
UNIVERSITY OF MICHIGAN, ANN ARBOR

UNDERGRADUATE THESIS

A Probe into Propagators

Author:
Jiani FEI

Supervisor:
Dr. Emanuel GULL

An honors thesis submitted for Bachelor of Science degree

in the

Gull Group
Physics Department

May 2, 2021

https://umich.edu/
https://sites.lsa.umich.edu/gull-lab/
https://lsa.umich.edu/physics


i

Abstract
by Jiani FEI

Quantum field theory (QFT) is interesting in the sense that it explains the subatomic world
with a mathematical framework that is both essential and beautiful. Equations in quantum field
theory are well understood while very difficult to solve. Due to the imaginary nature of the
partition function, field theory under finite temperature (thermal QFT) employs the Matsubara
formalism majorly in practice, which ‘Wick’ rotates the Euclidean time by 90 degrees in the com-
plex plane (multiply by ‘i’) and evolves in this ‘imaginary time’ [1].

Matsubara formalism involves the propagators (Green’s functions) that corresponds to the
spectral functions measurable in experiments, though in ‘real time’. Physics lying beneath dif-
ferent spectral functions is a heated area of research, which for instance provides evidence for
the exciting high-Tc superconductivity phenomena. However, one big obstacle there, between
theories and experiments, is the abstruse relation between the imaginary- and real-time formal-
ism, or their corresponding (Fourier transformed) frequency components. The kernel relating
‘imaginary’ with ‘real’ domain propagators is notoriously ill-conditioned.

Finding an operational procedure that takes in Matsubara Green’s function data and outputs
real-frequency data is therefore of enormous need as the post-processing of quantum simulations.
Analytic continuation, by the uniqueness theorem, can extend analytic functions uniquely into a
bigger domain. It is used in practice as the algorithm for this transformation. Existing methods
such as Maximum Entropy (MaxEnt) method and Padé continued fraction fit involve instabilities
that brings unphysical features or resolution ambiguity. Like although Padé is cool enough, it
still would get the poles in the wrong half of the complex plane and would not get the correct
normalization in general.

This thesis will majorly (Chapter 1 and Chapter 2) develop methods to replace MaxEnt and
Padé, namely the Nevanlinna method. Nevanlinna (and Carathéodory) continuation method is
based on interesting mathematics and enforce the causal analytic structure on the Green’s func-
tion (both single-particle and matrix-valued ones). It has shown unprecedented accuracy in some
application examples. The resulting paper have been published in Physical Review Letters (Phys.
Rev. Lett. 126, 056402) as the Editors’ Suggestion.

Chapter 3 is a real-material simulation that I finished with the guidance of Dr. Chia-Nan
Yeh. I have used the self-energy embedding theory (SEET) and the code developed by our group
to simulate the spectral function of the strontium titanate (SrTiO3). This was a fruitful learning
experience of mine where I have appreciated the beautiful math in numerical algorithms, probing
more into the propagator (response function) physics, as well as seeing how condensed matter
simulations talk to experiments in practice.
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Chapter 1

Nevanlinna Analytic Continuation

The main result of this chapter have been published in Physical Review Letters as “Nevanlinna An-
alytic Continuation (Jiani Fei, Chia-Nan Yeh, and Emanuel Gull)” (Phys. Rev. Lett. 126, 056402;
Editors’ Suggestion).

1.1 Relationship between Nevanlinna function and Green’s Function

In the field of complex analysis, a Nevanlinna function is a complex function which is an analytic
function on the open upper half-plane C+ and has non-negative imaginary part, i.e. maps into
C+ (the overline denotes inclusion of the boundary) [2]. Denote the class of Nevanlinna functions
as N.

The retarded Green’s function GR is analytic in the upper half of the complex plane, C+, and
contains singularities in the lower half plane. The Matsubara Green’s function G(iωn) and the
retarded Green’s function GR(ω + iη) can be expressed consistently by replacing the variables iω
and ω + iη with a single complex variable z. Analytic continuation is used to obtain GR from G.

We state that the negative of the Green’s function G restricted to C+ (involving G(iωn) with
ωn > 0 and GR(ω + iη) with η > 0) is a Nevanlinna function. This is to say, denoting NG = −G,
then NG : C+ → C+ and NG ∈ N.

Proof. Green’s function restricted to C+ can be formulated by Lehmann representation as,

G(γ, z) =
1
Z ∑

m,n

|〈m|c†
γ|n〉|2

z + En − Em
(e−βEn + e−βEm) (1.1)

where Em and En are eigenvalues corresponding to eigenstates |m〉 and |n〉 of a given Hamiltonian
system, Z is the partition function, β is the inverse temperature, c†

γ is the creation operator for
orbital γ.

Now we prove any summand on the r.h.s. of (2.12) belongs to the Nevanlinna function class
N. Denote and notice that,

A =
1
Z
|〈m|c†

γ|n〉|2(e−βEn + e−βEm) > 0 (1.2)
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Let z = x + yi where y > 0, i.e. z ∈ C+. Then each summand can be represented as,

S =
A

x + En − Em + yi
=

A(x + En − Em − yi)
(x + En − Em)2 + y2 (1.3)

Im{S} = − Ay
(x + En − Em)2 + y2 6 0 (1.4)

Due to the closure relation of Nevanlinna function class, summing all summands in (2.12)
gives Im{G(γ, z)} 6 0 and thus Im{NG(γ, z)} > 0 for z ∈ C+. And since NG is obviously
analytic in the upper half plane with poles on the real axis, it belongs to the Nevanlinna function
class N.

1.2 Schur Algorithm

1/β 10/β 50/β
π/β

1/β

10/β
50/β

0 ∞−∞

ω+ iη

fit
order

iωn

ω

C +
D

Figure 1.1: Analytic continuation setup with fermion Matsubara points at iωn and real frequency axis ω.
The retarded Green’s function is evaluated η (small) above the real axis. Inset: Möbius transform of the
closed upper half plane C+ to the closed unit disk D.

To perform analytic continuation from the Matsubara to the real axis, we aim to find an inter-
polant for NG = −G in the class of Nevanlinna functions N, rather than a generic continued
fraction. By construction, this function will pass through all Matsubara points (see Fig. 1.1) and
have a positive imaginary part in the upper half plane, including just above the real axis. Spectral
functions A(ω) = limη→0+

1
π Im{NG(ω + iη)} are therefore intrinsically positive, avoiding the

common failure of Padé interpolants.
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After obtaining a set of positive Matsubara frequency Green’s function data and negate them,
we have a set of functions,

f (Yi) = Ci i = 1, 2, . . . , M (1.5)

where Yi = iωn ∈ C+ and Ci ∈ C+. We look for the class of Nevanlinna functions { f (z)} so that
(1.5) exists. Such f are interpolants to NG.

We use the modified Schur algorithm to interpolate the Nevanlinna function needed [3].
Schur studied a class (Schur class S) of holomorphic disk functions mapping from D to D, where
D = {z : |z| < 1} is the open unit disk in the complex plane, D the closed unit disk. Schur found
every Schur function has a continued fraction expansion where the parameters can be recursively
defined. With this expansion formula, Nevanlinna later developed an iterative algorithm to in-
terpolate Schur functions [2]. Schur algorithm was modified to expand all contractive functions
[4], which are holomorphic functions mapping from C+ to D. Denote contractive function class
as B. The invertible Möbius transform h : C+ → D, z 7→ z−i

z+i on function value (with half-plane
domain unchanged) maps Nevanlinna functions one-to-one to contractive functions (see Fig. 1.1).
The Nevanlinna interpolation problem is therefore mapped into the problem of constructing the
contractive function θ which is Möbius transformed from NG,

θ(Yi) = λi = h(Ci) =
Ci − i
Ci + i

i = 1, 2, . . . , M (1.6)

where Yi is the i-th Matsubara frequency, Ci is the value ofNG at Yi, and λi is the value of θ at Yi.
See the below diagram for function mappings.

C+ C+

D D

f

h1

g

θ
h

f : Nevanlinna function ∈ N

g : Schur function ∈ S

θ : Contractive function ∈ B

h/h1 : Conformal mapping (e.g. Möbius transform)

The modified Schur algorithm is an iterative method which decreases the number of interpo-
lation nodes by 1 in each step. The first step of reduction is shown below [4],

θ ∈ B satisfies the condition,

θ(Y1) = λ1 |λ1| < 1 (1.7)

if and only if it admits the representation,

θ(z) =
φ(z) + λ1

λ∗1φ(z) + 1
(1.8)

where φ ∈ B and φ(Y1) = 0. Since Y1 ∈ C+, φ(z) admits the representation,

φ(z) =
z−Y1

z−Y∗1
θ1(z) (1.9)

where θ1 is an arbitrary function such that θ1 ∈ B.
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Proof. We use the conformal mapping h1(z) = z−Y1
z−Y∗1

to establish the one-to-one correspondence
of θ to a Schur function g. Then,

g(0) = θ(h−1
1 (0)) = θ(Y1) = λ1 (1.10)

Schur defines λ1 to be a parameter inside his expansion formula and g1 to be the recursively
defined next Schur function if g(0) = λ1 as [3],

xg1(x) =
g(x)− λ1

1− λ∗1 g(x)
(1.11)

where x ∈ D.
We let θ1(z) = g1(h1(z)), then it is ensured that θ1(z) ∈ B. Equation (1.11) can be rewritten as,

xθ1(h−1
1 (x)) =

θ(h−1
1 (x))− λ1

1− λ∗1θ(h−1
1 (x))

= φ(h−1
1 (x)) (1.12)

Thus, firstly,

φ(z) =
θ(z)− λ1

1− λ∗1θ(z)
(1.13)

θ(z) =
φ(z) + λ1

λ∗1φ(z) + 1
(1.14)

where z ∈ C+. Secondly,

φ(h−1
1 (x)) = h1(h−1

1 (x))θ1(h−1
1 (x)) (1.15)

φ(z) = h1(z)θ1(z) =
z−Y1

z−Y∗1
θ1(z) (1.16)

where z ∈ C+, φ = h1θ1 ∈ B and φ(Y1) = 0.

Then a θ ∈ B interpolation with M nodes reduces to a θ1 ∈ B interpolation with M-1 nodes.
We get the interpolation node values θ1(Yj) for j = 2, 3, . . . , M by equations (1.8) and (1.9). Each
reduction releases 1 node constraint. Therefore, after M steps of reduction, we get an arbitrary
contractive function θM(z) ∈ B and the continued fraction expansion form θ[z; θM(z)].

