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Key Points: 

• ICESat-2 photons penetrate surface melt lakes and reflect from both the water surface 
and the underlying ice, providing depth estimates. 

• We compared depths from eight algorithms (six ICESat-2 and two image-based) for four 
lakes present on Amery Ice Shelf in January 2019. 

• Depths from ICESat-2 were more accurate than from imagery (30-70% too low); merging 
these data will improve estimates ice-sheet wide. 
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Abstract 

Surface melting occurs during summer on the Antarctic and Greenland ice sheets, but the volume 

of meltwater stored has been difficult to quantify due to a lack of accurate depth estimates. 

NASA’s ICESat-2 laser altimeter brings a new capability: photons penetrate water and are 

reflected from both the water and the underlying ice; the difference provides a depth estimate. 

ICESat-2 sampled Amery Ice Shelf on 2 January 2019 and showed double returns from surface 

depressions, indicating meltwater. For four melt features, we compared depth estimates from 

eight algorithms: six based on ICESat-2 and two from coincident Landsat-8 and Sentinel-2 

imagery. All algorithms successfully identified surface water at the same locations. Algorithms 

based on ICESat-2 produced the most accurate depths; the image-based algorithms 

underestimated depths (by 30-70%). This implies that ICESat-2 depths can be used to tune 

image-based algorithms, moving us closer to quantifying stored meltwater volumes across 

Antarctica and Greenland. 

Plain Language Summary 

Summer surface melting on Antarctica’s ice shelves is a small component of overall ice sheet 

mass loss but can be important for individual ice shelves and may increase as climate warms. 

However, the volume of meltwater has been difficult to monitor because depth estimates are 

challenging. NASA’s ICESat-2 laser altimetry mission brings a new capability to this problem. 

ICESat-2 532 nm photons (green light) are able to pass through water and reflect from both the 

water surface and the underlying ice surface; the difference in elevation provides meltwater 

depth estimates. In this pilot study we compared depths from eight algorithms (six ICESat-2 and 

two image-based) over four Amery Ice Shelf meltwater lakes for an ICESat-2 pass in early 

January 2019. The ICESat-2 algorithms all produced more reliable depth estimates, and the 

image-based algorithms underestimated the depths. This implies that ICESat-2 water depths can 

be used to tune image-based depth retrieval algorithms, enabling improved performance and 

allowing us to estimate more accurately how much surface melt is stored in melt ponds on the ice 

sheets each summer. 

 

1. Introduction 
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Antarctica’s ice shelves are losing net mass to the ocean, mainly through iceberg calving and 

basal melting (Adusumilli et al., 2020; Rignot et al., 2013). While surface melt does not yet 

significantly impact overall mass balance, it is widespread on Antarctica's ice shelves (e.g., 

Zwally and Fiegles, 1994; Trusel et al., 2012) and is predicted to increase (Trusel et al., 2015). 

Over the last decade, widespread and rapid changes have been observed in some regions of the 

Antarctic Ice Sheet, including thinning (Shepherd et al., 2003, Fricker and Padman, 2012; Paolo 

et al., 2015) and dramatic disintegration of Antarctic Peninsula ice shelves through hydrofracture 

(Rott et al., 1996; Scambos et al., 2003). Although no major changes on this scale have been 

identified in the East Antarctic Ice Sheet (EAIS; which contains approximately 75% of the total 

Antarctic ice sheet area, 85% of the volume, and accounts for 52 m of potential sea-level rise 

(Lythe et al., 2000)), there is a possibility that areas of the EAIS could become more vulnerable 

to hydrofracture as atmospheric temperatures increase and surface melt increases (Kingslake et 

al., 2017; Bell et al., 2018; Lai et al., 2020). Therefore, it is important to monitor amount of 

meltwater current produced each year. Supraglacial lakes are one important destination for 

surface meltwater; others include firn (via refreezing and storage in aquifers), and the ocean 

(through dolines and off the front of ice shelves). Therefore, one way to monitor the state of the 

ice sheet’s supraglacial hydrology is to quantify the amount of water stored in lakes, but this has 

been challenging, due to lack of accurate depth estimates. Therefore, there are no comprehensive 

estimates of total meltwater produced each melt season. 

