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Abstract

Objective. To accurately model semicontinuous data from complex surveys, we extend 

marginalized two-part models to a design-based inferential framework and provide guidance on 

incorporating complex sample designs. 

Data Sources.  2014 Medical Expenditure Panel Survey (MEPS). 

 Study Design. We describe the use of pseudo-Maximum Likelihood Estimation and Jackknife 

Repeated Replication for estimating model parameters and sampling variance, respectively. We 

illustrate our approach using MEPS, modeling total healthcare expenditures in 2014 as a function of 

respondents’ age and family income. We provide SAS and R code for implementing the extension, 

assessing model-fit indices and evaluating the need to incorporate complex sampling features. 

Data Extraction Methods.  Data obtained from www.meps.ahrq.gov.

Principle Findings. A 100 percentage-point increase in family income as a percent of the federal 

poverty level was associated with a 5-6% increase in healthcare spending. People over 65 had an 

increase of 4-5 times compared to those younger. Accounting for complex sampling in the models 

led to different parameter estimates and wider confidence intervals than the unweighted models. 

Ignoring complex sampling could lead to inaccurate finite population inference. 

Conclusion. Researchers should account for complex sampling features when analyzing 

semicontinuous data from surveys. 

Keywords: Marginalized two-part models; Complex sample survey data; Healthcare expenditures 

What is known on this topic: 

 Semicontinuous data are typically analyzed with marginalized or conditional two-part 

models 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

 Complex sample designs, often encountered in large national surveys, often require analytic 

approaches that account for these design features 

What this study adds: 

 Extends marginalized two-part modeling methodology to incorporate complex sampling 

features when analyzing semicontinuous data and demonstrates the importance of doing so 

 Provides software for implementing the proposed approach 

BACKGROUND

Semicontinuous data, typically characterized by a point mass of zero-valued observations paired 

with an often right-skewed continuous distribution of positive values, arise in many research 

contexts. Examples range from average daily alcohol use1,2 and health assessment or quality of life 

scores3,4 to annual medical expenditures,5,6 each of which contain a subsample with zero values 

combined with a positive distribution among those with a non-zero response. 

Because of the two distinct data components, it is natural to analyze such data using so-called “two-

part models”. Such models represent a class of modeling approaches that explicitly treat the 

stochastic process from which the zero values arise as distinct from the stochastic process 

governing the continuous positive values. Two-part models were originally proposed with a logistic 

or probit regression model for the probability of incurring a positive-valued response, while the 

second component utilized a log-link with a linear model for the continuous values conditional on 

them being greater than zero, referred to as the log-normal model.7–9  In this conditional 

formulation, the second component only provides inference on the subsample with positive 

responses. For this article, we term such models where the second component is conditional on 

incurring positive values as conditional two-part (CTP) models. 

One limitation of CTP models is that covariate effects from the second part provide inference only 

on the conditionally positive subset. For inference on the entire population, the two parts must be 

combined through post-modeling computations. The exact form of the overall mean will depend on 

the model specification and the assumed distribution. The effect of a covariate on the overall mean 

will depend on values of the other covariates and sometimes also the reference value (e.g., the effect 
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of age for 40 vs. 50 years differs from the effect of age for 50 vs. 60 years). The complex 

relationships between marginal means and covariates inherently implies both non-linearity and 

heterogeneity.14 

To simplify this relationship and allow for direct estimation of homogeneous covariate effects on 

the overall mean for the population, marginalized two-part (MTP) models have been more recently 

developed.15,16 These are similar to standard two-part models in that they explicitly model and 

account for the point mass at zero. They differ, however, in that the second component directly 

models the mean of the entire population, including both the zero and positive values as opposed to 

only the conditionally positive values. Therefore, the second component is an unconditional mean 

and covariates are directly interpreted as effects on the overall mean, without need for post-

modeling computations. 

