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IQRs) of Ê[Y ∗{ĝopt(Hsub)}] and % opt , as well as absolute and rela-
tive bias, are presented. |H| = number of variables in covariate his-
tory H; |Hsub| = number of variables in subset of covariate history
Hsub; ρ = the correlation coefficient used to generate covariates in H;
ReST-L = Restricted Sub-Tree Learning; Naive T-RL = Naive Tree-
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= interquartile range; Ê{Y ∗(ĝopt)} represents the estimated coun-
terfactual mean under the estimated optimal treatment assignment.
Under optimal treatment allocation Ê[Y ∗{gopt(Hsub)}] = 4.7 . . . . 36
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xvi



4.3 Performance summary [% opt (IQR) and Ê[Y ∗{ĝopt(H)}] (IQR)] for
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4.6 Performance summary [% opt (IQR) and Ê[Y ∗{ĝopt(H)}] (IQR)] for
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optimal treatment allocation Ê[Y ∗{gopt(H)}] = 8.0. . . . . . . . . . 137

4.10 Characteristics of the analysis cohort. Summary statistics of demo-
graphics, treatment, and outcomes for MIMIC-III analysis cohort
are included. n = sample size. Stage 1 = 0-3 hours post-admission.
Stage 2 = 3-24 hours post-admission. R = restrictive fluid resusci-
tation (< 30 mL/kg); L = liberal fluid resuscitation (≥ 30 mL/kg);
IQR = interquartile range; kg = kilogram; LOS = length of hospital
stay; Mech Vent = Mechanical Ventilation; Vasos = Vasopressors; L
= liters; mL/kg = milliliters per kilogram; SOFA = sequential organ
failure assessment; hrs = hours. Median (IQR) are presented for con-
tinuous variables; frequency (percentage) are provided for categorical
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xx



LIST OF FIGURES

Figure

2.1 Estimated decision rules for the FRANCHISE study using tree-based
reinforcement-learning (T-RL, left panel) and Restricted Sub-Tree
Learning (ReST-L, right panel) to maximize long-term hand strength.
T-RL selects gender and use of private insurance (yes/no) as tailoring
variables for an estimated treatment assignment rule. ReST-L, con-
versely, using only a subset of clinical variables as possible tailoring
variables, estimates a treatment decision rule based on age. . . . . . 57

3.1 Three of the most commonly used Clustered Sequential Multiple As-
signment Randomized Trial (Clustered SMART) designs. R denotes
a cluster-level randomization and A-J denote cluster-level interven-
tions which need not be unique. Each of the featured designs illus-
trates two intervention stages with an initial randomization to one of
two first-stage interventions followed by an assessment of response.
In Design I, all clusters are re-randomized at Stage 2 conditional on
both the first-stage intervention and response. Design II features
a second-stage randomization only for clusters with a non-response
to first-stage intervention whereas Design III includes a second-stage
randomization only for clusters non-responsive to initial intervention
A. Figure replicated from Speth and Kidwell (2019). . . . . . . . . . 63

3.2 Clustered Sequential Multiple Assignment Randomized Trial (Clus-
tered SMART) designed to evaluate use of Internal (IF) and/or Ex-
ternal (EF) implementation support for primary and mental health
clinics who failed to implement evidence-based practices (EBPs) after
a 6 month run-in period. R indicates 1:1 randomization performed.
N = number of clinics; n = number of patients within the N clinics.
(Figure adapted from Kilbourne et al. (2014) and Smith et al. (2019).) 98

xxi



4.1 Analysis eligibility criteria and patient population. A total of 486
patients were included in this analysis. Inclusion criteria included be-
ing ≥ 18 years old at the time of medical intensive care unit (MICU)
admission from the emergency department, having a diagnosis of sus-
pected sepsis (Angus et al., 2001; Horng et al., 2017; Iwashyna et al.,
2014), receiving documented pre-MICU fluids, and surviving at least
48 hours after MICU admission. . . . . . . . . . . . . . . . . . . . . 138

4.2 Two stage treatment strategy to optimize the patient-level Sequen-
tial Organ Failure Assessment (SOFA) score evaluated at 24 hours
following admission. We estimate that all patients should receive a
high volume fluid resuscitation strategy (≥ 30 mL/kg) within three
hours after admission to the Medical Intensive Care Unit (MICU). If
the patient receives high volume fluid resuscitation within the first
three hours following admission in accordance with this strategy, they
should receive low volume fluid resuscitation (< 30 mL/kg) between
3-24 hours following MICU admission. If they did not receive an
initial high volume resuscitation strategy in accordance with the es-
timated guideline, however, they should receive high volume (≥ 30
mL/kg) fluid resuscitation between 3-24 hours following MICU ad-
mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xxii



ABSTRACT

Personalized medicine is built upon the understanding that patients are uniquely

heterogeneous in their existing and emergent comorbidities, as well as their tolerance

of, response to, and even preference for different treatments. Dynamic treatment

regimes (DTRs) lead to personalized medicine through a series of stage-specific deci-

sion rules that map a patient’s up-to-date individual characteristics, including treat-

ment history and disease state, to a tailored treatment assignment at each successive

treatment stage. In this dissertation we develop new statistical methods to overcome

several challenges arising in the field of dynamic treatment regimes.

In Chapter II, we develop Restricted Sub-Tree Learning (ReST-L) to estimate op-

timal DTRs in a multi-stage multi-treatment setting using observational data while

restricting estimated DTRs to include only the set of covariates considered to be

meaningful tailoring variables. ReST-L uses a purity measure derived from the aug-

mented inverse probability weighted estimator for the counterfactual mean outcome;

it is able to correctly estimate the optimal underlying dynamic treatment regime for

a relatively large number of covariates with comparatively small sample sizes. We

demonstrate the utility of ReST-L in a study of treatment recommendations for pa-

tients presenting to the emergency department with traumatic amputation of digit(s)

on the hand.

Chapter III is motivated by a clustered sequential multiple assignment random-

ized trial (Clustered SMART) designed to improve the clinic-level uptake of evidence-

based practices and health outcomes of patients with mood disorders. We develop

estimation and inference procedures for Clustered Q-learning to inform the empiri-
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cal construction of an optimal clustered adaptive intervention and address the well-

known non-regularity challenge that can occur in a multi-stage estimation setting. We

show that estimates of model parameters are unbiased and demonstrate near nominal

coverage of confidence intervals across two intervention stages when the number of

clusters is large and sample sizes within clusters are moderate. We apply Clustered

Q-Learning to data from a Clustered SMART to evaluate whether a set of candidate

tailoring variables may be used to additionally tailor cluster-level interventions to

improve patient-level outcomes of patients with mood disorders.

We develop Penalized Spline-Involved Tree-based (PenSIT) Learning in Chapter

IV, which seeks to improve upon existing tree-based approaches to estimating an

optimal multi-stage multi-treatment DTR. Instead of using the estimated propensity

score to construct the inverse weighting, which may result in unstable estimates when

weights are large, we predict missing counterfactual outcomes using regression models

that incorporate a penalized spline of pre-transformed propensity scores, as well as

other covariates predictive of the outcome. Our simulation results demonstrate good

performance of PenSIT Learning across different scenarios, particularly when the

level of confounding is high or moderate, or the sample size is small. We apply

PenSIT Learning to a retrospectively-collected dataset to estimate a two-stage fluid

resuscitation strategy to minimize a measure of organ dysfunction in patients with

acute emergent sepsis.
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CHAPTER I

Introduction

There are numerous forces motivating the development of tailored interventions

in healthcare. First, individuals and organizations are uniquely heterogeneous. There

is no one-size-fits-all intervention that can be used for all individuals or organizations

across all scenarios. Second, healthcare expenditures in the United States are sky-

rocketing. In the year 2000, inflation-adjusted outlays for healthcare were estimated

to be about $1.8 trillion dollars (Kamal et al., 2019). Less than 20 years later, al-

though the population of the United States has increased by only about 15% (from

about 280 million in 2000 to about 325 million in 2017), expenditures for healthcare

have doubled (Kamal et al., 2019). Third, there has been an explosion in the past

two decades of data collection, storage, and processing capabilities, permitting the

investigation of heretofore impossible questions. These factors create the impetus for

developing evidence-based interventions that improve outcomes in a measurable way

and removing or replacing those interventions that do not.

Another important consideration when devising tailored interventions is the fact

that interventions are largely implemented in sequence. In medicine, for example,

chronic conditions are managed over a patient’s lifetime in response to progression

or improvement of disease, and involve a sequence of consecutive evaluations and

treatment decisions for improving aspects of a patient’s life. If a patient responds
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to their initial treatment, they may maintain the current dose or be removed from

treatment entirely; if the patient fails to respond to a first stage treatment, however, a

higher dose or a more intensive intervention may often be prescribed. Unfortunately,

most randomized controlled trials, as well as cohort or other observational studies,

are designed to evaluate only a single stage across the continuum of care, which fails

to account for synergistic or antagonistic effects that may occur across intervention

stages and also fails to reflect long-term treatment goals.

In response to this push for data-driven, evidence-based initiatives to provide

multi-stage, tailored interventions, statistical research in the field of dynamic treat-

ment regimes has been advancing. Dynamic treatment regimens (Chakraborty and

Moodie, 2013; Murphy , 2003; Robins , 2004), also known commonly as DTRs, individ-

ualized treatment rules, or adaptive interventions, represent multi-stage, prescribed

treatment sequences that are tailored based on baseline and time-varying characteris-

tics and are a vehicle to operationalize the manner in which interventions are delivered

in practice more efficiently (Chakraborty and Moodie, 2013). Consider the following

example of a DTR for women with early-stage breast cancer: “First perform surgery.

If there are cancerous cells present in the lymph nodes following surgery, give ag-

gressive systemic chemotherapy. If cancerous cells are absent from the lymph nodes,

continue to monitor the patient over time.” Note that this DTR includes the first

treatment (surgery) followed by a second treatment (i.e., either chemotherapy or no

chemotherapy) where the second treatment depends on a tailoring variable, i.e., the

presence or absence of cancerous cells in the lymph nodes. A particular emphasis

is on the “dynamic” nature of the DTR, which provides a personalized prescription

that changes over time in response to emergent characteristics. This is in contrast to

a “treatment sequence”, which does not change at any time based on intermediate

outcomes or characteristics. In fact, it can be argued that very few interventions

are administered as a treatment sequence and not as a DTR in practice because in-
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termediate outcomes factor into nearly all healthcare decisions made in a sequential

manner. It should be understood that personalized medicine generally, and DTRs

specifically, is a search for interactions, as interventions are expected to have different

effects in individuals or organizations with different characteristics. DTRs have been

of great recent interest in several medical specialities such as oncology, as well as in

social and clinical psychology, behavioral health, and implementation science.

DTR methods are grounded in causal inference. Causal inference under Rubin’s

potential outcomes framework (Rubin, 1974) involves a comparison of counterfac-

tual outcomes represented by the set of all potentially observable outcomes under

each of the different interventions (or intervention sequences). The challenges of es-

timating a multi-stage DTR, however, are two-fold. First, as is often described as

the fundamental problem of causal inference (Holland , 1986), only one of the poten-

tial outcomes–the counterfactual outcome consistent with the intervention actually

received–can be observed. Thus, in a single stage setting with only two possible treat-

ments, 1
2

= 50% of the potential outcomes is observed. Adding a second stage, again

with only two possible treatment options at the second stage, it can easily be seen

that only 1
2
· 1
2

= 1
4

= 25% of the counterfactual outcomes are actually observed, i.e.,

the outcome associated with only one of the four possible treatment sequence com-

binations. Adding additional interventions at each stage or considering more than

two stages rapidly expands upon this challenge. Secondly, it is often the case in a

longitudinal, multi-stage data setting that a variable will be both an intermediate

outcome of prior treatment yet a confounder of future treatment, meaning that a

variable can be both a mediator yet also confounder, known as “confounding by indi-

cation” which, when not addressed, can lead to bias in estimation. In an ideal world

every individual would have completed each candidate treatment regime under the

exact same circumstances and we would be able to compare outcomes for each pa-

tient across regimes and identify covariate-treatment interactions at each stage that
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maximize outcomes. Under ordinary circumstances, however, this is not possible. In

order to perform causal inference in the absence of all potential outcomes, a series

of assumptions must be fulfilled: consistency, positivity, and no unmeasured con-

founders (NUCA). In a sequential multiple assignment randomized trial (SMART),

a trial design defined by the presence of at least two sequential randomizations that

is commonly used to evaluate candidate DTRs, these assumptions are fulfilled by

the nature of an adequately designed trial and correctly performed randomizations.

Often, however, randomized trials are expensive, unethical or infeasible, and/or long

in duration. In such cases we may rely on observational data. In analyses of observa-

tional data, by contract, treatments are not assigned randomly and actual treatment

decisions are likely to be based, either formally or informally, on some known patient

characteristics. If we fail to account for the actual treatment assignment mechanism,

we cannot make claims of causality and our results are of minimal value.

One primary objective within the field of DTRs is to estimate decision rules span-

ning the multiple intervention stages such that, if the DTR were applied to the popu-

lation of interest, outcomes would be optimized. Specifically, this may involve identi-

fying relevant tailoring variable(s) and their respective cutpoints at each stage. Given

the great potential value of DTRs in personalized medicine, there has understandably

been an abundance of statistical literature related to estimating and evaluating DTRs.

Two such classes of methods that are flexible, easy-to-implement, and produce inter-

pretable results include decision tree-type DTR estimation and Q-Learning. Although

these methods continue to experience increasing popularity, many unaddressed sta-

tistical research questions still exist.

A decision tree, also known as a classification and regression tree (CART; Breiman

et al., 1984), is a popular machine learning algorithm used for prediction. Using a

set of training observations, the CART algorithm recursively partitions the covariate

space until observations within each terminal (leaf) node achieve maximum “purity”,
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i.e., relative homogeneity of the target variable for observations defined within the

partition. A predicted value of the target variable can then be made for a new set

of observations based on their distinct covariate values. A purity measure, a term

used frequently in the CART literature, is the metric used to determine if and when

a binary split of the covariate space will be made. Purity measures commonly used

in the CART literature include misclassification rates for binary outcomes or resid-

ual sum of squares for continuous outcomes (Hastie et al., 2009). CART algorithms

were developed as a prediction tool rather than for the field of causal inference, how-

ever. To design a CART algorithm with the goal of estimating a causal relationship,

e.g., a DTR, purity measures utilizing estimators of counterfactual outcomes were

developed. Laber and Zhao (2015) incorporate an inverse probability weighted es-

timator (IPW) into a purity measure for tree-based learning, whereas Zhang et al.

(2015) utilize a doubly robust augmented inverse probability weighted (AIPW) esti-

mator within a more restrictive tree-based framework known as a decision list. Tree-

based reinforcement learning (T-RL), developed by Tao et al. (2018), incorporates

the AIPW estimator of the counterfactual mean outcome within a purity measure to

estimate an optimal DTR in a multi-stage, multi-treatment setting using a flexible,

tree-based framework. Whereas it is reasonable that all variables may be used to

estimate the propensity for treatment assignment, as well as the conditional mean

outcome models, both of which are needed to derive the AIPW estimate, T-RL dic-

tates that the full set of covariates be considered as candidate tailoring variables,

which is often not reasonable in practice. In the example DTR introduced above,

it would be unethical to determine whether to treat the patient with chemotherapy

following surgery based on her socioeconomic status. Another challenge identified

within decision tree-type DTR estimation is the fact that IPW-weighted estimators

used within the purity measure may be unstable when weights are large, leading to

unstable estimates of counterfactual outcomes. In this dissertation we address both
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challenges arising within tree-based DTR estimation, statistical questions which to

our knowledge have not yet been explored in the literature.

A second class of methods for estimating DTRs is Q-Learning (Chakraborty et al.,

2013; Moodie et al., 2012; Murphy , 2005b; Nahum-Shani et al., 2012; Schulte et al.,

2014). Q-Learning was originally proposed within the computer science literature

and has become a widely-popular method to estimate personalized, multi-stage inter-

ventions. Implemented recursively starting with the final stage, Q-Learning utilizes

the language of Q-functions, which are defined for each stage k as the expected out-

come conditional on covariate and intervention history collected through the k-th

stage. A Q-function is said to be “optimal” if the expected counterfactual outcome

is maximized (assuming higher values of the outcome are desired). Given their def-

inition, Q-functions can be modeled in many ways; often, however, Q-functions are

modeled parametrically using standard linear or generalized linear regression mod-

els due to the widespead use and understanding of such methods. Whereas medical

research often concerns settings in which the intervention is administered and out-

comes are collected at the individual level, much research in the areas of education,

behavioral science, and implementation science evaluates interventions administered

at the cluster level while the outcome of interest resides at the individual level. In

this dissertation we address the challenge of clustered data when using Q-Learning

for estimating a multi-stage multi-treatment DTR.

In Chapter II we introduce Restricted Sub-Tree Learning (ReST-L) for estimating

an optimal DTR using observational data when restrictions to the set of candidate

tailoring variables in the multi-stage decision rules are justified. Given a set of time-

varying patient characteristics and treatment history, ReST-L utilizes a decision tree

framework to build an estimated DTR based on a sub-tree. We demonstrate that,

when clinical knowledge substantiates consideration of only a subset of covariates as

candidate tailoring variables but other covariates may define the treatment assign-
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ment mechanism or may be related to the outcome, ReST-L provides a flexible and

interpretable, semi-parametric analysis approach for estimating the optimal dynamic

treatment regime across multiple stages. We show that, when the true, underlying

DTR structure is tree-type, ReST-L is a significant improvement over both para-

metric and nonparametric Q-Learning. Although, asymptotically, performance of

ReST-L and T-RL are similar, ReST-L provides more power in the smaller sample

sizes common in biomedical research. When the underlying DTR is a complicated

nonlinear function, ReST-L also improves upon both parametric and nonparametric

Q-Learning across all sample sizes.

In Chapter III we introduce Clustered Q-Learning for use with data from a Clus-

tered SMART–a SMART in which the intervention is applied at the cluster level but

the outcome of interest lies at the level of the individual within the cluster–to in-

form the empirical construction of an optimal clustered adaptive intervention (CAI).

This scenario occurs with increasing frequency in the area of implmentation science

(Fernandez et al., 2020; Kilbourne et al., 2014; Kilbourne et al., 2018; Quanbeck

et al., 2020; Smith et al., 2019; Zhou et al., 2020), a field that seeks to develop data-

driven strategies that facilitate uptake of practices–clinical evidence-based practices

or standard operating procedures, for example– into regular use. Using Clustered

Q-Learning we determine whether a set of pre-specified candidate tailoring variables

can be used to tailor multi-stage interventions administered at the cluster level such

that, if the CAI were applied to the population of interest, outcomes would be opti-

mized. While estimation of regression parameters is straightforward using a general

linear model framework with estimation by either maximum likelihood or generalized

estimating equations, a well-known challenge in Q-Learning regression concerns the

estimation of confidence intervals under conditions of nonregularity, which is expected

to be common. Nonregularity is a phenomenon that will affect the estimation of stan-

dard errors for any earlier intervention stage if there is a non-unique treatment effect
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(e.g., no treatment effect) at one or more of the later intervention stages. To enable

the construction of confidence intervals with nominal coverage rates, we propose the

M -out-of-N cluster bootstrap, which is an extension of the m-out-of-n bootstrap for

uncorrelated data (Chakraborty et al., 2013), to accommodate data from a Clustered

SMART. We show that estimation of model parameters using Clustered Q-Learning

is unbiased and demonstrate near nominal coverage of confidence intervals across

two intervention stages when the number of clusters is large and the cluster size is

moderate.

In Chapter IV we propose a new method to estimate the optimal multi-stage multi-

treatment dynamic treatment regime using observational data, PenSIT Learning,

which seeks to improve upon existing tree-based approaches that rely on IPW-type

estimators for causal inference. While conceptually similar to the implementation of

ReST-L, PenSIT Learning makes use of a purity measure derived from the penalized

spline of propensity prediction (PSPP) method used for missing data (Little and An,

2004; Zhang and Little, 2009; Zhou et al., 2019). Specifically, instead of using weights

derived from the estimated propensity score as is done with IPW estimators, we pre-

dict missing counterfactual outcomes for the treatments not assigned to patients using

regression models that incorporate a penalized spline of a function of the propensity

to be assigned that treatment and other covariates predictive of the outcome. The

estimator retains the property of double robustness against model misspecification.

We demonstrate that PenSIT Learning typically outperforms Q-Learning methods

across most data generating scenarios and is a viable alternative to T-RL, particu-

larly when the level of confounding is high or moderate and when the sample size is

small.

In summary, in this dissertation we address three challenges that exist within the

field of optimal DTR estimation. Within the framework of decision tree-type opti-

mal DTR estimation we provide a method that can be selected when only a subset

8



of variables, based on prior clinical knowledge, may be used as candidate tailoring

variables in a multi-stage DTR. Secondly, we adapt Q-Learning to accommodate clus-

tered data arising when interventions are delivered at the cluster level but outcomes

of interest lie at the individual level within the cluster. Finally, we develop a novel

purity measure based on the penalized spline for propensity prediction method used

for missing data, which we incororporate into a decision tree framework for estimating

a multi-stage DTR.
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CHAPTER II

Restricted Sub-Tree Learning (ReST-L) to

Estimate an Optimal Dynamic Treatment Regime

Using Observational Data

2.1 Introduction

There is a drive in the healthcare field toward evidenced-based and personalized

medicine, which has the potential to both improve patient outcomes, lower costs,

and allocate healthcare resources in more efficient ways. In essence, personalized

healthcare recognizes that patients are uniquely heterogeneous in their preexisting

and emergent comorbidities, as well as their response to or tolerance of–and even

preference for–a particular treatment. The overarching goal of personalized medicine,

therefore, is to search for treatment interactions that can define which patients will

benefit from which treatments. One such avenue to achieve this goal is through

dynamic treatment regimes, which have become of great recent interest in several

medical specialties including oncology, as well as in social and clinical psychology

and behavioral health. Dynamic treatment regimes (Chakraborty and Moodie, 2013;

Murphy , 2003; Robins , 2004) also known commonly as DTRs, individualized treat-

ment rules, or adaptive interventions, represent multi-stage, prescribed treatment

sequences that are tailored to the individual based on their baseline and time-varying
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characteristics and are a vehicle to operationalize the manner in which patient care

for chronic diseases is delivered in practice more efficiently (Chakraborty and Moodie,

2013).

A primary statistical objective in the field of DTRs is to estimate stage-specific

decision rules that will optimize the expected long-term counterfactual outcomes of

patients when applied across the population of interest. Given the potential value of

DTRs for both improving long-term patient outcomes and optimizing the allocation of

resources needed for patient care, there are understandably an abundance of methods

that have been developed to estimate optimal DTRs. Existing methods can be clas-

sified in a number of ways, one of which relates to its dependence on parametric and

semi-parametric, or more flexible nonparametric assumptions (Hernan et al., 2001;

Huang et al., 2015; Murphy , 2003; Murphy et al., 2001; Robins , 1986; Robins , 1994;

Robins , 1997; Robins , 2000; Robins , 2004; Schulte et al., 2014; Thall et al., 2000;

Thall et al., 2002; Thall et al., 2007; van der Laan and Rubin, 2006; Wang et al.,

2012; Zhang et al., 2013). In recent years, however, due to the increasing capacity

for large scale data collection and storage, as well as advancements in computation,

flexible methods have become increasingly popular (Arjas and Saarela, 2010; Moodie

et al., 2013; Qian and Murphy , 2011; Xu et al., 2016; Zhao et al., 2009). Tree-based

methods that offer flexibility and robustness in estimation are desirable given, often,

an abundance of observational data, as well as a high degree of uncertainty with

regard to the complex relationships among variables. Additionally, because optimal

DTR estimation is exploratory in nature and communication with clinicians is cru-

cial, methods with interpretable results are particularly favored. Tree-based methods

informing optimal DTR construction in a single stage and/or with binary treatment

decisions (Laber and Zhao, 2015; Zhang et al., 2012a; Zhang et al., 2012b; Zhao et al.,

2012; Zhao et al., 2015) have been expanded to accommodate a multi-stage and multi-

treatment setting (Tao and Wang , 2017; Tao et al., 2018; Zhang et al., 2018). Zhang
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et al. (2018) define a new class of tree-based DTRs known as decision lists, which are

expressed as a series of consecutive “if-then” statements. Although the robust nature

of the estimator used by Zhang et al. (2018), as well as the focus of the methodology

on interpretatibility of the estimated optimal DTRs, are important, these list-based

DTRs can incorporate only two covariates per rule. Additionally, given the unidirec-

tional growth of this special case decision tree, errors in estimation can accumulate

across stages. Tao et al. (2018) introduce a more flexible, tree-based method known

as tree-based reinforcement learning (T-RL) for multi-stage and multi-treatment es-

timation of an optimal DTR. T-RL is a semi-parametric approach combining the

flexibility of a decision tree (e.g., Breiman et al., 1984) with a purity measure, i.e., a

metric used within the decision tree framework to devise binary covariate splits, that

is derived from a doubly-robust augmented inverse probability weighted (AIPW) es-

timator of the counterfactual mean outcome (Zhang et al., 2012b). Although T-RL

provides a flexible and robust modeling approach yielding interpretable results, and is

able to accommodate multiple treatments across multiple treatment stages, the algo-

rithm requires all observed covariates to be considered as possible tailoring variables

in an optimal DTR, which is unlikely to exclusively occur in practice.

For use in real-world settings we desire an estimator that provides interpretable

results, so that it can be examined within the clinical community, but is also flexi-

ble yet robust against model misspecification. Additionally, it is often necessary to

consider only a restricted subset of covariates as candidates for an estimated optimal

dynamic treatment regime. For example, envisage the case of a patient presenting

to the emergency department with traumatic amputation of digit(s) on the finger(s).

Current practice recommends treatment with either replantation, where the digit(s)

are replanted at the point at which they were severed, or correction of the amputated

stump, also known as “revision amputation”. There are de facto treatment decision

rules to guide surgeons’ choice of treatment; however, rigorous, data-driven guidelines
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that optimize long-term patient outcomes have not yet been developed. Because all

treatment decisions are ultimately subject to patient choice, conducting a random-

ized study to evaluate whether replantation or revision amputation of the amputated

digits improve long-term patient outcomes would be infeasible. Therefore, use of ob-

servational data, e.g., a longitudinal cohort study, is necessary. Given the regional

differences in treatment practices, it would be important to incorporate the actual

or estimated treatment assignment mechanism (i.e., the propensity model) into an

estimator. However, although all measured covariates may be used to define the treat-

ment assignment mechanism, many of the covariates–socioeconomic status or type of

insurance coverage (e.g., private insurance versus Medicaid), for example–would, for

a variety of reasons, be considered inappropriate to be included in an estimated op-

timal treatment regime. We therefore seek a flexible and interpretable method that

has desirable statistical properties and can be used with observational or randomized

data to estimate an optimal multi-stage dynamic treatment regime that is restricted

in its prescriptive covariates.

