattering
suggests that the true lake bed may be shallowerttie elevation of peak photon density, depth
is likely underestimated when using the first (khaést) increase in photon density. This is
because in the presence of an across-track sldipst imcrease in density would always be due
to the photons returned from the highest point witBESat-2's ~11 m footprint. Furthermore,
there will always be a spread of photons aboutfase based on the pulse width of the beam;
typically, we see a spread of about 25 cm. Theegfwe believe that the true depths of the melt
lakes are actually a few centimeters deeper thmmémual baseline estimates. In addition to this
potential depth bias, the manual method is an ebleeof 56 individual estimates and thus tends
to smooth out not only noise and artifacts, bub alsme structural details in the photon data.
However, in the absence of ground truth data ferddkes considered in this study, we used the
manual picking data as a proxy for the true defdtl'snanual baseline”). Using the manual
baseline for comparison, we assessed the perfoer(gnalitatively and quantitatively) of each

meltwater depth retrieval algorithm.

Qualitative comparison with manual baseline: In general, all algorithms (ICESat-2 and image-

based) primarily identified supraglacial waterreg same locations, and the along-track widths
they estimated were approximately the same for esgdtwater feature, and consistent with the
manual baseline. Broadly speaking, the shape tdlkadk (how the depth changes with distance

along track) are qualitatively similar, and depthxima were in approximately the same
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locations on the track; however the absolute depthre different for all algorithms (Figure 2).

All ICESat-2 algorithms captured different amouotstructural detail. Overall, the techniques
that use the ICESat-2 data produced depths cluséds manual baseline, with the closest
estimate being the ATLO8 technique. This is becélusTLO08 algorithm estimates the surface
from the median value, which places its derivedasigr below the “top” of the lake bottom
returns, similar to the manual baseline. LSBS pcediufalse positives between the lobes of lakes
3 and 4, i.e. estimated depths over non-melt atesB8S had no depth estimate for the northern

lobe of lake 2.

Quantitative comparison with manual baseline: Overall, the five algorithms based on ICESat-2
produced depths that were much closer to the médrasaline than the image-based algorithms.
Most ICESat-2 based algorithms show a bias towdegper depths when compared to the
manual baseline (Figure S1). The ATLO08 algorithmdoiced the estimates that were closest to
the manual baseline (mean of differences is 0.02&amdard deviation 0.2 m). We averaged the
depth estimates from the five ICESat-2 algorithm®tm an ICESat-2 “ensemble”; the
ensemble mean lies mostly at deeper depths, andeha of the differences between the
ICESat-2-based estimates and the manual baseli@el&Bm (the ICESat-2 depths are deeper
than the manual baseline). However, the standanatien of differences between the depths
from the manual baseline and the ICESat-2 algorghsemble (0.17 m) is lower than that of
any single algorithm, so the ensemble lake botiitsrttie general “shape” of the lake bottom
better; implying that the ultimate meltwater regagalgorithm will combine aspects of all five

algorithms.

For these four lakes, both image-based techniquekiped meltwater depth estimates that were
too shallow: the mean of the differences betweerirttage-based estimates and the manual
baseline is +0.71 m (the image-based depths allewkathan the manual baseline); the
standard deviation is 0.75 m, i.e., average deptrs 70% too low for the Landsat-8 technique
and 30% for Sentinel-2. This large difference bemvkandsat-8 and Sentinel-2 estimates for
these four lakes is not consistent witho{ssavi et al.) 2020 based on a larger sample of 42
Landsat-8 — Sentinel-2 imagery pairs. They showat] tvhile the depths of individual lakes

measured with Sentinel-2 and Landsat-8 varied,alMérere was reasonable agreement between
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the two approaches. However, the fact that ICES#g#hs are more accurate for the same lakes

implies that ICESat-2 depths can be used to tuag@based algorithms.

| CESat-2 algorithm automation and efficiency: Since ICESat-2 operates continuously and has
six beams, there is a potential for a vast amolif€@ESat-2 data for any given melt season. It is
not efficient to search through all the ATLO3 didamelt features, even when surface water
persists only for weeks to months each year on E&cbheet. This means that an automated
algorithm will ultimately be required. The ICESatorithms we considered are in various
stages of development and have varying levels tonaation; most of them are only partially
automated (Table 1). As we showed here, the sentiain can be narrowed using
contemporaneous imagery to identify potential regiof surface water. In the absence of this
imagery we propose that the ATL06 data themseleailde used to locate potential regions of
standing surface water (based on the fact that sefaces are flat, which could be searched for
using ATLO6 slope estimates). This approach wowoldwork, however, if the meltwater is

flowing.
Summary

After only a few months on orbit, ICESat-2 acquideda during an Antarctic melt season (2018-
2019). Using ICESat-2 ATLO3 (full photon) data frame ground-track across Amery Ice Shelf,
EAIS at the peak of the melt season (January 2@d®yemonstrated that the ICESat-2 signal
penetrates the surface meltwater; photons arenedurom both the water surface and the
underlying ice surface. ICESat-2 operates contislyoand has six beams, producing large
amounts of ATLO3 ICESat-2 data each melt seasoer€efbre, it is desirable to find a technique
to locate both the surface meltwater and underligagurface in the data, and automatically
provide an accurate estimate of the distance betweetwo (the meltwater depth). Since this
capability of ICESat-2 was realized, several alipons have been developed to estimate water

depth estimates.

