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A Appendix

A.1 Marginal Structural Models

The average treatment effect between two differing negative wealth shock profile z̄ versus
z̄′ is thus E[Ȳz̄ − Ȳz̄′ ] (note that this estimand is not conditioned on the survival status).
E[Ȳz̄ − Ȳz̄′ ] is obtained by maximizing the weighted likelihood of

∏n
i=1 f(Ȳi,z̄(t)|θit)wit , where

i indexes the subjects and θit are the parameters involved in the model for Ȳi,z̄(t) and

wit = [
t∏

j=1

Pr{Zi(j) = zi(j)|z̄i(j − 1), ȳi,z̄(j−1), x̄i,z̄(t−1), w̄i(t− 1), vi; τ(j)}]−1. (1)

which is the inverse probability of receiving the observed exposure given all covariates and
previous exposures. Under these four assumptions, inference about the exposure effects
under a pseudo-population in which negative wealth shock is randomized can be obtained.

Similarly, this weighting method can be used to remove bias due to dropout. Let
R(t) = 1 indicate that the subject’s cognitive score is observed at time t and R(t) = 0
indicate that the subject’s cognitive score is missing. The weight used to account for missing
cognitive score is then

writ = [
t∏

j=1

Pr(Ri(t) = ri(t)|r̄i(j − 1), z̄i(j − 1), ȳi,z̄(j−1), x̄i,z̄(t−1), w̄i(t− 1), vi; γ(j))]−1. (2)

Finally, death is typically treated as equivalent to dropout in MSM. Let D(t) = 1
indicate that subject is dead at time t and D(t) = 0 indicate that the subject survived at
time t (thus D(t) = 1− S(t)). The weight for death censoring is then

wit = [
t∏

j=1

Pr{Di(j) = di(j)|z̄i(j − 1), ȳi,z̄(j−1), x̄i,z̄(t−1), w̄i(t− 1), vi;λ(j)}]−1. (3)
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Assuming that these three weights are independent of each other, the final weight
to use becomes wfit = witw

d
itw

r
it. To stabilize the weights, the numerators of Equations

1, 2, and 3 are replaced by the marginal probabilities of negative wealth shock, dropout,
and death at baseline given by

∏t
j=1 Pr[Zi(j) = zi(j)|z̄i(j − 1), vi; τ

′(j)],
∏t

j=1 Pr[Ri(j) =

ri(j)|r̄i(j − 1), vi; γ
′(j)], and

∏t
j=1 Pr[Di(j) = di(j)|vi;λ′(j)] respectively.

A.2 Penalized spline of propensity methods in treatment compar-
isons (PENCOMP)

We provide a detailed description of a particular implementation of PENCOMP here.

1. For b = 1, . . . , B, generate a bootstrap sample A(b) from the original data A by sampling
units with replacement, stratified on exposure group. For each sample b, carry out steps
2-7.

2. Estimate a logistic regression model for the distribution of Z(1) given baseline co-
variates V with regression parameters γz(1). Estimate the propensity of exposure

Z(1) = z(1) as P̂z(1)(V ) = Pr(Z(1) = z(1)|V ; γ̂
(b)
z(1)), where γ̂

(b)
z(1) is the maximum

likelihood (ML) estimate of γz(1). Define P̂ ∗z(1) = log[
P̂z(1)(V )

1−P̂z(1)(V )
].

3. Using the cases assigned to exposure Z(1) = z(1), estimate a normal linear regression
of Yz(1) on V , with mean

E(YZ(1)|v, z(1), θz(1), βz(1)) = s(P̂ ∗z(1)|θz(1)) + gz(1)(P̂
∗
z(1), v; βz(1)), (4)

where s(P̂ ∗z(1) |θz(1)) denotes a penalized spline with fixed knots and parameters θz(1)

and gz(1)(.) represents a parametric function of other predictors of the outcome, indexed
by parameters βz(1).

4. For z(1) = 0, 1, impute the values of Yz(1) for subjects in exposure group 1 − z(1) in
the original data with draws from the predictive distribution of Yz(1) given V from the

regression in Step 3, with the ML estimates θ̂
(b)
z(1), β̂

(b)
z(1) substituted for the parameters

θ
(b)
z(1), β

(b)
z(1).