The substitution procedure can be written in a more compact matrix form. Denote the inter-
mediate contractive function after k steps of reduction as θk, λ

(0)
1 = λ1 = θ(Y1), λ

(k)
k+1 = θk(Yk+1)

(k = 1, 2, . . . , M− 1), θM(z) ∈ B. Then we have the central equations,

θ(z) =
ak(z)θk(z) + bk(z)
ck(z)θk(z) + dk(z)

k = 1, 2, . . . , M (1.17)

θk(z) =
−dk(z)θ(z) + bk(z)
ck(z)θ(z)− ak(z)

k = 1, 2, . . . , M (1.18)
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where {ak(z), bk(z), ck(z), dk(z)} can be expressed as,

(
ak(z) bk(z)
ck(z) dk(z)

)
=

k

∏
j=1

 z−Yj
z−Y∗J

λ
(j−1)
j

(λ
(j−1)
j )∗

z−Yj
z−Y∗j

1

 (1.19)

here the index j of matrices on the r.h.s. increase from left to right, as the normal order of ∏
notation.

In order to get the final expression,

θ(z)[z; θM(z)] =
aM(z)θM(z) + bM(z)
cM(z)θM(z) + dM(z)

(1.20)

where θM(YM) ∈ B is our parametric function, we use an iterative process as below,

λ
(0)
1 →

(
a1(z) b1(z)
c1(z) d1(z)

)
→ λ

(1)
2 →

(
a2(z) b2(z)
c2(z) d2(z)

)
→ · · · → λ

(M−1)
M →

(
aM(z) bM(z)
cM(z) dM(z)

)
(1.21)

and use the iterative helper functions (k = 2, . . . , M),(
ak(z) bk(z)
ck(z) dk(z)

)
=

(
ak−1(z) bk−1(z)
ck−1(z) dk−1(z)

) z−Yk
z−Y∗k

λ
(k−1)
k

(λ
(k−1)
k )∗ z−Yk

z−Y∗k
1

 (1.22)

λ
(k−1)
k = θk−1(Yk) =

−dk−1(Yk)λk + bk−1(Yk)

ck−1(Yk)λk − ak−1(Yk)
(1.23)

Finally, θ is back transformed to a Nevanlinna interpolant via the inverse Möbius transform
h−1, NG(z) = h−1(θ(z)) = i 1+θ(z)

1−θ(z) . In practice, we found that solving these equations required at
least quadruple precision.

1.3 Pick Criterion

Pick independently developed the famous existence criterion for Schur interpolation in 1917 [5,
6]: if g(xi) = yi (xi ∈ D, yi ∈ D; i = 1, 2, . . . ), Schur interpolants to g(z) can be found if and only
if the Pick matrix, [

1− yiy∗j
1− xix∗j

]
i,j

(1.24)

is positive semi-definite. It has a unique solution if furthermore the Pick matrix is singular.
Generalizing Pick criterion gives us a straightforwardly verifiable criterion for the existence of

Nevanlinna interpolants directly based on input data. Nevanlinna interpolants exist if and only
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if the conformal Pick matrix, [
1− λiλ

∗
j

1− h(Yi)h(Yj)∗

]
i,j

i, j = 1, 2, . . . , M (1.25)

is positive semi-definite; and a unique solution only if it is singular. h is the Möbius transform,
Yi and λi are defined in (1.6). In practice, we find that most noisy data (in particular most Monte
Carlo data) does not satisfy this criterion, meaning that there does not exist a globally positive
and holomorphic function in the upper half plane that passes through all Matsubara points.

1.4 Hamburger Moment Problem

The truncated Hamburger moment problem (HM) looks for a non-decreasing measure σ(ω) on
the real line R such that,

hk =
∫ ∞

−∞
ωkdσ(ω) k = 0, 1, 2, . . . , 2N − 2 (1.26)

where N is any positive integer and b = (h0, h1, h2, . . . , h2N−2) is a given real vector.
The Hamburger-Nevanlinna theorem [7] establishes a one to one correspondence between the

class of solutions σ(ω) (if they exist) to a subset of the Nevanlinna function class N. For a given
solution σ(ω),

f (z) =
∫ ∞

−∞

dσ(ω)

ω− z
z ∈ C+ (1.27)

belongs to N. And this Nevanlinna function f (z) admits an asymptotic expansion (as |z| → ∞
uniformly inside any angle ε < arg z < π − ε for some 0 < ε < π

2 ),

f (z) = −h0

z
− h1

z2 −
h2

z3 − · · · −
h2N−2

z2N−1 − o(
1

z2N−1 ) (1.28)

Therefore, HM problem provides us another approach to restore Nevanlinna function NG.
We obtain the Nevanlinna interpolant f (z) ofNG by the moment vector b = (h0, h1, h2, . . . , h2N−2)
of its measure function σ(ω) (correlated by 1.27) which involves the first 2N − 1 moments.

Moments h0, h1, h2, . . . of the measure function σ(ω) corresponding to NG(z) theoretically
can be found by Fourier transforming G(iωn) where ωn → ∞,

NG(iωn) = −G(iωn) (1.29)

= −
∫ β

0
dτG(τ)eiωnτ (1.30)

= −
∞

∑
k=0

(−1)k+1(G(k)(β) + G(k)(0))
(iωn)k+1 (1.31)

= − h0

iωn
− h1

(iωn)2 −
h2

(iωn)3 − . . . (1.32)
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and where the (1.30) to (1.31) transformation is accomplished by partial derivative [8]. In practice,
the moments can be extracted from the so-called equation of motion and are typically well known
because they encapsulate perturbative short-time physics.

Few lines of derivation further gives A(ω) = dσ(ω)
dω , where σ(ω) is the measure function

corresponding to the Nevanlinna functionNG. Non-decreasing σ(ω) in moment theory acts like
a cumulative distribution function and therefore its derivative acts like a density distribution
function, which corresponds with the single particle density of states measuring effect of A(ω).

Proof.

NG(z) = −G(z) =
∫ ∞

−∞
dω

A(ω)

ω− z
=
∫ ∞

−∞

dσ(ω)

ω− z
(1.33)

A(ω) =
dσ(ω)

dω
> 0 (1.34)

We use the well-known method to solve the truncated Hamburger Moment problem [7, 9].
First formulate the famous Hankel matrix,

Hkl [b] = (hi+j)
i=k−1,j=l−1
i,j=0 k + l = 2N (1.35)

where b = (h0, h1, h2, . . . , h2N−2) is the moment vector.
Denote a general matrix A ≥ 0 if it is positive semi-definite, and A > 0 if it is positive definite;

call it proper [10] if the leading submatrix (in the top-left corner) of order n1 × n1 is non-singular.
For a proper Hankel matrix, let n2 = 2N− n1 and obviously n1 ≤ n2. Note that any matrix A > 0
is non-singular and thus proper, and that the matrix A is singular if A ≥ 0 but is not > 0 .

One kind of polynomial space related to the kernel of Hankel matrices is used,

Al = (1, z, z2, . . . , zl−1)ker(Hkl [b]) k + l = 2N (1.36)

Then two kinds of polynomials are formulated with respect to the Hankel matrix HNN [b].
p(z) and q(z) are the first kind of polynomials. They are called the canonical pair of character-

istic polynomials of the vector b. They are defined in the following way. If n1 = n2 = N, according
to rank–nullity theorem, An1+1 has dimension 2. p(z) and q(z) form a basis of An1+1. Otherwise
n1 < n2,An1+1 has dimension 1. p(z) form a basis ofAn1+1, while p(z), λp(z), . . . , λn2−n1 p(z), q(z)
form a basis of An2+1.

For convenience, use the special canonical pair polynomials p(z) and q(z) of b. They are
in essence orthogonal polynomials of an infinite positive sequence, extended from the longest
positive subsequence (starting from the beginning) of b. (A sequence is called positive if it can
generate a Hankel matrix that is positive definite.) Or symbolically, we denote the n1-th order
orthogonal polynomial by,

α det


h0 h1 · · · hn1

h1 h2 · · · hn1+1
...

...
...

hn1−1 hn1 · · · h2n1−1
1 z · · · zn1

 (1.37)
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Here, if n1 = N (h2n1−1 is not given), we let h2n1−1 be an arbitrary real number. And α is the
normalization coefficient that makes coefficient of zn1 to be 1. When HNN [b] ≥ 0 and is proper,
we let the special canonical pair polynomials p(z) be the n1-th order orthogonal polynomial, and
q(z) be the n1 − 1-th order polynomial.

S(p(z)) and S(q(z)) are the symmetrizers of p(z) and q(z),

S(p(z)) =


p1 · · · pn1−1 pn1
... . . . . . . 0

pn1−1 . . . . . .
...

pn1 0 · · · 0

 , S(q(z)) =


q1 · · · qn2−1 qn2
... . . . . . . 0

qn2−1 . . . . . .
...

qn2 0 · · · 0

 (1.38)

γ(z) and δ(z) are the second kind of polynomials. They are conjugate polynomials of p(z)
and q(z),

γ(z) = (1, z, z2, . . . , zn1−1)S(p(z))(h0, h1, . . . , hn1−1)
ᵀ (1.39)

δ(z) = (1, z, z2, . . . , zn2−1)S(q(z))(h0, h1, . . . , hn2−1)
ᵀ (1.40)

Finally, solutions of HM problem (1.26) comes as follows. HM problem has a solution if and
only if HNN [b] ≥ 0 is proper. There are thus two cases. When HNN [b] > 0 The solution class is
given by,

f (z) =
∫ ∞

−∞

dσ(ω)

ω− z
= −γ(z) + ϕ(z)δ(z)

p(z) + ϕ(z)q(z)
(1.41)

where ϕ(z) is any Nevanlinna function such that ϕ(z)/z → 0 as |z| → ∞. When HNN [b] ≥ 0 is
singular and proper, HM problem has a single rational solution,

f (z) =
∫ ∞

−∞

dσ(ω)

ω− z
= −γ(z)

p(z)
(1.42)

which is real on the real axis. We remark that ϕ(z) defines an embedded Nevanlinna interpo-
lation problem whose values at Matsubara nodes are fixed by (1.41) and Matsubara frequency
Green’s function values (if given), thus Hamburger Moment problem can be combined with Schur
method.

1.5 Hardy Basis Optimization

In the final Schur’s continued fraction expansion (1.20), the choice of θM is still to be discussed.
Any contractive function will yield a valid interpolation and spectral function, and therefore this
freedom can be used to select the ‘best’ of all consistent spectral functions. It is natural to expand
θM into a set of basis functions and optimize the resulting spectral function in some norm as
a function of those basis function coefficients. As we demonstrate in “Results”, a constant θM
results in spectral functions with oscillations. We therefore employ the freedom in choosing θM
to eliminate these oscillations and obtain the smoothest possible spectral function. Other criteria,
such as proximity to a trial function that is either featureless or exhibits a desired feature, are
possible but have not been pursued here.
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Figure 1.2: Real and imaginary parts of the 3rd and 20th Hardy functions and conjugates used in the
optimization, plotted in the upper half complex plane.

