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1. ADDITIONAL SIMULATION STUDIES

1.1. Simulation Study 3
This study involves a binary covariate X and continuous covariate Z, which are correlated. We
consider a phase 1 sample of 10,000 subjects with data generated as follows. A continuous stan-
dard normal covariate Zi is first generated and then a Bernoulli covariate Xi is generated with
probability P (Xi = 1) = 0.2I(Zi > 0) + 0.5I(Zi ≤ 0). We then generate the response Yi using
a logistic regression model; with expit(u) denoting eu/(1 + eu), it is

P (Y = 1|x, z) = expit(βc + βxx+ βzz), (1)

with β0 = (−2.8, 0.5, 1); this results in N1 subjects with Y = 1 and N0 subjects with Y = 0.
In phase 2, we randomly sample n1 = 150 subjects with Yi = 1, and n0 = 150 subjects with
Yi = 0; the Xi are discarded for all other subjects and marked as unobserved.

This is a case of basic stratified sampling (BSS) with the phase 2 sampling depending only on
the observed values of Y . The marginal sampling probability for Y = 1 cases is p1 = 150/N1and
for Y = 0 cases is p0 = 150/N0 but the Ri are not independent as for variable probability sam-
pling (VPS). We can nevertheless use the VPS estimating equations and likelihoods, which are
asymptotically valid under BSS; we do this, although finite sample adjustments for BSS could
be made (e.g. Lawless et al. 1999). Under VPS we would use a logistic regression model for the
sampling probabilities:

P (R = 1|y) = πest(y;α) = expit(αc + αyy), (2)

but in the present case the design probabilities p0, p1 are random and not fixed, since they depend
on N0 and N1. We denote estimates obtained using these design probabilities with the suffix
est in Table 1. It is possible, however, to increase efficiency of estimation by using a stratified
pseudo VPS sampling model that conditions on observed z values, similar to calibration or post-
stratification in sampling contexts. We consider two such models, referred to with the suffixes
sat1 and sat2 in Table 1. For sat1 we use a binary covariate v = I(z > 0.5)and the model

P (R = 1|y, v) = πsat1(y, v;α) = expit(αc + αyy + αvv + αyvyv). (3)

Even if the phase 2 VPS sampling probabilities depend only on the value of Y , using model (3)
in estimating functions will give more efficient estimators than using model (2). The sat2 model
uses the continuous covariate z in a more highly stratified logistic regression model for phase 2
selection, namely

P (R = 1|y, z) = πsat2(y, z;α) = expit(αc + αyy + αzz + αyzyz). (4)

c© 20?? Statistical Society of Canada / Société statistique du Canada
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TABLE 1: Simulation results for Study 3.

Method Mean (Empirical SE)[Estimated SE]
βc (βc0 = −2.8) βz(βz0 = 0.5) βx(βx0 = 1)

CML-est -2.813 (0.117)[0.123] 0.522 (0.247)[0.257] 1.018 (0.239)[0.250]
CML-sat1 -2.815 (0.115)[0.122] 0.524 (0.198)[0.200] 1.020 (0.239)[0.250]
CML-sat2 -2.814 (0.113)[0.120] 0.524 (0.124)[0.124] 1.021 (0.239)[0.250]
EL-est -2.813 (0.117)[0.123] 0.522 (0.247)[0.257] 1.018 (0.239)[0.250]
EL-sat1 -2.814 (0.116)[0.122] 0.514 (0.130)[0.134] 1.020 (0.239)[0.249]
EL-sat2 -2.814 (0.114)[0.120] 0.520 (0.122)[0.123] 1.019 (0.240)[0.250]
SW-est -2.813 (0.117)[0.123] 0.522 (0.247)[0.257] 1.018 (0.239)[0.250]
SW-sat1 -2.814 (0.116)[0.122] 0.515 (0.131)[0.130] 1.020 (0.239)[0.249]
SW-sat2 -2.814 (0.113)[0.120] 0.518 (0.121)[0.123] 1.018 (0.239)[0.250]

Note that working models (3) and (4) both include the true phase 2 sampling model (2) as special
cases.