5. Estimate a logistic regression model for the distribution of Z(2) given V, Z(1), (YZ(1)=0, YZ(1)=1),
with regression parameters γz(2) and missing values of (Y0, Y1) imputed from Step
4. Estimate the propensity of exposure Z(2) = z(2) given Z(1), YZ(1), and V as

P̂z(2)(Z(1), YZ(1), V ) = Pr(Z(2) = z(2)|Z(1) = z(1), Yz(1), V ; γ̂
(b)
z(2)), where γ̂

(b)
z(2) is the

ML estimate of γz(2). The probability of exposure profile {Z(1) = z(1), Z(2) = z(2)}
is denoted as P̂z̄(2) = P̂z(1)(V )P̂z(2)(Z(1), YZ(1), V ), and define P̂ ∗z̄(2) = log[

P̂z̄(2)

1−P̂z̄(2)
].

6. Using the cases assigned to exposure {z(1), z(2)}, estimate a normal linear regression
of Yz̄(2) on Z̄(2), YZ(1), and V with mean

E(YZ̄(2)|v, yz(1), z̄(2), θz̄(2), βz̄(2)) = s(P̂ ∗z̄(2)|θz̄(2)) + gz̄(2)(P̂
∗
z̄(2), Z(2), Z(1), YZ(1), V ; βz̄(2)).

(5)
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7. For each combination of {z(1), z(2)}, impute the values of Yz̄(2) for subjects not assigned
this exposure profile in the original data with draws from the predictive distribution of
Yz̄(2) in Step 6, with ML estimates θ̂

(b)
z̄(2), β̂

(b)
z̄(2) substituted for the parameters θ

(b)
z̄(2), β

(b)
z̄(2).

Let ∆̂
(b)
jk,lm = E[YZ(1)=j,Z(2)=k−YZ(1)=l,Z(2)=m], denote the average exposure effects, with

associated pooled variance estimates W
(b)
jk,lm, based on the observed and imputed values

of Y for each exposure profile.

8. The MI estimate of ∆jk,lm is then ∆̄jk,lm,B =
∑B

b=1B
−1∆̂

(b)
jk,lm, and the MI estimate

of the variance of ∆̄jk,lm is TB = W̄jk,lm,B + (1 + 1/B)Djk,lm,B, where W̄jk,lm,B =∑B
b=1W

(b)
jk,lm/B, Djk,lm,B =

∑B
b=1

(∆̂
(b)
jk,lm−∆̄jk,lm,B)2

B−1
. The estimate ∆jk,lm follows a t

distribution with degree of freedom ν,
∆jk,lm−∆̄jk,lm,B√

TB
∼ tν , where ν = (B − 1)(1 +

W̄jk,lm,B

Djk,lm,B(B+1)
)2.

A.3 Simulation Setup

We set the size of our target population as 1 million. We then generate a single baseline
variable V from a normal distribution. We set T = 3 and model our exposure, Z(1), as

logit[P (Z(1) = 1|V )] = γ0 + γ1V. (6)

For the potential outcome at t = 1, YZ(1), we model it as

YZ(1) = β0 + βZI{Z(1) = 1}+ βV V + βV ZV I{Z(1) = 1}+ e, (7)

where e ∼ N(0, 1).

We model the potential survival status at t = 2, SZ(1) as

logit(P [SZ(1) = 1|V, YZ(1)]) = α0 + αY1Y1I{Z(1) = 1}+ αY0Y0[1− I{Z(1) = 1}]
+ αZI{Z(1) = 1}+ αV V + αV ZV I{Z(1) = 1}. (8)

Monotonicity is imposed by setting S(0) = 1 if S(1) = 1. Because a negative wealth shock
is an absorbing state, if Z(1) = 1, then Z(2) = 1. So when Z(1) = 0, we have

logit(P [Z(2) = 1|V, Y0]) = γ0 + γY0,2Y0 + γ2V. (9)