Unfortunately, little work has incorporated complex sample design features into the two-part 

modeling framework. Semicontinuous data may be collected in complex sample surveys, which 

feature stratified sampling, cluster sampling, and unequal probabilities of selection for different 

population units. If the probabilities of selection are correlated with survey measures of interest 

(e.g., semicontinuous outcomes), then survey weights defined as the inverse of the probability of 

selection (and possibly adjusted for survey nonresponse) should be considered when estimating 

the CTP and MTP model parameters to ensure design-consistent estimation.20 Furthermore, 

estimates of the sampling variance for each model parameter should also reflect the complex 

sampling features, as the use of cluster sampling and the incorporation of weights in estimation 

tends to inflate standard errors, and the use of stratified sampling tends to reduce them.20 A failure 

to account for these complex sampling features in “design-based” analyses potentially leads to 

inaccurate finite population inferences about regression model parameters.21 

To address this absence of prior work incorporating complex sampling features into the MTP 

modeling process, we outline the use of jackknife repeated replication for estimation of sampling 

variance and describe the use of pseudo-maximum likelihood estimation for estimating MTP model 

parameters from both the full sample and each replicate sample.20 We develop software enabling a 

design-based approach to fitting MTP models and making inference about target populations, 

including estimation of sampling variability and design-based comparisons of model fit. To 

illustrate this extension, we model total health care expenditures as a function of respondent’s age 

and family income using the Medical Expenditure Panel Survey (MEPS) Data22 in 2014. Our 
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research is the first to provide theoretical explanations, applicable software, and empirical 

illustration for extending MTP modeling to a design-based inferential framework. 

TWO-PART MODELS

We begin with a brief review of the two-part modeling framework. Both CTP and MTP models take 

the same generic likelihood form:7–9 

where  refers to the vector of parameters defining the model, , is the indicator 

function, and  is any density function applicable to the positive values of . 

CTP and MTP models differ in the parameterization of the linear predictors in the second 

component. The CTP model is commonly parameterized as 

and

In this specification,  is interpreted as the effect of a one unit increase in the th covariate on the 

mean of the log of the outcome conditional on the response being positive. 

The MTP model specifies the linear predictors 

and

This specification provides direct inference on the marginal combined mean of those with zero and 

positive values. Using linear combinations of the parameters in the second component of the model, 
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covariate effects on the overall marginal mean and standard errors are estimated directly from 

standard output. Specifically, is interpreted as the multiplicative effect of a one-unit 

increase in the kth covariate on the overall mean. Under this parameterization, model-predicted 

marginal means and standard errors are easily obtained by estimating  at the desired 

values of the covariates.

Within this class of models, various distributions can be applied to fit the data at hand. Specifically, 

the MTP model has been developed for a variety of flexible distributions and variance forms.15–18 

The log-skew-normal (LSN)10,11 and generalized gamma (GG)12,13 are two flexible three-parameter 

distributions commonly used for highly skewed semicontinuous data; both take the simpler log-

normal distribution as a special or limiting case. The details of these implementations have been 

reviewed elsewhere.14–16,18 

THE MTP MODEL: INCORPORATING COMPLEX SAMPLING FEATURES

To incorporate complex sampling features in two-part models, we follow the pseudo-maximum 

likelihood approach proposed by Binder.23 A weighted estimator of the finite population likelihood 

for the generic MTP model is defined as follows: 

where  refers to the final survey weight for each responding case in the survey data set.

To estimate design-consistent sampling variance of the weighted maximum likelihood estimates, 

we employ Jackknife Repeated Replication (JRR). Briefly, JRR omits one sampling cluster at a time 

from a given sampling stratum, adjusts the survey weights for the remaining cases in that stratum, 

fits the MTP model of interest to that replicate sample (with adjusted weights), and then repeats 

this process for each of the remaining sampling clusters, saving the replicate estimates. A design-

consistent sampling variance is estimated by leveraging the variance of the replicate estimates 

around the weighted full-sample estimate. As a general approximation, this procedure yields  
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degrees of freedom, where  is the total number of sampling clusters and  is the total number of 

sampling strata. For additional details, see Heeringa et al. (2017).20

We have developed a SAS macro (SAS Institute, Cary, NC) that incorporates complex sample 

features in MTP models by utilizing JRR for variance estimation and pseudo-maximum likelihood 

estimation for parameter estimation.20 We have written R code24 to adapt the Lumley and Scott25 

design-adjusted AIC (dAIC) and BIC (dBIC) calculations for comparison of competing models with 

all final survey weights and replicate weights incorporated. The SAS macro and R code are available 

for download in the online supplementary materials. 

ILLUSTRATIVE EXAMPLE

Medical Expenditure Panel Survey (MEPS) data 

We utilize the Medical Expenditure Panel Survey (MEPS) data collected in 2014 to illustrate 

estimation and inference for the MTP model accounting for complex sample features. MEPS data 

are collected from a complex, nationally representative sample of the civilian non-institutionalized 

population in the United States.22 The publicly available dataset provides final survey weights, 

along with sampling stratum (a total of 165 strata) and cluster (a total of 366 clusters) codes for 

each of the MEPS respondents. 