First, Hardy space H2 for C+ is the space of holomorphic functions on C+ with bounded
quasi-norm,

∥∥ f
∥∥

H2 = supη>0

(∫ ∣∣ f (ω + iη)
∣∣2) 1

2

< ∞ (1.43)

H2 space basis are,

Bk(z) = { 1√
π(z + i)

(
z− i
z + i

)k

}k∈N (1.44)

In fact, holomorphic f and bounded quasi-norm makes the integral in (1.43) nonincreasing
as a function of η ∈ (0, ∞). Hence we can replace supη>0 by limη→0+ [11]. This means all H2

functions are square integrable on our evaluation axis ω + iη, i.e., have o(ω−2) decay as|ω| → ∞,
while rapid variations exist between them at low |ω| region.

We use truncated Hardy space basis to generate functions in the contractive function space
and feature low frequency variations. We additionally add their conjugate to represent functions
more efficiently without exhausting truncation order. This is because real and imaginary part of
Hardy basis are correlated while adding conjugate enables them to function independently (See
Fig. 1.2). θ(M) is therefore expanded as,

θ(M) =
H

∑
k=0

akBk(z) + bk(Bk(z))∗ (1.45)

Then, we minimize a functional norm w.r.t. A(ω) to find complex coefficients ak and bk,

F[AθM(ω)] =

∣∣∣∣1− ∫ AθM(ω)dω

∣∣∣∣2 + λ

∥∥∥∥∥d2AθM(ω)

dω2

∥∥∥∥∥
2

(1.46)
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Figure 1.3: Schur algorithm combined with Hamburger Moment Problem (without optimization). Uniform
grid ωn = (2n + 1)π/β n = 0, 1, 2 . . . , M− 1 with M = 5, β = 10 (left) and M = 101, β = 200 (right).

where ‖·‖ denotes a L2 integral norm. The first term enforces proper normalization, while the
second term promotes smoothness by minimizing second derivatives (we typically use λ = 10−4

and H = 25). Second order derivative of f was done in the reciprocal space using fast Fourier
transform (FFT). λ can be tuned for better performance.

Finally, we used a conjugate gradient minimizer of the Dakota package [12] to minimize the
norm and eliminate oscillations from the spectral function. For practical convenience, we used
unconstrained optimization. The contractive condition

∣∣θM(z)
∣∣ 6 1 for z ∈ C+ would be enforced

by the program as long as Nevanlinna solutions exist. Because in that case the smoothest A(ω)
always corresponds to a Nevanlinna interpolant which requires a contractive parametric function
θM(z).

Nevertheless, we will show in “Results” section that in most practical cases with less than
double input data precision, Nevanlinna interpolants toNG don’t exist. But the Schur continued
fraction expansion still builds up structures closest to Nevanlinna functions with a(z), b(z), c(z)
and d(z) faithful to input, and with θ(z) adapted by the unconstrained optimization program
while no longer guaranteed to be contractive.
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Figure 1.4: Continuation with and without Hardy function optimization. Off-centered δ peak (top left),
Gaussian (top right), two-peak scenario (bottom left), and a three-peak scenario (bottom right). β = 100,
IR grid [13, 14] with 36 Matsubara positive frequency points.

1.6 Results

1.6.1 Effects of Moments

Fig. 1.3 demonstrate the effect of enforced moments (Hamburger Moment method in combination
with Schur algorithm; 1 and 3 moments, which can be obtained in quantum simulation with good
accuracies) by comparison with bare Schur method (0 moment). The interpolation is done with
double precision input data and θM = 0 constant parametric function. We show that for very few
Matsubara points (5 points in the left panel), moments indeed add additional information and fix
the shape to some extent. However, since moment information are already carried asymptotically
in the high frequency samplings of Matsubara data with precision, enforced moments do not
yield advantage when number of input points are enough (101 points in the right panel). A
combination may become useful if fits to noisy Monte Carlo data are attempted.

1.6.2 Effects of Optimization

Results of following sections were all generated with Schur algorithm and Hardy basis opimiza-
tion techniques. Fig. 1.4 shows the results for four prototypical spectral functions: an off-center
δ-peak ‘level’ (top left), a centered Gaussian (top right), a double-peak ‘pseudogap’ scenario (bot-
tom left), and a three-peak structure with a second, smaller peak hidden behind the first peak.
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Figure 1.5: Top left: effect of the number of interpolation nodes (IR grid [13, 14]) used. Top right: effect
of Matsubara spacing (inverse temperature), uniform grid ωn = (2n + 1)π/β used. Bottom two panels:
effect of independent Gaussian noise with relative standard deviation of 10−4 (left) and 10−6 (right), four
sample curves each.

Black lines show input data that is then back-continued to the imaginary axis in double precision
as an input for the interpolation algorithm.

We show two sets of results from Nevanlinna continuation which both interpolate all Matsub-
ara points and are intrinsically positive and normalized. First, the result of an interpolation using
a constant function θM = 0. For the δ-function, the interpolation is very close to the original data.
However, other curves display artificial oscillations. The number of these oscillations increases as
additional Matsubara points are fit. Nevertheless, the approximate shape of the original spectral
function is evident in all interpolations.

Next, we exploit the additional freedom to find the ‘best’ function among all possible in-
terpolants by minimizing the functional F[AθM(ω)] with 25 Hardy basis coefficients and their
conjugates. Other choices of functionals, including minimizing

∫
A′(ω) while keeping

∫
A(ω)

constant, yield similar results. As is evident in Fig. 1.4, the minimization eliminates all oscilla-
tions and produces a spectral function that is both smooth and very close to the original data,
while not destroying the sharp features of the δ peak in the top left panel.

1.6.3 Effects of Number of Points, Beta and Noise

Fig. 1.5 illustrates the robustness of the procedure. As additional Matsubara points are added
(top left), the function converges rapidly to the correct result. If too many points are provided,



Chapter 1. Nevanlinna Analytic Continuation 13

15 5 5 15 25 35 45 55 65 75 85
0

100

200

A(
)

DOS (Nevan)
DOS (Maxent)
DOS (exact)

15 5 5 15 25 35 45 55 65 75 85
(eV)

0

100

200

A(
)

X

Figure 1.6: LDA band structure (Kohn Sham eigenvalues, DOS) of solid Si (green) at the Γ and the X point,
as well as Nevanlinna (blue) and MaxEnt (orange) continuations of the corresponding Green’s functions.
T=316 K, 52 non-uniform [14] IR Basis [13] Matsubara positive frequency points.

the minimization routine struggles with finding an appropriate global minimum and does not
completely eliminate all oscillations. Varying the position of the Matsubara sampling points (top
right, large β corresponds to low T and sampling points close to the real axis, physical maximum
frequency is kept constant such that the number of sampling points increases from 5 to 253) again
illustrates the difficulty of optimizing very many degrees of freedom.

Finally, the lower two panels show the effect of noise (such as Monte Carlo noise from a quan-
tum Monte Carlo simulation [15, 16]) on the input data. Shown are four traces with independent
Gaussian noise on the input data (left panel: 10−4 relative noise. right panel: 10−6). It is evident
that even small noise forces large deviations of the interpolation from the unperturbed spectral
function. This is a sign of the ill conditioned nature of the continuation kernel, as well as of the
sensitivity of the interpolation to high frequency data. Remarkably, even though none of the func-
tions with noise satisfy the Nevanlinna criterion (Eq. 1.25), the interpolation recovers a reasonable
approximation to the spectral function. The fact that Eq. 1.25 is almost never satisfied for noisy
data implies that a fit, rather than an interpolation, should be used for continuation of noisy data.

1.6.4 Real Material Examples

We now turn to Fig. 1.6. Shown are k-resolved DFT Kohn Sham eigenvalues (the ‘band structure’)
of solid Si in the LDA approximation at the Γ and the X point, obtained on an 8× 8× 8 grid in
the gth-dzvp-molopt-sr basis [17] with gth-pbe pseudopotential [18]. The eigenvalue spectrum at
the k-points shown is back-continued to the Matsubara axis in double precision, at T = 316K
and with 52 non-uniform [14] IR Basis [13] Matsubara points, for each orbital individually, and
then analytically continued. Shown are Nevanlinna (blue) and Maximum Entropy continuations
(orange). It is evident that Nevanlinna resolves the delta peaks at the right locations, even at very
high energy, whereas MaxEnt only obtains the approximate area, but not the sharp unperturbed
levels at high energy. Continuations of this type often appear in correlated simulations of real
materials, where the spectral function broadening due to electron correlations needs to be distin-
guished from a broadening due to analytic continuation deficiencies. Our method, which is able
to capture both broad features near the Fermi energy and sharp features away from it, therefore
offers the unique capability of accurately resolving bandstructure at high energy. The fact that
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sharp features are resolved, despite Hardy function smoothing, hints at the severe restriction of
the functions available within the Nevanlinna space.
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Figure 1.7: Orbital-resolved realistic band structure of SrVO3 from self-consistent GW continued with
MaxEnt (top) and with Nevanlinna (bottom) [19].

To illustrate the power of the method in a difficult realistic correlated setting, we show near-
Fermi-energy results from a self-consistent GW [20] calculation of SrVO3 in Fig. 1.7, from Max-
Ent (top) [21] and Nevanlinna (bottom panel). For methods details and physics discussion see
Ref. [19]. Shown are experimental photoemission [22] and bremsstrahlung isochromat spec-
troscopy [23] data along with orbitally resolved local GW spectra obtained at T = 1579K on a
6× 6× 6 grid in a Gaussian gth-dzvp-molopt-sr basis [17] with gth-pbe pseudopotential [18] at 84
frequency points. The four-fermion Coulomb integrals are decomposed into a combination of
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auxiliary even-tempered Gaussian for Strontium and def2-svp-ri [24] bases for all other atoms.
Both methods recover the same overall features. However, Nevanlinna continuation reveals ad-
ditional details such as multiplet structures in the occupied and unoccupied bands, and does not
exhibit artificial oscillations in the t2g bands near the Fermi energy.

Figure 1.8: The Nevanlinna work was selected as Editors’ Suggestion and showed up on the Physical
Review Letters homepage. This logo is the Nevanlinna structure of a typical three-peak spectral function
that is mapped to the unit circle. The color scheme corresponds to the real part of the function. Credit to
Jiani Fei and Emanuel Gull.
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Chapter 2

Matrix-valued Response Functions

2.1 Carathéodory Function Definition

Carathéodory class of matrix-valued analytic functions in the unit disk is defined as C = {M(z) :
M(z) + M†(z) ≥ 0 for |z| < 1} [25, 26], where M is a m×m square matrix, and a matrix A ≥ 0
denotes A is a positive semi-definite (PSD) matrix as before. Note that M(z) + M†(z) ≥ 0 is the
same as saying Re{x† M(z)x} ≥ 0 for any complex vector x of length m, because

x†(M + M†)x = x† Mx + x† M†x (2.1)

= x† Mx + (x† Mx)† (2.2)

= 2Re{x† Mx} ≥ 0 (2.3)

2.2 −iG<(ω) is PSD

By Lehmann representation, the lesser Green’s function has entries,

G<
ij (ω) = 2πi ∑

mn

e−βEn

Z
〈n|c†

j |m〉〈m|ci|n〉δ(ω− En + Em) (2.4)

where Em and En are eigenvalues corresponding to the eigenstates |m〉 and |n〉 of a Hamiltonian,
Z = ∑m e−βEm is the partition function, β is the inverse temperature, c†

i is the creation operator
for the spin-orbital i = (i, σ) and ci is the annihilation operator.