We model the potential outcome at t = 2, YZ̄(2) as

YZ̄(2) = β0 + βZ01I{Z(1) = 0, Z(2) = 1}+ βZ11I{Z(1) = 1, Z(2) = 1}
+ βY0Z00Y0I{Z(1) = 0, Z(2) = 0}+ βY0Z01Y (0)I{Z(1) = 0, Z(2) = 1}
+ βY1Z11Y1I{Z(1) = 1, Z(2) = 1}+ βV V + βV Z01V I{Z(1) = 0, Z(2) = 1}
+ βV Z11V I{Z(1) = 1, Z(2) = 1}+ e, (10)

where e ∼ N(0, 1).
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For the potential survival status at t = 3, SZ̄(2), if SZ(1) = 0, then SZ̄(2) = 0. When
SZ(1) = 1, we have

logit(P [SZ̄(2) = 1|X, YZ̄(2), SZ(1) = 1]) = α0 + αZ01I{Z(1) = 0, Z(2) = 1}
+ αZ11I{Z(1) = 1, Z(2) = 1}
+ αY00Z00Y00I{Z(1) = 0, Z(2) = 0}
+ αY01Z01Y01I{Z(1) = 0, Z(2) = 1}
+ αY11Z11Y11I{Z(1) = 1, Z(2) = 1}
+ αV V + αV Z01V I{Z(1) = 0, Z(2) = 1}
+ αV Z11V I{Z(1) = 1, Z(2) = 1}. (11)

Again, we impose monotonicity by setting S00 = S01 = 1 if S11 = 1 and S00 = 1 if S01 = 1.
For the exposure at t = 3, Z(3), if Z(1) = Z(2) = 0, we have

logit(P [Z(3) = 1|X, Ȳ00]) = γ0 + γY00Y00 + γY0,3Y0 + γ3V. (12)

For the potential outcome at t = 3, YZ̄(3), we have

YZ̄(3) = β0 + βZ001I{Z(1) = 0, Z(2) = 0, Z(3) = 1}+ βZ011I{Z1 = 0, Z2 = 1, Z3 = 1}
+ βZ111I{Z(1) = 1, Z(2) = 1, Z(3) = 1}+ βY00Z000Y00I{Z(1) = 0, Z(2) = 0, Z(3) = 0}
+ βY00Z001Y00I{Z(1) = 0, Z(2) = 0, Z(3) = 1}
+ βY01Z011Y01I{Z(1) = 0, Z(2) = 1, Z(3) = 1}
+ βY11Z111Y11I{Z(1) = 1, Z(2) = 1, Z(3) = 1}+ βY0Z0Y0I{Z(1) = 0}
+ βY1Z1Y1I{Z(1) = 1}+ βV V + βV Z001V I{Z(1) = 0, Z(2) = 0, Z(3) = 1}
+ βV Z011V I{Z(1) = 0, Z(2) = 1, Z(3) = 1}
+ βV Z111V I{Z(1) = 1, Z(2) = 1, Z(3) = 1}+ e. (13)

Table 1 shows the parameters we used to achieve the three different simulation sce-
narios. Scenario 1 is achieved by setting γ1, αZ , γ2, γY0,2, αZ01 , αZ11 , γ3, γY0,3, and γY00 to
be about 10 times smaller than the values in Scenarios 2 and 3. The rest of the differences
between Scenario 1 versus 2 and 3 were to ensure the resulting simulated population would
have enough deaths and subjects in the various different exposure profiles for the assump-
tions used by MSM and our proposed method to be valid. The difference between Scenario
2 versus 3 lie in βV Z , αY1 , αY0 , βY0Z00 , βY0Z01 , βY1Z11 , αY0Z00 , αY0Z01 , αY1Z11 , βY00Z000 , βY00Z001 ,
βY01Z011 , and βY11Z111 where the values for Scenario 2 is about 10 times smaller compared to
Scenario 3.
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Table 1: Table of parameters for simulation
Scenario 1 Scenario 2 Scenario 3

V N(0, 22) N(17, 22) N(17, 22)
γ0 0 2 2
γ1 -0.02 -0.2 -0.2
β0 0 5.3 5.3
βZ -1.5 -1.5 -1.5
βV 0.015 0.15 0.2
βV Z -0.005 -0.11 -0.05
α0 0 1 0
αY1