In this manuscript we develop Restricted Sub-Tree Learning (ReST-L) that utilizes

a decision tree framework but restricts the covariate space, according to subject-

matter knowledge, to build an estimated, optimal DTR based on a sub-tree, a topic

which to our knowledge has not yet been explored in the statistical literature. In order

to determine the binary splits of the covariate space, we use a purity measure derived

from an AIPW estimator of the counterfactual mean outcome, which is doubly robust

to model misspecification; however, although all possible tailoring and confounding

variables are used to estimate propensity and conditional mean models, both of which

are used to derive the AIPW estimator, only a subset of covariates are considered

as possible tailoring variables. We input into the algorithm a set of time-varying

patient characteristics and treatment history and output a dynamic, personalized,

and optimal multi-stage treatment regime. In simulation studies we demonstrate that,
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when clinical knowledge substantiates consideration of only a subset of covariates as

candidate tailoring variables but other covariates may define the treatment assignment

mechanism or may be related to the outcome, ReST-L provides a flexible, semi-

parametric analysis approach with interpretable estimates of an optimal, multi-stage

dynamic treatment regime.

2.2 Mathematical Formulation and Assumptions

2.2.1 Notation and Formulation

Suppose one of Kj treatments (kj = 1, ..., Kj; Kj ≥ 2) is administered to every

subject i = 1, ..., n at each of j = 1, ..., J stages. The actual treatment received by

the i-th patient at stage j is denoted Aj,i. As is customary, we use the convention

of using a capital letter to refer to the unrealized random variable and lowercase to

refer to a realized value. For simplicity, we omit the subscript i from future notation

when no confusion exists. Let us denote the j-th stage covariates that are observed

and available when making the j-th treatment decision as Xj. Assuming that only

a subset of covariates among Xj may be used to define the j-th stage decision rule,

we distinguish between Xsub,j and Xsub,j
C = Xj \Xsub,j, where Xsub,j represents a pj-

dimensional vector of multi-scale data (pj ≥ 1) corresponding to measured covariates

that a clinician would consider as candidates to include in a treatment decision rule

at stage j. Conversely, Xsub,j
C is a qj-dimensional vector of multi-scale data (qj ≥ 1)

corresponding to the set of measured covariates that may not be included in a clini-

cal treatment decision rule. In the context of our application example to determine

an optimal decision rule to treat patients with traumatic amputation of digits on a

hand, Xsub includes variables such as the number of digits amputated, whether the

thumb was amputated, and whether the injury occurred to the dominant hand–all of

which a clinician would consider as possible tailoring variables–whereas XC
sub includes
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the patient’s type of insurance coverage, socioeconomic status, and other variables

that a clinician would not use to assign treatment. After each j-th treatment stage,

measurements are made on a set of covariates Xj+1, which may also include an inter-

mediate outcome, Yj. Such an intermediate outcome Yj may reflect a certain response

from previous treatments or may be a function of the previous treatment history and

other observed covariates, and may be used to determine treatment for the (j+ 1)-th

stage. Thus, Yj may also be an element of Xsub,(j+1). Following convention, we use

overbar to denote history, i.e., all observations collected at stages on or before the

jth stage. For example, Xj = (X1,X2, ...,Xj) represents all covariate data collected

and available to the clinician prior to the jth treatment decision. Similarly, Aj−1

represents the set of all treatments received prior to the jth treatment decision, i.e.,

Aj−1 = (A1, A2, ..., Aj−1), and Y j−1 = (Y1, Y2, ..., Yj−1) represents the set of all inter-

mediate outcomes observed prior to the jth treatment decision. Suppose the final

outcome of interest is Y = h(Y1, Y2, ..., YJ), which may be a function of stage-specific

intermediate outcomes Y1, Y2, ..., YJ , assumed to be continuous and approximiately

normally distributed. Here h(·) represents some clinically-relevant, prespecified func-

tion (e.g., sum or last value). The full history prior to the decision at stage j is then

expressed as Hj = (Aj−1,Xj). Hsub,j = (Aj−1,Xsub,j) includes the full treatment

history prior to the treatment decision at stage j and covariate history only from the

subset Xsub,j that may be used in a clinical decision rule. Using a similar convention,

HC
sub,j = X

C

sub,j includes covariate history through stage j for variables not considered

for a treatment regime. Next let g = (g1, g2, ..., gJ) denote a J-stage dynamic treat-

ment regime. Each stage-specific decision rule gj is a function only of covariates that

can be used to make treatment decisions at each stage, i.e., gj : Hsub, j → Aj. Refer-

ing to the motivating example introduced previously, an example of an estimated

single stage decision rule g(Hsub) that would guide clinicians in determining whether

to perform replantation or revision amputation of traumatically amputated digits is
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as follows: If the patient has 3 or more fingers amputated, perform digit replantation;

otherwise, perform revision amputation.

As we are interested in making a causal claim related to an estimated optimal

dynamic treatment regime, we employ Rubin’s potential outcome framework (Ru-

bin, 1974). At stage J we let Y ∗(A1, ..., AJ−1, aJ), or simply Y ∗(aJ), denote the

counterfactual outcome, also known as a potential outcome, for a patient treated

with aJ ∈ AJ conditional on prior treatment history AJ−1. Notably, only one

counterfactual outcome–the one consistent with the treatment actually received–

will be observed. In the context of our estimation problem we can similarly define

Y ∗{g(Hsub)} as the counterfactual outcome under the multi-stage dynamic treatment

regime g(Hsub). As mentioned above, only one counterfactual outcome will be ob-

served, although in this case the observed counterfactual will be the potential outcome

consistent with the DTR followed by the individual. We measure the performance of a

multi-stage DTR, g(Hsub), using the counterfactual mean outcome E[Y ∗{g(Hsub)}],

the higher the better by convention, and define the optimal DTR gopt(Hsub) as the

one that satisfies

E[Y ∗{gopt(Hsub)}] ≥ E[Y ∗{g(Hsub)}]

for all g(Hsub) = (g1, g2, ..., gJ)T ∈ Gsub, where Gsub is the class of all potential

regimes constructed using Hsub only. Our statistical goal, therefore, can be sum-

marized as follows: to estimate an interpretable, optimal, J-stage treatment regime,

gopt(Hsub), from observational data such that, if all patients were to be assigned to

multi-stage treatment using this regime, the expected counterfactual outcome of our

population of interest would be maximized: gopt(Hsub) = argmaxg∈Gsub
E[Y ∗{g(Hsub)}].
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2.2.2 Link to Observed Data

The above optimization objective features Y ∗{g(Hsub)}, the counterfactual out-

come; however, as is widely known in causal inference, only one of the potential

outcomes is observed, making estimation of a causal effect impossible without a se-

ries of assumptions. To proceed with estimation of an optimal DTR under Rubin’s

potential outcomes framework, we make three foundational assumptions: consistency,

positivity, and no unmeasured confounders (NUCA).

(1) Consistency. Under an assumption of consistency, the potential outcome un-

der the observed treatment agrees with that of the observed outcome Y . For a single

stage treatment, we can express this as: Y =
∑K

a=1 Y
∗(a)I(A = a), where I(·) is an

indicator function that returns a value of 1 if the argument is true and a value of 0

otherwise. Consistency further assumes that there is no interference between units,

which means that one patient’s observed and counterfactual outcomes are indepen-

dent of the treatment(s) of all other patients.

(2) Positivity. 0 < τ < Pr(Ai = a|Hi) < 1 for all a ∈ A,Hi ∈ H, where τ is

a positive constant, i.e., the probability to be assigned to each possible treatment is

bounded away from 0.

(3) NUCA. Finally, we assume that there are no unmeasured confounders, i.e.,

data on all variables associated with both the assignment of treatment A and the

outcome Y have been observed. That is, given history H, Y ∗1 (1), ..., Y ∗K(K) ⊥⊥ A|H,

where ⊥⊥ denotes statistical independence.

In contrast to previous work with tree-based reinforcement learning (Tao and

Wang , 2017; Tao et al., 2018), our interest is to estimate a gopt that is based only on

covariates in Hsub. Because Y ∗{g(Hsub)} =
∑K

a=1 Y
∗(a)I{g(Hsub) = a}, the optimal

decision rule g for a single stage can be expressed as gopt(Hsub) =

argmaxg∈GsubE
[∑K

a=1 Y
∗(a)I{g(Hsub) = a}

]
. After taking an iterated expectation

and conditioning on history H, and in accordance with our assumptions of consis-
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tency, positivity, and NUCA, we can express the optimal decision rule as follows:

gopt(Hsub) =argmaxg∈GsubE[Y ∗{g(Hsub)}] =

argmaxg∈GsubEH

[ K∑
a=1

E
{
Y |g(Hsub) = a,H

}]

2.3 Restricted Sub-tree Learning (ReST-L)

2.3.1 Single Treatment Stage

Consider estimation of the optimal decision rule gopt(Hsub) for a single stage

with K possible treatments: gopt : Hsub → {1, 2, ..., K}. Define C as a compati-

bility indicator, with C =
∑K

a=1 I(A = a) · I{g(Hsub) = a}, which is equivalent to

I{A = g(Hsub)}, i.e., that the actual treatment received is consistent with the treat-

ment assigned by rule g(Hsub). Next define πa(H) = Pr(A = a|H) as the propensity

score for treatment assignment, noticing that this potentially depends on all variables

in H–not just variables in Hsub. Also, denote πC(H) as the probability of receiving

treatment consistent with g(Hsub). Assuming we have observational data, we would

posit a propensity model πa(H; γ), e.g., using multinomial logistic regression, to esti-

mate γ. We see that:

πC(H) =Pr(C = 1|H) = E(C|H) =

E
[ K∑
a=1

I(A = a) · I{g(Hsub) = a}|H
]

=
K∑
a=1

πa(H) · I{A = g(Hsub) = a}

Under the three assumptions in Section 2.2.2, condiser the IPW estimator of

E[Y ∗{g(Hsub)}], i.e., Ê[Y ∗{g(Hsub)}] = Pn
{ C · Y
π̂C(Hi; γ̂)

}
, where C and πC(H) are

defined above, Pn(·) represents the empirical mean operator evaluated over all patients

i, and Y represents our outcome of interest. Under an assumption of consistency and

positivity:
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E

[
C · Y

π̂C(H; γ̂)

]
= E

[
C

π̂C(H; γ̂)
Y ∗{g(Hsub)}

]
Taking an iterated expectation conditional on H and under the assumption of

NUCA, the above is equivalent to:

EH

[
E
[ C

P̂r(C = 1|H)
Y ∗{g(Hsub)}|H

]]
=

EH

[
E

[
I{A = g(Hsub)}

P̂ r{A = g(Hsub)|H}
|H

]
E[Y ∗{g(Hsub)}|H]

]

If π̂C(H) is correctly specified, E

[
I{A = g(Hsub)}

P̂ r{A = g(Hsub)|H}
|H

]
= 1, which demonstrates

that an IPW style estimator is consistent in large samples for estimating the coun-

terfactual mean outcome E[Y ∗{g(Hsub)}] under a regime g(Hsub):

Ê[Y ∗{g(Hsub)}] = Pn
[

C · Y
π̂C(H; γ̂)

]
→p E[Y ∗{g(Hsub)}]

However, because the IPW estimator of the counterfactual mean can quickly be-

come unstable as the number of treatment stages increases, estimation can be im-

proved by utilizing a doubly robust estimator of the counterfactual mean, also known

as the augmented inverse probability weighted (AIPW) estimator. It has been shown

that Pn{µ̂AIPW
a (H)} is a consistent estimator for E{Y ∗(a)} (Tao et al., 2018; and oth-

ers), where µ̂AIPW
a (H) is defined as follows, with µ̂a(H) = E(Y |A = a,H) representing

the conditional mean model:

µ̂AIPW
a (H) =

I(A = a)

π̂a(H)
Y +

{
1− I(A = a)

π̂a(H)

}
µ̂a(H)

Now considering the decision rule g(Hsub), we propose to extend the AIPW estima-

tor to estimate the counterfactual mean under regime g(Hsub), i.e., Ê[Y ∗{g(Hsub)}],

as Pn
[∑K

a=1 µ̂
AIPW
a (H) I{g(Hsub) = a}

]
, which can also be expressed as:
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Ê[Y ∗{g(Hsub)}] = Pn
[

C

π̂C(H)
Y +

{
1− C

π̂C(H)

}
µ̂C(H)

]
where both C and πC(H) are as defined above, and µ̂C(H) = Ê{Y |A = g(Hsub) =

a,H}. The AIPW estimator of the counterfactual mean outcome for treatment A = a

under regime g(Hsub) is then expressed as:

Pn
[
I{A = g(Hsub) = a}

π̂C(H)
Y +

{
1− I{A = g(Hsub) = a}

π̂C(H)

}
µ̂C(H)

]

It is doubly robust in the sense that it will provide a consistent estimator of the

counterfactual mean outcome under regime g(Hsub) if either the models of π̂C(H) or

the conditional mean outcome model Ê{Y |A = g(Hsub) = a,H} is correctly specified.

With the above knowledge, we propose ReST-L, a new learning procedure akin

to the classification and regression tree (CART) (e.g., Breiman et al., 1984), to es-

timate g(Hsub). One important feature of CART methods, which will also be an

important component of ReST-L, is the “purity measure”. A purity measure is used

to quantify the degree of similarity–or “purity”–of observations with respect to a tar-

get variable. Specifically, the measured purity is used to determine binary covariate

splits, mimicking the branching of a tree, such that observations within each “leaf”

node are relatively homogeneous with respect to a target variable–and then to use

the estimated partition of the covariate space to predict the target variable for a set

of new observations. The process of splitting nodes of the tree into binary partitions

of the covariate space continues until the pre-specified depth of the tree is achieved or

until the improvement in the “purity” falls below a pre-specified level. Examples of

purity measures frequently used with CART include entropy, the Gini index, and the

sum of squared prediction errors (Hastie et al., 2009). A similarity between CART

and ReST-L, as introduced above, includes the fact that a partition of the covariate

space is made such that observations within each subset are relatively homogeneous.
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A notable difference, however, is the fact that the target of estimation for ReST-L is

an optimal decision rule, which determines optimal treatment assignment based on

observed covariates but is not directly observed. Furthermore, ReST-L, in contrast to

CART methods, rests within the causal inference framework. Therefore, we propose

for ReST-L a new purity measure suitable for our goal of estimating a decision rule

based on only a subset of covariates while also preserving a causal interpretation.

Specifically, we exploit the consistent, large-sample, doubly-robust AIPW estimator

of the counterfactual mean outcome for a decision rule based only on a subset of

covariates introduced above and define our purity measure represented by the binary

partition created by split ω of node Ω, P(Ω, ω), as follows:

P(Ω, ω) = maxa1,a2∈A Pn
[ K∑
a=1

µ̂AIPW
a (H) I{A = gω,a1,a2(Hsub) = a} I(Hsub ∈ Ω)

]
,

where gω,a1,a2 denotes a decision rule such that patients in ω are assigned treatment

a1 while patients in the complementary set ωC are assigned to a2, with a1 6= a2. Using

this purity measure, ReST-L is implemented as described in Section 2.3.3.

2.3.2 Multiple Treatment Stages

We now extend ReST-L to a setting with multiple treatment stages, j = 1, ..., J ,

with 2 or more treatment options per stage, i.e., Kj ≥ 2. Because of the potential

for confounding by indication, a problem that can introduce substantial bias in a

multi-stage estimation, ReST-L is implemented recursively using backward induction

(Bather , 2000), beginning with estimation of the final stage and continuing backwards

in time through all prior stages.

We first consider estimation of the decision rule for the final, J-th, stage. We

perform this estimation in the same manner in which we estimate a single stage

decision rule. Following our exposition in section 2.3.1,
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µ̂AIPW
J,aJ

(HJ) =
I(AJ = aJ)

π̂J,aJ (HJ)
Y +

{
1− I(AJ = aJ)

π̂J,aJ (HJ)

}
µ̂J,aJ (HJ)

where µ̂J,aJ (HJ) = Ê[Y |AJ = aJ ,HJ ]. The estimator of the J-th stage counterfactual

mean outcome for AJ = aJ under regime gJ(Hsub,J) can then be expressed as:

Pn
(
I{AJ = gJ(Hsub,J) = aJ}

π̂J,CJ
(HJ)

Y +
[
1− I{AJ = gJ(Hsub,J) = aJ}

π̂J,CJ
(HJ)

]
µ̂CJ

(HJ)

)

where µ̂CJ
(HJ) = E{Y |AJ = gJ(Hsub,J) = aJ ,HJ}. Likewise, we define the purity

measure for the J-th stage decision rule gJ(Hsub) under a binary split ω (and ωC) of

node Ω as:

PJ(Ω, ω) =

maxa1,a2∈AJ
Pn
[ KJ∑
aJ=1

µ̂AIPW
J,aJ

(HJ) I{AJ = gJ,ω,a1,a2(Hsub,J) = aJ} I(Hsub,J ∈ Ω)

]

Having completed estimation of the J-th stage, we generalize estimation now

for the j-th stage, each estimated in backward sequence for j = J − 1, ..., 1. Our

goal in a multi-stage setting is to estimate a DTR such that the expected long-term

counterfactual outcome is optimized. When estimating the decision rule for the j-th

treatment stage, we must also account for the fact that the patient was treated with

the optimal treatment at all future stages. Therefore, when performing estimation

for any stage prior to the last, it is necessary to have a stage-specific pseudo-outcome

Ỹj that represents the predicted counterfactual outcome at the j-th stage contingent

upon the patient receiving the optimal treatments at all future stages, j + 1, ..., J .

Mathematically this can be expressed as: Ỹj = Ê{Y ∗(A1, ..., Aj, g
opt
j+1, ..., g

opt
J )}, as

well as in recursive form, Ỹj = Ê{Ỹj+1|Aj+1 = goptj+1(Hsub,j+1),Hsub,j+1}. Denoting

Ê(Ỹj|Aj = aj,Hsub,j) as µ̃j,aj(Hsub,j), we can express the j-th stage pseudo-outcome

as Ỹj = µ̃j+1,goptj+1
(Hsub,j+1). Similar to the delineation above, under the assumptions
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of consistency, positivity, and NUCA, we express the optimal decision rule at the j-th

stage as a function of the counterfactual pseudo-outcome as follows:

goptj (Hsub) =argmaxgj∈Gsub,jE[Ỹj{g(Hsub)}] =

argmaxgj∈Gsub,jEHj

[ Kj∑
aj=1

µ̃j+1,aj+1
(Hsub,j)I{Aj = gj(Hsub,j) = aj}

]

Defining µ̃AIPW
j,aj

(Hj) as:

µ̃AIPW
j,aj

(Hj) =
I(Aj = aj)

π̂j,aj(Hj)
Ỹj +

{
1− I(Aj = aj)

π̂j,aj(Hj)

}
µ̃j,aj(Hj)

where µ̃j,aj(Hj) is E(Ỹj|Aj = aj,Hj), then the ReST-L purity measure used at the

j-th treatment stage is:

Pj(Ω, ω) =

maxa1,a2∈Aj
Pn
[ Kj∑
aj=1

µ̃AIPW
j,aj

(Hj) I{Aj = gj,ω,a1,a2(Hsub,j) = aj} I(Hsub,j ∈ Ω)

]

Implemention of ReST-L is described in the following section.

2.3.3 Implementation

ReST-L is implemented backward recursively, beginning with estimation of the J-

th stage. At each stage, several user-defined inputs are needed to implement ReST-

L. First, it is necessary to specify a positive value, λj, which is used to determine

whether or not a binary split of a node identifies a meaningful difference in purity.

For example, if P (Ωm) represents the purity of node Ωm in the absence of a binary

split and P (Ωm, ω) represents the “new” purity of node Ωm under a split defined

by partition ω (and its complement ωC), we would expect a split to occur only if a

meaningful improvement in purity is achieved, i.e., P (Ωm, ω) − P (Ω) > λj. Here λj
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may be selected based on practical or clinical considerations or using cross-validation,

as explained in Tao et al. (2018). Additional user-defined inputs include the desired

minimum size of terminal nodes and the maximum depth of the tree to be estimated,

both of which may also vary by stage j. The minimum node size, n0,j, reflects the

minumum number of observations that can fall into each of the leaf nodes once a split

of a parent node is made. The depth of the tree (dj) refers to the number of times

recursive splitting of the root node may occur. A smaller minimum node size and

larger tree depth result in more complex tree structures with a possible concern of

overfitting whereas the converse may result in underfitting. There is an abundance

of literature related to selecting optimal tuning parameters for decision-tree type

estimation (e.g., Boehmke and Greenwell , 2020; Hastie et al., 2009); in general the

choices depend on the desired complexity of the resulting estimated stage j decision

rule and often are chosen adaptively from the data. Mantovani et al. (2019) suggest

that optimal minimum node size for a CART type estimation ranges from 1-20 and

a depth of 5 is often a good starting point (Boehmke and Greenwell , 2020). Another

strategy frequently employed is to grow a large tree and then prune it as needed

using a cost metric (Boehmke and Greenwell , 2020; Hastie et al., 2009; Therneau

et al., 2019), for example.

We briefly summarize the set of criteria for recursive partitioning of the covariate

space for each stage j = J, J−1, ..., 1. Refer to Tao et al. (2018) for additional details.

Inputs into the algorithm at the j-th stage include the purity measure Pj(Ωm, ω); the

counterfactual pseudo-outcomes calculated via µ̂AIPW
J,aJ

(HJ) and µ̃AIPW
j,aj

(Hj) for the J-

th or j-th stages, respectively; the minimum cut-off level for improvement in purity

λj; the minimum terminal node n0,j; and the maximum tree depth dj. Beginning with

the root node at the j-th stage, a series of recursive, binary splits of the covariate

space Hsub,j are made at the level of each node denoted as Ωm, where the split is

identified by ω, if the following criteria are met:
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1. The node Ωm resides at a shallower depth than the maximum, pre-specified tree

depth dj.

2. There are at least 2n0,j observations in the node Ωm and at least n0,j observa-

tions in each resulting child node.

3. P (Ωm, ω)− P (Ωm) > λj, where P (Ωm) refers to the purity in the absence of a

split.

If these criteria are met, we compute the estimated optimal split ω̂opt =

argmaxω{Pj(Ω, ω)}. Recursive partitioning continues for the j-th stage across each

node until at least one of the criteria is not met, at which point the node becomes a

terminal node. Once all nodes within the j-th stage estimation become terminal, es-

timation for the j-th stage ends. The optimal j-stage decision rule is then determined

by the partition of the covariate space at the j-th stage, with each partition being

assigned the optimal treatment that maximizes the mean counterfactual (pseudo)-

outcome. Estimation continues backward through all stages from the final stage J to

stage 1.

2.4 Simulation Studies

2.4.1 Two-Stage Simulation to Evaluate the Bias of a Naive Implemen-

tation of T-RL

Given that the prescriptive variables can be reduced to a smaller set of variables,

i.e., Hsub, one may be tempted to input only those variables in Hsub into the T-

RL algorithm. We refer to this method as “Naive T-RL”. Assuming a two-stage

DTR with three treatment options per stage and a sample size of n = 1000, we

generate observations under varying conditions, including different levels of covariate

correlations (ρ), number of variables in the full covariate history H and the subset
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Hsub (|H| and |Hsub|, respectively), and with both underlying tree-type and nontree-

type DTRs. Data is generated assuming independent observations. Covariate data

with dimension n x |H| are generated using the multivariate normal distribution

with a mean of 0|H| and an autoregressive (AR1) correlation structure with speci-

fied ρ, but with the following modifications: Pairwise correlation between the first

variable in Hsub and the first three variables in HC
sub is equal to ρ and pairwise

correlations between the first three variables in Hsub = 0. This modification was

intended to reflect quasi-real world complexities among covariates but specifying a

moderate or high degree of correlation between the variables involved in the optimal

DTR and confounding variables. An additional covariate, Z ∈ HC
sub, was gener-

ated for each observation using a Bernoulli distribution with p = 0.4. The actual

treatment received A1 is randomly generated from the multinomial distribution with

probabilities π10, π11, π12 where π10 = 1 − π11 − π12, π11 = exp(0.5XC1 − 0.5X1 +

Z − 0.5)/[1 + exp(0.5XC1 − 0.5X1 + Z − 0.5) + exp(0.5XC2 + 0.5X1 − Z)] and π12 =

exp(0.5XC2+0.5X1−Z)/[1+exp(0.5XC1−0.5X1+Z−0.5)+exp(0.5XC2+0.5X1−Z)],

where XC1, XC2 represent the first two covariates in HC
sub, i.e., confounding variables

not considered as candidate tailoring variables. The intermediate outcome following

the first stage is defined as Y1 = exp{1.5+0.3XC1−1.5Z−|1.5X1−2| ·(A−gopt1 )2}+ε,

where ε∼N(0, 1). This reflects an unequal penalty dependent on the value of X1–a

variable used in the true optimal treatment regime–if the patient was not treated

according to their optimal therapy, which is intended to add an additional degree of

complexity into the data generating scenario and reflective of a real world setting.

The optimal tree-type decision rule for the first stage is as follows: If X1 > −1 &

X2 > 0.25, then gopt1 = 2; if X1 > −1 & −0.5 < X2 ≤ 0.25, then gopt1 = 1; oth-

erwise, gopt1 = 0. The optimal first stage, nontree-type decision rule is specified as:

gopt1 = I[{log2(|X1|+1) ≤ 2} & (X2 < −0.25)]+I(X2
2 > 0.35). Data for the treatment

assignment for the second stage, A2, are generated randomly also using the multi-
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nomial distribution, but with probabilities π20, π21, π22, where π20 = 1 − π21 − π22,

π21 = exp(0.2Y1 + 0.5 − Z)/[1.5 + exp(0.2Y1 + 0.5 − Z) + exp(0.5XC2 + Z)] and

π12 = exp(0.5XC2 +Z)/[1.5 + exp(0.2Y1 + 0.5−Z) + exp(0.5XC2 +Z)]. We define the

intermediate outcome following the second stage as Y2 = exp{1.18 + 0.2XC2 − 2Z −

|1.5X3 + 2| · (A − gopt2 )2} + ε, and the final outcome Y is defined as the sum of the

stage-specific intermediate outcomes, i.e., Y = Y1 + Y2. The true, second-stage tree-

type optimal decision rule is defined as follows: If Y1 > 0.5 & X3 > 0, then gopt2 = 2;

if Y1 > 0.5 & −1 < X3 ≤ 0, then gopt2 = 1; otherwise, gopt2 = 0. The nontree-type

optimal decision rule for the second stage is defined as: gopt2 = I{(|X3| > 0.6) &

(Y1 > 1)} + I(Y 2
1 > 3). In summary, we assume that only variables in Hsub may be

included in an estimated optimal DTR, but that variables from either Hsub or HC
sub

may define the intermediate outcomes and the treatment assignment mechanisms.