Amery Ice Shelf experiences annual surface melt, and previous studies indicate interannual 

variability in meltwater timing and duration and the extent of the drainage system (Phillips, 

1998; Spergel et al., 2020). In this paper, we introduce a new technique for estimating melt water 

depth from ICESat-2 data and demonstrate it on Amery Ice Shelf, EAIS, during the January 2019 

melt season. We describe a pilot project with investigators who contributed depth estimates for 

four Amery melt lakes along a single ICESat-2 ground track. We used eight algorithms to 

estimate the depth of meltwater stored in melt features: six based on ICESat-2 data (five semi or 

fully automated algorithms in various stages of development, and one manual method, used as a 

baseline for comparison in the absence of ground truth); and two based on imagery (Sentinel-2 

and Landsat 8). We compared the results from the ICESat-2 algorithms and then compared the 

ICESat-2 depth estimates with depth estimates from Landsat 8 and Sentinel-2 satellite imagery. 

Although ICESat-2 provides water depth estimates solely along its ground tracks and has limited 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

spatial sampling of short-lived melt features, the ICESat-2 derived depth estimates can provide a 

training dataset for image-based methods, which can then be extended to provide depth estimates 

across entire melt regions. This will significantly improve our capability to estimate the volume 

of surface melt stored in surface lakes on each ice sheet. 

2. Previous observations of Amery surface melt 

Amery Ice Shelf (area 70,000 km2) is EAIS’s largest ice shelf, and buttresses the largest drainage 

basin in EAIS (Lambert-Amery system); this basin drains ~16% of the area and ~14% of the 

volume of the EAIS, with 7.7 m of sea-level potential (Tinto et al., 2019). Located between 69°S 

and 73°S, Amery Ice Shelf is far enough north that it experiences significant surface melting 

each summer (Phillips, 1998; Kingslake et al., 2017), and it has been suggested that it may be 

susceptible to breakup within a few decades if it experiences warming trends similar to those 

which took place on the Peninsula (Scambos et al., 2003). The onset date, freeze over date and 

duration of surface melting vary from year to year; these are all climate-related variables that can 

be monitored with satellite remote sensing (Phillips, 1998; Tedesco, 2007; van den Broeke, 

2005). 

Surface melt features on southern Amery Ice Shelf were documented as early as 1960, when it 

was noted that extensive summer melting took place forming rivers, melt lakes and dolines 

(Mellor and Mackinnon, 1960). They have also been detected by aerial observation, in synthetic 

aperture radar (SAR) and Landsat satellite imagery and in satellite radar altimetry (e.g. 

Swithinbank et al., 1988; Phillips, 1998). Surface melting occurs in the blue-ice zone near the 

grounding line. Meltwater mostly collects in longitudinal-to-flow topographic depressions 

between glacier flowlines, which transport water downstream towards the center of the ice shelf 

as “meltstreams” (Figure 1). Surface melt features are spatially extensive, and individual 

meltstreams and lakes can be several km wide. These meltwater systems are active in most 

summers, carrying large volumes of meltwater and exhibiting considerable interannual 

variability (Spergel et al., 2020). 

A previous Amery study (Phillips, 1998) showed that meltwater in the surface depressions 

changes the shape of ERS-1 radar altimetry waveforms: one meltstream was sufficiently wide 

(~2 km) to create a bright target on the surface, leading to a specular return. Specular returns 
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were detected in 3-day repeat data in the 1992/93 and 1994/95 melt season; the short repeat time 

allowed for a precise constraint on onset time and duration. This provided limited information 

about interannual variability of melt onset, extent and duration. However, this was only for two 

melt seasons, and there was no estimate of meltwater depth, so it did not allow for monitoring 

the surface volume. 

ICESat-2 data over Amery meltwater lakes 

ICESat-2 carries the Advanced Topographic Laser Altimeter System (ATLAS), which is a 

photon-counting, 532 nm (green light) lidar operating at 10 kHz. ATLAS splits the transmitted 

laser pulse into six beams, to form three pairs (each pair containing one weak and one strong 

beam, separated by 90 m) 3.3 km apart. Each beam has a ground-footprint of ~17 m in diameter 