0.005 0.00625 0.0625

αY0
0.01 0.0125 0.125

αZ -0.01 -0.2 -0.2
αV 0.002 0.02 0.02
αV Z -0.002 -0.02 -0.02
γ2 -0.002 -0.02 -0.02

γY0,2 -0.02 -0.2 -0.2

βZ01
-1.5 -1.5 -1.5

βZ11
-1 -1 -1

βY0Z00
0.015 0.02 0.3

βY0Z01
0.01 0.015 0.2

βY1Z11
0.005 0.01 0.1

βV Z01
-0.00011 -0.011 -0.011

βV Z11
-0.00005 -0.005 -0.005

αZ01
-0.01 -0.2 -0.2

αZ11
-0.015 -0.1 -0.1

αY0Z00
0.01 0.0125 0.125

αY0Z01
0.005 0.00625 0.0625

αY1Z11
0.0025 0.003125 0.03125

αV Z01
-0.0001 -0.02 -0.02

αV Z11
-0.0005 -0.05 -0.05

γ3 -0.0002 -0.002 -0.002
γY0,3 -0.002 -0.02 -0.02

γY00
-0.02 -0.2 -0.2

βZ001
-1.5 -1.5 -1.5

βZ011
-1 -1 -1

βZ111
-0.5 -0.5 -0.5

βY00Z000
0.015 0.02 0.3

βY00Z001
0.01 0.015 0.2

βY01Z011
0.005 0.01 0.1

βY11Z111
0.0025 0.005 0.05

βY0Z0
0.0008 0.08 0.08

βY1Z1
0.0003 0.03 0.03

βV Z001
-0.00011 -0.011 -0.011

βV Z011
-0.00005 -0.005 -0.005

βV Z111
-0.00003 -0.003 -0.003

To calculate the true parameters, we used the generated population data (size 1 mil-
lion), and then took:

1. ∆1,0 = Ȳ1 − Ȳ0;

2. ∆01,00 = Ȳ01 − Ȳ00 given S0 = 1;

3. ∆11,00 = Ȳ11 − Ȳ00 given S0 = S1 = 1;

4. ∆11,01 = Ȳ11 − Ȳ01 given S0 = S1 = 1;

5. ∆001,000 = Ȳ001 − Ȳ000 given S00 = 1;

6. ∆011,000 = Ȳ011 − Ȳ000 given S00 = S01 = 1;

7. ∆111,000 = Ȳ111 − Ȳ000 given S00 = S11 = 1;

8. ∆011,001 = Ȳ011 − Ȳ001 given S00 = S01 = 1;

9. ∆111,001 = Ȳ111 − Ȳ001 given S00 = S11 = 1; and

10. ∆111,011 = Ȳ111 − Ȳ011 given S01 = S11 = 1.
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A.4 Result for sample size 4000

Table 2: Simulation results for sample size 4,000
Scenario 1 Näıve MSM Proposed

Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
∆1,0 -1.497 -0.001 0.032 95.4 0.123 -0.0002 0.032 95.1 0.123 -0.0001 0.032 97.0 0.143
∆01,00 -1.499 -0.003 0.050 95.3 0.202 -0.003 0.050 95.3 0.202 -0.003 0.050 95.7 0.214
∆11,00 -1.005 -0.003 0.049 95.0 0.189 -0.001 0.049 94.7 0.189 -0.001 0.049 99.2 0.262
∆11,01 0.493 0.002 0.048 94.4 0.189 0.003 0.048 94.5 0.189 0.002 0.049 99.1 0.262
∆001,000 -1.502 0.005 0.081 93.9 0.314 0.005 0.081 98.9 0.411 0.005 0.082 94.6 0.333
∆011,000 -1.008 0.004 0.074 94.8 0.284 0.004 0.074 99.0 0.370 0.004 0.075 97.8 0.350
∆111,000 -0.504 0.006 0.072 95.2 0.284 0.007 0.072 99.4 0.371 0.007 0.074 100.0 0.529
∆011,001 0.495 -0.001 0.071 95.0 0.284 -0.0001 0.072 99.1 0.370 -0.0009 0.072 97.8 0.348
∆111,001 1.000 -0.0001 0.072 95.6 0.284 0.001 0.072 99.0 0.371 0.001 0.074 99.9 0.528
∆111,011 0.502 0.003 0.065 94.3 0.250 0.005 0.065 98.9 0.325 0.005 0.067 99.9 0.440