We also considered two pseudo empirical likelihood (PEL) estimators, where the α parame-
ters in models (2), (3), and (4) are first estimated by maximum likelihood from Sπ(α) = 0 and
then fixed in the estimating function U(φ) = U(β, α̂ML). This EL procedure is slightly easier
to implement since the estimating function Sπ(α̂ML) equals zero. Such estimators have been
considered by others such as Qin et al. (2009) and Xie and Zhang (2017).

We mention that in this example the estimating equations S1 and S2 are not linearly inde-
pendent. Take the πsat1 model, for example; then dim(β) = 3 and dim(α) = 4 so the dimension
of (ST1 ,S

T
2 )
T is 7. However in Appendix Section A.3 we show that the actual rank of these 7

estimating equations is 4. Therefore we use here only the first element of S2 for the EL estimator.
This phenomenon is an example of the well known fact that β and α are not identifiable from
the conditional likelihood lc(β,α) alone in this setting.

In Table 1, we compare the performance of CML, SW, and EL estimators based on 500 sim-
ulations, using each of the three π models (2) - (4). The EL0 and PEL estimators with each π
model are asymptotically equivalent to the corresponding EL estimator so are omitted; their fi-
nite sample performances are close to those of the EL estimators. We show empirical standard
deviations and average standard errors for each estimator; standard errors are obtained by esti-
mating asymptotic covariance matrices with sample covariance matrices evaluated at estimates
of φ. These are labelled empirical and estimated standard error (SE) in the table and they are
seen to be close in value. In this case, CML performs about as well as the EL and SW methods.
A substantial efficiency gain for estimation of βZ , the coefficient for the covariate that is known
for all individuals, occurs when the stratified selection model (3) is used instead of (2) for the EL
and SW estimators. A big increase in efficiency for CML and small further increases in efficiency
for EL and SW result from using the more highly stratified model (4).

1.2. Simulation Study 4
In Study 4, we simulate a normal linear regression model as in Study 2, but now with X and
Z both continuous. We let X,Z follow a bivariate normal distribution with means and standard
deviations µ = 0, σ = 1, and correlation ρ = 0.5. The response model is Y ∼ N (0.5X + Z, 1),
and so β0 = (0, 0.5, 1). The phase 1 sample size is N = 500 and the phase 2 sampling prob-
ability model is P (R = 1|y, z) = expit(−1 + 0.5y + 0.5z), resulting in about 30% of subjects
being selected in phase 2. In this case, we have the conditional likelihood

fc(y|x, z;β,α) =
exp{−(y − βc − βxx− βzz)2/(2σ2)}expit(αc + αyy + αzz)∫
exp{−(y − βc − βxx− βzz)2/(2σ2)}expit(αc + αyy + αzz)dy

. (5)
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TABLE 2: Simulation results for Study 4.

Method Mean (Empirical SE)[Estimated SE]
βc (βc0 = −2.8) βz(βz0 = 0.5) βx(βx0 = 1) σ(σ0 = 1)

CML0 0.006 (0.102)[0.106] 0.494 (0.091)[0.092] 1.000 (0.093)[0.091] 0.985 (0.060)[0.062]
CML-est 0.008 (0.081)[0.093] 0.493 (0.075)[0.091] 1.000 (0.091)[0.089] 0.985 (0.061)[0.061]
CML-sat 0.005 (0.080)[0.092] 0.498 (0.076)[0.085] 1.000 (0.091)[0.089] 0.985 (0.061)[0.061]
EL-est 0.011 (0.084)[0.087] 0.489 (0.089)[0.090] 0.995 (0.093)[0.088] 0.980 (0.062)[0.060]
EL-sat 0.008 (0.082)[0.085] 0.499 (0.075)[0.081] 0.993 (0.092)[0.088] 0.979 (0.062)[0.060]
SW-est 0.005 (0.074)[0.086] 0.498 (0.076)[0.082] 1.000 (0.091)[0.089] 0.985 (0.061)[0.061]
SW-sat 0.005 (0.074)[0.086] 0.498 (0.076)[0.082] 1.000 (0.091)[0.089] 0.985 (0.061)[0.061]