We examine the association between family income as a percentage of the federal poverty line, 

respondent’s age, and total health care charges reported in 2014, excluding prescription drugs. 

Approximately 22% of survey respondents indicated no health care charges in 2014, resulting in a 

significant portion of zero values in our outcome of interest and suggesting the need to consider 

two-part models.16 The unweighted mean (SD) overall expenditure per person was $8,673 

($40,611), while the weighted mean was $9,880 (weighted SD=$4,410,679). Expenditures reported 

ranged from $0 to $2,018,306. Family income as a percent of the poverty line ranged from -199% to 

3,172%. Respondent’s age was included as a binary variable with the value 1 indicating ages 65 and 

above (11% of the respondents) as of the year 2014 and the value 0 otherwise (88% of the 

respondents). There were 0.6% of respondents with missing age. 

Analysis 
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To assess the association between health care expenditures and family income, we fit the following 

mean model: 

where  represents total healthcare expenditures, scaled to be measured in $1000 increments,  

represents family income as a percent of the poverty line, scaled by 100, and  indicates ages 65 

and above. Thus,  represents the multiplicative effect of a 100 percentage point increase in 

poverty level on total health care expenditures, and represents the ratio difference on total 

health care expenditures between the two age categories (age≥65 vs. age<65).

To account for the complex sample design of MEPS, estimation proceeded with a weighted 

likelihood, where the weight, , was the person weight as provided in the MEPS dataset. For 

comparison, we conducted a purely model-based analysis by fixing  and ignoring the 

sampling strata/clusters to assess the impact of not incorporating the complex sampling features in 

analysis. We fit the MTP model using both approaches (fully design-based and fully model-based) 

and also considered three distributions (the log-normal, log-skew-normal, and generalized gamma) 

to assess whether the difference in model performance varied over distributional assumptions. 

Standard errors for the weighted models were computed with JRR. Given the 201 = (366 − 165) 

degrees of freedom for variance estimation, a critical t-value of 1.96 was used to form 95% 

confidence intervals. The importance of the weights for the parameter estimates was evaluated 

using the formal Wald tests outlined by Bollen and colleagues26 and in Chapter 7 of Valliant and 

Dever,27 and the fits of the three models estimated using the same approach were compared using 

design-adjusted AIC criteria.25 All analyses were conducted in SAS 9.4 (SAS Institute, Cary, NC) and 

R 3.6.2.24
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RESULTS

Table 1 presents parameter estimates and corresponding 95% confidence intervals (CIs) from the 

standard model-based MTP models (“Unweighted”) next to weighted MTP models using JRR 

(“Weighted, JRR SEs”). The naive, unweighted models provided noticeably differing parameter 

estimates, particularly for the binary and overall mean intercept terms. In particular, for the log-

normal model, the 95% confidence intervals for intercept terms do not even overlap. Fewer 

differences are noted for estimated effects of covariates ( ,  ,  , and  ). Distributional 

assumptions provided a noticeable change in estimates of , the overall mean intercept, as might 

be expected, but made very little difference in terms of the estimates of  and . The JRR-

estimated confidence intervals were significantly wider for the generalized gamma model than for 

other distributions, suggesting the GG MTP model may be somewhat more sensitive to 

incorporation of weights and complex sampling features. 

The AIC of the naive unweighted models and the dAIC of the weighted models25 are presented in 

Table 1. The dAIC values were larger than the unadjusted AIC values, but the AIC and dAIC ranked 

the three models based on the three distributional assumption in the same order (Log-skew- 

normal < generalized gamma < log-normal). 

The need for weighted estimation was tested by performing Wald tests for the coefficients 

associated with three extra predictors in an unweighted MTP model – the final survey weights, the 

two-way interaction between the weights and the poverty predictor, and the two-way interaction 

between weights and the age predictor.27 Under the three distributional assumptions, results of the 

Wald tests were (6) = 80.76,  < 0.001 for the log-normal model,  (6) = 84.97,  < 0.001 for the 

log-skew-normal model, and  (6) = 84.16,  < 0.001 for the generalized gamma model. These 

significant results suggest that weighted estimates are needed for the current MTP models under all 

three distributional assumptions. In sum, we would likely employ weighted estimation of the log-

skew-normal model for making inference about the marginal relationships of income and age with 

health care expenditures. 
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The models estimated that a 100 percentage point increase in family income as a percent of the 

federal poverty level was associated with 5-6% increase in total healthcare spending for the MEPS 

target population in 2014. At the weighted mean of the sample, $9,880, a 6% increase represents a 

relatively small additional $593 spent on healthcare expenditures in one year. Comparing to people 

who were less than 65 years old, those who were 65 and above had a 4-5 times increase in total 

health care spending. At the weighted mean of the sample, $9,880, a 5-time increase represents a 

large additional $49,400 on health care expenditures. 