We prove that −iG<(ω) is a positive semi-definite (PSD) matrix for any ω. For any complex
vector |x〉,

〈x|−iG<(ω)|x〉 = 2π ∑
mnij

e−βEn

Z
〈n|c†

j xj|m〉〈m|cix∗i |n〉δ(ω− En + Em) (2.5)

= 2π ∑
mn

e−βEn

Z
〈n|∑

j
c†

j xj|m〉〈m|∑
i

cix∗i |n〉δ(ω− En + Em) (2.6)

= 2π ∑
mn

e−βEn

Z
〈m|∑

i
cix∗i |n〉2δ(ω− En + Em) ≥ 0 (2.7)



Chapter 2. Matrix-valued Response Functions 17

2.3 iG>(ω) is PSD

The greater Green’s function has entries,

G>
ij (ω) = −2πi ∑

mn

e−βEn

Z
〈n|ci|m〉〈m|c†

j |n〉δ(ω + En − Em) (2.8)

We prove that iG>(ω) is a PSD matrix for any ω. For any complex vector |x〉,

〈x|iG>(ω)|x〉 = 2πi ∑
mnij

e−βEn

Z
〈n|cix∗i |m〉〈m|c†

j xj|n〉δ(ω + En − Em) (2.9)

= 2πi ∑
mn

e−βEn

Z
〈n|∑

i
cix∗i |m〉〈m|∑

j
c†

j xj|n〉δ(ω + En − Em) (2.10)

= 2πi ∑
mn

e−βEn

Z
〈n|∑

i
cix∗i |m〉2δ(ω + En − Em) ≥ 0 (2.11)

2.4 iG(z) is Carathéodory

The matrix-valued Green’s function G(z) restricted to the upper half complex plane C+ has en-
tries,

Gij(z) =
1
Z ∑

m,n

〈n|ci|m〉〈m|c†
j |n〉

z + En − Em
(e−βEn + e−βEm) (2.12)

We prove for z ∈ C+, iG(z) + (iG(z))† is a PSD matrix, i.e., iG(z) is a Carathéodory class
function on C+. For any complex vector |x〉,

〈x|iG(z) + (iG(z))†|x〉 = 1
Z ∑

mnij

[
i(e−βEm + e−βEn)

z + En − Em
− i(e−βEm + e−βEn)

z∗ + En − Em

]
〈n|cix∗i |m〉〈m|c†

j xj|n〉

(2.13)

=
1
Z ∑

mn

[
i(e−βEm + e−βEn)

z + En − Em
− i(e−βEm + e−βEn)

z∗ + En − Em

]
〈n|∑

i
cix∗i |m〉2 (2.14)

=
1
Z ∑

mn

2Im{z} (e−βEm + e−βEn)

Im{z}2 + (Re{z}+ En − Em)2 〈n|∑
i

cix∗i |m〉2 ≥ 0 (2.15)

2.5 iΣ(z) is Carathéodory

The fantastic idea of the Lehmann representation of self-energy comes from two outstanding
papers, Ref. [27] and [28]. We have extended them to the direct proof of iΣ(z) being Carathéodory.

Derivation stems from the construction of an effective non-interacting Hamiltonian with re-
spect to an arbitrary interacting Hamiltonian [27, 28]. Effectiveness lies in the Green’s function
(same on the physical orbitals) and self-energy (differed by a Hartree-Fock-like term).
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Figure 2.1: Left: Keldysh-Matsubara contour C. In this case t >C t′ in the text. Right: Unitary completion of
the time-dependent Matrix Q(t). The matrix Q⊥(t) contains a completing set of orthonormal basis vectors
in its rows. The phase factor ε is absorded. The generating Hermitian matrix h(t) can be assumed to be
diagonal in the virtual sector [28]

.

A general time-dependent and fermionic model Hamiltonian can be,

H(t) = ∑
ij
[Tij(t)− µδij]c†

i (t)cj(t) +
1
2 ∑

iji′ j′
Uii′ jj′(t)cj(t)c†

i′(t)cj′(t)ci(t) (2.16)

where ci(t) = U†(t, 0)ciU(t, 0), U(t, t′) = TC exp(−i
∫ t′

t H(t1)dt1) is the system’s time-evolution
operator and TC is the time-ordering operator along the Keldysh-Matsubara contour (see Fig. 2.1
left panel).

The non-equilibrium Green’s function can be expanded by Lehmann representation as [29],

Gij(t, t′) = ∑
α

Qiα(t)g(εα; t, t′)Q∗jα(t
′) (2.17)

where

g(ε; t, t′) = i[
1

eβε + 1
−ΘC(t, t′)]eiε(t−t′) (2.18)

[ΘC(t, t′) = 1 for t >C t′, ΘC(t, t′) = 0 otherwise] is the non-interacting Green’s function of an
isolated one-particle mode (hmode = εc†c) with excitation energy ε, and

Qiα(t) = Qi(m,n)(t) =

√
e−βEm + e−βEn

Z
〈m|ci(t)|n〉eiε(m,n)t (2.19)

where m and n are some states for tracing over the Fock space (here for example the eigenstates
of the initial Hamiltonian Hini). The index α = (m, n) labels the possible one-particle excitation
with corresponding excitation energy εα = ε(m,n) = Em − En.

Construction of the effective non-interacting Hamiltonian follows from Eqn. 2.17 [28]. Since
Σ = G−1

0 − G−1 needs the inversion of G which in turns needs a quadratic form, the row-
orthonormal matrix Q(t) is completed into the orthonormal square matrix O(t). The phase factor
εαα′ = δαα′ exp(−iεαt) is absorbed into O(t) from g(εα; t, t′) for convenience (see Fig. 2.1 right
panel).

Define

hxy(t) = ∑
α

[i∂tOxα(t)]O†
αy(t), (2.20)
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the effective Hamiltonian is then,

Heff(t) = ∑
xy

hxy(t)c†
i cj (2.21)

where the virtual part is chosen to be diagonal and time-independent hss′(t) = hss(0)δss′ . This
requirement defines Heff uniquely up to a rotations in invariant subspace (O(t) should be chosen
to match).

From some proofs (Ref. [28]) it was shown that the Green’s function of this effective Hamilto-
nian in the physical sector exactly equals the Green’s function of the original interacting Hamil-
tonian (Eqn. 2.16). And that we can express the self-energy Σij(t, t′) of the original model as

Σij(t, t′) = δC(t, t′)ΣHF
ij (t) + ΣC

ij(t, t′) (2.22)

ΣHF
ij (t) ≡ 2 ∑

i′ j′
Uii′ jj′(t)〈TC c†

i′(t)cj′(t)〉Heff (2.23)

ΣC
ij(t, t′) ≡∑

s
his(t)g(hss; t, t′)h∗js(t

′). (2.24)

where s are virtual orbitals. The correlated ΣC term is the self-energy of the effective model,
with the trace over the virtual orbitals simulating the retardation effect of the self-energy. The
Hartree-Fock-like term is time-local and the additional term of the original self-energy.

We prove for z ∈ C+, iΣ(z) + (iΣ(z))† is a PSD matrix, i.e., iΣ(z) is a Carathéodory class
function on C+. We Fourier transform ΣC from time domain to the frequency domain as,

ΣC
ij(iωn) =

∫ β

0
ΣC,M

ij (τ)eiωnτdτ (2.25)

=
∫ β

0
−iΣC

ij(−iτ, 0)eiωnτdτ (2.26)

=
∫ β

0
his(0)h∗js(0)

(
1

eβhss + 1
− 1
)

e−hssτeiωnτdτ (2.27)

=
his(0)h∗js(0)(e

iωn β − ehssβ)

(1 + ehssβ)(hss − iωn)
(2.28)

=
his(0)h∗js(0)

iωn − hss
(2.29)

ΣC
ij(z) =

his(0)h∗js(0)

z− hss
(2.30)

where ωn = (2n+1)π
β are the fermionic Matsubara frequencies so that eiωnβ = −1. Also taking the

fact that Q(t), O(t) and h(t) are invariant on the Matsubara branch.
Finally, we observe that ΣHF(z) is Hermitian and z-independent. Since the self-energy has the

property that Σ(x + yi) = (Σ(x− yi))† for x, y > 0, we will have,

iΣij(z) + (iΣij(z))† = iΣC
ij(x + yi)− iΣC

ij(x− yi) (2.31)

=
2his(0)h∗js(0)y

(hss − x)2 + y2 (2.32)



Chapter 2. Matrix-valued Response Functions 20

where ΣHF
ij (x + yi) and ΣHF

ij (x− yi) cancel out. Therefore, for any complex vector |x〉,

〈x|iΣ(z) + (iΣ(z))†|x〉 = 2y(∑i xihis(0))2

(hss − x)2 + y2 > 0 (2.33)

2.6 iM(z) is Carathéodory

Cumulant M is a derived object that has the properties of a Green’s function but lacks the ‘Fock’
contribution of the one-body Hamiltonian [30, 31]. It has the definition of,

M−1(z) = G−1(z) + F (2.34)

where F is the Fock matrix. We can relate it with the Green’s function as,

−iG−1(z) + i(G−1(z))† = −iM−1(z) + iF + i(M−1(z))† − iF† (2.35)

= −iM−1(z) + i(M−1(z))† (2.36)
(2.37)

Since F is a Hermitian constant matrix, and that inversion of a matrix-valued function is Carathéodory
function if and only if this function itself is, we get iM(z) is a Carathéodory function.

2.7 Carathéodory Continuation

To interpolate the Carathéodory class function iG(z) or iΣ(z) restricted to the upper half complex
plane C+ = {z : Im(z) > 0}, we use the matrix extension of Schur algorithm [25, 26, 32] for the
classical Nevanlinna-Pick interpolation problem. Schur class of matrix-valued analytic function
is defined as S = {M(z) : ‖M‖ ≤ 1 for |z| < 1}, where for this section ‖M‖ denotes the spectral
norm of the matrix M, i.e., the largest singular value of matrix M.

