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S1 Model setup12

S1.1 The modified cloud-level wind13

Similar to the approach taken in Kaspi et al. [2020] and Galanti and Kaspi [2021], we look for a slightly modified14

cloud-level wind that will allow an exact fit to the odd gravity harmonics J3, J5, J7, and J9. This is done in order15

to single out the dependence of the wind-induced gravity harmonics on the latitudinal variability of the wind that16

is examined in the study. This is done by decomposing the observed cloud-level wind into Legendre polynomials17

Uobs(θ) =

N∑
i=0

Aobs
i Pi(sin θ), (1)

where Aobs
i are the coefficients determining the latitudinal shape of the observed wind, Pi are the Legendre polyno-18

mials, and N = 99 is the number of polynomials to be used. The Aobs
i are calculated from the observed cloud-level19

wind of Tollefson et al. [2017]. Defining a modified cloud-level wind20

U sol(θ) =

N∑
i=0

Asol
i Pi(sin θ), (2)

where Asol
i are the modified coefficients, we allow these coefficients to vary during the optimization process (see21

below, section S1.4). Note that we construct the wind using a very large number of polynomials. This is done in22

order to allow the wind solution to follow closely the observed wind. The optimization procedure described below23

ensures that the this large number of coefficients is well constrained.24

Since the observed wind [Tollefson et al., 2017] already allows a very good much to the observed odd gravity25

harmonics [Kaspi et al., 2018, see also Fig. 3 in the main text], only slight modifications are needed to enable an26

exact fit (Fig. S1a). The deviation of the optimized wind is well within the observed uncertainty of around 15 m s−1
27

[Tollefson et al., 2017]. In the case where the inner part of the decay function is fixed to allow compatibility to28

magnetic secular variations (Fig 4g in the main text), the optimized cloud-level wind, while a little farther away, is29

again within the uncertainty of the observed wind (Fig. S1b).30
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Figure S1: The cloud-level winds used in the study (red), shown together with the observed wind [Tollefson et al.,
2017, black]. For the latter, the uncertainty level of 15 m s−1 is shown in gray. (a) The wind optimized to allow an
exact fit to the odd gravity harmonics only. (b) The wind optimized to allow an exact fit the odd gravity harmonics
when the decay function in the semiconducting region is fixed according to magnetic secular variations. See Galanti
and Kaspi [2021] for a detailed derivation and discussion.

S1.2 The truncated wind and generation of random winds31

The truncated wind is defined as32

Uθ0(θ) = U sol(θ)
1

2

[
1− tanh

(
|θ| − θ0

∆θ

)]
, (3)

where θ0 is the absolute of truncation latitude, and ∆θ = 5◦ is the width of the truncation. The random winds used33

in section 4 of the main text are generated in the following way. First, for each of the coefficients Asol
i (equation 2)34

a random number −1 < αi < 1 is assigned. Then, a random cloud-level wind is generated using the Legendre35

polynomials 11-100, so that36

Urand(θ) =

N∑
i=11

αiA
sol
i Pi(sin θ). (4)

The lower harmonics 1-10 are excluded from the random wind since we intend to reconstruct the midlatitude part37

of the cloud-level wind that lack the low latitudinal variability exhibited in the equatorial region. Then, the random38

wind is combined with the truncated wind to give39

Uθ0rand(θ) = Uθ0(θ) +Urand(θ)
1

2

[
tanh

(
|θ| − θ0

∆θ

)
+ 1

]
. (5)

This process is repeated, with different random parameter set αi , 1000 times to generated the set of random winds40

used in section 4 of the main text.41
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S1.3 The flow field below the cloud level42

We start by extending the cloud-level wind (Fig. S1) into the interior, keeping constant values along lines parallel43

to the spin axis. Then, we allow the flow to decay in the radial direction. The resulting flow field can be defined as44

u(r, θ) = ucyl(s)Q(r), (6)

where ucyl(s) is the cloud-level zonal wind projected downward parallel to the spin axis and s = r cos(θ) is the45

distance from the axis of rotation. The radial decay function Q(r) is defined as46

Q(r) = (1− α) exp

(
r −Re
H

)
+ α

[
tanh

(
−Re−H−r

∆H

)
+ 1

tanh
(
H

∆H

)
+ 1

]
, (7)

where H is the scale height, α is the contribution ratio between an exponential and a normalized hyperbolic tangent47

function, and ∆H is the width of the hyperbolic tangent. These are the parameters that are searched for during48

the optimization process.49

In the case where MHD considerations are taken into account (section 5 in main text), the decay function Q(r)50

is defined as51

Q(r) = tanh

(
r −RT
δHT

)
1− fM

tanh
(
R−RT

δHT

) + fM , RT < r < R, (8)

Q(r) = fM exp

(
r −RT
HM

)
, r ≤ RT , (9)

where δHT is the width of the hyperbolic tangent function, fM is the ratio between the flow strength at the transition52

depth and the flow at the cloud-level and HM is the decay scale-height in the inner layer [Cao and Stevenson, 2017].53