Under optimal treatment allocation Ê[Y ∗{gopt(Hsub)}] = 5.4. For the analysis we

assume that there is an additive linear relationship between the outcome Y condi-

tional on covariate and treatment history; for ReST-L the assumed model includes

all observed covariates in H and a treatment interaction with the subset of candi-

date tailoring variables in Hsub whereas for Naive T-RL the assumed model includes

only those observed covariates in Hsub with a corresponding treatment interaction.

We further assume that the propensity models used in Naive T-RL and ReST-L are

correctly specified.

Results for this simulation study are presented in Table 2.1 for an underlying

tree-type DTR and in Table 2.2 for a nontree-type DTR. It can easily be seen that,

under all data generation settings, Naive T-RL will generate a substantial bias in its

estimate of the counterfactual mean outcome and a substantially lower percentage

of observations correctly classified to their optimal two-stage treatment regime than

ReST-L. For a tree-based DTR with 20 covariates and a correlation of ρ = 0.2, for

example, we observe a relative bias in estimation of the optimal counterfactual mean
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outcome of 15.6% for Naive T-RL compared with 5.5% for ReST-L. The corresponding

percentage of observations in the test set (Ntest = 1000) that were correctly classified

to their optimal treatment assignment for Naive T-RL and ReST-L are 57.5% and

85.3%, respectively. Refer to Section 2.4.4.4 for additional simulation results reflecting

this data generation setting.
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Ê
{Y
∗ (

ĝ
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ĝ
o
p
t )}

(R
el

%
)

A
b
s

B
ia

s
(I

Q
R

)
%

op
t

(I
Q

R
)

Ê
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2.4.2 Single Stage Simulation to Evaluate Relative Performance of

ReST-L

Next we evaluate the relative performance of ReST-L in a single stage setting with

three treatment options. Parameters varied across this simulation study include the

sample size (n), the number of covariates in H and Hsub (H/Hsub), the correlation ρ

used to generate the correlation matrix for covariates in H, and the true, underlying

structure of the decision rule (i.e., tree- or nontree-type). Data is generated assuming

independent observations. Covariate data X with dimension n x |H| are generated

using the multivariate normal distribution with a mean of 0|H| and an autoregressive

(AR1) correlation structure with specified ρ, but with the following modifications:

Pairwise correlation between the first variable in Hsub and the first three variables in

HC
sub is equal to ρ and pairwise correlations between the first three variables in Hsub =

0. This mimics the correlation structure used for the simulation in Section 2.4.1.

[Supplemental simulations using a simple exchangeable correlation structure with

ρ = 0.2 (results not shown) revealed similar results to those presented herein.] The

actual treatment received, A, is randomly generated from the multinomial distribution

with probabilities π0, π1, π2 where π0 = 1− π1 − π2, π1 = exp(0.5XC1 + 0.5X1)/[1 +

exp(0.5XC1 + 0.5X1) + exp(0.5XC2 − 0.5X1)] and π2 = exp(0.5XC2 − 0.5X1)/[1 +

exp(0.5XC1 + 0.5X1) + exp(0.5XC2− 0.5X1)], where XC1, XC2 represent the first two

covariates in HC
sub, i.e., confounding variables not considered as candidate tailoring

variables. The outcome Y = exp{1.5 + 0.3XC1 − |1.5X1 − 2| · (A − gopt)2} + ε,

where ε∼N(0, 1). The true, underlying tree-type decision rule is defined as follows:

If X1 > −1 & X2 > 0.5, then gopt = 2; if X1 > −1 & −0.5 < X2 < 0.5, then

gopt = 1; otherwise, gopt = 0. The nontree-type decision rule is defined as: gopt =

I{log2(|X1| + 1) ≤ 2 & X2 < 0.25} + I{X2
2 ≤ 0.5}. Importantly, the outcome and

actual treatment assignment are defined using variables in both Hsub and HC
sub. The

optimal decision rule, based on the methodologic assumptions of ReST-L, includes
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only variables in Hsub. Under optimal treatment allocation Ê[Y ∗{gopt(Hsub)}] = 4.7.

We compare the estimated performance of ReST-L with five competing methods:

tree-based reinforcement learning (T-RL), standard Q-Learning using linear modeling

(Q-L), restricted linear Q-Learning (Q-L-R), Q-Learning using nonparametric model-

ing (Q-NP), and restricted nonparametric Q-Learning (Q-NP-R). With the exception

of T-RL, which represents the unrestricted counterpart to ReST-L, we restrict our

comparisons to Q-Learning methods because these are the only existing methods to

our knowledge that can accommodate a subset of variables in the estimated treatment

regime. For both ReST-L and T-RL we assume that there is an additive linear rela-

tionship between the outcome Y conditional on covariate and treatment history that

includes all observed covariates, as well as a treatment-interaction with either all ob-

served covariates (T-RL) or with a subset of candidate tailoring variables (ReST-L).

We further assume that the propensity model used in ReST-L and T-RL is correcly

specified. (Performance results under an incorrectly-specified propensity model are

presented for a two-stage simulation in Section 2.4.4.1.) Restricted Q-Learning meth-

ods are modifications of the standard Q-Learning models such that only variables

in Hsub are considered as possible candidate tailoring variables (i.e., treatment in-

teractions), which differs from standard Q-Learning in which all variables in H are

possible treatment tailoring variables. Linear Q-Learning assumes a linear relation-

ship between the covariates and the outcome. Nonparametric Q-Learning methods

allow a more flexible relationship for the Q-functions, estimated using random forests.

Performance is evaluated using two metrics. First, we estimate the optimal treat-

ment regime using data from the training set with sample size n and use a test set

(Ntest = 1000) to determine the percentage of observations correctly classified to their

optimal treatment, %opt. Second, using the test set, we estimate E[Y ∗{ĝopt(Hsub)}],

the expected counterfactual outcome had everyone in the patient population been

treated optimally based on the estimated regime. For each design setting, we tabu-
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late the median and interquartile range (IQR) of %opt and Ê[Y ∗{ĝopt(Hsub)}] across

all B = 500 Monte Carlo iterations.

Estimated performance for tree-type and nontree-type decision rules are displayed

in Table 2.3 and Table 2.4, respectively. As observed in the tabulated results, ReST-

L selects the optimal treatment decision rule well when the underlying decision rule

is either tree-type or nontree-type. Across all data generating settings, for a tree-

type decision rule the percent of observations from the test set that are correctly

classified to their optimal treatment ranges from about 85% for smaller sample sizes

and fewer variables in H and Hsub to more than 95% for larger sample sizes (and a

correspondingly larger number of variables in H). ReST-L performance improves as

the sample size increases, as expected; for example refer to results for sample sizes

of n = 500 and n = 750 when |H| = 100. For the same sample size and number

of variables in the covariate history H, performance improves as the proportion of

variables in Hsub relative to H decreases. For example, for 50 covariates in H, a sample

size of n = 300 and a correlation ρ = 0.2, estimated performance improves from 86.5%

to 90.0% correct classification when the number of variables in Hsub decreases from

35 to 10. ReST-L performance in estimating the optimal decision rule is similar

across different degrees of correlation among covariates when all other parameters

are held constant. Finally, we observe that the variability for ReST-L in estimating

the optimal regime increases when the true, underlying decision rule is nontree-type,

and is generally higher with a smaller sample size or as the proportion of variables

in Hsub increases. Furthermore, ReST-L estimates the empirical counterfactual mean

outcome under the optimal treatment regime, Ê[Y ∗{ĝopt(Hsub)}], with a high degree

of accuracy and relatively low variability across Monte Carlo iterations, particularly as

the sample size increases. Assuming a tree-type decision rule, |H| = 100, and n = 750,

ReST-L estimates the counterfactual mean under the estimated optimal treatment

assignment to be 4.6, which is very close to the true empirical counterfactual mean
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of 4.7.

ReST-L consistently performs better than all other methods across all one-stage

data generating settings presented – for both tree- and nontree-type decision rules.

For estimation with an underlying tree-type decision rule, the variability of ReST-L in

estimating the optimal regime is smaller than that of T-RL and similar to restricted

nonparametric Q-Learning. For a nontree-type decision rule, variability of ReST-L

in estimating %opt is larger than that of restricted nonparametric Q-Learning, but

generally remains smaller than that of T-RL overall. Across all simulation settings,

restricted Q-Learning methods perform better than their standard Q-Learning coun-

terparts. Both linear Q-learning methods (restricted and unrestricted) perform poorly

in all scenarios whether the underlying decision rule is tree-type or nontree-type. With

a larger sample size, restricted nonparametric Q-Learning does a reasonable job of

estimating the optimal treatment regime for an underlying tree- and nontree-type

decision rule; with n = 500 and 100/20 variables in H/Hsub, for example, restricted

nonparametric Q-Learning achieves higher than 85% correct classification.
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Ê

[Y
∗ {
ĝ
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2.4.3 Two-Stage Simulation to Evaluate Relative Performance of ReST-L

We next evaluate the performance of ReST-L in a two-stage estimation setting

with 3 possible treatment options per stage. It can easily be seen that random

allocation of one of three treatments in each of two stages would select the opti-

mal two-stage treatment assignment about 1 out of every 32 times, which is about

11% of the time. All settings for generating first stage data, including the co-

variate matrix X, the treatment assignment mechanism for A1, the intermediate

outcome Y1, and optimal treatment gopt1 (Hsub), are the same as those used in the

single stage setting described above. The second stage treatment A2 is randomly

generated using the multinomial distribution with probabilities π20, π21, π22 where

π20 = 1−π21−π22, π21 = {exp(0.2Y1−0.5)}/[1+{exp(0.2Y1−0.5)}+{exp(0.5XC2)}],

and π22 = {exp(0.5XC2)}/[1 + {exp(0.2Y1 − 0.5)} + {exp(0.5XC2)}]. The interme-

diate outcome is Y2 = exp{1.18 + 0.2XC2 − |1.5X3 + 2| · (A2 − gopt2 )2} + ε, where

ε∼N(0, 1), and the overall outcome Y = Y1 + Y2. When a tree-type DTR is assumed,

gopt2 (Hsub) is assigned as follows: If X3 > −1 & Y1 > 2, then gopt2 = 2; if X3 > −1 &

0 < Y1 ≤ 2, then gopt2 = 1; otherwise, gopt2 = 0. Under an assumed nontree-type DTR:

gopt2 = I(|X3| > 0.6 & Y1 > 0.4) + I(Y 2
1 > 2.5). Both the intermediate outcomes and

actual treatment assignments depend on variables in both Hsub and HC
sub. However,

the optimal DTR are set to include only variables in Hsub. Under optimal treatment

allocation and assuming independence across observations, Ê[Y ∗{gopt(Hsub)}] = 8.0.

Similar to the single stage setting, ReST-L and T-RL assume a correctly-specified

propensity model and an incorrectly-specified conditional mean model, which is more

likely to happen in practice.

The performance of ReST-L and other competing methods for estimating the

optimal two-stage regime with either an underlying tree-type or nontree-type DTR

are displayed in Tables 2.5 and 2.6, respectively. Across all sample size and variable

settings with a tree-type DTR, ReST-L does a reasonably good job of selecting the
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optimal treatment, with correct classification generally between 85-90%. As in a single

stage estimation setting, performance improves with sample size, as expected, with

an improvement in percent correct classification from 89.6% to 95.2% for sample sizes

of n = 600 to n = 1000 (ρ = 0.2). Additionally, performance improves with fewer

variables in Hsub relative to H: The percent correct classification with 50 variables

in H and ρ = 0.2 improves from 87.0% to 89.8% as the number of variables in Hsub

is reduced from 35 to 10. With an underlying nontree-type DTR, larger sample sizes

are needed to obtain a similar estimated correct classification rate. For example,

with a sample size of n = 600, ρ = 0.2, and |H| = 100 variables, the percent of

observations correctly classified to their optimal treatment is just over 70% for the

nontree-type DTR compared with nearly 90% for a tree-type DTR; however, with the

same specifications but with n = 1000, the percent correct classification are similar

for tree- and nontree-type DTRs (95.2% and 93.8%, respectively). Variability of

estimation of the percent correct treatment allocation of ReST-L is lower for a tree-

type DTR than for nontree-type DTR and is larger on average than that observed

in a single stage setting. Finally, for ReST-L, the estimated counterfactual mean

outcome is closer to the empirical mean when sample size increases; when n = 1000,

ReST-L achieves an estimated counterfactual mean outcome of 7.8 compared to the

empirical mean of 8.0.

For a two-stage, tree-type DTR, ReST-L improves more upon T-RL at lower

sample sizes and when the proportion of variables in Hsub relative to H decreases.

With larger sample sizes, e.g., when n = 1000, both ReST-L and T-RL achieve more

than 90% correct treatment classification although ReST-L still slightly outperforms

T-RL in this case. For a nontree-type DTR, ReST-L improves upon T-RL across

all settings, although in particular the benefit of ReST-L is observed with a larger

number of covariates. When n = 1000 and ρ = 0.2, for example, the percent of

observations in the test set that were correctly classified to their optimal treatment
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is 93.8% for ReST-L compared with 84.8% for T-RL. As in a single stage setting, we

observe that the restricted versions of Q-Learning improve upon their unrestricted

counterparts, although linear Q-Learning demonstrates poor performance across all

settings, never exceeding more than 25% correct treatment classification. Restricted

nonparametric Q-Learning, on the other hand, achieves good performance, nearing

90% correct classification for a tree-type DTR with a large sample size.
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Ê

[Y
∗ {

ĝ
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ĝ
o
p
t
)}

(I
Q
R
)

10
00

10
0/
20

0.
2

7
.8

(1
.2
)

7
.6

(1
.2
)

4
.9

(0
.2
)

4
.4

(0
.2
)

7.
7
(0
.2
)

7
.0

(0
.4
)

10
00

10
0/
20

0.
6

7
.8

(1
.0
)

7
.6

(1
.2
)

5
.0

(0
.2
)

4
.5

(0
.1
)

7.
5
(0
.2
)

6
.7

(0
.4
)

60
0

10
0/
20

0.
2

7
.3

(1
.2
)

6
.4

(1
.0
)

4
.7

(0
.2
)

4
.2

(0
.2
)

7.
2
(0
.3
)

6
.0

(0
.5
)

60
0

10
0/
20

0.
6

7
.3

(1
.2
)

6
.4

(1
.0
)

4
.8

(0
.2
)

4
.2

(0
.2
)

7.
0
(0
.3
)

5
.8

(0
.5
)

50
0

50
/3
5

0.
2

7
.0

(1
.2
)

6
.9

(1
.2
)

4
.5

(0
.2
)

4
.4

(0
.2
)

6.
5
(0
.4
)

6
.0

(0
.5
)

50
0

50
/3
5

0.
6

7
.2

(1
.1
)

7
.0

(1
.1
)

4
.6

(0
.2
)

4
.5

(0
.2
)

6.
4
(0
.4
)

5
.8

(0
.5
)

50
0

50
/1
0

0.
2

7
.5

(1
.2
)

6
.9

(1
.1
)

4
.9

(0
.2
)

4
.4

(0
.2
)

7.
2
(0
.3
)

6
.0

(0
.5
)

50
0

50
/1
0

0.
6

7
.4

(1
.2
)

6
.7

(1
.1
)

5
.0

(0
.2
)

4
.4

(0
.2
)

7.
0
(0
.3
)

5
.8

(0
.4
)

35
0

20
/7

0.
2

7
.3

(1
.2
)

7
.0

(1
.1
)

4
.9

(0
.3
)

4
.6

(0
.2
)

6.
9
(0
.3
)

5
.9

(0
.4
)

35
0

20
/7

0.
6

7
.3

(1
.1
)

7
.1

(1
.1
)

5
.0

(0
.3
)

4
.7

(0
.2
)

6.
8
(0
.3
)

5
.7

(0
.4
)

41



2.4.4 Supplemental Two-Stage Simulation Experiments

Supplemental simulation studies were conducted to evaluate the performance of

ReST-L in a variety of other scenarios. Specifically, we apply ReST-L and T-RL

using an incorrectly-specified propensity model (Tables 2.7 and 2.8); or modify the

data generating mechanisms to remove confounding of the treatment assignments

A and outcomes Y by variables in HC
sub (Tables 2.9 and 2.10); or modify the data

generating mechanisms for g such that variables defining the true optimal DTR may

be in HC
sub (Tables 2.11 and 2.12); or evaluate the relative performance of ReST-L

compared with other methods under stronger confounding with a binary covariate

Z ∈ HC
sub (Tables 2.13 and 2.14), which mimics the data generation model from

Section 2.4.1.

2.4.4.1 Simulation Studies to Evaluate the Relative Performance of

ReST-L When Using Incorrectly-Specified Propensity Models

We conducted additional simulation experiments in order to demonstrate the sen-

sitivity of our findings when utilizing ReST-L for estimating an optimal DTR when

only a subset of the covariates may be considered as candidate tailoring variables.

First, we evaluate ReST-L performance in estimation of a two-stage optimal DTR

when the propensity model is incorrectly specified. The two-stage data generation

specifications for this simulation experiment are the same as those introduced in Sec-

tion 2.4.3. In contrast to the analyses presented in Tables 2.5 and 2.6 in which we

assumed that the variables determining treatment were known, however, here we

consider all variables in H as variables that may be used to define the treatment as-

signment mechanism at both stages. While we understand that the AIPW estimator

is consistent and doubly robust in large samples when either or both the propensity

model and the conditional mean model are correctly specified, we believe that this

supplemental simulation study in which neither the propensity model nor the condi-
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tional mean model are correctly specified will reflect a scenario that is likely to occur

frequently in practice and will shed light on the use of ReST-L as an out-of-the-box

solution for estimating optimal DTRs.

ReST-L and T-RL performance using incorrectly-specified propensity models is

presented in Tables 2.7 and 2.8. Because Q-Learning methods do not rely on a

propensity model, performance measures for Q-Learning methods are replicated from

Tables 2.5 and 2.6 for ease of comparison with ReST-L and T-RL. For tree-type

DTRs, performance of ReST-L is slightly lower overall when the propensity models

are incorrectly specified compared with correct specification. For example, with a

sample size of n = 350, a covariate correlation of ρ = 0.2, and |H| = 20, the percent of

the test set classified to the correct treatment is 84.8% when the propensity models are

incorrectly specified and 86.0% when correctly specified. Similarly, when the sample

size and the number of variables in H are large (i.e., n = 1000, ρ = 0.2, and |H| =

100), the performance is 93.2% and 95.2% for incorrectly- and correctly- specified

propensity models, respectively. The percentage of correctly-treated observations in

the test set remains reasonable across all sample sizes and variable settings, hovering

above 85% correct classification on average, and maintains an improvement over T-

RL across all settings. With an underlying nontree-type DTR, larger sample sizes are

necessary to achieve reasonable performance, as was also observed in Tables 2.5 and

2.6. While ReST-L is still likely to be favored when the assumptions of the method are

fulfilled, i.e., that the true DTR is defined only in terms of a subset of variables Hsub,

the improvement of ReST-L over restricted nonparametric Q-Learning decreases as

sample size increases. With n = 1000 and a correlation of ρ = 0.2, for example, the

percent of observations with correct treatment classification is 86.7% for restricted

nonparametric Q-Learning compared with 87.0% for ReST-L.
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Ê
{Y

∗ (
ĝ
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ĝ
o
p
t
)}

(I
Q
R
)

10
00

10
0/
20

0.
2

7
.7

(1
.2
)

7
.4

(1
.3
)

4
.9

(0
.2
)

4
.4

(0
.2
)

7.
7
(0
.1
)

7
.0

(0
.5
)

10
00

10
0/
20

0.
6

7
.7

(1
.2
)

7
.4

(1
.2
)

5
.0

(0
.2
)

4
.5

(0
.1
)

7.
5
(0
.2
)

6
.7

(0
.4
)

60
0

10
0/
20

0.
2

6
.6

(1
.1
)

6
.0

(0
.9
)

4
.7

(0
.2
)

4
.2

(0
.2
)

7.
2
(0
.3
)

6
.0

(0
.5
)

60
0

10
0/
20

0.
6

6
.6

(1
.2
)

6
.1

(0
.9
)

4
.8

(0
.2
)

4
.2

(0
.2
)

7.
0
(0
.3
)

5
.8

(0
.5
)

50
0

50
/3
5

0.
2

6
.8

(1
.1
)

6
.7

(1
.1
)

4
.5

(0
.2
)

4
.4

(0
.2
)

6.
5
(0
.4
)

6
.0

(0
.5
)

50
0

50
/3
5

0.
6

6
.9

(1
.1
)

6
.6

(1
.1
)

4
.6

(0
.2
)

4
.5

(0
.2
)

6.
4
(0
.4
)

5
.8

(0
.5
)

50
0

50
/1
0

0.
2

7
.3

(1
.2
)

6
.6

(1
.1
)

4
.9

(0
.2
)

4
.4

(0
.2
)

7.
2
(0
.3
)

6
.0

(0
.5
)

50
0

50
/1
0

0.
6

7
.3

(1
.1
)

6
.7

(1
.0
)

5
.0

(0
.2
)

4
.4

(0
.2
)

7.
0
(0
.3
)

5
.8

(0
.4
)

35
0

20
/7

0.
2

7
.1

(1
.1
)

7
.0

(1
.1
)

4
.9

(0
.3
)

4
.6

(0
.2
)

6.
9
(0
.3
)

5
.9

(0
.4
)

35
0

20
/7

0.
6

7
.2

(1
.1
)

6
.9

(1
.1
)

5
.0

(0
.3
)

4
.7

(0
.2
)

6.
8
(0
.3
)

5
.7

(0
.4
)

45



2.4.4.2 Simulation Studies To Evaluate the Relative Performance of

ReST-L in the Absence of Confounding by Variables in HC
sub

In this supplemental simulation study we evaluate the relative performance of

ReST-L in the absence of confounding by variables in HC
sub, i.e., the true data-

generating model for treatment A and outcomes Y include only variables in Hsub.

This is in contrast to the simulation experiments presented in Section 2.4.3 in which

confounding by variables in HC
sub exist. Using the data generating mechanisms pre-

sented in Section 2.4.3, for this simulation experiment we replace variables XC1 and

XC2, the first two variables in HC
sub, with the final two variables in Hsub. As in all

previously-reported simulation experiments and by ReST-L assumption, the optimal

regimes gopt are defined using variables only in Hsub.

As can be seen in Tables 2.9 and 2.10, performance for both ReST-L and T-RL are

similar to those reported in Tables 2.5 and 2.6. Performance for Q-Learning methods,

with the exception of restricted nonparametric Q-Learning, are also similar. Only

restricted nonparametric Q-Learning demonstrates a slightly lower performance in

this setting. For a tree-based DTR, for example, we observe 88.9% correct treatment

classification in Table 2.5 with a sample size n = 1000, |H| = 100 variables and ρ =

0.2, compared with 85.5% correct classification when the true treatment allocation

A, outcomes Y, and the optimal DTR gopt are defined using variables only in Hsub.
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Ê
{Y
∗ (

ĝ
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2.4.4.3 Simulation Studies to Evaluate the Relative Performance of

ReST-L Under Violations of ReST-L Assumptions

ReST-L is an analytic solution that can be used when the investigators are rel-

atively certain about the set of covariates that can be considered in the optimal

dynamic treatment regime. For scenarios in which the optimal DTR is actually de-

fined, at least in part, by variables in HC
sub, we would expect the performance of

ReST-L to be lower than its unrestricted counterpart, T-RL. Although this will be

the case overall, here we present an illustration of performance differences that may

be observed under violations of the ReST-L assumption that only variables in Hsub

are involved in an optimal DTR. Specifically, using the data generating mechanisms

presented in Section 2.4.3 for both tree- and nontree-type DTRs, we modify gopt1 to

be defined using XC1 rather than X1. Additionally, gopt2 is now defined using the final

variable in HC
sub rather than on X3. (Recall that XC1 refers to the first variable in the

set of HC
sub.) Otherwise, similar to the data generating mechanisms used in Section

2.4.3, confounding is introduced using variables in both Hsub and HC
sub.

As can be seen in Table 2.11 for a tree-type DTR, performance of ReST-L is

lower than that of T-RL across all data generation settings. With larger sample

sizes, performance of ReST-L reaches about 75% of observations correctly classified

to their optimal treatment. T-RL, on the other hand, achieves more than 90% correct

treatment classification, which is similar to that reported in Table 2.5. With a nontree-

type DTR structure, we observe in Table 2.12 that performance of ReST-L is poor

across all data settings. Performance for T-RL is mediocre for lower sample sizes, as

well, but is similar to the performance presented in Table 2.6.
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2.4.4.4 Simulation Studies to Evaluate the Relative Performance of

ReST-L Under a Data Generation Mechanism with a High Degree

of Confounding

Here we present comprehensive results for the two-stage simulation experiment in-

troduced in 2.4.1, which demonstrated the bias of Naive T-RL in estimating the coun-

terfactual mean outcome if all patients were to receive treatment according to their

estimated optimal DTR. As described previously, the data generating mechanism in-

cludes a binary variable Z that has a strong confounding relationship with both the

treatment assignment mechanisms for A1 and A2. This differs from the simulation ex-

periments presented in Sections 2.4.2 and 2.4.3 in which the confounding relationship

is defined using only continuous covariates. Parameters varied across this simulation

study include the sample size (n), with fixed sample sizes n = 500, n = 1000, and n =

2000, the number of covariates in H and Hsub (H/Hsub = 20/7, 50/10, 50/35, 100/20),

the correlation used to generate the correlation matrix for covariates in H (ρ =

0, 0.2, 0.6), and the true, underlying structure of the DTR (i.e., tree or nontree-type).

Refer to Section 2.4.1 for a description of the full data generating models. As in

the previously-described simulations and consistent with the assumptions required

by this method, we assume that only variables in Hsub may be included in an opti-

mal DTR; variables from either Hsub or HC
sub, however, may define the intermediate

outcomes and the treatment assignment mechanisms. Under optimal treatment allo-

cation Ê[Y ∗{gopt(Hsub)}] = 5.4. It is further assumed in the analysis that propensity

models for both ReST-L and T-RL are correctly specified.