First of all, we transform the Carathéodory interpolation problem on C+ into a Schur class
function interpolation problem on the unit disk D = {z : |z| < 1} by transforming the input:
Möbius transform the domain, h : C+ → D, z → z−i

z+i and then conformally map the function
value, Ψ(z) = [I − F(z)][I + F(z)]−1 where F ∈ C and Ψ ∈ S [25, 26]. Therefore, given F(z) =
iG(z) or F(z) = iΣ(z), F(xi) = Yi for i = 0, 2, . . . , n− 1 and Yi m× m matrices, we look for the
Schur class interpolant Ψ(z) such that

Ψ(zi) = Ji = Ψ(
xi − i
xi + i

) = [I −Yi][I + Yi]
−1 i = 0, 2, . . . , n− 1 (2.38)

Generalizing the Pick criterion, we get the existence condition [25, 26]. Carathéodory inter-
polants for the original interpolation problem exist if and only if the Pick matrix,

PC = [
Yk + Y∗l
1− z∗k zl

](mn)×(mn) (2.39)
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or alternatively, the new Pick matrix,

PS = [
I − J∗k Jl

1− z∗k zl
](mn)×(mn) (2.40)

is positive semi-definite; and a unique solution only if they are singular.
One iteration step for a Schur class interpolant Ψi(z) comes as follows [25]. Given Ψi(zi) = Wi,

define matrix-valued function M(z) by

yi M(z) = [I −WiW†
i ]
−1/2[Ψi(z)−Wi][I −W†

i Ψi(z)]−1[I −W†
i Wi]

1/2 (2.41)

where yi = |zi|(zi − z)/(zi(1 − z†
i z)) and X1/2 = VD1/2V−1 is the Hermitian square root of

X = VDV−1. M(z) belongs to S by the Schwarz lemma. Define Ψi+1(z) by

Ψi+1(z) = [I − KiK†
i ]
−1/2[M(z)− Ki][I − K†

i M(z)]−1[I − K†
i Ki]

1/2 (2.42)

where Ki is an arbitrary matrix such that ‖Ki‖ < 1, then Ψi+1(z) ∈ S as well. And going back-
wards, arbitrary Ψi+1(z) ∈ S with arbitrary ‖Ki‖ < 1 yields Ψi(z) ∈ S and Ψi(zi) = Wi.

Given an interpolation problem Ψ = Ψ0 with n nodes, Ψ(zi) = Ji, i = 0, 1, . . . , n − 1, and
a selected matrix K0, Eq. (2.41) and (2.42) defines an interpolation problem for n − 1 nodes
z1, z2, . . . , zn−1 for Ψ1. Iterate the procedure on Ψ1, we get Ψ2 with prescribed values at n − 2
nodes z2, . . . , zn−1, and finally Ψn an arbitrary Schur class matrix-valued function. For conve-
nience, we choose all Ki, i = 0, 1, . . . , n− 1 to be zero matrix, and Ψn to be an identity matrix.

Denoting Ψi(zj) = W i
j , i, j = 0, 1, . . . , n− 1 and W i

i = Wi, the first stage of the algorithm is to
find out all Wi and store them. By Eq. (2.41) and (2.42), we have

W i+1
j =

zi(1− z†
i zj)

|zi|(zi − zj)
[1−WiW†

i ]
−1/2[W i

j −Wi][1−W†
i W i

j ]
−1[1−W†

i Wi]
1/2 j ≥ i + 1 (2.43)

Iterate through i = 0, . . . , n− 2, we get all Wi.
The second stage of the algorithm is to solve Ψn(z) → Ψn−1(z) · · · → Ψ0(z) = Ψ(z) where

Ψ(z), z ∈ D is the final needed Schur interpolant. This is done by transcribing Eq. (2.41) and
(2.42) as

Vi(z) =
|zi|(zi − z)
zi(1− z†

i z)
[I −WiW†

i ]
1/2Ψi+1(z)[I −W†

i Wi]
−1/2 (2.44)

Ψi(z) = [I + Vi(z)W†
i ]
−1[Vi(z) + Wi] (2.45)

with i iterating from n− 1 to 0.
Lastly, we get the Carathéodory interpolant to F(z) = iG(z) or F(z) = iΣ(z) where z ∈ C+ by

F(z) = [I + Ψ(
z− i
z + i

)]−1[I −Ψ(
z− i
z + i

)] (2.46)

Stage one is done once, while stage two is called by Eq. 2.46 for each z ∈ C+ we want.
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2.8 Demonstration for the Hubbard Dimer

We demonstrate the interpolation of the matrix-valued Green’s function G(z), self-energy Σ(z)
and cumulant M(z) of a Hubbard Dimer system, with the use of the above Carathéodory contin-
uation algorithm.

With the creation operator c†
iσ and annihilation operator ciσ obeying the fermion anticommuta-

tor relations, {c†
iσ, cjσ′} = δijδσσ′ and {ciσ, cjσ′} = {c†

iσ, c†
jσ′} = 0, the number operator and double

occupancy operator are defined as

niσ = c†
iσciσ (2.47)

Di = ni↑ni↓ (2.48)

then the Hamiltonian of a Hubbard dimer system is

Hsym =H0 + HV (2.49)
Hasym =H0 + HV + HH + Hbreaksym (2.50)

H0 =− t (c†
0↑c1↑ + c†

0↓c1↓ + h.c.)− µ (c†
0↑c0↑ + c†

1↑c1↑ + c†
0↓c0↓ + c†

1↓c1↓) (2.51)

HV =U(D0 + D1)−U/2 (n0↑ + n1↑ + n0↓ + n1↓) (2.52)
HH =H (n0↑ − n0↓ + n1↑ − n1↓) (2.53)
Hbreaksym =Ua(D0 − D1) + µa(n0↑ + n0↓ − n1↑ − n1↓) + Ha(n0↑ − n0↓ − n1↑ + n1↓) (2.54)

Here we use the degeneracy-lifted Hamiltonian H = Hasym with parameters β = 10, t = 1, U = 5,
µ = 0.7, H = 0.3, Ua = 0.5, µa = 0.2, Ha = 0.03.

Results are shown in Fig. 2.2. We interpolated 4× 4 matix-valued [2× 2-orbital (both spin up
and spin down) dimer system] Green’s, self-energy and cumulant response functions. Imaginary
lines show exact data on the real axis calculated by the analytic model formula. Real lines show
the results of continuing matrices as a whole (not seperated by entries) from the imaginary axis
to the real axis (input analytic data are disturbed by 10−7 standard deviation Gaussian random
noise). It is clearly shown that the Carathéodory continuation theory works perfectly for our ana-
lytic dimer data, both ensuring causality and providing unprecedented resolution. More exciting
trials on real systems are still in progress.
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Figure 2.2: The Hubbard dimer model interpolation, 2 random non-zero entries [rows are real(1), imag-
inary(1), real(2), imaginary(2) part] of the 4 × 4 matrices, on the real axis. Using input data with 10−7

standard deviation Gaussian noise. Left are Green’s functions, middle are self-energies, right are cumu-
lants. The exact data comes from analytic model formula. Fitted data comes from continuing matrices
from the imaginary axis, which we get from analytic formula and disturbed with noise.
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Chapter 3

Perovskite Oxides Physics

3.1 Properties of SrTiO3

The transition metal oxides that crystallize in perovskite structure has long been the study subject,
because they exhibit a wide range of exotic structural, electronic and magnetic behaviors, and
show importance in several areas of technology. We study the spectral property of strontium
titanate (SrTiO3) in this work, which is the simplest cubic perovskite oxides while the foundation
of the emerging field of oxide electronics [33].

Pure SrTiO3 crystal is a paraelectric in which quantum fluctuations persist to zero tempera-
ture and prevent the emergence of long-range order. However, it shows proximity to a ferroelec-
tric phase, suggested by a large rise in dielectric susceptibility and the softening of polar mode
F1u upon cooling, and referred to as incipient ferroelctric [34]. Ferroelectricity, the spontaneous
electric polarization owned by materials, is crucial to applications such as tunable capacitor, fer-
roelectric RAM, etc. Experiments further demonstrated various ways to realize a ferroelectric
phase transition for SrTiO3, by intrinsic 18O isotope [35], electric field [36], biaxial stress [37],
optical strain [34], dopant (Ca) substitution and so on.

Besides incipient ferroelectricity, the structural phase transition of SrTiO3 (F2u phonon mode
condensation) from cubic to tetragonal at Tc = 105K is another focus. Free energy formulation
connects the dielectric and strutural quadratic term to stress and show their mutual interaction
[38] (See Fig. 3.1 for diagram). In addition, exotic properties of SrTiO3 heterostructures with other
perovskite and 2D materials is a growing area of research. FeSe− SrTiO3 interface displays over
100 K high-Tc superconductivity [39, 40]; SrTiO3 − LaMnO3 interface displays colossal magne-
toresistance [41], SrTiO3− LaAlO3 interface displays combinations of novel electric and magnetic
phenomena. Other useful properties of strontium titanate include photovoltaic effect [42], water
photolysis, blue-light emission and so on.

Proper understanding of these properties requires the knowledge of the bulk material elec-
tronic structure. At room temperature SrTiO3 unit cell is in the ABC3 undistorted cubic structure
with a 3.905 Å lattice constant (See Fig. 3.1). Perfect SrTiO3 crystal is an insulator due to the d0

configuration of the titanium ion, with an experimentally determined indirect band gap of 3.25
eV and direct gap of 3.75 eV [43]. Crystal field further splits the fivefold-degenerate unoccupied
d levels into t2g and eg subgroups, octahedral symmetry makes t2g levels lower than eg levels
for Ti, and vice versa for dodecahedral symmetric Sr [44]. In a more detailed classification, the
upper valence band has 18 electrons in total originating from six 2p electrons per oxygen atom.
The lower valence band is filled with 12 electrons including six oxygen 2s and six Sr 4p electrons.
Semicore level electron states involve two Sr 4s, six Ti 3p and 2 Ti 3s electrons [44, 45].
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Figure 3.1: Left: Cubic perovskite unit cell. TiO6 octahedra and central Sr cation as for SrTiO3. Right:
Structural phase diagram of SrTiO3 [34].

3.2 GW Approximation

The SrTiO3 solid is modeled as an arrangement of atoms in a three dimension Bravais lattice. We
use the Bloch waves constructed from Gaussian basis as the single-particle wave functions,

φki ,i(r) = ∑
R

φR
i (r)e

ik·R (3.1)

where φR
i (r) is the localized atomic orbital centered in Bravais lattice cell R. These non-orthogonal

states define the overlap matrix,

sij =
∫

Ω
drφ∗i (r)φj(r)δki ,kj (3.2)

and we use the combined orbital-momenta index i = (i, ki) from now on.
The electronic structure Hamiltonian in second quantization is

H = ∑
ij

h0
ijc

†
i cj +

1
2 ∑

ijkl
vijklc†

i c†
kclcj (3.3)
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where ci (c†
i ) are annihilation (creation) operators corresponding to the single particle state φi(r).

The single-particle operator h0
ij and two-particle operator vijkl are defined respectively as

h0
ij =

∫
Ω

drφ∗i (r)

[
−1

2
∇2

r −∑
α

Zα

rα,r

]
φj(r) (3.4a)

vijkl =
1
V

∫
Ω

dr
∫

R3
dr′

φ∗i (r)φj(r)φ∗k(r
′)φl(r′)

|r− r′| (3.4b)

where Zα is the nuclear charge of atom α, rα,r = |r− rα| is the distance to nucleus α at rα, Ω is the
volume of the unit cell and V is the volume of the system.