This functional form of the flow’s radial decay allows two distinctly different behaviors in the regions above and54

below the transition depth RT . In the outer region the decay function represents a non-magnetic dynamical effect,55

with the baroclinic shear being in thermal wind balance [Kaspi et al., 2009], and the free parameter δHM allowing56

a range of decaying profiles, from a gradual decay to a case where the cloud-level winds keep their value almost57

constant until reaching the transition depth. In the inner region, the exponential decay function is assumed to be58

a result of the increased electrical conductivity σ.59

The above assumptions are modified in two cases examined in the study. In the first case, the cloud-level wind60

is projected inward in the radial direction, defined as61

u(r, θ) = Uobs(θ)Q(r), (10)

where Uobs(θ) is the observed cloud-level wind. In the second case, the wind is projected inward parallel to the62

spin axis, but is decayed also in the same direction, so that63

Q(θ, r) = (1− α) exp

(
−z(θ, r)
H

)
+ α

 tanh
(
− z(θ,r)−H∆H

)
+ 1

tanh
(
H

∆H

)
+ 1

 , (11)

where64

z(r, θ) = (Re − r) sin θ. (12)

In both cases, the same three parameters, H,α and ∆H, are optimized to give the best fit to the gravity harmonics.65

S1.4 The wind-induced gravity66

In large-scale flow on fast-rotating planets, such as Jupiter, there exists a balance between the anomalous density67

field ρ′ and the flow field u. Here we give a short version of the derivation of this balance (for the full derivation68

refer to Kaspi et al., 2018). Consider the full momentum balance on a rotating planet69

∂u

∂t
+ (u · ∇) u + 2Ω× u + Ω×Ω×r = −1

ρ
∇p+∇Φ, (13)

where u is the 3D flow vector, Ω is the planetary rotation rate, ρ is density, p is pressure and Φ is the body force70

potential set by gravity so that ∇Φ = −g [Pedlosky , 1987]. It can be shown that under the assumption of a small71
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Rossby number (large scale motions on a fast rotating planet) and a steady state, the equations governing the flow72

can be written as that73

2Ω× (ρu) = −∇p− ρg − ρΩ×Ω×r. (14)

Separating the solutions to a rigid body solution ρs (r, θ), ps (r, θ), and gs (r, θ) in which u = 0, and a deviation74

due to the dynamics ρ′ (r, θ), p′ (r, θ), and g′ (r, θ), the dynamical balance becomes75

2Ω× (ρsu) = −∇p′ − ρsg′ − ρ′gs − ρ′Ω×Ω×r. (15)

Next, neglecting all terms including g′ (scale analysis of the terms), and taking the curl we get76

2Ω · ∇ (ρsu) = ∇ρ′×g. (16)

Lastly, taking the flow to be zonally symmetric u = u(r, θ)φ̂, the balance becomes77

2Ωr
∂

∂z
(ρsu) = gs

∂ρ′

∂θ
, (17)

where θ and z are the latitudinal and axis of rotation directions, respectively. If the flow field u is known then this78

equation can be solved for ρ′ up to an integration constant ρ(r) that does not affect the gravity harmonics (again,79

see Kaspi et al., 2018 for a detailed derivation). This balance was used extensively to study the wind structure80

on Jupiter [e.g., Kaspi , 2013; Liu et al., 2013; Zhang et al., 2015; Galanti and Kaspi , 2016; Kaspi et al., 2016;81

Galanti et al., 2017; Kaspi et al., 2018], as well as for the prediction of the wind-induced gravity field to be expected82

on Jupiter [Kaspi , 2013; Galanti et al., 2017]. The wind-induced gravity harmonics are calculated as the volume83

integral of ρ′ projected onto Legendre polynomials84

∆Jn =
2π

MRne

Reˆ

0

rn+2dr

π/2ˆ

θ=−π/2

Pn (sin θ) ρ′ (r, θ) cos θdθ. (18)

S1.5 The optimization process85

First, we discuss the optimization procedure used to calculate the optimal cloud-level wind (section S1.1). For more86

details on the optimization methodology refer to [Galanti and Kaspi , 2016, 2021]. The parameters to be optimized,87

i.e., those defining the depth of the wind and the cloud-level wind latitudinal profile, are defined as a control vector88

XC = {XH ,XU} =
{

[H0/hnor,∆H/hnor, α/αnor] ,
[
Asol

1 , · · · , Asol
N

]
/unor

}
, (19)

where H0, ∆H and α are the parameters defining the radial decay of the wind, Asol
i are the parameters defining89

the cloud-level wind, and hnor = 107, αnor = 1, and unor103 are the normalization factors for the depth of the90

wind, the mixing coefficient, and the wind coefficients, respectively. The normalization factors are chosen so that91