(estimated to be closer to ~11 m from on-orbit assessments; Magruder et al., in review), offset 

by 0.7 m along-track. This beam configuration and acquisition design provides a snapshot of 

surface slope along each ground track, while also obtaining six times more observations than a 

single beam. ICESat-2’s 1387 unique reference ground tracks (RGTs) extend to 88°, and it 

samples them four times a year (91-day repeat cycle) in the polar regions. ICESat-2 began 

pointing to the planned RGTs  in late March 2019 once the on-orbit pointing calibrations were 

determined and updated within the on-board pointing control systems (Martino et al., 2019); 

thus, the early ICESat-2 observations used here were not repeat tracks within the current 91-day 

cycle. Over ice sheets, ICESat-2 has demonstrated better than 13 cm of surface measurement 

precision (1-sigma standard deviation), based on assessments of both the ATL03 and ATL06 

data products (Brunt et al., 2019).  

We identified an ICESat-2 pass over the southern Amery Ice Shelf during the 2018/2019 melt 

season, that had contemporaneous Landsat-8 and Sentinel-2 imagery: Track 0081 on 2 January 

2019. We examined both Level-2 (ATL03; Neumann et al., 2019) and Level-3a (ATL06 Land 

Ice Product; Smith et al., 2019a) ICESat-2 products. ATL03 data contain the full stream of 

returned photons (Neumann et al., 2019), geolocated and classified as high, low or medium 

confidence of representing the surface. ATL03 data showed double returns located in surface 

depressions, indicating meltwater (Figure 2). ATL06 data contain averaged elevations for one 

surface only, based on ATL03 data for 40 m overlapping segments at 20 m spacing, is optimized 
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for ice surfaces, and was developed in the years leading up to launch. ATL06 heights cannot be 

used to examine meltwater features that create a second surface (Figure 1); this application 

requires analysis of the ATL03 photon data, which requires new algorithms.   

ICESat-2 water depth estimates 

ICESat-2 approaches to estimating lake depths require separation of the water surface and 

underlying ice topography from the ATL03 photon cloud. We tested six algorithms for this 

application that have been developed less than two years since launch and are in various stages 

of development (Table 1): 

(i) Adapted ATL08 algorithm: this approach is derived from an existing algorithm developed for 

the ATL08 land and vegetation along-track product (Neuenschwander & Pitts, 2019). ATL08 

leverages both the ATL03 signal finding approach and an alternative method for noise filtering. 

The algorithm work flow is unique amongst the ICESat-2 along-track geophysical products with 

its ability to segregate the return signal into multiple surfaces. In the traditional ATL08 

implementation, these segregated surfaces represent canopy heights and terrain heights 

respectively, using statistical signal classification for each type. For application over melt ponds, 

we implemented the ATL08 signal finding and surface classification schemes based on ATL03 

input similar to the traditional approach, but applied them in reverse order: the ground-finding 

component to the water surface and the top of canopy height extraction to the melt lake bottom. 

That is, we reconfigured the ATL08 algorithm to perform top-down analysis for segregation of 

water and underlying ice rather than the bottom-up approach used for land and vegetation. Looking 

forward, since ATL08 identified points are indexed to ATL03, the fundamental ATL08 algorithm 

components (signal finding, point classification and multi-surface interpretation) can be further 

optimized to exploit the observed bathymetric signatures associated with the water column and 

radiometry of the water/lake bottom ratios at  range of along-track resolutions. 

(ii) ATL13-melt.v1: this method estimates along track depths at discrete points using a modified 

version of the operational depth algorithm developed for the ATL13 Inland Water Data Product 

(Jasinski et al., 2019). We assume that meltwater pond boundaries are approximately known, 

and exact boundaries are refined by anomaly analysis. Surface mean height and standard 

deviation are computed using a quasi-physical statistical model. Surface signal photons are 
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analyzed for along-track, 50-signal photon short segments, aggregated to longer segments as 

necessary. Depth profile retrievals include deconvolution of the ATLAS Impulse Response 

Function from the observed profile. Bottom analysis begins several surface height standard 

deviations (default 12 sigma) or 6 m below the mean surface, whichever is deeper. Histograms of 

the long segment vertical profiles are evaluated at three elevation levels of confidence with the 

highest confidence attributed to bottom. Depth is computed as the difference between the mean 

surface and mean bottom elevations. 