Results for the simulation studies are presented in Table 2.13 for a tree-type

DTR and in Table 2.14 for a nontree-type DTR. With a tree-type DTR and a strong

confounding relationship of covariate Z with the treatment assignment and outcomes,

a larger sample size than that needed in the analyses presented in Sections 2.4.2 and

2.4.3 is required to achieve reasonable performance. With a correlation of ρ = 0.2 and
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|H = 20|, a sample size of n = 1000 is required to achieve similar levels of performance

to a sample size of n = 350 in Table 2.5. With a sample size of n = 2000, performance

across all data generating settings reaches about 90% correct classification and the

ReST-L results for n = 2000 are comparable to those of T-RL. For smaller sample

sizes, however, we observe that ReST-L improves upon T-RL across all data settings,

although the improvement is most apparent with a larger number of covariates and

when the proportion of variables in Hsub relative to H is lower. Consider, for example,

a sample size of n = 1000 with |H| = 100 and ρ = 0.2 in which we report an estimated

82% correct classification for ReST-L compared with 73% for T-RL. With a nontree-

type DTR structure, performance is slightly lower across all settings for both ReST-L

and T-RL than with a tree-type DTR, but both ReST-L and T-RL achieve about

88-90% correct classification with n = 2000.

2.5 Application to Personalize Hand Injury Treatment De-

cisions

We illustrate our methods using a de-identified sub-dataset from the FRANCHISE

study (Chung et al., 2019), and following the secondary analysis conducted by Speth

et al. (2020), which includes baseline characteristics and patient-reported and func-

tional outcome measures for 338 consenting adults with traumatic amputation of

digits distal to the metacarpophalangeal (MCP) joint who were treated by revision

amputation or successful replantation at least one year prior to recruitment. Details

on the original study design and enrollment, as well as a comprehensive description

of collection methods for functional assessments and patient-reported outcomes, are

found in Chung et al. (2019).

Four outcome measures are considered in this analysis: hand strength, dexterity,

pain, and patient-reported hand quality of life. Refer to Speth et al. (2020) for a
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Table 2.13: Performance summary [medians of % opt (IQR) and Ê[Y ∗{ĝopt(Hsub)}]
(IQR)] for estimation of an optimal two-stage dynamic treatment regime (DTR) with
3 possible treatments based on an underlying, tree-type DTR with ρ = 0.2. n =
sample size of the training dataset; |H| = number of variables in covariate history
H; |Hsub| = number of variables in subset of covariate history Hsub; ReST-L =
Restricted Sub-Tree Learning; T-RL = Tree-based Reinforcement Learning; Naive T-
RL = Naive Tree-based Reinforcement Learning; Q-Linear-R = Restricted Linear Q-
Learning; Q-NP-R = Restricted Nonparametric Q-Learning; % opt = percent of test
set (Ntest = 1000) classified to its optimal treatment using a treatment rule estimated
using the applicable method; IQR = interquartile range; Ê{Y ∗(ĝopt)} represents the
estimated counterfactual mean under the estimated optimal treatment assignment.
Under optimal treatment allocation Ê[Y ∗{gopt(Hsub)}] = 5.4

H/Hsub
ReST-L T-RL Q-L-R Q-L Q-NP-R Q-NP

% opt (IQR)

n = 500

20/7 71.6 (18.2) 62.2 (17.3) 41.6 (3.6) 36.4 (3.4) 49.1 (6.3) 45.4 (5.2)

50/10 67.1 (18.7) 55.0 (16.7) 39.8 (3.6) 28.9 (3.0) 45.4 (6.8) 39.8 (5.7)

50/35 57.7 (16.8) 52.8 (17.3) 32.2 (3.4) 29.0 (3.2) 35.0 (8.1) 39.7 (5.0)

100/20 58.4 (16.1) 37.6 (13.6) 35.6 (3.6) 20.5 (2.6) 40.8 (8.2) 35.1 (6.4)

n = 1000

20/7 85.3 (10.2) 82.1 (12.9) 43.3 (3.9) 40.5 (2.8) 57.3 (4.8) 55.0 (4.8)

50/10 85.2 (12.0) 79.1 (15.6) 42.5 (3.1) 35.1 (2.5) 55.5 (4.9) 50.9 (4.4)

50/35 82.3 (13.2) 79.3 (14.4) 37.7 (2.6) 35.1 (2.6) 49.6 (5.9) 50.8 (4.4)

100/20 82.7 (11.6) 73.9 (16.0) 40.4 (2.8) 29.4 (2.5) 52.5 (5.5) 47.9 (4.5)

n = 2000

20/7 91.8 (5.0) 91.3 (6.5) 43.8 (3.2) 42.7 (2.8) 66.3 (4.5) 66.0 (4.5)

50/10 91.7 (5.6) 90.6 (6.6) 43.3 (3.4) 39.6 (2.7) 65.6 (4.6) 62.1 (4.5)

50/35 91.4 (6.0) 90.8 (6.7) 41.2 (2.5) 39.6 (2.6) 63.0 (5.4) 62.2 (4.7)

100/20 91.0 (6.2) 89.5 (7.9) 42.8 (3.0) 35.5 (2.3) 65.0 (5.1) 59.7 (4.7)

Ê{Y ∗(ĝopt)} (IQR)

n = 500

20/7 4.9 (0.5) 4.7 (0.5) 4.1 (0.2) 3.8 (0.2) 4.2 (0.3) 4.3 (0.2)

50/10 4.7 (0.5) 4.4 (0.5) 4.0 (0.2) 3.5 (0.2) 4.1 (0.3) 4.0 (0.3)

50/35 4.5 (0.5) 4.4 (0.5) 3.7 (0.2) 3.5 (0.2) 3.6 (0.4) 4.0 (0.3)

100/20 4.5 (0.5) 3.9 (0.6) 3.8 (0.2) 3.1 (0.2) 3.8 (0.4) 3.8 (0.4)

n = 1000

20/7 5.1 (0.3) 5.1 (0.3) 4.1 (0.2) 4.0 (0.2) 4.5 (0.2) 4.7 (0.2)

50/10 5.1 (0.3) 5.0 (0.3) 4.1 (0.2) 3.8 (0.2) 4.4 (0.2) 4.5 (0.2)

50/35 5.0 (0.3) 5.0 (0.3) 3.9 (0.2) 3.8 (0.2) 4.2 (0.2) 4.5 (0.2)

100/20 5.0 (0.3) 4.9 (0.4) 4.0 (0.2) 3.5 (0.2) 4.3 (0.2) 4.4 (0.2)

n = 2000

20/7 5.2 (0.2) 5.2 (0.2) 4.2 (0.2) 4.1 (0.2) 4.8 (0.2) 5.0 (0.2)

50/10 5.2 (0.2) 5.2 (0.2) 4.1 (0.2) 4.0 (0.1) 4.7 (0.2) 4.9 (0.2)

50/35 5.2 (0.2) 5.2 (0.2) 4.0 (0.2) 4.0 (0.2) 4.7 (0.2) 4.9 (0.2)

100/20 5.2 (0.2) 5.2 (0.2) 4.1 (0.2) 3.8 (0.2) 4.7 (0.2) 4.8 (0.2)
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Table 2.14: Performance summary [medians of % opt (IQR) and Ê[Y ∗{ĝopt(Hsub)}]
(IQR)] for estimation of an optimal two-stage dynamic treatment regime (DTR) with
3 possible treatments based on an underlying, nontree-type DTR with ρ = 0.2. n =
sample size of the training dataset; |H| = number of variables in covariate history
H; |Hsub| = number of variables in subset of covariate history Hsub; ρ = the corre-
lation coefficient used to generate covariates in H; ReST-L = Restricted Sub-Tree
Learning; T-RL = Tree-based Reinforcement Learning; Naive T-RL = Naive Tree-
based Reinforcement Learning; Q-Linear-R = Restricted Linear Q-Learning; Q-NP-R
= Restricted Nonparametric Q-Learning; % opt = percent of test set (Ntest = 1000)
classified to its optimal treatment using a treatment rule estimated using the ap-
plicable method; IQR = interquartile range; Ê{Y ∗(ĝopt)} represents the estimated
counterfactual mean under the estimated optimal treatment assignment. Under op-
timal treatment allocation Ê[Y ∗{gopt(Hsub)}] = 5.4

H/Hsub
ReST-L T-RL Q-L-R Q-L Q-NP-R Q-NP

% opt (IQR)

n = 500

20/7 65.2 (23.2) 58.0 (21.7) 32.4 (3.1) 25.0 (3.0) 39.8 (7.6) 32.9 (6.7)

50/10 61.5 (21.0) 49.6 (18.3) 30.9 (3.0) 20.9 (2.4) 35.2 (7.3) 26.3 (5.6)

50/35 52.9 (20.4) 49.2 (19.3) 24.9 (2.8) 20.9 (2.6) 25.3 (5.7) 26.3 (6.0)

100/20 52.1 (17.0) 32.4 (13.2) 27.3 (3.2) 16.2 (2.3) 28.4 (6.1) 22.1 (6.3)

n = 1000

20/7 82.3 (15.9) 78.5 (19.3) 34.3 (3.4) 28.0 (2.5) 51.0 (7.4) 47.3 (6.4)

50/10 82.7 (18.4) 76.0 (20.8) 33.7 (3.2) 24.3 (2.4) 48.5 (7.6) 40.0 (5.3)

50/35 79.4 (19.4) 75.4 (21.4) 29.2 (2.6) 24.4 (2.4) 38.6 (6.4) 40.6 (5.6)

100/20 79.0 (22.4) 68.2 (21.6) 31.5 (2.8) 20.8 (2.0) 42.6 (7.2) 36.2 (5.3)

n = 2000

20/7 89.6 (6.5) 89.0 (8.7) 35.0 (3.7) 30.2 (2.5) 62.4 (6.1) 63.3 (5.2)

50/10 89.9 (6.0) 88.6 (10.3) 34.9 (3.2) 27.6 (2.3) 60.9 (6.1) 57.0 (6.7)

50/35 88.7 (8.1) 87.4 (10.8) 32.8 (2.2) 27.6 (2.1) 55.6 (7.6) 57.1 (6.8)

100/20 89.2 (7.4) 87.0 (11.7) 34.0 (2.7) 24.5 (2.1) 58.7 (6.8) 52.4 (6.9)

Ê{Y ∗(ĝopt)} (IQR)

n = 500

20/7 4.7 (0.6) 4.5 (0.6) 3.7 (0.2) 3.5 (0.2) 3.9 (0.3) 3.9 (0.3)

50/10 4.6 (0.6) 4.3 (0.6) 3.6 (0.2) 3.3 (0.2) 3.8 (0.3) 3.6 (0.3)

50/35 4.3 (0.6) 4.3 (0.6) 3.3 (0.2) 3.3 (0.2) 3.3 (0.3) 3.6 (0.3)

100/20 4.3 (0.6) 3.7 (0.5) 3.5 (0.2) 2.9 (0.2) 3.5 (0.3) 3.4 (0.3)

n = 1000

20/7 5.1 (0.4) 5.1 (0.4) 3.8 (0.2) 3.7 (0.2) 4.3 (0.3) 4.5 (0.2)

50/10 5.1 (0.4) 5.0 (0.5) 3.8 (0.2) 3.5 (0.1) 4.2 (0.3) 4.2 (0.3)

50/35 5.0 (0.5) 4.9 (0.5) 3.6 (0.1) 3.5 (0.2) 3.9 (0.3) 4.2 (0.3)

100/20 5.0 (0.5) 4.8 (0.6) 3.7 (0.2) 3.3 (0.2) 4.0 (0.3) 4.0 (0.3)

n = 2000

20/7 5.3 (0.2) 5.3 (0.2) 3.8 (0.2) 3.8 (0.1) 4.6 (0.2) 4.9 (0.2)

50/10 5.3 (0.2) 5.2 (0.3) 3.8 (0.2) 3.6 (0.1) 4.6 (0.2) 4.7 (0.3)

50/35 5.2 (0.3) 5.2 (0.3) 3.7 (0.2) 3.6 (0.1) 4.4 (0.3) 4.7 (0.2)

100/20 5.2 (0.3) 5.2 (0.3) 3.8 (0.2) 3.5 (0.2) 4.5 (0.2) 4.6 (0.3)
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description of how composite measures were derived. Importantly, all measures were

adjusted, as necessary, such that larger values represent better outcomes. Baseline

covariates include both patient factors and injury characteristics. Variables considered

as candidates for a treatment decision rule include age, number of digits amputated,

thumb amputation, dominant hand injury, amputation level, mechanism of injury,

and bilateral injury, as these factors have been shown to be clinically relevant to

decision making (Agarwal et al., 2010; Berlin et al., 2014; Boulas , 1998; Buntic

et al., 2008; Chung and Alderman, 2002; Sebastin and Chung , 2011). In addition

to the candidate variables listed above, possible confounding variables included in

the propensity model include sex, race, education level, income level, marital status,

employment status, occupation group, location of care, work-related injury, health

insurance (yes/no), and health insurance type.

We conduct the analysis using a complete, multi-level dataset with missing data

singly-imputed using random forest. Using ReST-L estimation, we find that patients

for whom hand dexterity is a clinical priority should undergo replantation if they are

58 years or younger and revision amputation otherwise. Alternatively, patients for

whom hand-related quality of life is most important should undergo revision ampu-

tation if he/she injures the dominant hand and replantation otherwise. Treating all

patients with replantation may minimize patient-reported pain long-term compared

to revision amputation. Finally, in patients for whom hand strength is paramount, the

results of our analysis indicate that age is a principal factor in determining whether

patients should undergo revision amputation or replantation. Specifically, our re-

sults suggest that middle-aged patients between the ages of 28 and 68 should receive

replantation but revision amputation otherwise.

The decision rules related to hand strength and patient-reported pain are slightly

different than those identified in Speth et al. (2020). We attribute this to the fact that

Speth et al. (2020) used a naive restricted T-RL method for estimation of treatment
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Figure 2.1: Estimated decision rules for the FRANCHISE study using tree-based
reinforcement-learning (T-RL, left panel) and Restricted Sub-Tree Learning (ReST-
L, right panel) to maximize long-term hand strength. T-RL selects gender and use
of private insurance (yes/no) as tailoring variables for an estimated treatment assign-
ment rule. ReST-L, conversely, using only a subset of clinical variables as possible
tailoring variables, estimates a treatment decision rule based on age.

assignment rules, where any variable that was deemed inappropriate for a treatment

assignment rule was removed post-hoc. Had T-RL been implemented without mod-

ification, it would have recommended that, in order to maximize long-term hand

strength, female patients with private insurance be treated with replantation whereas

men and female without private insurance be treated with revision amputation (Fig-

ure 1). Needless to say, making treatment decisions for traumatic amputation patients

based on insurance type would be objectionable. With regard to gender, no physi-

ologic differences in hand anatomy between males and females have been identified,

suggesting that a decision rule based on a patient’s gender would also be inappropri-

ate. Given these results, we view this as additional evidence of the utility of using

ReST-L.

2.6 Discussion

Personalized medicine reflects a goal of providing the right treatment to the right

person at the right time. ReST-L provides a flexible, data-driven approach grounded

in causal inference for estimating an interpretable, optimal multi-stage dynamic treat-

ment regime using observational data when only a subset of covariates, based on

clinical or other knowledge, should be considered as candidate tailoring variables.

57



Importantly, ReST-L addresses a clinical scenario that has not yet been addressed

to our knowledge in the literature for tree-based, optimal DTR estimation. We have

shown that there is an improvement over other estimation methods when, practically,

a clinically-meaningful and ethical treatment decision should be made without certain

variables and, given that ReST-L reduces to T-RL when the full set of covariates are

considered, this provides an important extension of previous work. ReST-L utilizes

a purity measure that is based upon a consistent and doubly robust estimator of the

counterfactual mean outcome under a sub-tree regime when either the propensity

model or the conditional mean model are correctly specified, resulting in a causal

estimator with double protections against model misspecifications. We demonstrate

that ReST-L can estimate the optimal DTR in the presence of a moderately large

degree of covariates and we base simulation studies on a reasonably complex relation-

ship that is intended to be reflective of data generating scenarios that may be seen

in a real world scenario. There are also limitations to our work. We acknowledge

that our results reflect a small number of possible data generating scenarios and it is

likely that performance estimates would change under different simulation settings.

For estimations in a two stage setting, we observe a high degree of variability in the

estimated percentage of observations correctly classified to their optimal treatment

using ReST-L. While the variability is much lower than the variability observed in

T-RL, it is much larger than that estimated using restricted Q-Learning with non-

parametric modeling assumptions. However, the median estimated performance is

also consistently higher for ReST-L in a two-stage setting than it is for restricted

nonparametric Q-Learning, suggesting that a trade of higher variability for higher

estimated performance could be warranted. Finally, in our simulation studies we as-

sume that the conditional mean models are incorrectly specified. Although this is

useful in order to provide an understanding of performance as an “out of the box”

solution for optimal DTR estimation, model selection and diagnostics can be used to
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select either the propensity or the conditional mean model, or both. This was not

explored, but this may be considered in data applications and/or in future research.
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CHAPTER III

Clustered Q-Learning to Inform the Empirical

Construction of an Optimal Clustered Adaptive

Intervention

3.1 Introduction

In health and education settings, intervention (e.g., treatment) is often provided

at the level of a cluster (e.g., clinic or school; Murray , 1998; Raudenbush and Bryk ,

2002; Raudenbush and Schwartz , 2020). A clustered adaptive intervention (CAI) is

a pre-specified sequence of decision-rules that guides practitioners on how best—and

based on which measures—to tailor intervention at the level of a cluster (e.g., clinic

or school) with the goal of improving outcomes at the level of individuals within the

cluster (e.g., patients within a clinic, or school professionals at a school). In a CAI,

intervention is adapted and re-adapted at the level of the cluster across multiple stages

of intervention based on pre-specified measures of change in the cluster. These time-

varying measures, which both inform subsequent intervention and can be impacted

by prior intervention as part of a CAI, are known as tailoring variables.

Consider the following example, two-stage CAI that was designed to improve

the uptake of an evidence-based practice for mood disorders, known as Life Goals,

at community-based mental health clinics across Colorado and Michigan (Kilbourne
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et al., 2014; Necamp et al., 2017; Smith et al., 2019): “If a clinic is unsuccessful in

implementing Life Goals after 6 months of replicating effective programs support,

they should additionally receive external support (EF). After 6 months of EF, they

should continue EF if they successfully implement Life Goals but should additionally

receive internal support (EF+IF) if they do not.” In this example CAI, intervention

is provided across two stages at the level of the clinic, but the primary goal of the

intervention is to improve the uptake of Life Goals so as to improve mental health

quality of life for patients with mood disorders, i.e., an outcome at the level of the

individuals within the clinic. In this example, the tailoring variable for the cluster-

level intervention is whether the clinic successfully implemented Life Goals following

6 months of external support.

An important scientific question for domain scientists is to better understand

whether a particular (set of) covariate(s) ought to be considered for inclusion as a

tailoring variable in a CAI that optimizes individual-level outcomes. For example, in

the context of the example CAI described above, this question could be posed: “Are

there additional clinic-level factors that can be used to further tailor intervention

at the clinic-level so as to improve the clinic-level uptake of Life Goals and, corre-

spondingly, the outcomes of patients with mood disorders?” For example, one may

ask whether rural clinics have particular needs vis-a-vis clinic-level interventions that

urban or suburban clinics do not. This manuscript develops an easy-to-use method

to answer such questions when using data obtained from a Clustered SMART.

A Clustered SMART is a multi-stage trial design in which randomization occurs

across two or more stages at the level of a cluster, but the primary outcome of

interest lies at the level of an individual, or unit, within the cluster (Almirall et al.,

2018; Kilbourne et al., 2014; Necamp et al., 2017). Given the broad definition, there

are innumerable ways to design a Clustered SMART; three of the most common

are displayed in Figure 3.1. Clustered SMARTs can be used to address scientific
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questions related to the comparison of CAIs, such as to estimate the relative effect

between two or more CAIs (Almirall et al., 2014; Kosorok and Moodie, 2016; Oetting

et al., 2011). Clustered SMARTs can also be used to identify variables that can be

used to additionally tailor multi-stage, cluster-level interventions, such as the question

posed in the example above.

Statistical methods supporting single-stage cluster-randomized trials is vast (El-

dridge and Kerry , 2012; Hayes and Moulton, 2017; Murray et al., 2004). So too

are methods for the estimation of tailored, multi-stage, adaptive interventions for

SMART trials where both randomization and outcome assessment occur at the in-

dividual level (Almirall et al., 2014; Dawson and Lavori , 2004; Lavori and Dawson,

2000; Lavori and Dawson, 2004; Murphy , 2005b; Oetting et al., 2011; Wallace et al.,

2016). One popular method used to estimate personalized, multi-stage adaptive in-

terventions is Q-Learning (Chakraborty et al., 2013; Murphy , 2005a; Nahum-Shani

et al., 2012; Schulte et al., 2014; etc.). Q-Learning, which was originally proposed

within the computer science literature (Watkins , 1989), consists of positing a series of

stage-specific Q-functions representing the expected outcome conditional on covariate

and treatment history. The goal, then, is to identify a multi-stage adaptive interven-

tion as a function of covariate and treatment history such that the Q-functions are

optimized. Although the multi-stage Q-functions can be modeled flexibly, paramet-

ric linear regression models are often used due to the ease of implementation and

widespread use and understanding of linear regression modeling by domain scien-

tists. Methods pertaining to Clustered SMARTs, however, are less well developed

(Raudenbush and Schwartz , 2020). Necamp et al. (2017) proposed a weighted least

squares approach to compare the means of individual-level outcomes for two cluster-

level adaptive interventions. And sample size formulas needed to achieve a primary

goal of comparing mean outcomes for two or more CAIs within a Clustered SMART

have been devised for a continuous outcome (Ghosh et al., 2016; Necamp et al., 2017)
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Figure 3.1: Three of the most commonly used Clustered Sequential Multiple As-
signment Randomized Trial (Clustered SMART) designs. R denotes a cluster-level
randomization and A-J denote cluster-level interventions which need not be unique.
Each of the featured designs illustrates two intervention stages with an initial random-
ization to one of two first-stage interventions followed by an assessment of response. In
Design I, all clusters are re-randomized at Stage 2 conditional on both the first-stage
intervention and response. Design II features a second-stage randomization only for
clusters with a non-response to first-stage intervention whereas Design III includes a
second-stage randomization only for clusters non-responsive to initial intervention A.
Figure replicated from Speth and Kidwell (2019).
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and for binary outcomes (Ghosh et al., 2016). To date, however, there are no existing

statistical methods to identify cluster-level tailoring variables across multiple stages

of intervention that can be used to optimize a patient-level outcome.

In this manuscript we propose Clustered Q-Learning for use with data from a

Clustered SMART to inform the empirical construction of a CAI that maximizes the

population mean of an outcome. We describe steps to estimate model parameters and

we address a well-known challenge in Q-Learning regression concerning the estima-

tion of confidence intervals under conditions of nonregularity, which is expected to be

common. Nonregularity is a phenomenon that will affect the estimation of standard

errors for any earlier intervention stage if there is a non-unique treatment effect (e.g.,

no treatment effect) at one or more of the later intervention stages. To enable the

construction of confidence intervals with nominal coverage rates, we extend the m-

out-of-n bootstrap (Chakraborty et al., 2013) to accommodate data from a Clustered

SMART. Using simulation experiments, we show that estimation of model parame-

ters using Clustered Q-Learning is unbiased in estimating Stage 2 model parameters

and fully-regular Stage 1 model parameters and exhibits negligible bias in estimating

model parameters in nonregular settings when the within-cluster correlation is low.

We demonstrate near nominal coverage of estimated confidence intervals across two

intervention stages when the number of clusters is large and exhibit slight under-

coverage in estimating confidence intervals for Stage 1 model parameters when the

number of clusters is small. To illustrate the methods, we use data from ADEPT,

the Adaptive Implementation of Effective Programs Trial (Kilbourne et al., 2014), a

Clustered SMART, from which we aim to identify variable(s) at each stage that may

be used to tailor clinic-level interventions such that clinic-level uptake of evidence-

based practices—and, therefore, also the associated outcomes of patients with mood

disorders—is improved.

64



3.2 Methodology

3.2.1 Set up & Notation

Our scientific goal is to evaluate whether a set of candidate tailoring variables

may be useful in defining a CAI that will optimize individual-level counterfactual

outcomes across the population of interest. To coincide with our motivating example

we assume that we have collected multi-stage data for k = 1, ..., K stages from a

Clustered SMART with i = 1, ..., N clusters and ni individuals (j = 1, ..., ni) within

each cluster for a total of
∑N

i=1 ni = n individuals. Due to the many possible Clus-

tered SMART designs (Figure 3.1), some of which re-randomize only a subset of the

clusters randomized at the first stage, we can further denote the number of clusters

at each stage as Nk and the total number of individuals within those clusters as nk.

We denote Xk,ij as a pk-dimensional vector of covariates collected prior to randomiza-

tion at stage k, i.e., X1,ij refers to all baseline individual and cluster-level covariates

whereas X2,ij refers to all individual and cluster-level covariates measured at some

period of time following the first but prior to the second-stage intervention. Note

that Xk,ij may include both individual-level and cluster-level covariates, as well as

individual-level covariates aggregated to the cluster level. Ak,i refers to the inter-

vention received by cluster i at stage k. Although these methods will accommodate

more than two interventions per stage, for simplicity we assume Ak,i ∈ {−1, 1}. A

cluster-level response following intervention Ak,i is denoted Rk,i, often classified as

a binary response (or non-response) to intervention. We next define Hk,ij to rep-

resent “full history”, which includes individual-level and cluster-level covariate data

collected starting at baseline through the randomization at stage k, as well as all in-

terventions (A) administered and all responses (R) recorded for all stages 1, ..., k−1.

For example, H1,ij = {X1,ij}, H2,ij = {X1,ij,X2,ij, A1,i, R1,i}, and so forth. Here we

note that, due to the cluster-level randomization, Ak,ij = Ak,i and Rk,ij = Rk,i for all
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individuals j treated at cluster i. Similarly, all cluster level covariates in Xk,ij are the

same for all individuals j within the same cluster i. We can therefore also identify

“cluster-level history” defined as Hk,i, which includes only cluster-level covariates, in-

terventions and responses collected prior to the stage k intervention decision. Finally,

we assume that intermediate, individual-level outcomes Yk,ij may be collected across

stages, with Yk,ij ∈ Xk+1,ij. A final, individual-level outcome Yij is evaluated at the

end of the K stages of intervention and may be a function of the stage-specific out-

comes, i.e., Yij = g(Y1,ij, ..., YK,ij) for a known function g(.). For example, Yij = YK,ij

or Yij =
∑K

k=1 Yk,ij. For the remainder of our exposition, we assume larger values

of Y are desirable such that the goal would be to obtain a maximum value. Let

d(Hi) = {d1(H1,i), ..., dK(HK,i)} be a sequence of decision rules making up a CAI;

each stage-specific decision rule dk(Hk,i) is a function only of up-to-date intervention

and cluster-level covariate history Hk,i that can be used to make decisions pertaining

to interventions at each stage, i.e., dk(Hk,i) : Hk,i → Ak,i.