−1 < H0/hnor, ∆H/hnor, α/αnor, A
sol
i /unor < 1 .92

The goal is to minimize the difference between the model solution for the gravity field and that measured by Juno,93

given the uncertainties of the measurements, and the need to keep the optimized control parameters regularized to94

physical values. The cost function to be minimized is therefore95

L = (Jm − Jo)W (Jm − Jo)
T

+ εHXHXT
H + εU (XU −X0)(XU −X0)T, (20)

where Jm = [Jm3 , J
m
5 , J

m
7 , J

m
9 ] and Jo = [Jo3 , J

o
5 , J

o
7 , J

o
9 ] are the calculated and measured gravity harmonics [Durante96

et al., 2020], respectively, X0 =
[
Aobs

1 , · · · , Aobs
99

]
/unor are the observed wind profile parameters, εH = 2 · 109 is the97

weight given to the regularization of the depth parameters, and εU = 5 ·108 is the weight given to the regularization98

of the wind solution to the observed one. The cost function is composed of three terms, the first is the difference99

between the measured and calculated gravity harmonics, the second assures that the depth of the wind solution100

does not depend on the initial guess, and the third assures that the wind solution does not vary too far from the101

observed one. Given the value of εU and the large number of coefficients defining the wind latitudinal profile, the102

regularization of the wind is very strong, thus ensuring that deviations from the observed cloud-level wind are103

allowed only if they result in a significantly lower value of the cost function. Given an initial guess for −→XC, a104

minimal value of L is searched for using the Matlab function ’fmincon’ and taking advantage of the cost-function105

gradient that is calculated with the adjoint of the dynamical model [Galanti and Kaspi , 2016].106
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Then, in the experiments conducted in section 3 to 5 of the main text, the cloud-level wind is fixed, so that the107

cost function is set to108

L = (Jm − Jo)W (Jm − Jo)
T

+ εHXHXT
H, (21)

where Jm = [Jm3 , J
m
5 ,∆J

m
6 , J

m
7 ,∆J

m
8 , J

m
9 ,∆J

m
10] and Jo = [Jo3 , J

o
5 ,∆J

o
6 , J

o
7 ,∆J

o
8 , J

o
9 ,∆J

o
10]. The goal here if to109

fit not only the odd harmonics, but all the residual even harmonics (see main text). Note that the cost function110

presented in the results (e.g., Fig. 2a in main text) includes only the first term of Eq. 21 that gives the direct111

measure for the model solution.112

S2 Solutions with variants of the flow structures113
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Figure S2: Similar to Fig. 2 in the main text, but for solutions with the Tollefson et al. [2017] cloud-
level winds. Latitude-dependent solutions, as function of the cutoff latitude. (a) The overall fit of the model
solution to the measurements (cost function). Each case is assigned with a different color, used in the following
panels. (b-f) the solutions for the different gravity harmonics (colors), and the measurement (black). (g) the decay
function associated with each solution.
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Figure S3: Solutions with the cloud-level wind truncated inside a latitudinal region. We examine 18
cases in which the cloud-level wind is truncated equatorward of a certain latitude, for example, set to zero inside
the 25◦S-25◦N region (see panel h). (a) The overall fit of the model solution to the measurements (cost function).
Each case is assigned with a different color, used in the following panels. (b-f) the solutions for the different gravity
harmonics (colors), and the measurement (black). (g) the decay function associated with each solution. The analysis
shows that a wind truncated equatorward of a latitude larger than 20◦S-20◦N does not allow a plausible solution
to be reached. (h) Examples of wind truncated equatorward of latitude 5◦, 25◦, 45◦, and 65◦.
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Figure S4: Similar to Fig. 2 in the main text, but for solutions with radial projection of the observed
cloud-level winds. Latitude-dependent solutions, as function of the cutoff latitude. (a) The overall fit of the model
solution to the measurements (cost function). Each case is assigned with a different color, used in the following
panels. (b-f) the solutions for the different gravity harmonics (colors), and the measurement (black). (g) the decay
function associated with each solution.
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Figure S5: Similar to Fig. 2 in the main text, but for solutions with wind decay in the Z direction.
Latitude-dependent solutions, as function of the cutoff latitude. (a) The overall fit of the model solution to the
measurements (cost function). Each case is assigned with a different color, used in the following panels. (b-f)
the solutions for the different gravity harmonics (colors), and the measurement (black). (g) the decay function
associated with each solution.
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Figure S6: Similar to Fig. 2 in the main text, but for solutions with doubled cloud-level observed
winds. Latitude-dependent solutions, as function of the cutoff latitude. (a) The overall fit of the model solution to
the measurements (cost function). Each case is assigned with a different color, used in the following panels. (b-f)
the solutions for the different gravity harmonics (colors), and the measurement (black). (g) the decay function
associated with each solution.
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Figure S7: Solutions with random winds, similar to Fig. 3 in main text, but with different strength of the random
winds. (a-c) Solutions with random winds that are half as strong. (d-f) Solutions with random winds that are twice
as strong. Shown are the solutions with 1000 random cases (gray), and those of which the solution matches all the
gravity harmonics (green). The plausible solutions (green) constitute 0.2% of the total cases in the lower panels,
and no cases in the upper panels. Also shown are the solution with no random winds (blue, corresponding to the
25◦ case in Fig. 2 in the main text), the solution with no truncation of the winds (red, corresponding to the 90◦
case in Fig. 2 in the main text) and the measurements (black).
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