(iii) Lake surface-bed separation (LSBS; Fair et al., 2020): this method uses ATL03 data to 

separate lake features into distinct arrays for the surface and bed. LSBS is accomplished by 

distributing ATL03 data into elevation bins, with the expectation that water surfaces are easily 

identifiable in histograms of high confidence photons. Once a lake surface is identified, 

statistical inference is used to derive an initial guess for the lake bed topography. To improve the 

estimation, we also incorporate photon refinement procedures developed for the ATL06 surface 

finding algorithm (Smith et al., 2019). With this approach, the window for acceptable signal 

photons is a function of the residuals of photons relative to the regression. The accepted photons 

then provide a “best guess” for the surface and bed of melt lakes, from which water depth is 

calculated. (To compare with Fair et al., 2020, our Lakes 1, 3 and 4 are their Figures 4a, 4b and 

4d respectively). 

(iv) Watta (Datta & Wouters, submitted): uses ATL03 data to identify the surface and bottom 

of a lake as well as potential intermittent ice layers. This method identifies the first three maxima 

of an adaptive kernel density estimate of elevation values for photons over a moving along-track 

footprint and then assigns types for (i) surface (ii) ice on surface (ii) subsurface ice (iv) bottom 

based on the relative height and strength of the signal. The algorithm has been tested with 

ATLAS’s strong and weak beams with a mix of photon confidence levels. It was developed and 

evaluated over Western Greenland during the 2019 melt season, with lakes at all times 

throughout the season. For 14 of these cases, we were able to collect same-day high-resolution 

imagery from Planet SkySat, which we used both to validate the surface as well as to extract total 

melt volumes. 
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(v) Surface Removal and Robust Fit (SuRRF): This method requires as input a segment of 

ATL03 data that is known to contain a single melt lake. It finds the flat water surface in ATL03 

data by histogram-binning the entire segment and finding the peak, then removes all photons 

corresponding to that surface. Then, a smooth line is fit to the remaining photon data (all ATL03 

photon confidences), using a robust, locally weighted moving average. For all locations where 

the elevation of the final smooth line is lower than the elevation of the lake surface, the water 

depth is the difference between the two. At all other locations, water depth is set to zero. See 

Text S1 for a complete description of this algorithm. 

(vi) Manual picking: this is a manual approach used to generate a manual baseline, as a guide 

for true water depth in the absence of in situ ground truth data. We created an interactive tool in 

which users can draw their own best-guess estimate of the melt lake surface and bottom 

elevations on ATL03 photon data plots. For each contribution, both elevations were interpolated 

to a fine common grid and depth was calculated as the difference. We received a total of 56 

depth estimates, twelve of which came from researchers on the ICESat-2 Science Team or 

members of their groups who work with ATL03 data (see Acknowledgements). The differences 

in depth between the mean of these 12 “expert estimates” and the mean of the remaining 

estimates were insignificant, with a bias of 2.2 cm and a standard deviation of 6.6 cm. Therefore, 

we used all 56 manual estimates to construct a “baseline” ensemble estimate, to compare with all 

other algorithms. To make this ensemble robust to outliers, we used the mean of all depth 

estimates falling within the middle quartiles at each location. 

Image-based water depth estimates 

We used a light attenuation algorithm physically-based model widely used for supraglacial lake 

depth retrieval in Greenland and Antarctica (e.g., Sneed & Hamilton, 2011; Tedesco & Steiner, 

2011). We applied the following expression to Landsat-8 and Sentinel-2 multi-spectral imagery: 

z = [ln(Ad−R∞) − ln(Rw−R∞)]/ g, 

where Ad is the albedo of the lake bed, R∞ is the reflectance of optically deep water (>40 m), Rw 

is the observed water reflectance, z is water  depth, and g is a two-way attenuation coefficient. 

The values of Ad, R∞ and g depend on the imagery and band used. We identified lake pixels by 
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thresholding the Normalized Difference Water Index (NDWI) (Moussavi et al., 2020), and 

estimated Ad by averaging reflectances over a three-pixel-wide ring around each lake and R∞  as 

the 5th percentile Top Of Atmosphere (TOA) reflectance in nearby coastal tiles that included 

ocean pixels. In Landsat-8 images, we used g derived from depth measurements from Greenland 

and Antarctic lakes (Pope et al., 2016; Pope, 2016; Moussavi et al., 2020), and averaged the 

depths from the red band and the panchromatic band to produce the final depth estimate. We 

used Landsat-8 images from 2 January 2019. In Sentinel-2 images (also 2 January 2019), we 

estimated depths from the red band, using g=0.83 (Williamson et al., 2018). 