Because we are interested in making causal inference pertaining to the impor-

tance of a set of candidate prescriptive variables in tailoring intervention, we utilize

the potential outcomes framework (Rubin, 1974). Let Y ∗(d) represent the individual-

level counterfactual outcome (also known as a potential outcome) consistent with the

CAI d. In a single stage setting with two cluster-level intervention options, e.g.,

A ∈ {−1, 1}, there would be two potential outcomes for each individual, Y ∗(−1) and

Y ∗(1), which represent the individual-level outcome that would be observed had the

individual been treated in a cluster with intervention −1 or intervention 1, respec-

tively. Notably, only one of these counterfactual outcomes–the one compatible with

the intervention received by the cluster in which the individual was treated–would be

observed.

Because the target of our estimation is a counterfactual outcome Y ∗ but data

collected in a Clustered SMART includes observed outcomes Y for only one of the
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potential outcomes, various assumptions are needed to link the observed data with

the counterfactual outcome. These assumptions include consistency, positivity, and

no unmeasured confouders (NUCA). Because our data are collected from a Clus-

tered SMART with randomization events that balance and re-balance baseline and

time-varying characteristics, positivity and NUCA are assumed by design and con-

sistency is a reasonable assumption in most cases, although these assumptions can

be explored in greater depth (e.g., Hernan and Robins , 2020). Under these assump-

tions, it can be shown for a single stage regimen that E{Y ∗(d)} = EH[
∑

aE(Y |A =

a,H)I {d(H) = a}] , which provides the necessary link between the potential and ob-

served outcomes in order to perform estimation and inference.

3.2.2 Approach: Clustered Q-Learning

We introduce Clustered Q-Learning, which is developed from standard Q-Learning

(Chakraborty et al., 2013; Moodie et al., 2012; Murphy , 2005a; Nahum-Shani et al.,

2012; Schulte et al., 2014), a popular method used to estimate personalized, multi-

stage, individual-level interventions. Clustered Q-Learning, in contrast, can estimate

a CAI and identify tailoring variables across stages when the outcome is measured at

the individual level but the intervention is applied at the level of the cluster. Clustered

Q-Learning, similar to standard Q-Learning, utilizes the language of Q-functions,

which are defined for each stage k as the expected outcome conditional on covariate

and intervention history collected through the k-th stage. The K-stage Q-function,

for example, is QK,ij(HK,ij, AK,i) = E(Yij|HK,ij, AK,i). A Q-function is said to be

“optimal” if the expected counterfactual outcome is maximized. Due to the possibil-

ity of intervention effect confounding that may occur in a multi-stage estimation when

conditioning on both the stage-specific intervention(s) of interest as well as intermedi-

ate variable(s), estimation of stage-specific decision rules in Q-Learning proceeds in a

backwards recursive manner starting with the final stage K. The stage K optimal Q-
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function can be represented as Qopt
K,ij(HK,ij, AK,i) = supaK E(Yij|HK,ij, AK,i). The op-

timal Q-functions at all stages prior to the final stage, i.e., k = 1, ..., K−1, also known

as the k-stage pseudo-outcomes Ỹk,ij, can be understood as the predicted counterfac-

tual outcome at stage k when receiving the optimal intervention(s) at all future stages.

The optimal Q-function for the K − 1 stage, therefore, is Qopt
K−1,ij(HK−1,ij, AK−1,i) =

E{supaKQ
opt
K,ij(HK,ij, aK,i)|HK−1,ij, AK−1,i} and the optimal Q-function for the k-th

stage generally is Qopt
k,ij(Hk,ij, Ak,i) = E{supak+1

Qopt
k+1,ij(Hk+1,ij, ak+1,i)|Hk,ij, Ak,i}.

3.2.3 Estimation

There are many ways to estimate Q-functions, including linear or nonparametric

regression models with or without regularization, splines, neural networks, trees, etc.

(Shortreed et al., 2011; Song et al., 2015; Zhao et al., 2009). For the remainder of

this manuscript we focus on modeling Q-functions using standard linear regression

models given their ease of implementation and interpretability, as well as the broad,

general understanding of regression methods across the scientific community.

Assuming the continuous, individual-level outcome Yij has a distribution that is

approximately symmetric and the mean is linear in the regression parameters, we con-

nect the k-stage Q-function with a linear model as follows: Qk,ij(Hk,ij, Ak,i; βk,Ψk) =

Hk0,ijβk + (Hk1,iΨk)Ak,i with the error defined as εk,ij = Qk,ij(Hk,ij, Ak,i; βk,Ψk) −

{Hk0,ijβk + (Hk1,iΨk)Ak,i}. We assume εk,ij ⊥ εk,i′,j for all individuals j when

i 6= i′. Thus we express the within-cluster, k-stage error for cluster i as εTk,i =

(εk,i1, εk,i2, ..., εk,ini
). We assume E(εk,i|Hk,ij) = 0 and that the ni x ni dimen-

sional matrix for the k-stage, cluster level covariance is Cov(εk,i|Hk,ij) = Σk,i(θk)

where θk denotes the set of parameters defining the covariance matrix. For example,

θk = ρ under the assumption of an exchangeable correlation structure for outcomes

within the same cluster. We assume parameters are common across clusters, i.e.,

that θki = θki′ , βki = βki′ , and Ψki = Ψki′ for all i 6= i′. Because our scientific
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interest lies in identifying cluster-level tailoring variables which, by definition, will

have a qualitative interaction with the intervention Ak, it can be seen that we distin-

guish between parameters Ψk and βk. Ψk reflect the effects of cluster-level tailoring

variables whereas βk may be considered “nuisance” relative to our estimation goals.

Variables in Hk1 must be variables measured at the cluster-level whereas Hk0 may

include both individual-level and cluster-level covariates, all of which may be trans-

formed (e.g., mean centered) as needed. Specific decisions about covariates to include

in Hk0 and Hk1 should be made a priori (Pocock et al., 2002) in a similar manner as

is conventionally performed with the analysis of randomized controlled trials (RCTs).

Although there is less guidance about covariate adjustment in analyzing intervention

effects in cluster-randomized trials than for conventional RCTs, it is generally recom-

mended that covariate(s) prognostic of the outcome, including those used to stratify

randomization, should be included in Hk0 (European Agency for the Evaluation of

Medicinal Products , 2003; ICH E Expert Working Group, 1999; Pocock et al., 2002;

Raab et al., 2000), although we note that, in a linear regression model, both adjusted

and unadjusted intervention effect estimates lead to unbiased estimation. It should

also be considered whether to include effects of an individual-level covariate at both

the individual and cluster level as these may not coincide and variation of a covariate

is likely to exist at both the individual level and cluster level (Wright , 2015). Our

methodology provides freedom to make modeling choices for the Q-functions and it

should be understood that different scenarios necessitate different modeling decisions

(e.g., refer to European Agency for the Evaluation of Medicinal Products , 2003; Pocock

et al., 2002; Raab et al., 2000; Wright et al., 2015).

Due to the backward recursive manner in which the optimal, stage-specific Q-

functions are defined, it is reasonable that estimation in the Q-Learning context

is also performed recursively, beginning with estimation of the final stage K and

continuing through all prior stages K − 1, ..., 1, until the multi-stage estimation is
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complete. Under the above assumptions then, we perform estimation as follows:

1. Estimate parameters for Stage K: Using standard regression techniques to min-

imize residual sum of squares between the overall outcome Yij and the final

stage Q-function QK(HK , AK), estimate: (β̂K , Ψ̂K) = argminβK ,ΨK

∑N2

i=1

[
Yi−

{HK0,iβK + (HK1,iΨK)AK,i}
]T

Σ−1K,i(θK)
[
Yi − {HK0,iβK + (HK1,iΨK)AK,i}

]
,

for clusters i = 1, ..., N2, where Yi = (Yi1, ..., Yini
)T , βK = (β1, ..., βpK0

)T ,

HK0,i = (HT
K0,i1, ...,H

T
K0,ini

)T and HK0,ij = (HK0,ij1, ..., HK0,ijpK0
) for pK0 dis-

tinct stage K predictive covariates. Similarly, ΨK = (Ψ1, ...,ΨpK1
)T , HK1,i =

(HT
K1,i1, ...,H

T
K1,ini

)T and HK1,ij = (HK1,ij1, ..., HK1,ijpK1
) for pK1 distinct stage

K prescriptive covariates. When ΣK,i(θK) = Cov(εK,i|HK,i) is unknown, the

parameters θK defining ΣK,i(θK) can be estimated empirically using restricted

maximum likelihood (REML), for example, based on an assumed working co-

variance structure (e.g., exchangeable).

2. For Stages k = K − 1, ..., 1:

(a) Calculate the estimated Stage k pseudo-outcome Ỹk,ij for all individuals j

within cluster i, noting that the pseudo-outcome will depend on the func-

tion g(·) that defines the relationship between the overall outcome Yij and

intermediate outcomes Y1,ij, ..., YK,ij. When Yij = YK,ij, we have: Ỹk,ij =

maxak+1,i
{Qk+1,ij(hk+1,ij, ak+1,i; β̂k+1, Ψ̂k+1)} = maxak+1,i

{hk+1,0,ij β̂k+1 +

(hk+1,1,i Ψ̂k+1)ak+1,i}.

(b) Estimate parameters for Stage k: Using standard regression techniques

to minimize residual sum of squares between the k stage pseudo-outcome

Ỹk,ij and the Stage k Q-function, Qk,ij(Hk,ij, Ak,ij), estimate: (β̂k, Ψ̂k) =

argminβk,Ψk

∑N1

i=1

[
Ỹ k,i − {Hk0,iβk + (Hk1,iΨk)Ak,i}

]T
Σ−1k,i (θk)

(
Ỹ k,i −

(Hk0,iβk + (Hk1,iΨk)Ak,i)
)

for clusters 1, ..., N1, and vectors Ỹk,i =

(Ỹk,i1, ..., Ỹk,ini
)T , with βk, Hk0,i, Hk0,ij, Ψk, Hk1,i, and Hk1,ij defined as in
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Step 1 above but adjusted to represent the k-th (not the K-th) stage. As

above, the parameters θk defining Σk,i(θk) = Cov(εk,i|Hk,i) can be esti-

mated empirically using REML based on an assumed working covariance

structure.

3.2.4 Inference

Conducting inference in a single stage estimation with clustered data is straightfor-

ward; standard regression techniques that account for correlation of outcomes within

clusters are used for estimation and inference. Estimation in a multi-stage setting,

however, can become problematic. Specifically, due to the fact that estimation pro-

ceeds in a backward manner and, in the Q-Learning approach, involves regression

on a pseudo-outcome that accounts for the optimal intervention received at all fu-

ture stages, likelihood-based estimation at all stages prior to the last may involve

maximization of a non-smooth function.

This problem of nonregularity is well-described in the literature (Chakraborty and

Moodie, 2013; Chakraborty et al., 2010; Laber et al., 2014; Robins , 2004). Formally,

in a multi-stage intervention setting, nonregularity exists in the estimation of pa-

rameters indexing the optimal adaptive intervention for any stage prior to the last

stage when there is positive probability that the final stage intervention effect is

zero, i.e., P (HK,i : ΨT
KHK1,i = 0) > 0. This will occur when there is a non-unique

intervention effect for at least some subset of clusters at Stage K–or any stage fol-

lowing the k-th stage being estimated–because the limiting distributions may vary

depending on the intervention effect at the k + 1 and future stages and, conse-

quently, standard asymptotic theory may not apply. We exhibit this problem in

the context of a 2-stage Clustered SMART with two intervention options at each

stage. Using the notation introduced above, the Stage 2 Q-function is defined as

Q2,ij(H2,ij, A2,i) = E(Yij|H2,ij, A2,i). If we assume that our overall outcome of inter-
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est is equal to the outcome observed following stage 2, i.e., Y = Y2, the first stage

Q-function is Q1,ij(H1,ij, A1,i) = E(maxa2Q
opt
2,ij(H2,ij, a2,i)|H1,ij, A1,i). Given our as-

sumed parametric model for the Q-functions, we can further express the Stage 1

Q-function as Q1,ij(H1,ij, A1,i) = E(β̂
T

2 H20,ij + |Ψ̂
T

2 H21,i| |H1,ij, A1,i). Notably, the

Stage 1 estimation now contains a non-smooth function, i.e., the absolute value func-

tion that maximizes the linear combination of the Stage 2 Q-function corresponding

to the prescriptive cluster-level variables. Thus, the Stage 1 Q-function is non-smooth

and its smoothness depends on Ψ̂
T

2 H21. It can be seen that if Ψ̂
T

2 H21 is far away from

zero for all clusters, standard asympotitic theory will ensure consistent estimation of

the Stage 1 Q-function. If Ψ̂
T

2 H21 is zero or near zero for at least some subset of clus-

ters, the non-smoothness of the Stage 1 Q-function may impede the use of standard

asymptotics in finite samples.

Multiple solutions that have been developed to account for nonregular estimators.

Several authors have proposed a threshold estimator (Chakraborty et al., 2010; Moodie

and Richardson, 2010) that can be used in conjunction with a standard nonparamet-

ric bootstrap procedure (Efron, 1979) to estimate the standard error of nonregular

parameters. The threshold estimators are used as an attempt to “regularize” a non-

regular estimator, i.e., by shrinking the effect of the non-smooth function toward zero

and thereby reducing the degree of nonregularity (Chakraborty et al., 2010; Moodie

and Richardson, 2010). While these methods do not demonstrate asymptotic reg-

ularity in limiting distribution, they demonstrate reasonable empirical finite sample

performance in simulation experiments. An alternate approach is that of adaptive

confidence intervals (ACI) which, under local asymptotic theory and by taking a

supremum of the non-smooth functional, demonstrates a limiting distribution that is

regular and asymptotically normal (Laber et al., 2014). Although ACI is currently

the only known method that demonstrates regularity and asymptotic normality in

limiting distribution, it is known to be quite complicated both theoretically and com-
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putationally. Another approach to estimating confidence intervals for nonregular

parameters with Q-Learning is the m-out-of-n bootstrap (Chakraborty et al., 2013),

originating from a technique used for the estimation of confidence sets of non-smooth

functionals (Bickel et al., 1997; Shao, 1994). As is generally well understood, the

standard nonparametric bootstrap is often used as an alternative to estimate stan-

dard errors of an estimator that has an uncertain parametric distribution or when

calculation of standard errors is challenging. In the standard bootstrap, the empir-

ical distribution function FN(x) converges to the true generative distribution F (x)

as n → ∞. The m-out-of-n bootstrap, however, uses a resample size m, which

is of a smaller order of magnitude than n. It has been shown that the empirical

distribution converges to the true generative distribution at a faster rate than the

bootstrap empirical distribution converges to the empirical distribution. Given this

unique construct, the bootstrap resamples are reflective of the true generative distri-

bution. Chakraborty et al. (2013) demonstrated that this method produces consistent

confidence sets under fixed alternatives and performs well in the estimation of confi-

dence intervals for nonregular parameters indexing the optimal adaptive intervention

in standard Q-Learning.

Herein we propose the M -out-of-N cluster bootstrap for clustered data, adapted

from the work of Chakraborty et al. (2013), for estimating confidence intervals for

parameters indexing the optimal cluster-level adaptive intervention in the setting

of parametric Clustered Q-learning. The cluster bootstrap performs resampling at

the cluster level rather than the individual level, which is critical when estimating

the degree of variability of an estimator in the presence of correlated data (Hox ,

2010). Assuming that the number of clusters is large (Field and Welsh, 2007), model

errors are uncorrelated across clusters but correlated within clusters, clusters are

exchangeable (Bouwmeester et al., 2013), and the empirical distribution FN(x) is a

reasonable approximation to the underlying distribution F (x), the cluster bootstrap is
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asympotically consistent. The choice of M clusters, with M ≤ N , reflects the degree

of nonregularity in the underlying data. The degree of nonregularity in the k-th stage

estimation is assessed using estimated model parameters of the k+1 stage. In the case

of a 2-stage estimation, for example, Ψ̂2, the estimated parameters associated with the

Stage 2 tailoring variables, are used to estimate p2 = P (H21 : H21Ψ2 = 0), the degree

of nonregularity corresponding to the linear combination of the prescriptive cluster-

level covariates at Stage 2. Extended from Chakraborty et al. (2013), to estimate

the resample size Mk in the k-th stage estimation (1 ≤ k < K), a T-statistic is

calculated for each of Nk+1 clusters as Tk,i =
Hk+1,1iΨ̂k+1

ŝe(Hk+1,1iΨ̂k+1)
, with the standard

errors derived using the sandwich variance estimator. Using a pre-defined threshold

η, the proportion of clusters with an absolute T-statistic below η is calculated: p̂k+1 =

1

Nk+1

Nk+1∑
i=1

I(|Tk,i| ≤ η). Using p̂k+1 as the estimated degree of nonregularity in the

Stage k estimation, a value Mk, the number of resamples from Nk clusters to be used

in estimation of the Stage k parameters, is selected as M̂k = N
f(pk+1)
k . As suggested

by Chakraborty et al. (2013), f(pk+1) can be modeled by a simple function that is

monotone decreasing in pk+1, takes values in (0, 1], f(0) = 1, and is continuous with

a bounded first derivative. Using f(pk+1) = 1+χ(1−pk+1)

1+χ
with tuning parameter χ,

M̂k = N
(1+χ−χp̂k+1)(1+χ)

−1

k . In a highly regular setting, i.e., when there is a strong

stage k + 1 intervention effect for all clusters, pk+1 = 0 and, consequently, Mk = Nk,

which represents the standard cluster bootstrap. With increasingly higher degrees of

nonregularity observed in estimation at the k + 1 stage, the value of Mk decreases

relative to Nk.

3.3 Implementation

We implement this method using a modification of the Q-Learn package (Chakraborty

et al., 2013) in R (R Core Team, 2018) to accommodate clustered data. For simplicity

we demonstrate implementation using data from a two-stage Clustered SMART with

74



a continuous outcome that is approximately normally distributed.

Estimate Stage 1 and Stage 2 parameters:

1. Using only those (n2) observations from (N2) clusters treated at Stage 2, es-

timate Ψ2, the prescriptive parameters in the second stage Q-function, using

a linear regression model that accommodates continuous outcome data (e.g.,

lm or geeglm function in R) by regressing the overall outcome Y on Stage 2

covariates.

2. Estimate the Stage 1 pseudo-outcome Ỹ1,ij = β̂
T

2 H20,ij + |Ψ̂
T

2 H21,i|.

3. Using all (n1) observations from N1 = N clusters treated at Stage 1, estimate

Ψ1, the prescriptive model parameters in the first stage Q-function using a

linear regression model that accommodates continuous outcome data (e.g., lm

or geeglm function in R) by regressing Stage 1 pseudo-outcome Ỹ on Stage 1

covariates.

Estimate confidence intervals for Stage 2 parameters:

4. Draw B independent cluster bootstrap samples of size N2 drawn from N2 clus-

ters with replacement so that the probability of selecting any of the N2 clusters

is 1/N2. Construct the b-th bootstrap sample as the set of N2 ·
∑

i∈b ni observa-

tions, where i represents the index for the cluster selected in the b-th bootstrap

sample. All observations contained within each cluster selected in the b-th

bbootstrap sample are included in the b-th bootstrap sample.

5. For b = 1 to B, estimate the prescriptive parameters for each of the B bootstrap

replicates in the regression model, i.e., Ψ̂2
(b)

.

6. For each parameter, 1, .., p2,1, in Ψ̂2 and given a pre-specified significance level

α reflecting the maximum desired Type I error, use the B bootstrap estimates
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(Ψ̂2
(1)

, ..., Ψ̂2
(B)

) to estimate the desired lower and upper bounds of the empir-

ical distribution using the (α
2
, 1− α

2
) sample quantiles of the reverse percentile

bootstrap estimates.

Estimate confidence intervals for Stage 1 parameters:

7. Using Ψ̂2 calculated in Step 1 above, estimate p2 = P [H21 : H21Ψ2 = 0], the

degree of nonregularity corresponding to the estimated linear combination of

the Stage 2 intervention effect of the cluster-level covariates. Calculate a T-

statistic for each of N2 clusters as T1,i =
H21,iΨ̂2

ŝe(H21,iΨ̂2)
, with the standard errors

derived using the sandwich variance estimator. Using a pre-defined threshold η,

calculate the proportion with a T-statistic below η: p̂2 =
1

N2

N2∑
i=1

I(|T1,i| ≤ η).

Using f(p) = 1+χ(1−p)
1+χ

with tuning parameter χ, select a value M1, the number

of resamples from N1 clusters, with M1 ≤ N1, as M̂1 = N
(1+χ−p̂2χ)(1+χ)−1

1 .

8. Select B independent cluster bootstrap samples of size M1 drawn from N1 clus-

ters with replacement so that the probability of selecting any of the N1 clusters

is 1/N1. Construct the b-th bootstrap sample as the set of M1 ·
∑

i∈b ni observa-

tions, where i represents the index for the cluster selected in the b-th bootstrap

sample. All observations within each cluster selected in the b-th bootstrap sam-

ple are included in the b-th bootstrap sample.

9. Following Steps 1-3 above: For each bootstrap resample b = 1, ..., B, estimate

Ψ̂
(b)

2 . Use Ψ̂
(b)

2 to construct the Stage 1 pseudo-outcome Ỹ
(b)
1,ij. Estimate Ψ̂

(b)

1 .

10. For each parameter, 1, .., p1,1, in Ψ̂1 and given a pre-specified significance level α,

use the B bootstrap estimates (Ψ̂1
(1)

, ..., Ψ̂1
(B)

) to estimate the desired lower

and upper bounds of the empirical distribution using the (α
2
, 1 − α

2
) sample

quantiles of the reverse percentile bootstrap estimates.
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3.3.1 Tuning Parameter Selection for M-out-of-N Cluster Bootstrap

Two tuning parameters are involved in the selection of resample size M : η, which

represents the threshold at which nonregularity is detected for the linear combination

of the Stage 2 intervention effects and is used in the estimation of the degree of

nonregularity p̂; and χ, used within the function f(p̂) to calculate the number of

resamples M . Choice of η is straightforward as it represents a quantile from the t-

distribution with ν degrees of freedom and a pre-specified significance level α corrected

for multiple hypothesis testing. For example, given α = 0.08 and assuming N =

80 clusters, we desire a maximum Bonferroni-adjusted Type I error of 0.001, which

corresponds to tν,1−α/(N∗2) = 3.42. The tuning parameter χ ∈ {0.025, 0.05, ..., 1}, for

example, can be selected in a data-driven manner using a double bootstrap algorithm

(Chakraborty et al., 2013). Empirically, we observed that lower values of χ, i.e.,

χ ∈ {0.025, 0.05} tended to provide estimated coverage closest to nominal with larger

values of χ (e.g., χ = 0.10) tending to overcoverage.

3.4 Simulation Experiments

3.4.1 Simulation Setup

To evaluate whether our proposed method is able to estimate the regression pa-

rameters corresonding to the multi-stage candidate prescriptive variables with a low

degree of bias and their associated confidence intervals with near nominal cover-

age in settings representing varying degrees of nonregularity, we generate data for a

two-stage Clustered SMART. In Simulation 1, we explore performance with a large

number of clusters and a fixed number of individuals per cluster (N = 80;ni = 20).

In Simulation 2 we evaluate performance with a smaller number of clusters and a

larger, fixed number of individuals per cluster (i.e., N = 20, ni = 80). Finally, in

Simulation 3 we investigate performance differences with a larger number of clusters
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(N = 80) but a variable number of individuals per cluster.

Data is generated for all simulations as follows. One binary candidate cluster-level

tailoring variable X1 is generated at baseline. Randomization to the first stage inter-

vention A1 occurs in a ratio of 1:1, with approximately half of the clusters assigned to

one of two interventions. An intermediate response and candidate Stage 2 tailoring

variable, i.e., X2, which is also binary, depends on the baseline cluster-level covariate

X1 and the first stage intervention A1. Intervention A2 may depend on an interme-

diate response, e.g., X2, although we assume equal probability of random assignment

also to the second stage intervention A2. The final, individual-level outcome observed

following the second stage, Y , is assumed to be continuous and approximiately nor-

mally distributed, with larger values desired. Correlation of within-cluster outcomes

is achieved using an intraclass correlation coefficient ρ. One particular advantage of

this data generating schema is the fact that it allows the true stage 1 parameters,

Ψ1 and β1, to exist in closed form, permitting straightforward estimates of bias and

coverage. The exact specifications used in the simulation experiements are provided

below.

• X1∼Bern(p = 0.5), X1 ∈ {−1, 1}

• A1∼Bern(p = 0.5), A1 ∈ {−1, 1}

• P [X2 = 1|X1, A1] = 1 − P [X2 = 0|X1, A1] = expit(δ1X1 + δ2A1), where

expit(x) = exp(x)/{1 + exp(x)}, X2 ∈ {−1, 1}

• A2|X2∼Bern(p = pa1,x2), A2 ∈ {−1, 1}, pa1,x2 ∈ (0, 1), pra1,x2 ⊥ psa1,x2 for r 6= s,

indicating that the second-stage randomizations may have different probability

of random assignment depending on the intervention A1 received and the value

of X2 observed. Although the randomization probability can be modified, in

our simulation studies we assume P [A2|X2] = 0.5.

78



• Yi = γ1 + γ2X1,i + γ3A1,i + γ4X1,iA1,i + γ5A2,i + γ6X2,iA2,i + γ7A1,iA2,i + εi;

εi∼Nni
(0,Σ), where Σ is defined with an exchangeable correlation structure

using a prespecified Cov(εij, εij′) = ρ for all individuals within cluster i with

j 6= j′.