We consider the two phase 2 selection models

πest(y, z;α) = P (R = 1|y, z) = expit(αc + αyy + αzz) (6)

πsat(y, z;α) = P (R = 1|y, z) = expit(αc + αyy + αzz + αyzyz) (7)

for CML, SW, and EL estimation. The performances of the estimators in 100 simulations are
compared in Table 2. Once again we find that with the most highly stratified model (7), the three
estimators have almost identical empirical standard errors for βz , and that EL and SW estimators
are slightly more efficient for estimation of βc.

2. A3. THE RANK OF CL ESTIMATING EQUATIONS FOR SIMULATION STUDY 1
AND 3

With the models in Simulation Studies 1 and 3, both the regression model and π model are
in logistic form, so as discussed in Scott and Wild (2011), the conditional probability p(Y =
1|X,Z,R = 1) is also a logistic form, with an offset term ωi = log{π(y = 1, zi)/π(y = 0, zi)},
and so the conditional log-likelihood is

lc(β,α) =

N∑
i=1

ri[yi log{expit(ωi + βc + βxxi + βzzi)}

+ (1− yi) log{1− expit(ωi + βc + βxxi + βzzi)}]

and

∂lc
∂β

=

N∑
i=1

ri{yi − expit(ωi + βc + βxxi + βzzi)}(1, xi, zi)T ,

∂lc
∂α

=

N∑
i=1

ri{yi − expit(ωi + βc + βxxi + βzzi)}
∂ωi
∂α

.
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When we use the “sat2” selection model, we have

∂ωi
∂α

=
∂

∂α
[log{expit(αc + αy + αzzi + αyzzi)}]−

∂

∂α
[log{expit(αc + αzzi)}]

= {1− expit(αc + αy + αzzi + αyzzi)}(1, 1, zi, zi)T

− {1− expit(αc + αzzi)}(1, 0, zi, 0)T

=


{1− expit(αc + αy + αzzi + αyzzi)} − {1− expit(αc + αzzi)}

1− expit(αc + αy + αzzi + αyzzi)

zi[{1− expit(αc + αy + αzzi + αyzzi)} − {1− expit(αc + αzzi)}]
zi{1− expit(αc + αy + αzzi + αyzzi)}

 . (8)

As Z is a continuous variable, it is easy to see that ∂ωi/∂α as in (8) is a full rank vector in this
case (no row of it is a linear combination of other rows).

However, when we use the “sat1” selection model where π(y, z;α) = π(y, v(z);α), and v(z)
is some coarsening of z so that we have two strata defined by the value of z, then at a given value
of β and α, we can write

∂ωi
∂α

= vi


−expit(αc + αy + αv + αyv) + expit(αc + αv)

1− expit(αc + αy + αv + αyv)

−expit(αc + αy + αv + αyv) + expit(αc + αv)

1− expit(αc + αy + αv + αyv)



+

−expit(αc + αy) + expit(αc)
1− expit(αc + αy)

0
0


=: vi(a1, a2, a1, a2)

T + (1− vi)(b1, b2, 0, 0)T

=: via+ (1− vi)b

where a, b are constant vectors and thus the “Hessian” matrix can be written as

E

(
∂ log fc
∂φ

)(
∂ log fc

∂φT

)
= E

[
ri{yi − expit(ωi + βc + βxxi + βzzi)}2uiuTi

]
where

ui =(1, xi, zi, a1vi + b1(1− vi), a2vi + b2(1− vi), a1vi, a2vi)T

=

1 0 0 b1 b2 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 a1 − b1 a2 − b2 a1 a2


T  1

xi
zi
vi

 := U × (1, xi, zi, vi)
T

and where U is a 7× 4 constant matrix. Thus E (∂ log fc/∂φ) (∂ log fc/∂φ)
T has dimension

7× 7 but rank 4.
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