We investigate the single-particle spectral functions Ak
ij(ω) in this work. The local ones are

defined by Aii(ω) = 1
Nk

∑k Ak
ii(ω) where Nk is the total number of k points in the first Brillion

zone, while the k-resolved ones are given by Ak(ω) = ∑i Ak
ii(ω).

Our central object is therefore the Green’s function whose diagonal element imaginary part
carries the single-particle spectra information. Imaginary-time Green’s function is defined as,

GHij (τ) = −
1
Z Tr

[
e−(β−τ)(H−µN)cie−τ(H−µN)c†

j

]
(3.5)

where we use the grand canonical ensemble, µ is the chemical potential and N is the total particle
number. Denote non-interacting Green’s function as G0

ij(τ) = GH0

ij (τ), where H0 = ∑ij h0
ijc

†
i cj,

and the interacting one as Gij(τ) = GH
ij (τ). Note that Green’s function is diagonal in momenta

space because of the lattice translational invariance.
Dyson equation then gives the definition of the self-energy,

Σij(τ) =
(

G0
ij(τ)

)−1
−
(

Gij(τ)
)−1

(3.6)

whose physical meaning can be interpreted as the effective one-body potential describing one
particle’s interaction with the rest of the system.

Before going into GW algorithm, let’s further introduce a technique utilized in our group’s
code, the Cholesky Coulomb integral decomposition which avoids to store the 4-index tensor
and makes the algorithm practical [46]. See the diagram in Fig. 3.2 left panel. We decompose the
interaction as vi1i2i3i4 = VQ

i1i2
VQ

i3i4
where Q is an auxiliary index and VQ

i1i2
is a three-point integral

defined as

VQ
i1i2

= ∑
P

∫
Ω

drdr′
φ∗i1

(r)φi2(r)χ
q
P(r
′)

|r− r′| J−
1
2

q
PQ (3.7)

with momentum transfer q = ki1 − ki2 = ki3 − ki4 , χ
q
P(r
′) an auxiliary basis function and J−1 =

J−
1
2 J−

1
2 the inverse of

Jq
PQ =

∫
Ω

drdr′
χ

q∗
P (r)χq

Q(r
′)

|r− r′| (3.8)
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Storing the integrals VQ
ij beforehand is therefore affordable and would greatly enhance the GW

algorithm efficiency.

3.2.1 Ground State Starting Point

In the Feynman diagram language, the non-interacting bare propagator G0
ij(τ) could take in the

self-energy Σij(τ) which involves the many-body effects, and be turned into a ‘dressed’ propa-
gator Gij(τ). The Matsubara (imaginary) frequency formalism is introduced for convenience to
relate G(ωn) and Σ(ωn), as

G(ωn) =
[
(ωn + µ)1− H0 − Σ(ωn)

]−1
(3.9)

Therefore, to get the total Green’s function, we need the total self-energy of the system, which
has the diagrammatic expansion of all one-particle irreducible diagrams, with zeroth order to
infinite order interactions. Practical calculations should add up only a subclass of all diagrams,
which is either truncated in order or have topological similarity that enables resummation.

The zeroth and first order interactions are static with no frequency dependence (no propagator
crossing through different τs), and is conventionally called mean-field interaction (average force
on one particle). Despite the low cost of mean-field theory calculations, we need higher-order self-
energy diagrams to count for the higher-level correlations for solids who have moderate to strong
correlations, like SrTiO3. But we start with a ground state mean-field theory calculation, the local
density approximation (LDA), to give a reasonable initial guess of the self-energy Σ∞,ij(ω).

The matrix element of the Fock matrix, i.e., the zeroth and first order self-energy, is defined
as,

Fij = h0
ij + Σ∞,ij = h0

ij + ∑
kl

ρlk(vijkl −
1
2

vilkj) (3.10)

including a direct and an exchange term. ρ is the density matrix of the system which is often
stored in the k-resolved form and should reach self-consistency together with F .

The aim of the LDA calculation is to give us the explicit ground state Fock matrix, as well
as the non-interacting Hamiltonian H0, overlap matrix s, Coulomb interaction decoupled three-
index integrals VQ

i1i2
, by the use of python package PySCF [47] which saves us time and effort.

3.2.2 Self-Consistent GW (scGW)

Hedin’s finite temperature GW approximation is a generalization of Hartree Fock (HF) approx-
imation, which replaces the bare interaction exchange diagram with an RPA-like vertex func-
tion. This interaction is dynamic (frequency resolved) and renormalized, therefore reflects the
dynamically screened interaction similar to the physical screening every electron is feeling from
its surrounding moving medium. There are many variants of GW including the second order
perturbation theory (GF2) [48, 49], quasi-particle self-consistent GW (QSGW) [50], etc. In this
work, the self-consistent GW (scGW) is applied as the weakly-correlated level of approximation
[19, 46].

scGW is thermodynamically conserving and consistent. It is so called ‘GW’ because the ap-
proximate GW self-energy (beyond the Fock matrix) contains both a dressed propagator G and
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Figure 3.2: Left: Cholesky decouple of Coulomb interaction. Right: Diagrams beyond the Hartree diagram
in the scGW approximation, using interaction decomposition.

the ‘screened iteraction’ term W̃ [51]. W̃ can be expanded diagrammatically in the RPA ring-
diagram series as shown in the Fig. 3.2 right panel (upper arc). Or the W̃k1k2k3k4

i j k l can be expanded
mathematically as

W̃ijkl(τ) =
−1
Nk
{VQ

il P̃q
0,Q,Q′(τ)V

Q′
jk +

∫ β

0
dτ′VQ

il P̃q
0,Q,Q′(τ

′)P̃q
0,Q′,Q′′(τ − τ′)VQ′′

jk + ...} (3.11)

with momentum transfer q = k1 − k4 = k3 − k2 and

P̃q
0,Q,Q′(τ) =

2
Nk

VQ,k,k+q
p m Gk

tp(−τ)Gk+q
mn (τ)VQ′,k+q,k

n t (3.12)

where repeated indices are summed over.
The convolutions in Eqn. 3.11 can be circumvented within the Matsubra frequency domain in

terms of an infinite geometrical series. Define

P̃q(iΩn) =
∞

∑
t=1

[P̃q
0 (iΩn)]

t = [IQ − P̃q
0 (iΩn)]

−1P̃q
0 (iΩn) (3.13)

where iΩn = 2nπ
β (n = 0,±1, ...), then each element in Eqn. 3.13 is a Q × Q square matrix.

We transform P̃q back to the imaginary-time domain using Chebyshev convolution tricks, which
gives us the expression for screened interaction

W̃ijkl(τ) =
−1
Nk

VQ,k1k4
i l P̃q

Q,Q′(τ)V
Q′,k2k3
j k (3.14)

The supplemented GW self-energy is

Σ̃k
ij(τ) = Gk1

m,n(τ)W̃
k,k1,k,k1
i n j m (τ)

=
−1
Nk

VQ,k,k1
i,m Gk1

m,n(τ)P̃q
Q,Q′(τ)V

Q′,k1,k
n, j

(3.15)

with q = k − k1, or diagrammatically as shown in the Fig. 3.2 right panel. Finally, the total
self-energy (ΣGW)k

ij(τ) = Fij + Σ̃k
ij(τ), while the new Green’s function is obtained by Eqn. 3.9

(calculated in the Matsubara frequency domain).
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Figure 3.3: Left: scGW self-consistency loop. Firstly ρ → F , secondly G → Σ̃(ωn), thirdly calculate
G, finally update density matrix ρ. Right: SEET inner loop, starting from Σ,F , with Σimp solved by ED
impurity solver. scSEET connects one-shot GW to one-shot inner loop with the G,F and Σ, iterating until
F , Σ reach convergence.

I show the above procedure in the right loop of Fig. 3.3 left panel. The left loop starts by
updating the Fock matrix F by density matrix ρ using Eqn. 3.10. After G is provided in the right
loop, ρ is renewed as ρ = −2G(β).

3.3 Self-Energy Embedding Theory (SEET)

3.3.1 Inner loop for Impurity Problem

As the next step, we want to take the correlation which is stronger than the mean-field and the
screened interaction into effect. We rely on a Φ-derivable quantum embedding theory, the so-
called self-energy embedding theory (SEET) [19, 46], which is thermodynamically consistent and
obeys the conservation law. In this theory, we supplement the long-range GW screening with
the selected local strongly-correlated subspaces. The subspace self-energy is obtained by an exact
diagonalization (ED) quantum impurity solver and fed back to the total self-energy iteratively
until convergence. The workflow is shown in the Fig. 3.3 right panel.

The core here is one equation, which non-perturbatively adds local strong interaction dia-
grams to the GW self-energy, and removes the double-counting terms

Σk
ij = (ΣGW)k

ij + ∑
A

(
(Σimp

A )ij − (ΣDC-GW
A )ij

)
δ(ij)∈A (3.16)

also can be Fourier transformed to real space as

ΣRR′
ij = (ΣGW)RR′

ij + ∑
A

(
(Σimp

A )ij − ΣDC
A )ij

)
δRR′δ(ij)∈A (3.17)

each Σ here includes the first order term Σ∞ and the frequency dependent part Σ(ωn), e.g., Σimp =

Σimp
∞ + Σimp(ωn).

Subsets A of impurity orbitals with indices ij ∈ A, sometimes also called active orbitals, are
defined as groups of the most physically relevant orbitals for the problem that have correlations
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that are necessary to be included at a higher than perturbative level. Double counting terms are
the GW diagrams that have both external legs i and j in the active space but contain one or more
internal indices on the remaining orbitals.

We next come to the SEET embedding condition

(G(ωn))
RR
ij∈A =

[
(ωn + µ)1− h0,RR

ij∈A − ΣRR
ij∈A − ∆A

ij (ωn)
]−1

(3.18)

here the hybridization matrix ∆A
ij (ωn) arises because of the algebra when inverting the matrix

(G(ωn))RR and taking its subset (not the same as the inverse of a subset). ∆A
ij is calculated from

GRR and ΣRR in the present iteration and taken as the mean-field bath for the impurity model,
commonly the Anderson impurity model

HAnd = H0 + ∑
γ

εbath
γ nbath

γ + ∑
γ

(Vγc†
0abath

γ + h.c.) (3.19)

where c†
0 creates an atomic electron and abath

γ annihilates a bath electrons. Bath parameters V and
ε are optimized by minimizing the fit residue

χ2
i = ∑

n
f (n)‖∆ii(ωn)−

Nb

∑
b=1

VibV∗ib
iωn − εb

‖, (3.20)

where n is the number of orbitals in an impurity, Nb is the number of bath orbitals corresponding
to one atomic orbital, f (n) is chosen to suppress high frequency contributions to ∆ii(ωn) (we
usually choose f (n) = 1/ωn).