Following Chakraborty et al. (2010) and Laber et al. (2014), we evaluate nine

distinct data generating mechanisms that reflect different underlying clinical assump-

tions and varying degrees of nonregularity. We present results that illustrate fully

“regular” settings, in which no problems in confidence interval coverage rates should

be observed at either stage, “nonregular” settings in which estimated coverage at

the first stage may be adversely affected if not properly accounted for methodolog-

ically, and “near-nonregular” settings that would technically be classified as regular

settings but may be nearly indistinguishable from a nonregular setting. We induce

varying degrees of nonregularity in our estimation by exploiting different combina-

tions of γ and δ specified in the data generating mechanisms above (Chakraborty

et al., 2010; Laber et al., 2014). Specifically, we can generate nonregular settings

when the linear combination γ5 + γ6X2 + γ7A1 = 0 with positive probability, i.e.,

[P (γ5 +γ6X2 +γ7A1) = 0] > 0. Thus, we define p and ζ as follows, both of which rep-

resent two dimensions of the nonregularity phenomenon, as described in Chakraborty

et al. (2010): p = P [γ5 + γ6X2 + γ7A1 = 0], and the “standardized effect size” is

defined as ζ = [E[γ5 + γ6X2 + γ7A1]/
√
V ar[γ5 + γ6X2 + γ7A1]]. Refer to Table 3.1

for a list of the parameter specifications of γ and δ, and corresponding values of p

and ζ, used within these simulation experiments. The closed form true values for β1

and Ψ1 are also provided (Table 3.1).

As introduced above, the nine data generating settings with varying choices of δ

and γ reflect different underlying, clinical settings (Chakraborty et al., 2010; Laber

et al., 2014). Example 1 simulates a scenario in which no cluster experiences any ef-

fect of intervention at either stage, which is considered a fully nonregular scenario (all
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γ = 0). Example 2 simulates a very weak effect of Stage 2 intervention (γ5 = 0.01),

but this can be classified as “near-nonregular” in that the weak effect may be masked

by the degree of noise in the data generating process. Example 3 presents a scenario

in which there is a reasonably large effect of Stage 2 intervention for about half of the

clusters, but an effect is absent for the other half (γ3 = −0.5, γ5 = γ7 = 0.5). Example

4 builds upon Example 3 in that half of the clusters retain their relatively large Stage

2 intervention effect while the remainder now have a small Stage 2 intervention effect

(γ3 = −0.5, γ5 = 0.5, γ7 = 0.49). Example 5 modifies the proportion of clusters with

a relatively large Stage 2 intervention effect while the remaining clusters have a very

small Stage 2 intervention effect (γ3 = −0.5, γ5 = 1.0, γ6 = γ7 = 0.50). Example 6

reflects a “regular” setting in which Stage 2 intervention effects are generated for all

clusters (γ3 = −0.5, γ5 = 0.25, γ6 = γ7 = 0.5). Example A also simulates a strongly

regular setting (γ3 = −0.25, γ5 = 0.75, γ6 = γ7 = 0.5). Example B simulates a non-

regular setting in which the nonregularity depends on the Stage 1 intervention: Those

clusters receiving Intervention A at Stage 1 will have no Stage 2 intervention effect

while those receiving Intervention B at Stage 1 have a moderate Stage 2 intervention

effect (γ3 = 0, γ5 = γ7 = 0.25). Similarly, Example C extends Example B to simulate

a weak Stage 2 intervention effect for those clusters receiving Intervention A at Stage

1 (γ3 = 0, γ5 = 0.25, γ7 = 0.24).
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For each of the 9 data generating settings presented within each simulation ex-

periment, we perform Clustered Q-Learning assuming correctly specified models for

the Stage 1 and Stage 2 Q-functions: Q2(H2, A2) = β20 +β21X1 +β22A1 +β23A1X1 +

(ψ20 + ψ21X2 + ψ22A1)A2 and Q1(H1, A1) = β10 + β11X1 + (ψ10 + ψ11X1)A1. Esti-

mates of bias and coverage rates are presented for each setting using fixed values of

χ = 0.025 and η = 0.001 with 1000 bootstrap samples within each of B = 500 Monte

Carlo iterations. Parameter estimates, including bias and coverage, are presented

in Tables 3.2 - 3.4 for ψ21, ψ10, and ψ11; simulation results for parameters ψ20 and

ψ22 (not shown) revealed similar trends. Estimated coverage rates are presented for

the M -out-of-N cluster bootstrap (MN), as well as the standard m-out-of-n-cluster

bootstrap (mn).

3.4.2 Simulation 1: Large Number of Clusters (N = 80)

We conduct this simulation with an assumed N = 80 clusters and ni = 20 in-

dividuals per cluster. Estimates for the parameter indexing the Stage 2 interaction

of intervention A2 with the covariate X2, i.e., ψ21, are unbiased and coverage is near

nominal across all regularity settings and levels of within-cluster correlation (Table

3.2). This result is expected given that nonregularity will not be observed in the

Stage 2 estimation and the cluster bootstrap (with M2 = N2) is appropriately able to

account for correlation within clusters. Estimates of parameter and coverage for the

Stage 1 X1A1 interaction effect, ψ11, reveal generally low bias (Table 3.3); only the

nonregular setting Example 5 exhibits bias of about 0.01 across all levels of correla-

tion. Coverage rates estimated for ψ11 are generally near nominal or slightly higher,

and we observe a higher range of estimated coverage rates across regularity settings

with lower within-cluster correlation: Estimated coverage rates range from 94.4%

(Example 5) to 97.0% (Example 2) for ρ = 0.10 compared with a range of 94.8%

(Example 6) to 96.4% (Examples 1 and 2) when ρ = 0.40. With regard to estimates
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of the main effect of the Stage 1 intervention, ψ10, there is a slight negative bias

observed for the data generating settings defined by Examples 3 and 4, as well as

Examples 8 and 9, the magnitude of which increases with increasing correlation to

a maximum estimated bias of about 0.05 (Table 3.4). As previously described, Ex-

amples 4 and 9 illustrate settings in which there is only a very small true treatment

effect at Stage 2 for some subset of the population; the similarity of these estimates

to those observed for their nonregular counterparts in Examples 3 and 8, respectively,

suggest that similar challenges in estimation are faced even in a near-nonregular set-

ting. Even with the slight negative bias, however, estimated coverage rates hover

around or slightly above nominal, although overcoverage may be anticipated when

there is a higher degree of within-cluster correlation in a setting similar to that of

Example 2, which represents a case in which all clusters experience a very weak effect

of Stage 2 intervention. Coverage estimated without accounting for the clustering

inherent in the data generation process (i.e., the “mn” column in Tables 3.2 - 3.4), is

much lower than nominal across all parameter estimates and regularity settings, with

coverage estimates ranging from about 50% for data generated using a within-cluster

correlation of 0.40 to about 75% for data generated using a correlation level of 0.10.

This result is expected even in the case of a fully regular setting due to the fact that

the m-out-of-n standard bootstrap fails to account for the clustering within the data

generation models.

83



T
ab

le
3.

2:
E

st
im

at
es

of
b
ia

s
an

d
95

%
co

n
fi
d
en

ce
in

te
rv

al
co

ve
ra

ge
fo

r
th

e
X

2
A

2
in

te
ra

ct
io

n
eff

ec
t,
ψ
2
1
,

es
ti

m
at

ed
in

th
e

se
co

n
d

st
ag

e
es

ti
m

at
io

n
fo

r
N

=
80

cl
u
st

er
s

w
it

h
n
i

=
20

in
d
iv

id
u
al

s
p

er
cl

u
st

er
.
ρ

re
fe

rs
to

th
e

in
tr

a-
cl

u
st

er
co

rr
el

at
io

n
u
se

d
to

ge
n
er

at
e

th
e

d
at

a;
E

st
=

es
ti

m
at

ed
va

lu
e;

M
N

=
95

%
co

n
fi
d
en

ce
in

te
rv

al
co

ve
ra

ge
es

ti
m

at
ed

u
si

n
g
M

-o
u
t-

of
-N

cl
u
st

er
b

o
ot

st
ra

p
;

m
n

=
95

%
co

n
fi
d
en

ce
in

te
rv

al
co

ve
ra

ge
es

ti
m

at
ed

u
si

n
g
m

-o
u
t-

of
-n

st
an

d
ar

d
b

o
ot

st
ra

p
;
n
r

=
n
on

re
gu

la
r

se
tt

in
g;

n
n
r

=
n
ea

r-
n
on

re
gu

la
r

se
tt

in
g;

r
=

re
gu

la
r

se
tt

in
g.

E
x
am

p
le

T
ru

th
ρ

=
0.

10
ρ

=
0.

25
ρ

=
0.

40
E

st
B

ia
s

M
N

m
n

E
st

B
ia

s
M

N
m

n
E

st
B

ia
s

M
N

m
n

E
x

1-
n
r

0
0.

00
1

0.
00

1
94

.2
75

.6
-0

.0
01

-0
.0

01
94

.8
60

.4
0.

00
1

0.
00

1
94

.4
50

.2
E

x
2-

n
n
r

0
0.

00
1

0.
00

1
93

.8
75

.8
-0

.0
01

-0
.0

01
94

.6
60

.4
0.

00
1

0.
00

1
94

.2
50

.2
E

x
3-

n
r

0
0.

00
1

0.
00

1
94

.6
75

.6
-0

.0
01

-0
.0

01
94

.4
59

.8
0.

00
1

0.
00

1
94

.6
50

.2
E

x
4-

n
n
r

0
0.

00
1

0.
00

1
94

.8
76

.0
-0

.0
01

-0
.0

01
94

.8
59

.0
0.

00
1

0.
00

1
94

.4
49

.8
E

x
5-

n
r

0.
5

0.
49

9
-0

.0
01

95
.2

76
.6

0.
50

1
0.

00
1

95
.0

59
.8

0.
49

8
-0

.0
02

95
.0

49
.2

E
x

6-
r

0.
5

0.
50

1
0.

00
1

95
.0

76
.2

0.
49

8
-0

.0
02

94
.8

60
.0

0.
50

2
0.

00
2

94
.8

51
.2

E
x

7-
r

0.
5

0.
50

1
0.

00
1

95
.0

77
.0

0.
49

8
-0

.0
02

95
.2

60
.8

0.
50

2
0.

00
2

94
.6

50
.0

E
x

8-
n
r

0
-0

.0
00

-0
.0

00
94

.2
75

.2
0.

00
1

0.
00

1
94

.6
56

.4
-0

.0
01

-0
.0

01
95

.2
50

.4
E

x
9-

n
n
r

0
-0

.0
00

-0
.0

00
94

.6
75

.4
0.

00
1

0.
00

1
94

.6
56

.2
-0

.0
01

-0
.0

01
95

.2
50

.0

84



T
ab

le
3.

3:
E

st
im

at
es

of
b
ia

s
an

d
95

%
co

n
fi
d
en

ce
in

te
rv

al
co

ve
ra

ge
fo

r
th

e
X

1
A

1
in

te
ra

ct
io

n
eff

ec
t,
ψ
1
1
,
es

ti
m

at
ed

in
th

e
fi
rs

t
st

ag
e

es
ti

m
at

io
n

fo
r
N

=
80

cl
u
st

er
s

w
it

h
n
i

=
20

in
d
iv

id
u
al

s
p

er
cl

u
st

er
.
ρ

re
fe

rs
to

th
e

in
tr

a-
cl

u
st

er
co

rr
el

at
io

n
u
se

d
to

ge
n
er

at
e

th
e

d
at

a;
E

st
=

es
ti

m
at

ed
va

lu
e;

M
N

=
95

%
co

n
fi
d
en

ce
in

te
rv

al
co

ve
ra

ge
es

ti
m

at
ed

u
si

n
g
M

-o
u
t-

of
-N

cl
u
st

er
b

o
ot

st
ra

p
;

m
n

=
95

%
co

n
fi
d
en

ce
in

te
rv

al
co

ve
ra

ge
es

ti
m

at
ed

u
si

n
g
m

-o
u
t-

of
-n

st
an

d
ar

d
b

o
ot

st
ra

p
;

n
r

=
n
on

re
gu

la
r

se
tt

in
g;

n
n
r

=
n
ea

r-
n
on

re
gu

la
r

se
tt

in
g;

r
=

re
gu

la
r

se
tt

in
g.

E
x
am

p
le

T
ru

th
ρ

=
0.

10
ρ

=
0.

25
ρ

=
0.

40
E

st
B

ia
s

M
N

m
n

E
st

B
ia

s
M

N
m

n
E

st
B

ia
s

M
N

m
n

E
x

1-
n
r

0
-0

.0
01

-0
.0

01
96

.4
78

.4
-0

.0
03

-0
.0

03
96

.8
60

.6
-0

.0
02

-0
.0

02
96

.4
50

.6
E

x
2-

n
n
r

0
-0

.0
01

-0
.0

01
97

.0
78

.2
-0

.0
03

-0
.0

03
96

.6
59

.8
-0

.0
02

-0
.0

02
96

.4
51

.2
E

x
3-

n
r

0
-0

.0
01

-0
.0

01
95

.8
74

.6
-0

.0
02

-0
.0

02
96

.4
59

.4
-0

.0
01

-0
.0

01
96

.2
50

.0
E

x
4-

n
n
r

0
-0

.0
01

-0
.0

01
95

.4
75

.2
-0

.0
02

-0
.0

02
96

.4
59

.4
-0

.0
01

-0
.0

01
96

.2
50

.2
E

x
5-

n
r

0
0.

00
8

0.
00

8
94

.4
62

.4
0.

01
1

0.
01

1
95

.0
52

.0
0.

01
3

0.
01

3
95

.4
46

.0
E

x
6-

r
0.

02
0.

02
1

0.
00

1
95

.0
60

.4
0.

02
1

0.
00

1
95

.2
49

.4
0.

02
2

0.
00

2
94

.8
44

.0
E

x
7-

r
0.

01
0.

00
7

-0
.0

03
95

.2
59

.6
0.

00
7

-0
.0

03
95

.2
48

.0
0.

00
8

-0
.0

02
96

.0
43

.4
E

x
8-

n
r

0
0.

00
0

0.
00

0
96

.4
74

.8
-0

.0
01

-0
.0

01
95

.6
60

.2
0.

00
0

0.
00

2
95

.6
49

.4
E

x
9-

n
n
r

0
0.

00
0

0.
00

0
95

.6
75

.2
-0

.0
01

-0
.0

01
95

.6
59

.0
0.

00
0

0.
00

0
95

.6
49

.6

85



T
ab

le
3.

4:
E

st
im

at
es

of
b
ia

s
an

d
95

%
co

n
fi
d
en

ce
in

te
rv

al
co

ve
ra

ge
fo

r
th

e
A

1
m

ai
n

eff
ec

t,
ψ
1
0
,

es
ti

m
at

ed
in

th
e

fi
rs

t
st

ag
e

es
ti

m
at

io
n

fo
r
N

=
80

cl
u
st

er
s

w
it

h
n
i

=
20

in
d
iv

id
u
al

s
p

er
cl

u
st

er
.
ρ

re
fe

rs
to

th
e

in
tr

a-
cl

u
st

er
co

rr
el

at
io

n
u
se

d
to

ge
n
er

at
e

th
e

d
at

a;
E

st
=

es
ti

m
at

ed
va

lu
e;

M
N

=
95

%
co

n
fi
d
en

ce
in

te
rv

al
co

ve
ra

ge
es

ti
m

at
ed

u
si

n
g
M

-o
u
t-

of
-N

cl
u
st

er
b

o
ot

st
ra

p
;

m
n

=
95

%
co

n
fi
d
en

ce
in

te
rv

al
co

ve
ra

ge
es

ti
m

at
ed

u
si

n
g
m

-o
u
t-

of
-n

st
an

d
ar

d
b

o
ot

st
ra

p
;

n
r

=
n
on

re
gu

la
r

se
tt

in
g;

n
n
r

=
n
ea

r-
n
on

re
gu

la
r

se
tt

in
g;

r
=

re
gu

la
r

se
tt

in
g.

E
x
am

p
le

T
ru

th
ρ

=
0.

10
ρ

=
0.

25
ρ

=
0.

40
E

st
B

ia
s

M
N

m
n

E
st

B
ia

s
M

N
m

n
E

st
B

ia
s

M
N

m
n

E
x

1-
n
r

0
0.

00
1

0.
00

1
96

.6
83

.6
-0

.0
01

-0
.0

01
97

.4
65

.6
0.

00
2

0.
00

2
96

.6
56

.8
E

x
2-

n
n
r

0
0.

00
1

0.
00

1
96

.6
82

.6
-0

.0
01

-0
.0

01
97

.8
66

.4
0.

00
2

0.
00

2
97

.4
56

.6
E

x
3-

n
r

0
-0

.0
30

-0
.0

30
94

.4
74

.4
-0

.0
42

-0
.0

42
95

.0
57

.8
-0

.0
52

-0
.0

52
94

.8
48

.6
E

x
4-

n
n
r

-0
.0

1
-0

.0
35

-0
.0

25
95

.0
75

.4
-0

.0
47

-0
.0

37
95

.6
60

.8
-0

.0
57

-0
.0

47
95

.2
49

.0
E

x
5-

n
r

0
-0

.0
12

-0
.0

12
95

.6
65

.8
-0

.0
18

-0
.0

18
94

.4
54

.6
-0

.0
24

-0
.0

24
97

.2
47

.0
E

x
6-

r
-0

.3
7

-0
.3

68
0.

00
2

96
.2

65
.6

-0
.3

67
0.

00
3

95
.0

55
.4

-0
.3

68
0.

00
2

95
.0

46
.2

E
x

7-
r

0.
14

0.
14

5
0.

00
5

96
.6

68
.4

0.
14

6
0.

00
6

95
.4

55
.8

0.
14

4
0.

00
4

95
.4

49
.8

E
x

8-
n
r

0.
25

0.
21

9
-0

.0
31

95
.0

73
.8

0.
20

9
-0

.0
41

95
.0

57
.4

0.
19

7
-0

.0
53

94
.6

47
.8

E
x

9-
n
n
r

0.
24

0.
21

4
-0

.0
26

95
.0

75
.0

0.
20

4
-0

.0
36

95
.4

60
.0

0.
19

2
-0

.0
48

94
.8

49
.8

86



3.4.3 Simulation 2: Small Number of Clusters (N = 20)

Using the same data generation mechanisms introduced in Section 3.4.1 but with

the exception that now we simulate N = 20 clusters with ni = 80 individuals within

each cluster, we evaluate the performance of our proposed method with a smaller

number of clusters and a larger number of individuals with each cluster. Compared

with the performance reported in Section 3.4.2 with N = 80 clusters and ni = 20 in-

dividuals, with fewer clusters we observe slightly larger bias overall in each respective

parameter estimate (Tables 3.5 - 3.7). However, similar to previous results reported

in Section 3.4.2, absolute bias tends to increase with increasing correlation among co-

variates. For the parameter associated with the X2A2 interaction effect (Table 3.5),

for example, we observe a maximum absolute bias of 0.007 associated with a correla-

tion of 0.10 compared with 0.013 for ρ = 0.40. Interestingly, absolute bias is largest in

the regular data generating settings (Examples 6 and 7). Confidence interval coverage

estimated using the M -out-of-N cluster bootstrap is near-nominal across all specified

values of ρ (Table 3.5), generally ranging from about 93.5% for Example 5 (regular

setting) to about 97% in Example 9 (near-nonregular setting); however, variability of

coverage estimates across the regularity settings and pre-specified values of ρ is larger

with N = 20 clusters compared with N = 80 clusters. When evaluating estimates of

the X1A1 interaction effect with a smaller number of clusters (Table 3.6), we observe

a negligible degree of absolute bias. Although the absolute bias is slightly higher

than that reported in Section 3.4.2 with a large number of clusters, bias estimates

do not exceed 0.02 across any regularity setting and degree of correlation. Estimated

coverage rates for the ψ11 parameter do exhibit undercoverage when the number of

clusters is smaller, however, with estimates at/near 90%, which is substantially below

the nominal level of 95%. The lowest estimated coverage rates across all degrees of

correlation are reported for Examples 6 and 7, both of which reflect fully regular

settings. In Table 3.7 we observe here also that absolute bias of the A1 main effect is
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about twice that observed with a larger cluster size in Table 3.4. The largest degree

of bias is found in the nonregular and near-nonregular settings Examples 3 and 4,

as well as Examples 8 and 9, with absolute bias estimates associated with ρ = 0.40

exceeding 0.1. The M -out-of-N cluster bootstrap estimates of coverage for the A1

main effect are lower than nominal and average around 90% across all regularity set-

tings and levels of covariate correlation. Additionally, estimated coverage appears to

decrease slightly as the correlation increases. Finally, as shown in the estimation of

all regression parameters, without taking clustering into consideration, the standard

m-out-of-n bootstrap estimates of coverage when N = 20 are equivalent to those as-

suming N = 80, as expected; these estimates decrease with increasing ρ and remain

substantially lower than nominal across all data generating settings.
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3.4.4 Simulation 3: Large Number of Clusters with Variable Number of

Individuals per Cluster

In Simulation 3 we generate data using the same mechanisms described in Section

3.4.1 with N = 80 clusters, but instead of a fixed number of individuals per cluster,

we assume that the number of individuals within each cluster is randomly generated

from a normal distribution with a mean of 20 individuals and a standard deviation of

5, rounded to the nearest integer. Under this mechanism, the number of individuals

across clusters ranges from about 7 to 33 individuals per cluster, which we believe

represents a more realistic use case.

We report and compare performance to fixed cluster sizes shown in Section 3.4.2.

Estimates of the Stage 2 parameter representing the X2A2 interaction effect exhibit

a slightly higher but still negligible absolute bias, not exceeding 0.006 at the highest

level of covariate correlation (Table 3.8). Coverage estimated using the M -out-of-

N cluster bootstrap is slightly lower than nominal across all levels of ρ, averaging

about 93% for nonregular and near-nonregular settings when ρ = 0.10 and about

92% when ρ = 0.40. These estimates demonstrate some undercoverage with highly

variable sample sizes across clusters compared with a fixed and moderately-sized

sample. When estimating the parameter associated with the Stage 1 interaction effect

X1A1 (Table 3.9), absolute bias remains low across all data generating settings and

levels of correlation; only the nonregular Example 5 reaches a bias larger than 0.01 for

ρ = 0.40. Interestingly, although estimates of bias across all levels of correlation are

low, absolute bias appears slightly lower with ρ = 0.40. Coverage estimates using the

M -out-of-N cluster bootstrap are nominal or slightly above nominal, with estimates

of about 95%-96% across all regularity settings and degrees of correlation. These

findings are consistent with those reported in Section 3.4.2, although it is somewhat

surprising that estimated coverage does not suffer from the variability introduced into

the cluster sizes as was observed for the Stage 2 X2A2 interaction effect in Table 3.8.
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As seen in Table 3.10, estimation of the A1 main effect, ψ10, exhibits bias similar to

that shown with a fixed number of individuals per clusters, reaching about 0.05 for

Examples 3, 4, 8, and 9. M -out-of-N cluster bootstrap coverage estimates for the A1

main effect in Stage 1 are at/near nominal for ρ = 0.10 – with the possible exception of

regular setting Example 6, which shows slight undercoverage at 93.8%. For ρ = 0.40,

coverage estimates appear slightly lower than nominal, typically between 93%-94%

across most data generating settings, with the exception of Examples 1 and 2, which

exhibit nominal estimated coverage. Compared with a fixed sample size, coverage

is slightly lower, but remains at or slightly below nominal, as described. Finally,

as observed across all simulation experiments with N = 80 clusters and a variable

number of individuals sampled within each cluster, estimated coverage percentage

using the m-out-of-n standard bootstrap fails to reach 80% for ρ = 0.10 and is lower

than 50% with ρ = 0.40, suggesting again that the m-out-of-n standard bootstrap is

inadequate to estimate confidence intervals when data are inherently clustered.
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3.5 Data Analysis

One important objective in the mental health community is to increase the use

at treatment centers of evidence-based practices (EBPs) (Guyatt et al., 1992), which

have been shown to improve patient-level outcomes for individuals with anxiety or

depression, post-traumatic stress disorder, autism, and others (Badamgarav et al.,

2003; Drake et al., 2003). The desire would be to provide the minimum support nec-

essary to effectively achieve this goal. However, given what can be a large degree of

heterogeneity across clinics, we would expect that distinct clinics may respond differ-

ently to varying levels of implementation support. Thus, determining whether there

are any clinic-specific factors that may be used to tailor cluster-level interventions

will be an important goal.

The Adaptive Implementation of Effective Programs Trial (ADEPT) is a Clustered

SMART mirroring Design III in Figure 3.1. It was conducted at community-based,

outpatient clinics in Michigan and Colorado and was designed to determine how best

to support nonresponsive clinics in implementing EBPs (Kilbourne et al., 2014). One

of the stated objectives of this trial was to identify clinic-level factors at each inter-

vention stage, if any, that could be used to tailor the level of intervention necessary

to ensure the clinic would successfully implement EBPs across their practice. At the

outset of the study, all participating clinics were offered training in replicating effec-

tive programs, a system designed to help them implement evidence-based practices.

As can be seen in Figure 3.2, the first randomization event included only those clinics

who failed to effectively implement the EBPs. These clinics were randomized 1:1 to

receive one of two different intervention support systems: external support alone (EF)

or both external and internal support (EF/IF). Refer to Kilbourne et al. (2014) and

Smith et al. (2019) for additional information about REP and the interventions EF

and IF. Following the Stage 1 response assessment, which occurred 6 months after the

first randomization event, clinics who received EF at Stage 1 were withdrawn from
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Figure 3.2: Clustered Sequential Multiple Assignment Randomized Trial (Clustered
SMART) designed to evaluate use of Internal (IF) and/or External (EF) implementa-
tion support for primary and mental health clinics who failed to implement evidence-
based practices (EBPs) after a 6 month run-in period. R indicates 1:1 randomization
performed. N = number of clinics; n = number of patients within the N clinics.
(Figure adapted from Kilbourne et al. (2014) and Smith et al. (2019).)

EF if they had effectively implemented the EBPs. On the other hand, EF-clinics who

had not been successful in implementing EBPs were re-randomized to either continue

EF or to add internal support (i.e., EF/IF). All clinics who received EF/IF at Stage 1

either stopped (or continued) EF/IF if they had (or had not) effectively implemented

the EBPs. Patient-level outcomes were collected at baseline and after the first and

second stages.

We apply Clustered Q-Learning to data collected for the ADEPT study to de-

termine whether clinic-level factors can be used to tailor implementation strategies

for EBPs at Stage 1 or Stage 2 with the ultimate goal of improving mental health

outcomes for patients with mood disorders. The primary outcome is mental health

quality of life (MHQOL) collected for each patient following the Stage 2 intervention.