Comparison of water depth estimates 

We used ATL03 Release 003 data (Neumann et al., 2020) for the central strong beam (GT2L) of 

a single repeat of ICESat-2 Track 81 across Amery Ice Shelf, 2 Jan 2019. The acquisition time 

was near the peak of the melt season, and was the same day as available Landsat-8 and Sentinel-

2 images. The track sampled several locations with substantial surface water bodies and we 

selected four of these, as highlighted in Magruder et al. (2019) (Figure 1). These four melt lakes 

represent a variety of widths (~800 m to 2 km) and depths (~1 m to 6 m). 

For some of the melt lakes there is an “after event”, which manifests as an apparent second flat 

return surface located between 0.5 and 4.2 m below the water surface (e.g. Figure 1, Lake 2). 

These are the result of the ATLAS transmit pulse shape and the instrument response when the 

detectors are temporarily saturated by strong surface returns. For the purposes of this analysis we 

ignored these subsurface returns. 

We ran all of the ICESat-2 depth retrieval algorithms over this 150 km section of track. We also 

ran depth estimates for the two Landsat-8 and Sentinel-2 images that were acquired across the 

region sampled by the track on the same day, and interpolated the image-based results to the 

ground track locations for comparison with the ICESat-2 depth retrievals. 

Since the image-based depth estimates are of true water depth, we multiplied them by the 

refractive index for freshwater at 532 nm (1.33; Parrish et al., 2019) so that they could be 

qualitatively compared against the “manual baseline” (Figure 2). For quantitative comparison of 
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absolute depth values, however, we performed this correction in the opposite way: i.e., we 

corrected the ICESat-2 depths for refractive index. 

Results and Discussion: differences between water depth estimates 

Accuracy of manual baseline data: The manual picking method tends to place the lake bed at the 

elevations below the flat water surface at which photon density first increases significantly again 

(Figure 2), while the ICESat-2-based algorithms tend to place it closer to the second peak in 

photon density (i.e. deeper). Over land-ice surfaces, the ATL06 algorithm uses the latter 

approach, and has been validated to be accurate to better than 3 cm with better than 9 cm of 

surface measurement precision (Brunt et al., 2019). However, while traveling through water, 

many photons in the ICESat-2 laser beams are subject to multiple scattering, which biases those 

photons’ registered elevations towards lower elevations. While the effect of multiple scattering 

suggests that the true lake bed may be shallower than the elevation of peak photon density, depth 

is likely underestimated when using the first (shallowest) increase in photon density. This is 

because in the presence of an across-track slope, a first increase in density would always be due 

to the photons returned from the highest point within ICESat-2’s ~11 m footprint. Furthermore, 

there will always be a spread of photons about a surface based on the pulse width of the beam; 

typically, we see a spread of about 25 cm. Therefore, we believe that the true depths of the melt 

lakes are actually a few centimeters deeper than the manual baseline estimates. In addition to this 

potential depth bias, the manual method is an ensemble of 56 individual estimates and thus tends 

to smooth out not only noise and artifacts, but also some structural details in the photon data. 

However, in the absence of ground truth data for the lakes considered in this study, we used the 

manual picking data as a proxy for the true depths (a “manual baseline”). Using the manual 

baseline for comparison, we assessed the performance (qualitatively and quantitatively) of each 

meltwater depth retrieval algorithm. 

Qualitative comparison with manual baseline: In general, all algorithms (ICESat-2 and image-

based) primarily identified supraglacial water at the same locations, and the along-track widths 

they estimated were approximately the same for each meltwater feature, and consistent with the 

manual baseline. Broadly speaking, the shape of all lakes (how the depth changes with distance 

along track) are qualitatively similar, and depth maxima were in approximately the same 
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locations on the track; however the absolute depths were different for all algorithms (Figure 2). 

All ICESat-2 algorithms captured different amounts of structural detail. Overall, the techniques 

that use the ICESat-2 data produced depths closest to the manual baseline, with the closest 

estimate being the ATL08 technique. This is because the ATL08 algorithm estimates the surface 

from the median value, which places its derived surface below the “top” of the lake bottom 

returns, similar to the manual baseline. LSBS produced false positives between the lobes of lakes 

3 and 4, i.e. estimated depths over non-melt areas; LSBS had no depth estimate for the northern 

lobe of lake 2. 