We then just solve HAnd with an ED solver. Finally, after exponential scaled impurity solving,
we get the impurity self-energy Σimp and calculate the next Σ, G from Eqn. 3.16 and 3.9 (getting
rid of ΣDC). We loop until self-consistency in the right loop of Fig. 3.3 is achieved. This method
is free from any semi-empirical adjustable parameters.

3.3.2 ‘One-shot GW + One-shot Inner-loop’ Iteration as Outer Loop

The outer-loop scSEET combines ‘one-shot GW’ with ‘one-shot inner-loop’ by an iterative pipeline
between the two jobs, where we take the self-energy matrix Σ, Green’s function matrix G and Fock
matrix F as output from one job and feed it as input to the other, as shown in Fig. 3.3. The idea
of this procedure is that we take bare interaction as input, then each iteration ‘inserts’ diagram
into the self-energy. For example, when we take the partially boldified propogator G out from
SEET and into GW, the local strong correlation in the diagrams is supplemented by some non-
local diagrams from GW. The insertion of strong-correlation is one form of ‘vertex correction’ for
GW. When we reach self-consistency (defined on the convergence of Σ and F with the period of
a full outer-loop), the propogator G is fully boldified. Outer-loop gives more in-time balance and
stability than the mere inner-loop as this work will demonstrate.

3.4 Results

A number of photoemission (PES) and inverse photoemission spectroscopy (IPES) experiments
have investigated the spectral function of SrTiO3 [52–55]. We compare our calculated spectral
functions with the experimental XPS (x-ray photoemission spectroscopy) and IPES data from
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Ref. [54, 55]. The relative height between XPS and IPES spectra was arbitrary. The band-gap was
defined as between the ‘intercept of the valence band right-most feature linear fit upon the x-axis’
and the ‘bottom of the conduction band’ [52], which was generally recognized as 3.2 eV locally in
the lattice. Experimental error of the XPS data we used was ±0.8 eV in frequency [55].

First, computational details necessary for reproducing our calculation are listed here. Hamil-
tonian is solved with Gaussian gth-dzvp-molopt-sr basis [17] and gth-pbe pseudopotential [18]. The
Coulomb integrals are decomposed into the tempered Gaussian for Sr and def2-svp-ri bases [24]
for all other atoms. Integrals are obtained from the open source PySCF package [47]. The inverse
temperature used throughout this work is β = 300Ha−1 (T ∼ 1053 K ∼ 0.09 eV). SEET setup has
3 bath / orbital for 3-orbital impurity, 5 bath / orbital for 2-orbital impurity.

3.4.1 GW Approximation

Fig. 3.4 shows results from the self-consistent GW calculation. Top and bottom panel respectively
shows the local total density of states of SrTiO3 and the orbitally resolved spectral functions for
the near-Fermi orbitals. As expected, the top of the valence band is dominant by O 2p states,
while the bottom of the conduction band by Ti 3d states.

In scGW, our calculated spectra has a deviation of the zero energy from the experimental
data. An upward shift of about 1.5 eV of the experimental data could overlap them roughly in
shape. There are two possible causes. First is due to the n-type dopants in experiments. Most
of the electron spectroscopic measurements lightly doped SrTiO3 with Nb5+ or La3+ cations to
avoid the charging effect which typically happened [52]. This caused a slight lift of the Fermi
energy of about 0.35 eV (compared to the average of p- and n-type) [53]. The second reason
may be the electron attribution (chemical potential corresponded to the electron number, and all
electrons embedded below Fermi level) during our GW calculation. Because SrTiO3 is a wide-
gap insulator, there may be a remaining freedom in choosing Fermi energy both in the k-space
and in the real space.

Except the spectra shift and too-wide bandgap, our analytically continued spectra matched
well in the orbital order (both total DOS and orbitally-resolved) with the experiment. The 4× 4×
4 to 6× 6× 6 convergence showed 6× 6× 6 was a good size of k-grid to go on. We have checked
that the main features from Maxent analytic continuation were consistent with both Nevanlinna
and Padé continuation, except that Maxent suffered from resolution while Nevanlinna and Padé
suffered from the input precision (convergence 4E = 1e − 5 Ha) and showed some extent of
artificial oscillations.

3.4.2 SEET Method

Inner loop

Name Imp Description
A 1 Ti t2g
B 3 Ti t2g; O pπ; O pσ

C 4 Ti t2g; Ti eg; O pπ; O pσ

Table 3.1: Choice of the SEET inner-loop active space for SrTiO3. Imp denotes the number of distinct
disjoint impurity problems.
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Figure 3.4: Top panel: Local total DOS of SrTiO3 from scGW. Bottom panel: Local orbitally resolved DOS
for SrTiO3. Experimental XPS and IPES data from Ref. [54, 55].

In the simple ionic model, SrTiO3 does not have Ti 3d electrons and thus have no appreciable
correlation effects. However, Ti 3d orbitals hybridize strongly with O 2p orbitals, which have in
experiments led to non-vanishing 3d electrons in the ground state and the interesting ‘charge-
transfer’ satellite peaks in the valence band core levels [53].

The ‘charge-transfer’ peaks are high-energy features. Humps were vaguely observed by
‘SEET + Nevanlinna’ though we could not take them for sure. The p− d hybridization between O
and Ti states was well-demonstrated all through our calculation. As shown by the peak-position
correspondence, Ti eg state coupled strongly with O pπ state (bonding MO), while t2g with pσ

state (non-bonding MO). This can be explained by the crystal symmetry. O 2p orbitals extend
along the Cartesian axes, therefore one can expect large spatial overlap of pz with dz2 and px,y
with dx2−y2 orbitals giving rise to eg − pπ hybridization [44].

Let’s consider the effect of adding disjoint Ti t2g, O p and Ti e2g impurity subspace one-by-one
using the inner-loop SEET calculation. Fig. 3.5 top panel resulted from the Ti t2g impurity (3 or-
bitals). Valence band t2g density was obviously increased while conduction band t2g density was
decreased compared to GW solution. Noticeably, the O pσ peak increased in height substantially
and became much sharper.

In Fig. 3.5 setup B, we added in the O 2p subspace (one pπ and one pσ impurity) and included



Chapter 3. Perovskite Oxides Physics 33

the other two oxygen atom p orbitals non-perturbatively by symmetry. Again it were the Ti t2g
and O pσ states that responded with their great enhancement. Both A and B setups showed that
t2g and pσ were interacting strongly through the formalism of Dyson equation. Finally, we placed
the Ti eg impurity (2 orbitals, Fig. 3.5 bottom panel). The only visible change was a slight increase
in width of the eg feature in the conduction band, showing the broadening effect which may due
to the high-level correlation.

Outer loop

Name Imp Description
A 1 Ti t2g
B 3 Ti t2g; O pπ; O pσ

C 4 Ti t2g; Ti eg; O pπ; O pσ

D 3 Ti t2g; Ti dx2+y2 + O px, py; Ti dz2 + O pz

Table 3.2: Choice of the SEET outer-loop active space for SrTiO3. Imp denotes the number of distinct
disjoint impurity problems.

The outer-loop (fully self-consistent) SEET combined the one-shot GW and one-shot SEET, which
created two effects compared to the inner-loop SEET. The first was that the sharp quasiparticle
peak at the Fermi energy disappeared (exhibited in the Ti t2g orbitals). The second was that the
near-Fermi orbitals (Ti t2g, Ti eg, O 2pσ, O 2pπ) had shifted right for about 1 eV with respect to the
inner-loop spectra. These effects probably lied in the deficiency of the inner-loop calculation, be-
cause it lacked the GW non-local feedback to the strongly-correlated subspace. Similar redundant
oscillation also occurred in the SrVO3 simulation of our group’s (Ref. [19] Appendix E).

We also note the lowered O 2pπ density. Since the relative peak heights of XPS and BIS data
were arbitrary, there was no evidence that either inner-loop or outer-loop was less accurate.

3.4.3 Summary

Finally, let’s see Fig. 3.7 which demonstrated the development of local total density of state from
the initial guess of an LDA solution to scGW to inner-loop and outer-loop SEET. We mention two
significance.

First was the spectra shift and bandgap narrowing which drived the system closer and closer
to experimental data. Bandgap was experiencing the change of 4.2 eV (LDA), 3.8 eV (GW), 2.9
eV (inner-loop SEET A), 3.3 eV (inner-loop SEET B and C), 2.8 eV (outer-loop SEET A and B) to
3.3 eV (outer-loop SEET C), which perfectly matched experimental determined gap. Second was
that the Fermi level was moving towards the correct position all the way till outer-loop SEET
setup C, despite the detour of the inner-loop SEET since the artificial oscillations had obscured
its accomplishment on the correct zero energy position. Last but not least, the final shape of the
SrTiO3 single-particle excitation spectrum much resembled the experiments, proving a systematic
improvement throughout the whole scSEET process.
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Figure 3.5: SEET inner-loop local orbitally resolved spectral functions for setup A (Ti t2g), B (Ti t2g; O pπ ;
O pσ), C (Ti t2g; Ti eg; O pπ ; O pσ). Experimental XPS and IPES data from Ref. [54, 55].
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Figure 3.6: SEET outer-loop local orbitally resolved spectral functions for setup A (Ti t2g), B (Ti t2g; O pπ ;
O pσ), C (Ti t2g; Ti eg; O pπ ; O pσ). Experimental XPS and IPES data from Ref. [54, 55].
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Appendix A

Schur Algorithm Code

Program Title: Nevanlinna
Programming Language: C++
Dependency: Eigen3 and GMP libraries

• Prepare a file for input parameters. Our example needs the file name of the Matsubara Green’s
function data (ifile), the number of Matsubara points (imag_num) and where to output spectral
function (ofile).

• Prepare the Matsubara Green’s function data file (in the format of ‘frequency real_part imag_part\n’
with increasing positive Matsubara frequencies)

• Change the real grid descretization as needed, including the minimum and maximum frequency,
number of discretized points and eta i.e. η (evaluation axis is ω + iη) in Listing A.5 line number 74.

• Change output from A(ω) to GR = −NG(ω + iη) or else as needed in Listing A.5 line number 95.
• Change calculation precision in Listing A.3 line number 10 as needed. A typical sufficient precision

for Schur algorithm is 128.
• Can output the ultimate {a(z), b(z), c(z), d(z)} in Listing A.4 line number 92 for convenience of

calculating the functional norm during optimization, without the need to rerun this program.
• This program can also be used to evaluate A(ω) with an optimized θM+1. Change the constant 0

θM+1 in Listing A.4 line number 90 to the formula for your θM+1(z).
• Compile the program with gnu c++ compiler and run the executable ./nevanlinna with input redi-

rection.