MHQOL is assessed using the Short Form-12 (SF-12) (Vilagut et al., 2013; Ware Jr

et al., 1996), which is scored from 0-100 with higher scores indicating better MHQOL.
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Interventions at both stages (denoted A1 and A2, respectively) include EF+IF (ver-

sus EF alone), both stages coded as 1 (or −1). Cluster-level covariates collected prior

to the first randomization include rural (or urban) clinic (1/ − 1), clinic located in

Michigan (or Colorado) (1/− 1), and higher (or lower) than average site-aggregated

MHQOL stratum (1/− 1). Covariates collected prior to Stage 2 include a factor in-

dicating a higher (or lower) than average site-aggregated SF-12 stratum (1/− 1). At

Stage 1 we consider two candidate tailoring variables: site-aggregated mean MHQOL

level preceding the first randomization (M6-MH) and the state in which the clinic was

located; high MHQOL strata and the state of Michigan (MI) were used as reference

categories. At Stage 2 we evaluate site-aggregated mean MHQOL level immediately

preceding the second randomization (M12-MH). Variables used to stratify random-

ization are also included in both stage-specific regression models.

We conduct this analysis using the implementation guidelines described in Section

3. The Stage 2 Q-function is specified as follows: Q2(H2, A2) = β20 + β21(Rural) +

β22(M12-MH) +
{
ψ20 + ψ21(M12-MH)

}
∗ A2. For patients treated at clinics re-

randomized at Stage 2, the Stage 1 pseudo-outcome is calculated as ỸMHj = β̂20 +

β̂21(Rural)ij + β̂22(M12-MH)ij +
∣∣ψ̂20 + ψ̂21(M12-MH)ij

∣∣. The Stage 1 Q-function is

modeled using: Q1(H, A1) = β10 + β11(Rural) + β12(MI) + β13(M6-MH) +
{
ψ10 +

ψ11(MI) +ψ12(M6-MH)
}
∗A1. We perform M -out-of-N cluster bootstrap resampling

at both stages with B = 2500 iterations, but remove any bootstrap resample that

fails to generate estimates due to singularity and, given the exploratory nature of our

analysis, estimate confidence intervals based on a pre-specified significance level of

α = 0.10. Due the high degree of missingness of the overall MHQOL for patients

treated at clinics who were re-randomized at Stage 2, as well as the composition of

the sites re-randomized at Stage 2 (i.e., no urban clinics), we utilize multiply imputed

datasets (Smith et al., 2019) with appropriate combining rules (Little and Rubin,

2019).
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Thirteen clinics were randomized at the first stage to receive EF and 14 clinics

were randomized to receive EF+IF (Figure 2). Of the clinics randomized to EF at

Stage 1, six clinics were randomized at the second stage to continue EF alone and

five clinics were randomized to also receive IF support. The intraclass correlation

of outcomes within each clinic was estimated to be 0.23. Refer also to Smith et al.

(2019) for summary statistics describing the patient cohort and results of the primary

analysis.

Estimated regression coefficents and associated 90% M -out-of-N cluster bootstrap

confidence intervals are shown in Table 3.11. In order to determine whether the set of

candidate variables may be useful in tailoring a CAI that will optimize individual-level

counterfactual outcomes across the population of interest, we examine the interac-

tion effects of cluster-level covariates with the intervention EF+IF at both stages

(Table 3.11, Rows 5, 6, 10). At Stage 1, the estimated confidence intervals for the

Stage 1 EF+IF interventions with state and high clinic mean Month 6 MHQOL are

(−3.11, 2.89) and (−1.44, 3.24), respectively, both of which include zero. Similarly, at

Stage 2, the estimated 90% confidence interval for the EF+IF interaction with high

mean Month 12 MHQOL is (−3.34, 2.25), which also includes 0, suggesting there is

insufficient evidence in our data to conclude any of these candidate variables would

be useful in additionally tailoring a CAI to support implementation of EBPs. As this

was an exploratory analysis and the study was not powered based on this statistical

objective, is it possible either that these tailoring variables should not be used to fur-

ther refine clinic-level interventions to improve implementation of EBPs at primary

care and mental health clinics located in Michigan and Colorado, or that there is

insufficient power in our dataset to identify these effects.
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Table 3.11: Estimated Stage 1 and Stage 2 regression coefficients and associated
90% M -out-of-N cluster bootstrap confidence intervals (CI). Outcome of interest is
patient-level Month 18 Mental Health Quality of Life (MHQOL). M6 = Month 6
(prior to first randomization); M12 = Month 12 (prior to second randomization);
Interventions at both Stage 1 and Stage 2 include EF+IF (external and internal
implementation support) versus EF alone. All covariates are measured at the cluster
level.

Stage 1 Variable Estimate 90% CI
1 Rural (vs. Not Rural) -6.80 (-15.2, -7.0)
2 Michigan (vs. Colorado) 0.64 (-2.65, 3.16)
3 High Mean M6 MHQOL (vs. Low) 0.40 (-2.11, 2.42)
4 EF+IF (vs. EF alone) -3.74 (-4.34, 0.97)
5 (EF+IF):(Michigan) 1.31 (-3.11, 2.89)
6 (EF+IF):(High Mean M6 MHQOL) 0.82 (-1.44, 3.24)

Stage 2 Variable Estimate 90% CI
7 Rural (vs. Not Rural) -5.94 (-14.8, 1.2)
8 High Mean M12 MHQOL (vs. Low) -1.53 (-3.9, 0.82)
9 EF+IF (vs. EF alone) -0.19 (-2.65, 2.30)
10 (EF+IF):(High Mean M12 MHQOL) -0.60 (-3.34, 2.25)

3.6 Discussion

We propose Clustered Q-Learning for evaluating whether candidate tailoring vari-

ables may be useful in further tailoring multi-stage interventions delivered at the clus-

ter level with the goal of improving outcomes at the level of the individual within the

cluster. We demonstrate that with an asymptotically large number of clusters and

a moderate number of individuals within each cluster, estimates of parameters and

their associated confidence intervals have a low degree of bias and near or slightly

higher than nominal coverage. Given these results, Clustered Q-Learning can be se-

lected as the appropriate analysis method for a Clustered SMART when the planned

number of clusters is large and the number of individuals within each cluster is moder-

ate. While our simulation results demonstrate minimal bias and reasonable–although

slightly lower than nominal–coverage when the number of individuals per cluster is

variable, care should be taken to encourage clusters to recruit the expected number
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of individuals into the study. When either the planned number of clusters is small,

i.e. < 30, or when the expected number of individuals recruited into each cluster is

small–for example, fewer than 20 on average, alternative approaches for confidence

interval estimation should be considered.

We have proposed Clustered Q-Learning with a parametric regression framework.

There are two major reasons why we believe this is advantageous. First, parametric,

linear regression models enjoy widespread use and general understanding among do-

main scientists. Secondly, we employ Clustered Q-Learning to answer a well-defined

research question using data from a Clustered SMART. In this context we believe

parametric modeling of the Q-functions will deliver unbiased estimates with greater

precision than semi- or nonparametric alternatives.

We note four straightforward extensions of Clustered Q-Learning. First, Clus-

tered Q-Learning is easily extended to a setting with more than two interventions per

stage and more than two stages per CAI. Although Clustered SMARTs to evaluate

implementation science initiatives are not likely to exceed two stages, Clustered Q-

Learning applied to the setting of mobile health and micro-randomized trials, where

there could be an indefinite number of stages with many possible interventions per

stage, may be of great interest. Additionally, here we consider an outcome that is

continuous and approximately normally distributed. Given our use of the general-

ized estimating equations framework for estimation of the multi-stage Q-functions,

however, Clustered Q-Learning is easily extended to non-continuous outcomes using

the generalized linear model framework with appropriate choices for the outcome

distribution and the link function. Third, although we apply Clustered Q-Learning

to analyze data from a Clustered SMART, literature pertaining to the use of stan-

dard Q-Learning to estimate causal effects highlights the potential of Clustered Q-

Learning also in multi-stage estimation with observational data sources (Chakraborty

and Moodie, 2013; Moodie et al., 2012; Schulte et al., 2014). In this case, appropri-
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ate use of propensity adjustment, as well application of more flexible models for the

Q-functions (Moodie et al., 2013; Qian and Murphy , 2011; Zhao et al., 2011), may

be explored. Finally, while our goal was to determine whether a set of candidate tai-

loring variables can be used to further tailor a multi-stage, cluster-level intervention,

the methods of Clustered Q-Learning can also be used to estimate predictive effects

associated with both stages, as well as to identify a specific CAI that may can be

used to tailor intervention overall.

There are two limitations to our approach. First, we explore a relatively sim-

ple data generation mechansism, with one binary baseline covariate and one binary

time-varying covariate. Although these data generating mechanisms are purposefully

designed to reflect and evaluate varying degrees of nonregularity induced by different

underlying clinical settings and represent the clustered analog of the settings used

by Chakraborty et al. (2010) and Laber et al. (2014) to evaluate performance un-

der nonregularity, these provide a limited understanding of performance among more

complex data generating settings. Secondly, although Q-functions are modeled para-

metrically, estimation of confidence intervals using the M -out-of-N cluster bootstrap

is dependent upon selection of two tuning parameters, χ and η, which induces a de-

gree variability – as well as flexibility. In various supplemental simulation experiments

(results not shown) we find generally that a range of χ ∈ (0.025, 0.10) is reasonable

and that larger values of χ are associated with a smaller resample size M and gen-

erate larger estimated confidence intervals. Although we found that a pre-specified

value of χ = 0.025 demonstrated estimated coverage closest to nominal in simulation

experiments, there is room for additional investigation of the specification of χ. A

second tuning parameter needed when applying the M -out-of-N cluster bootstrap is

η, which represents the value consistent with the desired quantile of the T-distribution

used to evaluate the estimated degree of nonregularity at the second stage, p̂2. We

selected η as the value associated with the 0.001-th quantile of the T-distribution
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with N2 degrees of freedom which, after applying a Bonferroni correction for multiple

(i.e., N = 80) distinct hypothesis tests, reflects a maximum desired Type I error of

α = 0.08. However, changes to the pre-specified value of η can also lead to addi-

tional variability in estimation of confidence intervals for the parameters indexing the

optimal first-stage CAI.

The ADEPT study, unfortunately, failed to achieve its enrollment goals of 80

centers with 20 patients per center, and our analysis did not reveal any tailoring

variables. The Clustered SMART study design has become increasingly popular over

the last few years, however, with several Clustered SMARTs now in the field or soon to

begin study enrollment (e.g., Fernandez et al., 2020; Kilbourne et al., 2018; Quanbeck

et al., 2020; Zhou et al., 2020). Clustered Q-Learning with the M -out-of-N cluster

bootstrap, introduced in this manuscript, provides a simple yet effective and easy-to-

implement solution to identify multi-stage tailoring variables and can provide insights

to improve both cluster-level implementation efforts and individual-level outcomes

across a host of domains.
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CHAPTER IV

Penalized Spline-Involved Tree-based (PenSIT)

Learning for Estimating an Optimal Dynamic

Treatment Regime Using Observational Data

4.1 Introduction

Given the increasing prevalence of chronic health conditions, as well as the rapid

increase in healthcare expenditures overall, large scale initiatives to deliver personal-

ized medicine are underway. Personalized medicine is built upon the understanding

that patients are uniquely heterogeneous in their existing and emergent comorbidities,

as well as their tolerance of, response to, and even preference for different treatments.

As such, one of its goals is to identify distinct variables that have an interaction

with treatment, which can help define which patients will benefit from certain treat-

ments or treatment sequences. One such avenue to advance personalized medicine is

through dynamic treatment regimes (DTRs; Chakraborty and Moodie, 2013; Murphy ,

2003), the statistical methods of which are grounded in causal inference. DTRs, also

known as adaptive interventions, are a series of stage-specific decision rules that map

a patient’s measured baseline and time-varying characteristics to a treatment assign-

ment at each successive stage. One particular objective within the field is to estimate

an optimal DTR such that, if the population of interest were to receive treatment
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consistent with this regime, overall patient-level outcomes would be optimized.

DTR estimation methods can be classified as model-based (Huang et al., 2015;

Murphy , 2003; van der Laan and Rubin, 2006; Wang et al., 2012; Zhang et al., 2013),

including parametric and likelihood-based methods, and semiparametric or nonpara-

metric methods (Arjas and Saarela, 2010; Moodie et al., 2013; Qian and Murphy ,

2011; Xu et al., 2016). With the abundance of observational data available to us, it is

now generally accepted that more flexible and robust estimation methods, which are

able to account for what is expected to be a complex relationship among variables

of interest, are desired. Additionally, because optimal DTR estimation is largely an

exploratory process and collaboration with clinician scientists is critical, the need for

interpretability in an estimated optimal DTR is paramount. As a result, flexible and

robust methods that yield interpretable results – for example, those with a decision

tree-type structure – have been enjoying much popularity. Over the past decade tree-

based methods have evolved from the ability to handle a single stage and/or binary

treatment setting (Laber and Zhao, 2015; Zhang et al., 2015; Zhao et al., 2015) to a

multi-stage setting with multiple treatment options per stage (Sun and Wang , 2020;

Tao et al., 2018; Zhang et al., 2018), which better reflects how care for chronic health

conditions is delivered in practice. Zhang et al. (2018) estimate an optimal multi-stage

DTR using a decision list; however, computational demands restrict each statement to

a maximum of two covariates and, additionally, the unidirectional growth of decision

lists precludes correction of estimation error(s) that may have occurred at previous

steps. Tao et al. (2018) develop tree-based reinforcement learning (T-RL), a direct

method of estimating an optimal multi-stage DTR, which cleverly embeds into the

decision tree framework (CART; Breiman et al., 1984) a purity measure devised from

the augmented inverse probability weighted (AIPW) estimate of the counterfactual

mean outcome. Although the AIPW estimator is consistent and doubly robust for the

counterfactual mean outcome, however, it has been well established that IPW-style
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estimators are unstable when weights are highly variable (e.g., Kang and Schafer ,

2007), which will often be the case with low propensity of treatment assignment

and/or as the number of stages increases.

In this manuscript we propose Penalized Spline-Involved Tree-based (PenSIT)

Learning, which seeks to improve upon existing tree-based approaches for estimat-

ing an optimal multi-stage multi-treatment DTR. While conceptually similar to the

implementation of T-RL, PenSIT Learning makes use of a different purity measure

– one that uses a Penalized Spline-Involved (PenSI) estimator of counterfactual out-

comes developed from the penalized spline of propensity prediction method used for

missing data (Little and An, 2004; Zhang and Little, 2009; Zhou et al., 2019). Specif-

ically, we predict missing counterfactual outcomes for the treatments not assigned to

patients using regression models that incorporate a penalized spline of a function of

the propensity to be assigned that treatment and other covariates predictive of the

outcome. The PenSI estimator of the counterfactual mean outcome, like the AIPW

estimator, is consistent and retains the property of double robustness against model

misspecifications, which may lend more stability and provide improved performance

(e.g., higher percentage of observations correctly classified to their optimal DTR)

under certain data generating mechanisms. PenSIT Learning estimates stage-specific

optimal decision rules using backward induction (Bather , 2000), beginning with the

final stage, to remove bias arising from confounding by indication. PenSIT Learning

is a viable alternative to T-RL for estimation of an optimal multi-stage DTR and may

be advantageous in correctly identifying the optimal multi-stage treatment sequence

when the underlying DTR is tree-based, sample sizes are small, and/or when the

level of confounding is high. Additionally, due to the modeling flexibility afforded by

PenSIT Learning, it may be preferred to T-RL in many situations.

In Section 4.2 we introduce relevant notation and formulation, followed by Pen-

SIT Learning methodology in Section 4.3. Implementation of PenSIT Learning is
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described in detail in Section 4.4. We present simulation results in Section 4.5 and,

in Section 4.6, describe the application of PenSIT Learning to data obtained from

the Medical Information Mart for Intensive Care (MIMIC-III) Clinical Database to

estimate an optimal, two-stage DTR reflecting restrictive or liberal fluid resuscitation

strategies designed to minimize a measure of multi-organ dysfunction.

4.2 Notation and Formulation

4.2.1 Notation

Suppose we are estimating a J-stage treatment regime (j = 1, ..., J) in which

one of Kj treatments (kj = 1, ..., Kj; Kj ≥ 2) is administered to every subject

i = 1, ..., n. Treatment received by the i-th individual at the j-th stage is denoted

Aj,i ∈ Aj, with Aj assumed to be categorical. As is customary, a capital letter

denotes the random variable with a lower case letter denoting the realized value. We

suppress the patient-level indicator i when it can be safely omitted without confusion.

Variables collected and available when making the j-th treatment decision are denoted

Xj. Following the j-th stage treatment Aj, measurements are made on a set of

covariates Xj+1, which may also include an intermediate reward outcome, Yj. We

denote the full covariate and treatment history prior to the decision at stage j as

Hj = (A1, ..., Aj−1,X1, ...,Xj). A final outcome of interest Y = h(Y1, Y2, ..., YJ) is a

clinically-relevant, prespecified function h(·) of observed, stage-specific intermediate

reward outcomes, the higher the better by convention. Common functions for h(·),

for example, include the sum or last value. Our fully-observed data, then, represents

the collection of independent and identically distributed multivariate observations

from subjects i = 1, ..., n in our population of interest and is summarized as follows:

{A1i, ..., AJi,X1i, ...,XJi, Yi}ni=1. Now, further to our estimation goal, we let g =

(g1, g2, ..., gJ) denote a J-stage DTR. Each stage-specific decision rule gj maps history
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to the j-th treatment decision, i.e., gj : Hj → Aj. Thus, we can more specifically

express g = (g1, g2, ..., gJ) as g(H) = {g1(H1), g2(H2), ..., gJ(HJ)}.

Following Rubin’s potential outcomes framework (Rubin, 1974), we use

Y ∗(A1, ..., AJ−1, aJ), or simply Y ∗(aJ), to denote the counterfactual outcome, known

interchangeably as a “potential outcome”, for a patient treated with Aj = aJ ∈ AJ

conditional on prior treatment history, A1, ..., AJ−1. Similarly, Y ∗(a1, a2, ..., aJ) identi-

fies the counterfactual outcome under the actual treatment regime A and Y ∗{g(H)}

denotes the counterfactual outcome under regime g(H). Using the counterfactual

mean outcome, E[Y ∗{g(H)}], to evaluate performance, the optimal DTR, gopt(H),

is the one that satisfies

E[Y ∗{gopt(H)}] ≥ E[Y ∗{g(H)}]

for all g(H) = (g1, g2, ..., gJ) ∈ G, where G is the class of all potential regimes. Our

statistical goal, therefore, is: to estimate an interpretable, optimal, J-stage DTR,

gopt(H), using observational data such that, if all patients were to be assigned to

multi-stage treatment using this regime, the expected counterfactual outcome of our

population of interest would be maximized: gopt(H) = argmaxg∈GE[Y ∗{g(H)}].

4.2.2 Link to Observed Data

As mentioned previously, only one of the potential outcomes is observed, making

estimation of gopt(H) impossible without a series of assumptions. Therefore, we make

the following three foundational assumptions: consistency, positivity, and ignorability

(Robins and Hernan, 2009).

(1) Consistency: The potential outcome under the observed treatment agrees with

that of the observed outcome. For example, in the final stage J , we can express this as:

YJ |A1, ..., AJ−1 =
∑KJ

aJ=1 Y
∗
J (A1, ..., AJ−1, aJ) I(AJ = aJ), where I(·) is an indicator
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function that returns a value of 1 if the argument is true and a value of 0 other-

wise. Consistency further assumes that there is no interference between units, which

means that one patient’s observed and counterfactual outcomes are independent of

the treatments of all other patients.

(2) Positivity: An assumption of positivity is fulfilled if there is a positive prob-

ability for each subject of being assigned Aj = aj ∈ Aj at the j-th stage treatment

decision conditional on history Hj,i. Expressed mathematically, under the positivity

assumption 0 < τ < Pr(Aj,i = aj,i|Hj,i) = πaj ,i(Hj,i) < 1 for all aj ∈ Aj,Hj ∈ Hj

and for all j = 1, ..., J , where πaj ,i(Hj,i) represents the propensity score for subject i

and τ represents a positive constant.

(3) Ignorability: Also known as the assumption of no unmeasured confounders

(NUCA), ignorability implies that data on all variables that are associated both with

the assignment ofA and the outcome Y have been observed. Furthermore, ignorability

implies that the counterfactual outcomes are independent of the treatment given

the propensity score. For example, Y ∗J (1), ..., Y ∗J (K) ⊥⊥ AJ |πJ(HJ) (Rosenbaum and

Rubin, 1983; Zhang and Little, 2009; Zhou et al., 2019).

Under the assumptions of consistency, positivity, and ignorability, it can be shown

that E(Y |AJ = aJ ,HJ) is a consistent estimator of E{Y ∗(aJ)}. Following the deriva-

tion for a single stage in Tao and Wang (2017), we can express the optimal decision

rule for the final stage as:

goptJ (HJ) = argmaxgJ∈GJEHJ

[ KJ∑
aJ=1

E
(
Y |AJ = aJ ,HJ

)
I{gJ(HJ) = aJ}

]
. (4.1)

Further, following the theory of Rosenbaum and Rubin (1983), conditioning on all the

full history, HJ , is mathematically the same as conditioning on the propensity score.
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Therefore, we also have:

goptJ (HJ) = argmaxgJ∈GJEHJ

[ KJ∑
aJ=1

E
{
Y |AJ = aJ , πaJ (HJ)

}
I{gJ(HJ) = aJ}

]
.

(4.2)

Note that Equations (4.1) and (4.2) are solvable using observed data. Based on the

above, we formally introduce our proposed PenSIT Learning in the following section.

4.3 Penalized Spline-Involved Tree-based (PenSIT) Learning

4.3.1 Tree-based Learning

As is well known in the CART literature (Breiman et al., 1984; and others) and

also as discussed in tree-based optimal DTR estimation literature (Laber and Zhao,

2015; Sun and Wang , 2020; Tao et al., 2018), a decision tree is a widely-used machine

learning technique constructed by recursive partitioning of the covariate space that is

used to identify features and their associated cutpoints that are best able to describe

the relative homogeneity of another variable or outcome. The result of a decision tree

analysis can be represented in a tree-like structure with nodes representing distinct

features and leaves capturing those observations identifed as most similar or “pure”. A

purity metric, P (Ωm, ω), where Ωm refers to a parent node indexed by m and ω (with

its complement ωC) refers to a specific partition applied to Ωm, is a criterion used

to determine which of these binary splits ω will be applied at Ωm. Purity measures

used previously in the CART literature, for example, include misclassification rates

for binary outcomes or residual sum of squares for continuous outcomes (Hastie et al.,

2009). In addition to a purity measure, estimation in the tree-based learning context

relies upon a set of criteria needed to establish whether a parent node will or will not

be partitioned. These criteria, often termed “stopping criteria”, are determined by
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pre-specified, user-defined inputs and are discussed in Section 4.4.3.

Here it is important to note the differences between estimation using CART versus

estimation of an optimal DTR using tree-based methods. First, CART is a supervised

learner whereas estimation of an optimal DTR is unsupervised; in CART, the object

of estimation, which is often an outcome of interest, is directly observed whereas, for

optimal DTR estimation, the object of estimation is an optimal treatment sequence

that is not directly observed. Secondly, while CART is used for prediction of a target

variable based on observed covariates, the goal of optimal DTR estimation represents

the crux of personalized medicine: to estimate stage-specific and dynamic decision

rules for assigning treatment to individuals based on their unique demographic or

disease-specific characteristics such that overall (counterfactual) outcomes for the

population will be maximized. Given that optimal DTR estimation has a causal

goal, purity measures used previously in this context are derived from estimators of

the counterfactual mean outcome; these include an IPW-based estimator (Laber and

Zhao, 2015), an AIPW-based estimator (Tao et al., 2018), and others. As will be

shown in the following sections, we replace the expression E
{
Y |AJ = aJ ,HJ

}
identi-

fied in IPW-based estimators with the expression E
{
Y |AJ = aJ , πaJ (HJ)

}
introduced

in Equation (4.2).

4.3.2 PenSIT Estimation for Final Stage J

For simplicity, denote µJ,aJ (HJ) = E
{
Y |AJ = aJ , πaJ (HJ)

}
. We propose to

model µJ,aJ (HJ) as:

µ̂J,aJ (HJ) = s[ l{π̂J,aJ (HJ)} ;θJ,aJ ] + rJ,aJ (HJ ;βJ,aJ ), (4.3)

where l(·) is a pre-specified transformation of the propensity score, e.g., logit or iden-

tity; s(·) denotes a penalized spline with fixed knots (Eilers and Marz , 1996; Wand ,
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2003) indexed using the parameters θJ,aJ ; and rJ,aJ (·) refers to a parametric function

of other covariates in HJ , indexed by the parameters βJ,aJ . Note in Equation (4.3)

that the conditional mean outcome is modeled semiparametrically using covariates

predictive of the outcome and a penalized spline of a function of the propensity score,

which makes the model more flexible and easier to achieve correct model specifica-

tion. We then propose to estimate the counterfactual mean outcome under treatment

aJ , i.e., E{Y ∗(aJ)}, as Pn{µ̂PenSI
J,aJ

(HJ)}, where we introduce the PenSI estimator as

µ̂PenSI
J,aJ

(HJ) = I(AJ = aJ)Y +I(AJ 6= aJ) · µ̂J,aJ (HJ), and Pn(·) refers to the empirical

mean operator. Following Zhou et al. (2019), we can show that Pn{µ̂PenSI
J,aJ

(HJ)} is

consistent and doubly robust for E{Y ∗(aJ)}.

Proposition IV.1. Assuming observations {HJi, AJi, Yi}ni=1 are independent and

identically distributed across all individuals i and following some unspecified multi-

variate distribution p, Pn{µ̂PenSI
J,aJ

(HJ)} is consistent and doubly robust for E{Y ∗(aJ)}

if either of the following conditions are met:

(i) The conditional mean model µ̂J,aJ (HJ) consisting of s[ l{π̂J,aJ (HJ)} |θJ,aJ ] and

rJ,aJ (HJ |βJ,aJ ) is correctly specified.

(ii) The parametric component of the conditional mean model, rJ,aJ (HJ |βJ,aJ ), is

misspecified but the propensity models πJ,aJ (HJ) and the relationship between

the outcome and the function of the propensity score s[ l{π̂H,aJ (HJ)} |θJ,aJ ] are

correctly specified.