CONCLUSION

Two-part models have been growing in popularity with the ever increasing availability of electronic 

health record data. This expansion, combined with growing interest in interventions promising to 

bend the rising health care cost curve, has led to greater use of health care expenditure and 

utilization data that often follow semicontinuous distributions. Nonetheless, to our knowledge, 

design-based approaches to accounting for potentially informative complex sampling features have 

not previously been incorporated in the two-part modeling framework. Because ignorance of com- 

plex sampling features21, 28 or a failure to accommodate the point mass of zero-valued 

observations16 can both lead to erroneous inferences regarding MTP model parameters in finite 

populations, the ability to appropriately model zero-heavy outcomes collected via complex sample 

designs is an important advance in the use of these models. 

For practice, we recommend fitting the models with and without the complex sampling features 

accounted for and assessing potential changes in inference. Notable changes in estimates without 

appreciable changes in design-adjusted SEs would suggest use of the weighted estimates for 

inference.20 The formal Wald tests can and should be employed to compare weighted and 

unweighted models.26,27 The dAIC criteria can also be used to compare the fits with different 

distributional assumptions. 

We provide a simple-to-use SAS macro allowing incorporation of survey weights with appropriate 

standard error estimation via JRR, as well as R code to evaluate appropriate fit of the weighted 

models. The macros incorporate any of three flexible distributional assumptions to allow for careful 

fitting of a variety of semicontinuous distributions. Coupled together, the illustrated extension and 

software provides analysts with a practical approach to appropriately conduct inference in the 

presence of data with many zeros arising from complex sampling. 
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Table 1: MTP model results for MEPS data example considering design-based and model-based 

approaches*

Log-normal MTP Log-skew-normal MTP Generalized gamma MTP

Parameter Unweighted
Weighted, JRR 

SEs
Unweighted

Weighted, JRR 

SEs
Unweighted

Weighted, JRR 

SEs

0.87 

(0.018)

(0.84, 0.91)

1.10 

(0.041)

(1.02, 1.18)

0.88 

(0.018)

(0.84, 0.91)

1.10 

(0.041)

(1.02, 1.18)

0.88 

(0.018) 

(0.84, 0.91)

1.10 

(0.041) 

(1.02, 1.18)

0.10 

(0.008)

(0.09, 0.12)

0.12 

(0.010)

(0.10, 0.14)

0.10 

(0.005)

(0.09, 0.11)

0.12 

(0.010)

(0.10, 0.14)

0.10 

(0.005)

(0.09, 0.11)

0.12 

(0.010)

(0.10, 0.14)

1.47 

(0.066)

(1.34, 1.60)

1.55 

(0.099)

(1.35, 1.74)

1.47 

(0.066)

(1.34, 1.60)

1.55 

(0.099)

(1.35, 1.74)

1.47 

(0.066)

(1.34, 1.60)

1.55 

(0.099)

(1.35, 1.74)

1.51 

(0.023)

(1.46, 1.55)

1.56 

(0.038)

(1.48, 1.63)

1.95 

(0.036)

(1.88, 2.02)

1.87 

(0.046)

(1.78, 1.96)

2.08 

(0.059)

(1.96, 2.19)

1.89 

(0.056)

(1.78, 2.00)

0.04 

(0.005)

(0.03, 0.05)

0.04 

(0.005)

(0.03, 0.05)

0.05 

(0.005)

(0.04, 0.06)

0.05 

(0.005)

(0.04, 0.06)

0.05 

(0.005)

(0.04, 0.06)

0.05 

(0.005)

(0.04, 0.06)

1.6 

(0.031)

(1.54, 1.66)

1.54 

(0.046)

(1.45, 1.63)

1.56 

(0.031)

(1.50, 1.62)

1.51 

(0.048)

(1.42, 1.61)

1.56 

(0.031)

(1.50, 1.62)

1.52 

(0.048)

(1.42, 1.61)

AIC 171952 171270 171343

dAIC 182729 182348 182388

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

*  Parameter estimate, with standard error (SE) underneath, followed by a 95% confidence 

interval for the parameter
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