We performed a pilot study where we compared degtimates from six different ICESat-2
algorithms in various stages of development anditmage-based algorithms for four melt lakes
on 2 January 2019. To assess the estimates, wede@aseline using a manual picking

technigue based on ICESat-2 data. All algorithmeevegually reliable in detecting the presence
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of surface melt; however, the ICESat-2 based alyms provided most accurate melt depth
estimates, with the estimates from the adapted gTdlforithm being the closest to the manual
baseline. The image-based algorithms tended torestiimate melt depths by 30-70%. While
this study presents results for just four lake®oa ice shelf, since the Landsat-8 has been used
for most meltwater depth estimates around Antaacicd Greenland to date, it is likely these
estimates are too low. ICESat-2 melt depths widivalus to improve the performance of image-
based approaches that have better spatial coverageen to examine the performance of
supervised statistical learning algorithms trainadCESat-2 depths, moving us closer to an

assessment of total meltwater produced each nadbseacross Antarctica and Greenland.
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Figure 1. Left: Sentinel-2 image over Amery Ice Shelf, 2 JayP019 showing ICESat-2 ground track
0081 GT2L acquired on the same day. The magnifiedsashow the four melt lakes considered in this
study. Right: ATLO3 data for the four melt lakesthweach photon colored by its confidence level for

being a land-ice surface signal. ATLO6 surface aiens are also shown.
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Figure 2. Left panels: ICESat-2 ATLO3 photon data over ther fimelt lakes used in this study, with
median depth estimates from the ICESat-2 algorithimesvn in red. Above each plot are the
corresponding same day Sentinel-2 images, showmptation of the ICESat-2 ground track segment.
Right panels: Comparison of depth estimate rettécfos each lake. To aid visual comparison, image-
based estimates have been multiplied by refraatiex, and background topography has been removed.
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Table 1. Main characteristics of the six ICESat-2 melt degdtforithms used in this study: level of

automation, research goal, and known advantagedisadvantages.

surface and sea floor
in ATLO3 transect for
coastal regions.
Semi-automated for
melt ponds.

for benthic habitat
mapping

signal as surface, sea
floor or water column
for further aggregation
or analysis

Algorithm Level of Automation | Research goal Advantages Disadvantages
i) Adapted Fully automated Shallow water Photon level Limited to ATLO3
ATLO8 extraction of water coastal bathymetry | resolution. Classifies input and hasn't

been adapted to
accommodate signal
artifacts due to
detector saturation

ii) ATL13-melt.v1l

Automated with a
priori knowledge of a
melt lake being
present within an
ATLO3 segment

Inland and near
shore hydrology for
melt lakes, ponds
and streams

Continuous, along
track open water
surface height
statistics and slope;
Along track depth at
discrete points, 15-
50m spatial resolution

Results limited to
only along track
profiles for each
beam.

comparison with
image-based and
ICESat-2 based
retrievals

lakes without large
outliers.

iii) LSBS Automated with a Supraglacial lake Distinguishes between | Detection of small
priori knowledge of a depth retrievals lake surface and bed. lakes (<200 min
melt lake being Retrieves depths for diameter) is difficult
present within an deep lakes. Performs with ICESat-2.
ATLO3 segment retrievals for ICESat-2 | Uncertainties may

and ATM increase when noise
at the lake bed is
significant

iv) Watta Fully automated To detect melt lake | Can be used under Detection of slush

depth, ice over a multiple beam/cloud and water flowing
lake, ice under the | conditions with downstream still in
surface of a lake, associated quality development. More
slush, refrozen flags. Detects small- sensitive to outliers
melt lakes. Feature | scale bathymetry due to minimal
types assigned smoothing (to
probabilistically, capture smaller-
accounting for scale features)
signal saturation

v) SURRF Automated with a Supraglacial lake Robust even with high | Does not work if the
priori knowledge of a depth retrievals, to | levels of background water surface is not
single melt lake being | Use in combination | noise, smoothly tracks | flat (i.e. flowing
present within an with satellite the ice surface at lake | water with an along-
ATLO3 segment imagery edges track surface

gradient), tends to
smooth out fine-
scale details

vi) Manual No automation Provides an Captures the Depth estimate is a

method approximate approximate depth subjective visual

baseline for and shape of melt best guess of where

the surface/bed and
may be biased; fine-
scale details are
smoothed out by
taking an ensemble
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