Scenario 2 Näıve MSM Proposed
Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
∆1,0 -3.367 -0.047 0.061 78.5 0.154 0.002 0.041 93.8 0.160 0.002 0.041 96.1 0.177
∆01,00 -1.727 -0.037 0.054 83.2 0.149 -0.032 0.051 86.9 0.150 -0.002 0.037 96.4 0.161
∆11,00 -1.199 -0.136 0.146 24.5 0.202 -0.020 0.057 92.5 0.204 -0.004 0.053 96.5 0.229
∆11,01 0.528 -0.098 0.111 49.2 0.199 0.013 0.054 93.7 0.201 -0.001 0.053 97.0 0.226
∆001,000 -1.727 -0.029 0.062 91.9 0.220 -0.023 0.060 94.8 0.240 0.001 0.053 96.1 0.227
∆011,000 -1.183 -0.065 0.082 75.0 0.199 -0.047 0.069 87.5 0.217 0.0004 0.048 97.8 0.220
∆111,000 -1.169 -0.167 0.181 33.8 0.273 -0.042 0.084 93.2 0.305 -0.004 0.071 98.7 0.350
∆011,001 0.544 -0.036 0.059 88.0 0.185 -0.024 0.053 94.4 0.202 -0.002 0.045 96.7 0.206
∆111,001 0.558 -0.139 0.153 45.7 0.264 -0.019 0.071 96.3 0.294 -0.007 0.067 98.4 0.331
∆111,011 0.013 -0.101 0.119 62.9 0.246 0.007 0.065 96.1 0.276 -0.002 0.063 98.1 0.299

Scenario 3 Näıve MSM Proposed
Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
∆1,0 -2.347 -0.123 0.130 14.5 0.160 0.002 0.042 94.0 0.160 0.002 0.042 95.9 0.177
∆01,00 -2.559 -0.114 0.122 23.9 0.165 -0.060 0.074 70.2 0.164 -0.001 0.038 96.4 0.163
∆11,00 -3.062 -0.231 0.239 2.8 0.232 -0.033 0.068 89.9 0.226 -0.004 0.058 97.0 0.260
∆11,01 -0.502 -0.118 0.132 48.9 0.233 0.026 0.065 92.2 0.227 -0.003 0.059 96.7 0.260
∆001,000 -2.820 -0.125 0.139 47.9 0.242 -0.062 0.087 88.7 0.273 -0.0004 0.054 95.9 0.224
∆011,000 -3.605 -0.143 0.152 19.6 0.198 -0.087 0.101 69.2 0.225 -0.006 0.045 96.4 0.202
∆111,000 -4.032 -0.290 0.301 5.2 0.319 -0.082 0.117 89.4 0.376 -0.009 0.080 98.6 0.400
∆011,001 -0.785 -0.019 0.060 93.3 0.225 -0.026 0.063 95.0 0.256 -0.006 0.052 96.7 0.226
∆111,001 -1.217 -0.160 0.181 54.4 0.336 -0.015 0.087 97.2 0.396 -0.009 0.083 99.3 0.442
∆111,011 -0.432 -0.141 0.160 54.9 0.306 0.011 0.080 97.4 0.363 -0.006 0.075 98.7 0.373