Quantitative comparison with manual baseline: Overall, the five algorithms based on ICESat-2 

produced depths that were much closer to the manual baseline than the image-based algorithms. 

Most ICESat-2 based algorithms show a bias towards deeper depths when compared to the 

manual baseline (Figure S1). The ATL08 algorithm produced the estimates that were closest to 

the manual baseline (mean of differences is 0.02 m, standard deviation 0.2 m). We averaged the 

depth estimates from the five ICESat-2 algorithms to form an ICESat-2 “ensemble”; the 

ensemble mean lies mostly at deeper depths, and the mean of the differences between the 

ICESat-2-based estimates and the manual baseline is -0.13 m (the ICESat-2 depths are deeper 

than the manual baseline). However, the standard deviation of differences between the depths 

from the manual baseline and the ICESat-2 algorithm ensemble (0.17 m) is lower than that of 

any single algorithm, so the ensemble lake bottom fits the general “shape” of the lake bottom 

better; implying that the ultimate meltwater retrieval algorithm will combine aspects of all five 

algorithms. 

For these four lakes, both image-based techniques produced meltwater depth estimates that were 

too shallow: the mean of the differences between the image-based estimates and the manual 

baseline is +0.71 m (the image-based depths are shallower than the manual baseline); the 

standard deviation is 0.75 m, i.e., average depths were 70% too low for the Landsat-8 technique 

and 30% for Sentinel-2. This large difference between Landsat-8 and Sentinel-2 estimates for 

these four lakes is not consistent with (Moussavi et al.) 2020 based on a larger sample of 42 

Landsat-8 – Sentinel-2 imagery pairs. They showed that, while the depths of individual lakes 

measured with Sentinel-2 and Landsat-8 varied, overall there was reasonable agreement between 
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the two approaches. However, the fact that ICESat-2 depths are more accurate for the same lakes 

implies that ICESat-2 depths can be used to tune image-based algorithms. 

ICESat-2 algorithm automation and efficiency: Since ICESat-2 operates continuously and has 

six beams, there is a potential for a vast amount of ICESat-2 data for any given melt season. It is 

not efficient to search through all the ATL03 data for melt features, even when surface water 

persists only for weeks to months each year on each ice sheet. This means that an automated 

algorithm will ultimately be required. The ICESat-2 algorithms we considered are in various 

stages of development and have varying levels of automation; most of them are only partially 

automated (Table 1). As we showed here, the search domain can be narrowed using 

contemporaneous imagery to identify potential regions of surface water. In the absence of this 

imagery we propose that the ATL06 data themselves could be used to locate potential regions of 

standing surface water (based on the fact that their surfaces are flat, which could be searched for 

using ATL06 slope estimates). This approach would not work, however, if the meltwater is 

flowing. 

Summary 

After only a few months on orbit, ICESat-2 acquired data during an Antarctic melt season (2018-

2019). Using ICESat-2 ATL03 (full photon) data from one ground-track across Amery Ice Shelf, 

EAIS at the peak of the melt season (January 2019), we demonstrated that the ICESat-2 signal 

penetrates the surface meltwater; photons are returned from both the water surface and the 

underlying ice surface. ICESat-2 operates continuously and has six beams, producing large 

amounts of ATL03 ICESat-2 data each melt season. Therefore, it is desirable to find a technique 

to locate both the surface meltwater and underlying ice surface in the data, and automatically 

provide an accurate estimate of the distance between the two (the meltwater depth). Since this 

capability of ICESat-2 was realized, several algorithms have been developed to estimate water 

depth estimates. 