Listing A.1: compile and run the program
1 g++ -o nevanlinna nevanlinna.cpp -I path/to/eigen3 -lgmp -lgmpxx
2 ./ nevanlinna < input.txt

Listing A.2: input.txt
1 ifile imag_num ofile

Listing A.3: nevanlinna.cpp
1 #include "schur.h"
2

3

4 int main (int argc , char * argv []) {
5 std:: string ifile , ofile , coefile;
6 int imag_num;
7 // prompt user for input parameters
8 std::cin >> ifile >> imag_num >> ofile >> coefile;
9 //set calculation precision
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10 mpf_set_default_prec (1024);
11 //begin evaluation
12 Schur <mpf_class > NG(ifile , imag_num , ofile);
13 NG.evaluation(coefile);
14 return 0;
15 }

Listing A.4: schur.h
1 #include "nevanlinna.h"
2

3

4 // convert number to string with n precision
5 template <typename T>
6 std:: string to_string_p(const T a_value , const int n = 80){
7 std:: ostringstream out;
8 out.precision(n);
9 out << std::fixed << a_value;

10 return out.str();
11 }
12

13

14 template <class T>
15 class Schur : precision_ <T> {
16 private:
17 using typename precision_ <T>:: nev_complex;
18 using typename precision_ <T>:: nev_complex_vector;
19 using typename precision_ <T>:: nev_complex_matrix;
20 using typename precision_ <T>:: nev_complex_matrix_vector;
21 public:
22 //check Nevanlinna/contractive interpolant existence condition
23 Schur (std:: string ifile , int imag_num , std:: string ofile);
24 // evaluation with 0 parametric function
25 void evaluation (std:: string cofile);
26 private:
27 int M; // number of Matsubara points
28 imag_domain_data <T> imag; //theta values at Matsubara points (G -> NG ->

theta)
29 real_domain_data <T> real; //real frequency NG storage , at omega + i*eta
30 nev_complex_vector phis; // phi_1 to phi_M
31 nev_complex_matrix_vector abcds; // intermediate {a, b, c, d}s used to

calculate phis
32 // memoize intermediate abcds and calculate phis by iteration
33 void core ();
34 };
35

36

37 template <class T>
38 Schur <T>:: Schur (std:: string ifile , int imag_num , std:: string ofile) : imag(ifile ,

imag_num), real(ofile) {
39 M = imag_num;
40 //fill the Pick matrix
41 nev_complex_matrix Pick (M, M);
42 nev_complex I {0., 1.};
43 for (int i = 0; i < M; i++) {
44 for (int j = 0; j < M; j++) {
45 nev_complex freq_i = (imag.freq()[i] - I) / (imag.freq()[i] + I);
46 nev_complex freq_j = (imag.freq()[j] - I) / (imag.freq()[j] + I);
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47 nev_complex one {1., 0.};
48 nev_complex nom = one - imag.val()[i] * std::conj(imag.val()[j]);
49 nev_complex den = one - freq_i * std::conj(freq_j);
50 Pick(i, j) = nom / den;
51 }
52 }
53 //check the positive semi -definiteness of the Pick matrix using Cholesky

decomposition
54 Eigen::LLT <nev_complex_matrix > lltOfPick(Pick + nev_complex_matrix :: Identity(M

, M) * 1e-250);
55 if(lltOfPick.info() == Eigen:: NumericalIssue)
56 std::cerr << "Pick matrix is non positive semi -definite matrix in Schur

method." << std::endl;
57 else std::cerr << "Pick matrix is positive semi -definite." << std::endl;
58 }
59

60

61 template <class T>
62 void Schur <T>:: core() {
63 phis.resize(M);
64 abcds.resize(M);
65 phis [0] = imag.val()[0];
66 for (int k = 0; k < M; k++) abcds[k] = nev_complex_matrix :: Identity(2, 2);
67 for (int j = 0; j < M - 1; j++) {
68 for (int k = j; k < M; k++) {
69 nev_complex_matrix prod(2, 2);
70 prod(0, 0) = (imag.freq()[k] - imag.freq()[j]) / (imag.freq()[k] - std

::conj(imag.freq()[j]));
71 prod(0, 1) = phis[j];
72 prod(1, 0) = std::conj(phis[j])*
73 ((imag.freq()[k] - imag.freq()[j]) / (imag.freq()[k] - std

::conj(imag.freq()[j])));
74 prod(1, 1) = nev_complex {1., 0.};
75 abcds[k] *= prod;
76 }
77 phis[j + 1] = (- abcds[j + 1](1, 1) * imag.val()[j + 1] + abcds[j + 1](0,

1)) /
78 (abcds[j + 1](1, 0) * imag.val()[j + 1] - abcds[j + 1](0,

0));
79 }
80 }
81

82

83 template <class T>
84 void Schur <T>:: evaluation (std:: string cofile) {
85 core();
86 nev_complex I {0., 1.};
87 nev_complex One {1., 0.};
88 std:: ofstream coefile (cofile); //"cofile" ofstream
89 for (int i = 0; i < real.N_real (); i++) {
90 nev_complex_matrix result = nev_complex_matrix :: Identity(2, 2);
91 nev_complex z = real.freq()[i];
92 for (int j = 0; j < M; j++) {
93 nev_complex_matrix prod(2, 2);
94 prod(0, 0) = (z - imag.freq()[j]) / (z - std::conj(imag.freq()[j]));
95 prod(0, 1) = phis[j];
96 prod(1, 0) = std::conj(phis[j])*
97 ((z - imag.freq()[j]) / (z - std::conj(imag.freq()[j])));
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98 prod(1, 1) = nev_complex {1., 0.};
99 result *= prod;

100 }
101 nev_complex param {0., 0.}; // theta_{M+1}, choose to be constant function

0 here
102 nev_complex theta = (result(0, 0) * param + result(0, 1)) / (result(1, 0)

* param + result(1, 1));
103 // output "real.freq(), a.real(), a.imag(), ..., d.imag()\n" into a file

for optimization convenience
104 coefile << to_string_p(std::real(real.freq()[i])) << " "
105 << to_string_p(std::real(result(0, 0))) << " " << to_string_p(std

::imag(result(0, 0))) << " "
106 << to_string_p(std::real(result(0, 1))) << " " << to_string_p(std

::imag(result(0, 1))) << " "
107 << to_string_p(std::real(result(1, 0))) << " " << to_string_p(std

::imag(result(1, 0))) << " "
108 << to_string_p(std::real(result(1, 1))) << " " << to_string_p(std

::imag(result(1, 1))) << std::endl;
109 real.val()[i] = I * (One + theta) / (One - theta); // inverse Mobius

transform from theta to NG
110 }
111 real.write ();
112 }

Listing A.5: nevanlinna.h
1 #include <iostream >
2 #include <iomanip >
3 #include <complex >
4 #include <vector >
5 #include <fstream >
6 #include <gmpxx.h>
7 #include <cmath >
8 #include <algorithm >
9 #include <Eigen/Dense >

10

11

12 // precision class is used to define typenames
13 // template T can be any precision type , e.g. double or mpf_class
14 template <class T>
15 class precision_ {
16 protected:
17 using nev_real = T;
18 using nev_complex = std::complex <T>;
19 using nev_complex_vector = std::vector <nev_complex >;
20 using nev_complex_matrix = Eigen :: Matrix <nev_complex , Eigen::Dynamic , Eigen::

Dynamic >;
21 using nev_complex_matrix_vector = std::vector <nev_complex_matrix >;
22 };
23

24

25 // Matsubara data storage (theta values)
26 template <class T>
27 class imag_domain_data : precision_ <T> {
28 private:
29 using typename precision_ <T>:: nev_real;
30 using typename precision_ <T>:: nev_complex;
31 using typename precision_ <T>:: nev_complex_vector;
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32 public:
33 // calculate theta (G -> NG -> theta) and store Matsubara frequencies and theta
34 imag_domain_data (std:: string ifile , int imag_num) : N_imag_(imag_num) {
35 std:: ifstream ifs(ifile);
36 val_.resize(N_imag_);
37 freq_.resize(N_imag_);
38 nev_real freq , re, im;
39 nev_complex I {0., 1.};
40 for (int i = 0; i < N_imag_; i++) {
41 ifs >> freq >> re >> im;
42 nev_complex val = nev_complex{-re, -im}; // minus signs to transform G

to NG
43 freq_[i] = nev_complex {0., freq};
44 val_[i] = (val - I) / (val + I); // Mobius transform from NG to theta
45 }
46 // reverse input frequency order (decreasing then) and the corresponding

thetas ,
47 //which tests to be the most robust interpolation order with Schur

algorithm
48 //std:: reverse(freq_.begin (),freq_.end());
49 //std:: reverse(val_.begin (), val_.end());
50 }
51 // number of Matsubara points
52 int N_imag () const { return N_imag_; }
53 // contractive interpolant theta values at Matsubara points
54 const nev_complex_vector &val() const { return val_; }
55 // Matsubra frequencies
56 const nev_complex_vector &freq() const { return freq_; }
57 private:
58 int N_imag_;
59 nev_complex_vector val_;
60 nev_complex_vector freq_;
61 };
62

63

64 //real frequency NG storage , at omega+i*eta
65 template <class T>
66 class real_domain_data : precision_ <T> {
67 private:
68 using typename precision_ <T>:: nev_real;
69 using typename precision_ <T>:: nev_complex;
70 using typename precision_ <T>:: nev_complex_vector;
71 public:
72 // calculate and store real frequencies (at omega+i*eta), uniform grid
73 //*** change N_real_ , omega_min , omega_max and eta as needed ***
74 real_domain_data (std:: string ofile) : ofs(ofile), N_real_ (6000) , omega_min

(-15), omega_max (0), eta (0.01) {
75 val_.resize(N_real_);
76 freq_.resize(N_real_);
77 nev_real inter = (omega_max - omega_min) / (N_real_ - 1);
78 nev_real temp = omega_min;
79 freq_ [0] = nev_complex{omega_min , eta};
80 for (int i = 1; i < N_real_; i++) {
81 temp += inter;
82 freq_[i] = nev_complex{temp , eta};
83 }
84 }
85 // number of real frequencies
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86 int N_real () const { return N_real_; }
87 //NG values at real frequencies
88 nev_complex_vector &val() { return val_; }
89 //real frequencies
90 const nev_complex_vector &freq() const { return freq_; }
91 //write real frequencies and spectral function A(omega) values to the output

file
92 void write () {
93 for(int i = 0;i < N_real_; i++){
94 ofs << std::fixed << std:: setprecision (15);
95 ofs << freq_[i].real() << " " << 1 / M_PI * val_[i].imag() <<std::endl

;
96 }
97 }
98 private:
99 std:: ofstream ofs;

100 int N_real_;
101 nev_real omega_min;
102 nev_real omega_max;
103 nev_real eta;
104 nev_complex_vector val_;
105 nev_complex_vector freq_;
106 };
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