A.5 Descriptive statistics at baseline

Tables 3 to 4 show the descriptive statistics of the subjects at baseline by whether or not they
experienced a negative wealth shock over the next six years regardless of survival status. At
baseline, aside from whether the subject eventually survived until 2002 and health conditions
like whether the subject ever had heart problems, high blood pressure, and stroke, all the
other variables in Tables 3 to 4 were significantly associated with experiencing a negative
wealth shock. A typical subject who would eventually experience a wealth shock would have a
lower cognitive score at baseline; slightly higher BMI; lower opinion about his or her health;
lower word recall score; likely still smoking; not insured; have depression; slightly lower
income; either working, unemployed, or disabled; divorced or never married; lower wealth
rank; have diabetes and/or psychological problems; younger; lesser years of education; and
likely non-White.
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Table 3: Descriptive statistics of 1996 Health and Retirement Study (baseline), part 1
No wealth shock Ever wealth shock

Variables Mean/Frequency (S.E./%) Mean/Frequency (S.E./%) p-value
Eventually survived?: 0.57

Yes 6,207 (94.7) 516 (94.0)
No 350 (5.3) 33 (6.0)

Cognitive score 17.07 (4.07) 16.26 (4.35) < 0.01
BMI 27.21 (4.84) 27.73 (5.40) 0.03
Self-reported health < 0.01

Excellent 1,207 (19.9) 83 (15.7)
Very Good 2,126 (35.0) 128 (24.3)
Good 1,715 (28.2) 163 (30.9)
Fair 763 (12.6) 103 (19.5)
Poor 261 (4.3) 50 (9.5)

Current Smoking status: < 0.01
Never 2,353 (40.0) 166 (32.4)
Former 2,410 (41.0) 187 (36.5)
Current 1,116 (19.0) 159 (31.1)

Alcohol consumption: < 0.01
Never 3,799 (62.9) 347 (66.1)
Moderate 1,686 (27.9) 116 (22.1)
Heavy 555 (9.2) 62 (11.8)

Insured?: < 0.01
No 1,014 (15.5) 120 (21.9)
Yes 5,543 (84.5) 429 (78.1)

Depression?: < 0.01
No 4,922 (85.5) 361 (73.1)
Yes 832 (14.5) 133 (26.9)

Income (log transformed) 10.48 (1.21) 10.18 (1.45) < 0.01
Labor force status: < 0.01

Working 3,111 (51.2) 314 (59.6)
Unemployed 96 (1.6) 13 (2.5)
Retired 2,178 (35.9) 104 (19.7)
Disabled 143 (2.4) 43 (8.2)
Not in labor force 547 (9.0) 53 (10.1)

Martial status: < 0.01
Married 4,897 (80.8) 373 (70.8)
Divorced 591 (9.7) 90 (17.1)
Widowed 426 (7.0) 42 (8.0)
Never Married 149 (2.5) 22 (4.2)

Wealth rank in tertiles: < 0.01
0 1,728 (26.4) 326 (59.4)
1 2,360 (36.0) 124 (22.6)
2 2,469 (37.7) 99 (18.0)

Gender: 0.08
Male 3,113 (47.5) 239 (43.5)
Female 3,444 (52.5) 310 (56.5)

Table 4: Descriptive statistics of 1996 Health and Retirement Study (baseline), part 2
No wealth shock Ever wealth shock

Variables Mean/Frequency (S.E./%) Mean/Frequency (S.E./%) p-value
Ever had diabetes?: < 0.01

No 5,474 (90.2) 451 (85.6)
Yes 596 (9.8) 76 (14.4)

Ever had heart problems?: 0.43
No 5,343 (88.0) 457 (86.7)
Yes 730 (12.0) 70 (13.3)

Ever had HBP?: 0.07
No 3,888 (64.0) 316 (60.0)
Yes 2,183 (36.0) 211 (40.0)

Ever had psych problems?: < 0.01
No 5,691 (93.7) 469 (89.2)
Yes 380 (6.3) 57 (10.8)

Ever had stroke?: 0.1
No 5,912 (97.3) 506 (96.0)
Yes 161 (2.7) 21 (4.0)

Age 59.73 (3.19) 57.26 (2.18) < 0.01
Number of education years centered 0.52 (2.93) -0.17 (3.32) < 0.01
Race: < 0.01

Non-hispanic White 5,236 (79.9) 342 (62.3)
Non-hispanic Black 759 (11.6) 120 (21.9)
Hispanic 449 (6.8) 70 (12.8)
Other 113 (1.7) 17 (3.1)
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