We performed a pilot study where we compared depth estimates from six different ICESat-2 

algorithms in various stages of development and two image-based algorithms for four melt lakes 

on 2 January 2019. To assess the estimates, we created a baseline using a manual picking 

technique based on ICESat-2 data. All algorithms were equally reliable in detecting the presence 
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of surface melt; however, the ICESat-2 based algorithms provided most accurate melt depth 

estimates, with the estimates from the adapted ATL08 algorithm being the closest to the manual 

baseline. The image-based algorithms tended to underestimate melt depths by 30-70%. While 

this study presents results for just four lakes on one ice shelf, since the Landsat-8 has been used 

for most meltwater depth estimates around Antarctica and Greenland to date, it is likely these 

estimates are too low. ICESat-2 melt depths will allow us to improve the performance of image-

based approaches that have better spatial coverage, or even to examine the performance of 

supervised statistical learning algorithms trained on ICESat-2 depths, moving us closer to an 

assessment of total meltwater produced each melt season across Antarctica and Greenland. 
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Figures 

 

Figure 1: Left: Sentinel-2 image over Amery Ice Shelf, 2 January 2019 showing ICESat-2 ground track 

0081 GT2L acquired on the same day. The magnified areas show the four melt lakes considered in this 

study. Right: ATL03 data for the four melt lakes, with each photon colored by its confidence level for 

being a land-ice surface signal. ATL06 surface elevations are also shown. 
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Figure 2. Left panels: ICESat-2 ATL03 photon data over the four melt lakes used in this study, with 

median depth estimates from the ICESat-2 algorithms shown in red. Above each plot are the 

corresponding same day Sentinel-2 images, showing the location of the ICESat-2 ground track segment. 

Right panels: Comparison of depth estimate retrievals for each lake. To aid visual comparison, image-

based estimates have been multiplied by refractive index, and background topography has been removed. 
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Table 1. Main characteristics of the six ICESat-2 melt depth algorithms used in this study: level of 

automation, research goal, and known advantages and disadvantages. 

Algorithm Level of Automation Research goal Advantages Disadvantages 

i) Adapted 
ATL08 

Fully automated 
extraction of water 
surface and sea floor 
in ATL03 transect for 
coastal regions. 
Semi-automated for 
melt ponds. 

Shallow water 
coastal bathymetry 
for benthic habitat 
mapping 

Photon level 
resolution. Classifies 
signal as surface, sea 
floor or water column 
for further aggregation 
or analysis  

Limited to ATL03 
input and hasn’t 
been adapted to 
accommodate signal 
artifacts due to 
detector saturation  

ii) ATL13-melt.v1 Automated with a 
priori knowledge of a 
melt lake being 
present within an 
ATL03 segment 

Inland and near 
shore hydrology for 
melt lakes, ponds 
and streams 

Continuous, along 
track open water 
surface height 
statistics and slope; 
Along track depth at 
discrete points, 15-
50m spatial resolution 

Results limited to 
only along track 
profiles for each 
beam. 

iii) LSBS Automated with a 
priori knowledge of a 
melt lake being 
present within an 
ATL03 segment 

Supraglacial lake 
depth retrievals 

Distinguishes between 
lake surface and bed. 
Retrieves depths for 
deep lakes. Performs 
retrievals for ICESat-2 
and ATM 

Detection of small 
lakes (< 200 m in 
diameter) is difficult 
with ICESat-2. 
Uncertainties may 
increase when noise 
at the lake bed is 
significant 

iv) Watta Fully automated To detect melt lake  
depth, ice over a 
lake, ice under the 
surface of a lake, 
slush, refrozen 
melt lakes. Feature 
types assigned 
probabilistically, 
accounting for 
signal saturation 

Can be used under 
multiple beam/cloud 
conditions with 
associated quality 
flags. Detects small-
scale bathymetry 

Detection of slush 
and water flowing 
downstream still in 
development. More 
sensitive to outliers 
due to minimal 
smoothing (to 
capture smaller-
scale features) 

v) SuRRF Automated with a 
priori knowledge of a 
single melt lake being 
present within an 
ATL03 segment 

Supraglacial lake 
depth retrievals, to 
use in combination 
with satellite 
imagery 

Robust even with high 
levels of background 
noise, smoothly tracks 
the ice surface at lake 
edges 

Does not work if the 
water surface is not 
flat (i.e. flowing 
water with an along-
track surface 
gradient), tends to 
smooth out fine-
scale details 

vi) Manual 
method 

No automation Provides an 
approximate 
baseline for 
comparison with 
image-based and 
ICESat-2 based 
retrievals 

Captures the 
approximate depth 
and shape of melt 
lakes without large 
outliers. 

Depth estimate is a 
subjective visual 
best guess of where 
the surface/bed and 
may be biased; fine-
scale details are 
smoothed out by 
taking an ensemble 
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