Proof. Pn{µ̂PenSI
J,aJ

(HJ)} = Pn{I(AJ = aJ)Y + I(AJ 6= aJ)µ̂J,aJ (HJ)}. Let n1 be the

number of observations with AJ = aJ and n0 the number of observations with AJ 6=

aJ . Then Pn{I(AJ = aJ)Y } =
n1

n
· 1

n1

∑
n1:AJ=aJ

Y and Pn{I(AJ 6= aJ)µ̂J,aJ (HJ)} =

n0

n
· 1

n0

∑
n0:AJ 6=aJ

µ̂J,aJ (HJ). Under the assumptions of consistency, positivity, and ig-

norability, and following the proof in the supplementary material Section 1.1 of Zhou

et al. (2019), it can be shown that Pn{µ̂PenSI
J,aJ

(HJ)} is doubly robust.
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The consistency of Pn{µ̂PenSI
J,aJ

(HJ)} offers a valid large sample estimate of the coun-

terfactual mean outcome under treatment AJ = aJ conditional on prior treatment

A1, ..., AJ−1; additionally, the double robustness of the the PenSI estimator provides

two opportunities for consistent estimation. Furthermore, Zhang and Little (2009)

maintain that, by regressing the outcome Y on a spline of the logit of the propensity

score, condition (ii) in Proposition IV.1 is met under relatively weak conditions due

to the modeling flexibility of a spline, which requires minimal assumptions about the

relationship between the outcome Y and the propensity for treatment assignment

πJ,aJ (HJ).

Given our goal to estimate a treatment regime gJ(HJ) that maximizes the coun-

terfactual mean outcome following regime gJ(HJ), we estimate E[Y ∗{gJ(HJ)}] using

our proposed PenSI estimator as follows:

Ê[Y ∗{gJ(HJ)}] = Pn

[
KJ∑
aJ=1

µ̂PenSI
J,aJ

(HJ)I{gJ(HJ) = aJ}

]

Based on this formulation we then propose a purity measure, PPenSI
J (Ωm, ω), suit-

able for constructing a tree when estimating an optimal treatment rule at the final,

J-th stage:

PPenSI
J (Ωm, ω) = max

a1,a2∈AJ

Pn

[
KJ∑
aJ=1

µ̂PenSI
J,aJ

(HJ)I{gJ,ω,a1,a2(HJ) = aJ}I(HJ ∈ Ωm)

]
(4.4)

Specifically, PPenSI
J (Ωm, ω) refers to the maximum empirical version of the expected

counterfactual outcome under decision rule gJ,ω,a1,a2 when node Ωm is split according

to partition ω such that patients in subset ω are assigned treatment a1 while patients

in the complementary set ωC are assigned to a2, for a1 6= a2, and where subscripts 1

and 2 need not refer to treatment AJ = 1 and AJ = 2.
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4.3.3 PenSIT Estimation for Stages 1, ..., J − 1

Similar to other tree-based optimal DTR estimation methods (Sun and Wang ,

2020; Tao et al., 2018), estimation proceeds in a backwards recursive manner (Bather ,

2000), beginning with estimation of the J-th stage decision rule. This is important

to account for time-varying confounding by indication and delayed effects related to

treatments received at earlier stages, both of which can result in biased estimation.

Furthermore, in the context of estimation of an optimal multi-stage DTR, the optimal

j-stage decision rule relies upon the patient receiving the optimal treatment at all

future stages.

Following our exposition in the previous sections, goptJ (HJ) is estimated within the

tree-based construct using the PenSI purity measure for the J-th stage, PPenSI
J (Ωm, ω),

introduced in Equation (4.4). In order to generalize for estimation of the j-th stage

decision rule, for j = 1, ..., J − 1, we now introduce additional notation pertaining

to estimation for the j-th stage. Let Ỹj(aj) refer to the predicted pseudo-outcome

at stage j under treatment aj, which is never actually observed. The assumption

under an optimal, multi-stage treatment assignment regime is that the long-term

outcome Y is maximized. Therefore, when estimating the decision rule for the j-

th treatment stage, we must account for the fact that the patient was treated with

the optimal treatment at all future stages. To this end we construct a stage-specific

counterfactual pseudo-outcome Ỹj for any stage prior to the last, which represents

the predicted counterfactual outcome at the j-th stage contingent upon the patient

receiving the optimal treatment at all future stages. Mathematically this can be

expressed as: Ỹj = Ê{Y ∗(A1, ..., Aj, g
opt
j+1, ..., g

opt
J )}. Under an assumption of consis-

tency, Ỹj =
∑Kj

aj=1 Ỹj(aj)I(Aj = aj). Positivity in the multi-stage setting was intro-

duced in Section 4.2.2 and the assumption of ignorability can be expressed for the j-th

stage estimation as {Ỹj(1), ..., Ỹj(Kj)} ⊥⊥ Aj|Hj = {Ỹj(1), ..., Ỹj(Kj)} ⊥⊥ Aj|πaj(Hj).

Therefore, similar to that introduced in Equation (4.2), the optimal decision rule at
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the j-th stage can be expressed as a function of the predicted pseudo-outcome, with

Ê{Ỹj|Aj = aj, πj,aj(Hj)} = µ̃j,aj(Hj):

goptj (Hj) = argmaxgj∈GjEHj

[ Kj∑
aj=1

µ̃j,aj(Hj)I{gj(Hj) = aj}
]

We define µ̃PenSI
j,aj

(Hj) = I(Aj = aj) · Ỹj + I(Aj 6= aj) · µ̃j,aj(Hj) and propose to

estimate the mean pseudo-outcome under treatment aj as Pn{µ̃PenSI
j,aj

(Hj)}, where,

using the notation and modeling choices introduced in Equation (4.3):

µ̃j,aj(Hj) = s[ l{π̂j,aj(Hj)} |θj,aj ] + rj,aj(Hj|βj,aj)

Assuming consistent estimation at all future stages through backward induction and

following Proposition IV.1 and Zhou et al. (2019), Pn{µ̃PenSI
j,aj

(Hj)} is a consistent and

doubly robust estimator for E{Ỹj(aj)}. The associated PenSI purity measure used

at the j-th treatment stage, i.e., PPenSI
j (Ωm, ω), can then be defined as follows, where

node Ωm is split by the partition identified by ω based on rule gj,ω,a1,a2 , which assigns

treatment Aj = a1 to patients in the set defined by ω and assigns Aj = a2 to those

in ωC , for a1 6= a2:

PPenSI
j (Ωm, ω) = maxa1,a2∈Aj

Pn
[ Kj∑
aj=1

µ̃PenSI
j,aj

(Hj) I{gj,ω,a1,a2(Hj) = aj} I(Hj ∈ Ωm)

]

4.4 Implementation

4.4.1 Estimation of µ̃PenSI
aj

(Hj)

Stage-specific PenSI estimates are a key component of the PenSI purity measure

at each stage, j = 1, ..., J . We refer to µ̃PenSI
aj

(Hj) for the generic j-th stage through-

out, but note in the case of estimation for the final J-th stage that µ̃PenSI
aj

(Hj) =

µ̂PenSI
aJ

(HJ). Furthermore, although we refer to modeling of the pseudo-outcome Ỹj
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throughout, it is understood that, for the final stage J , Ỹj = YJ . We assume out-

comes are continuous and approximately normally distributed; however, outcomes

under other distributional assumptions can be accommodated under a generalized

linear modeling framework with a link function appropriate for the outcome of in-

terest. We assume (pseudo-) outcomes for all future stages, i.e., j = j + 1, ..., J ,

have been consistently estimated. For simplicity in the implementation guide below

we default to including all covariates in Hj; however, more sophisicated models that

include interactions and/or transformations or include only a subset of covariates can

and should be considered.

1. Estimate the propensity model for treatment assignment at the j-th stage using

the full observed dataset.

(a) Estimate model parameters (γ̂aj) for the propensity score, i.e., the prob-

ability to be assigned treatment Aj = aj given history Hj: π̂aj(Hj) =

P̂ r(Aj = aj|Hj; γ̂aj). Select a parametric regression model suitable for

the scale of the treatment variable Aj, e.g., logistic regression for binary

treatment using the glm function in R (R Core Team, 2018) or multinomial

logistic regression for an ordinal treatment using the function multinom.

(b) Using the estimates of γ̂aj obtained in 1(a) and the observed hj,i, calculate

for all i the predicted probabilities of assignment to Aj = aj for ∀Aj ∈

Aj. Then calculate for all i the estimated propensity of receiving the

observed treatment Aj,i = aj,i. For example, when Aj ∈ {0, 1} with the

reference category assigned as Aj = 1, the propensity model is P̂ r(Aj,i =

1|Hj,i, γ̂aj) = π̂1,i(Hj,i; γ̂aj) and the propensity of receiving the observed

treatment Aj,i = aj,i can be computed as: I(Aj,i = 1) · π̂1,i(Hj,i) + I(Aj,i =

0) · {1− π̂1,i(Hj,i)}.

(c) We define l{ π̂aj(Hj) } = logit{ π̂aj(Hj) } = log
[
π̂aj(Hj)/{1 − π̂aj(Hj)}

]
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for consistency with Zhou et al. (2019), but other choices for l(·), e.g., the

identity function, may be used.

2. For each Aj = aj ∈ Aj: Using only those observations assigned to treatment

group Aj = aj, estimate prediction models for Ỹj(aj) (or, in the case of the final

stage J , for Y ∗(aJ)).

(a) For a desired number of knots D and using l{ π̂aj(Hj) } estimated in Step

1(c), determine the D locations of the knots for the spline model. We set

the default to D = min(35, 1/4 · naj) (Rupert , 2002; Wand , 2003) with

equal knot spacing, where naj refers to the sample size for observations

with Aj = aj.

(b) Create a basis matrix for the spline with fixed knots B1, ..., BD. We de-

fault to a truncated linear basis (Wand , 2003): [ l{π̂aj ,i(Hj) } − Bd]+ =

max[l{π̂aj ,i(Hj)} − Bd, 0]; however, alternate basis specifications are pos-

sible. The dimension of the basis matrix will be naj x D.

(c) Fit a regression model for the mean stage j pseudo-outcome Ỹj as follows:

Ê{Ỹj|Hj, Aj;θaj ,βaj} = µ̃j,aj(Hj) = s[ l{π̂aj(Hj)} ;θaj ] + raj(Hj;βaj)

where s[ l{π̂aj(Hj)} ;θaj ] = θj0,aj + θj1,aj l{π̂aj(Hj) }+∑K
k=1 θj1k,aj [ l{π̂aj(Hj) } − Bd]+. raj(·) represents a parametric function

of other covariates predictive of the outcome, indexed by parameters βaj .

Due to the stratified nature of model estimation used for µ̃aj(Hj), dif-

ferent variables can be selected to model the pseudo-outcomes for each

treatment Aj ∈ Aj. We can express the spline model as a linear mixed

model (Wand , 2003; Zhou et al., 2019), where C1 = [1,Hj, l{π̂aj(Hj)}]

represents a design matrix for the fixed effects with model parameters βaj
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and C2 = ([l{π̂aj(Hj)} − B1]+, ..., [l{π̂aj(Hj)} − BD]+) is the design ma-

trix for the truncated linear basis matrix obtained above with parameters

θaj , which are included as random effects. Linear mixed models can be

easily fit with standard software (e.g., lmer function in R) using restricted

maximum likelihood estimates of the parameters θaj and βaj .

(d) Predict P̂ r(Aj,i = aj|Hj,i = hj,i) using the fully observed hj and the

propensity model estimated in Step 1(a); then apply l(·) to obtain the

transformation of the estimated propensity to receive treatment Aj,i = aj

for all i.

(e) Using the estimated models in Steps 2(c) and 2(d) above, predict the

individual-level counterfactual (pseudo-) outcomes Ỹj,i(aj) under Aj = aj.

(f) Obtain µ̃PenSI
j,aj ,i

(Hj,i) = I(Aj,i = aj) · Ỹj,i + I(Aj,i 6= aj) · µ̃j,aj ,i(Hj,i) for all

individuals i.

(g) Repeat Steps 2(a) to 2(f) for all aj ∈ Aj and obtain a n x |Aj| matrix

representing the estimated counterfactual outcomes under each treatment

aj ∈ Aj.

4.4.2 Selection of tuning parameters for tree-based estimation

Several user-defined inputs are needed to implement PenSIT Learning. First,

a positive value, λj, must be specified in order to determine whether a potential

split of node Ωm by partition ω identifies a meaningful difference in purity, i.e.,

PPenSI(Ωm, ω) − PPenSI(Ωm) > λj. We recommend that λ be selected to represent

a level of clinical or practical significance determined based on clinical knowledge or

practical rationale, although λ may also be chosen adaptively from the data (Hastie

et al., 2009; Tao et al., 2018). One strategy, for example, grows a full tree by se-

lecting a small value of λj and then prunes the tree using a cost-complexity measure

(Boehmke and Greenwell , 2020; Breiman et al., 1984; Hastie et al., 2009; Therneau
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et al., 2019). Following Tao et al. (2018), another approach is to evaluate the esti-

mated counterfactual mean outcome across a reasonable range of values for λ and

select the value of λ using 10-fold cross validation that maximizes the estimated

counterfactual mean.

Two other user-specified tuning parameters are also necessary at each stage to

perform PenSIT Learning: the minimum number of observations that can fall into

each of the terminal nodes, n0,j, and a maximum depth to which the tree is allowed to

grow, dj. Generally, the smaller the minimum node size and the larger the depth, the

more complex the estimated optimal decision rule will be, leading to the potential of

overfitting (Sun and Wang , 2020). An optimal range for the minimum node size in a

CART-type analysis between 1-20 has been suggested (Mantovani et al., 2019). Sim-

ilarly, a depth of 5 if often considered a good starting point (Boehmke and Greenwell ,

2020).

4.4.3 PenSIT Learning Node Splitting and Stopping Rules

As discussed above, tree-based estimation is performed using backward induction,

commencing with the J-th stage and ending with Stage 1. Input for the tree-based

partitioning at each stage j include estimated counterfactual outcomes µ̃PenSI
aj

(Hj) for

all Aj = aj ∈ Aj and user pre-specified λj, n0,j, dj, as mentioned above. Using the

framework of Tao et al. (2018), the following terminal criteria determine when a node

Ωj,m becomes a terminal node in the j-th stage estimation:

• If the size of a node Ωj,m is less than twice the minimum node size 2n0,j, i.e.,

|Ωj,m| < 2n0,j, Ωj,m becomes a terminal node.

• If all possible splits of Ωj,m result in child nodes with fewer than n0,j observa-

tions, i.e., |ωj,m| < n0,j, for all possible partitions ωj,m, then Ωj,m becomes a

terminal node.
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• If the tree depth reaches the pre-specified depth dj, all nodes Ωj,m at depth dj

become terminal nodes.

The process of recursively splitting the tree into successively smaller partitions is

conducted as follows. Begin with root node Ωj,m, for m = 1.

1. At node Ωj,m, evaluate the three terminal criteria above.

• If at least one termination criterion is satisfied, no splits of the node

are carried out. Assign a single best treatment to all subjects in Ωj,m:

argmaxaj∈Aj
Pn{PPenSI

j (Ωj,m)}, where PPenSI
j (Ωj,m) refers to the purity in

the absence of a split.

• If no termination criteria are met, determine the best split as follows:

ω̂opt
j,m = argmaxωj,m

{PPenSI
j (Ωj,m, ωj,m)}.

– If PPenSI
j (Ωj,m, ωj,m)−PPenSI

j (Ωj,m) ≤ λj, no split of the node is carried

out. Assign a single best treatment to all subjects in Ωj,m:

argmaxaj∈Aj
Pn{PPenSI

j (Ωj,m)}

– If PPenSI
j (Ωj,m, ωj,m) − PPenSI

j (Ωj,m) > λj, split Ωj,m into child nodes

Ωj,2m and Ωj,2m+1 as determined by ω̂opt
j,m.

2. If all nodes are terminal nodes, stop. If not, set m = m+1 and repeat Step (a).

4.5 Simulation Studies

We consider an observational study for a two-stage DTR with 2 treatment op-

tions per stage, with independent individuals. We evaluate sample sizes of n =

300, 500, 1000. For each individual we generate a set of 20, 50, or 100 baseline co-

variates, X1, from a multivariate normal distribution with a mean of 0|X1| and an

exchangeable correlation structure defined by correlation coefficient ρ = 0.2, where

|X1| refers to the cardinality, or size, of the vector X1 for each individual. First stage
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treatment A1 ∈ {0, 1} is generated from a binomial distribution, with the data gener-

ating mechanisms reflecting varying degrees of confounding. Specifically, we evaluate

a low, moderate, and high degree of confounding of the outcome using the following

specifications, with π10 = 1− π11:

• Low: π11 = exp(0.5X4 + 0.5X1)/{1 + exp(0.5X4 + 0.5X1)}

• Moderate: π11 = exp(0.5X4 + 1.5X1)/{1 + exp(0.5X4 + 1.5X1)}

• High: π11 = exp(0.5X4 + 3.5X1)/{1 + exp(0.5X4 + 3.5X1)}

The stage 1 optimal decision rule assuming an underlying tree-type DTR is g1(H1) =

I(X1 > −0.5 & X2 > −0.5) and g1(H) = I(
√
|X2 + 5| + 0.5X1 < 2.2) when an

underlying non-tree-type DTR structure is assumed. The intermediate reward out-

come following Stage 1 is generated as Y1 = exp{1.5 + 0.3X1 − |1.5X6 − 2| · I(A1 6=

gopt1 (H1))} + ε1, where ε1∼N(0, 12). This reflects an unequal penalty dependent on

one of the observed covariate values if the patient was not treated according to their

optimal therapy; this is intended to add an additional degree of complexity into the

data generating scenario and be more reflective of data that may be encountered in a

real world setting. Second stage treatment A2 ∈ {0, 1} is generated from a binomial

distribution and is also adapted to reflect varying degrees of confounding, as follows,

with π20 = 1− π21:

• Low: π21 = exp(0.2Y1 + 0.5X5 − 0.5)/{1 + exp(0.2Y1 + 0.5X5 − 0.5)}

• Moderate: π21 = exp(0.2Y1 + 1.5X5 − 0.5)/{1 + exp(0.2Y1 + 1.5X5 − 0.5)}

• High: π21 = exp(0.2Y1 + 3.5X5 − 0.5)/{1 + exp(0.2Y1 + 3.5X5 − 0.5)}

The stage 2 optimal decision rule assuming an underlying tree-type DTR is g2(H2) =

I(X3 > −1 & Y1 > 2) and, when an underlying nontree-type DTR structure is as-

sumed, g2(H2) = I{log2(|Y1| + 1) + 3X3 ≤ 1.8}. The final outcome Y = Y1 + Y2
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where Y2 = exp{1.18 + 0.2X5−|1.5X7 + 2| · I(A2 6= gopt2 (H2))}+ ε2, with ε2∼N(0, 12).

Under optimal treatment allocation and assuming independence across observations,

Ê[Y ∗{gopt(H)}] = 8.0.

We compare the performance of PenSIT Learning to tree-based reinforcement

learning (T-RL), Q-Learning using linear modeling (Q-Linear), and Q-Learning us-

ing nonparametric modeling (Q-NP). T-RL is a tree-based DTR estimation method

that uses a purity measure constructed using the AIPW estimator of the counterfac-

tual mean outcome (Tao et al., 2018). Q-Learning using linear regression modeling

assumes a linear and additive relationship between the covariates and the expected

outcome (using the lm function in R). Q-Learning with nonparametric modeling allows

a more flexible relationship for the Q-functions, which are estimated using random

forest prediction (using randomForest in R). Both T-RL and PenSIT Learning use

random forest prediction to generate stage 1 pseudo-outcomes. Across all simulation

studies we assume that the parametric component of the conditional mean model

in PenSIT Learning, rj,aj(Hj|βj,aj), is incorrectly specified for all aj ∈ Aj in order

to evaluate performance under a scenario more reflective of the real world. Per-

formance of PenSIT Learning and T-RL are evaluated under both a correctly- and

incorrectly-specified propensity model. Although consistent estimation of the coun-

terfactual mean outcome is not ensured when the propensity model is misspecified, we

present results for an incorrectly-specified propensity model in order to demonstrate

performance when this assumption is not met, which may be likely to occur in prac-

tice. With a test set of size 1000 (Ntest = 1000), performance is evaluated using two

metrics: 1) the percentage of observations correctly classified to their optimal DTR,

%opt, and 2) the estimated counterfactual mean outcome Ê[Y ∗{ĝopt(H)}], which re-

flects the expected counterfactual outcome had everyone in the patient population of

interest been treated “optimally” based on the regime estimated using each respective

method. For each simulation design setting we tabulate the median and interquartile
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range (IQR) of %opt and Ê[Y ∗{ĝopt(H)}] across all B = 500 Monte Carlo itera-

tions. For all stages within each simulation experiment, λ is set as a 5% improvement

although we find in supplemental simulations that PenSIT Learning appears to be

more sensitive to perturbations of λ than does T-RL, particularly with a low degree

of confounding. For all simulations we set the minimum node size and tree-depth at

20 and 5, respectively. We tabulate results based on the logit transformation of the

estimated propensity score; we also explored the use of the identity transformation

and found performance differences of the identity transformation compared to the

logit transformation to be negligible (results not shown). We also investigated per-

formance using different knot sizes, from 5-35 knots, and also using stepwise variable

selection based on improvement of AIC; no meaningful differences based on these

modifications were found (results not shown), suggesting robustness of this method

to the choices of knot size and knot placement.

As can be seen generally across all out simulation results (Tables 4.1 - 4.9), Pen-

SIT Learning performance improves with sample size when the number of baseline

covariates are held fixed, as expected. When the sample size is fixed, performance

generally worsens as the number of baseline covariates increases, although this is

most apparent with smaller sample sizes. When the underlying DTR structure is

tree-type, PenSIT Learning performs well across all data generating settings (Tables

4.1 - 4.3), although performance is best when the level of confounding is moderate

(Table 4.2) or high (Table 4.3). When n = 500 and |H| = 20, for example, PenSIT

Learning is able to correctly identify the optimal DTR more than 95% of the time

when confounding is moderate or high, but this falls to around 85% correct clas-

sification of the optimal DTR with a low degree of confounding. Additionally, the

percentage of correctly-classified treatments for PenSIT Learning is similar–typically

within 1%–when the propensity model is either correctly or incorrectly specified across

all covariate cardinality (Tables 4.1 - 4.3). When confounding is low, we observe a
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high degree of variability for PenSIT Learning in both the estimated percentage of

correctly-classified observations and in the estimated counterfactual mean outcome.

When n = 500 and |H| = 20, for example, the interquartile range of the correctly-

classified optimal DTR is more than 13%, compared with less than half that value

when confounding is moderate or high. With a sample size of n = 300 (top panels,

Tables 4.7 - 4.9), PenSIT Learning under an assumed tree-type DTR reveals sim-

ilar performance to that discussed above, exceeding 90% correct classification with

moderate and high levels of confounding across all settings, including a correct or

incorrectly-specified propensity model. When the underlying DTR is nontree-type,

PenSIT Learning performance is modest across all sample sizes (Tables 4.4 - 4.6 and

Tables 4.7 - 4.9), correctly estimating the optimal DTR between 75-80% of the time,

with performance improving both as the level of confounding decreases and as the

number of covariates decreases.

Under a tree-type DTR, T-RL achieves very good performance with larger sample

sizes across all levels of confounding when the propensity model is correctly specified,

regardless of the number of covariates (Tables 4.1 - 4.3), achieving correct classifica-

tion of more than 90% in all settings. If the propensity model is incorrectly specified,

however, performance of T-RL deteriorates as the level of confounding increases–

particularly as the covariate cardinality increases relative to the sample size. With a

moderate degree of confounding and an incorrectly-specified propensity model, for ex-

ample, T-RL correctly identifies the optimal DTR 87% of the time when n = 500 and

|H = 100|, compared with nearly 95% correct classification with a correctly-specified

propensity model. When the assumed DTR is nontree-type (Tables 4.4 - 4.6), T-RL

correctly classifies the optimal DTR between 70-80% of the time, with performance

improving as the sample size increases, the level of confounding decreases, as the num-

ber of covariates decreases, and/or when the propensity model is correctly specified.

With a small sample size (Tables 4.7 - 4.9), estimated correct classification using T-
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RL for a tree-type DTR ranges from more than 95% when the level of confounding is

low and the propensity model is correctly specified to about 86% when the propensity

model is incorrectly specified and the level of confounding is either high or moderate

with a larger number of covariates. For a nontree-type DTR, T-RL’s performance in

small samples mimics those trends observed with a larger sample size.

Q-Learning implemented with few model assumptions (i.e., Q-NP) performs bet-

ter than linear Q-Learning across all data generating settings for a tree-type DTR,

although we see larger performance gains of Q-NP relative to Q-Linear as the sample

size increases (Tables 4.1 - 4.3). As the level of confounding increases, little differ-

ence in performance is observed for Q-Linear, which is in contrast to Q-NP, which

tends to perform best with a moderate degree of confounding and worst with high

confounding (Tables 4.2 - 4.3). With n = 1000 and |H = 100|, for example, Q-NP

correctly classifies the optimal DTR at least 95% of the time when confounding is

moderate or low, but only about 82% under high confounding. When the DTR is

nontree-type (Tables 4.4 - 4.6), Q-Linear performance improves relative to estimation

of a tree-type DTR for the same sample sizes and number of covariates, e.g., with

about 80% correct classification with |H = 20| for lower confounding compared with

about 70% for the same settings with a tree-type DTR. The performance of Q-NP,

however, is worse than in the tree-type setting, all other parameters being equal. For

a nontree-type setting Q-Linear and Q-NP perform similarly when |H = 20| across

larger sample sizes (Tables 4.4 - 4.6), but Q-Linear performance quickly deteriorates

as the cardinality of covariates increases, particularly for n = 500. For a small sample

size (Tables 4.7 - 4.9), Q-Linear and Q-NP generally perform poorly across all levels

of confounding, generally ranging from about 60% to 70% correct classification with

|H = 50| for both a tree-type and nontree-type DTR.

For a fixed λ and an true, underlying tree-type DTR, PenSIT Learning is pre-

ferred to competing methods when the level of confounding is high. Furthermore,
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the improvement of PenSIT Learning over other methods is most pronounced when

the covariate cardinality is large or when the sample size is small. With moderate

confounding, PenSIT Learning performance is comparable to T-RL across all settings

and is comparable to Q-NP when n = 1000, although PenSIT Learning achieves a

clear advantage over T-RL when the sample size is small and the propensity model

is incorrectly specfied. When the level of confounding is low, for a fixed λ T-RL is

preferred over PenSIT Learning across all sample sizes. With a nontree-type DTR

structure, PenSIT Learning is generally preferred across all data generating scenarios,

including both correctly- and incorrectly- specified propensity models and levels of

confounding, although the improvement over T-RL is modest, with both methods

correctly classifying the optimal treatment regime between 75-80% of the time. Un-

der low confounding and low covariate cardinality with a nontree-type DTR, Q-NP

would be preferred to both PenSIT Learning and T-RL. Relative to PenSIT Learning,

Q-Linear exhibits inferior performance to PenSIT Learning across all sample sizes and

levels of confounding when the true DTR structure is tree-type. When the sample

size is small and the DTR is nontree-type, PenSIT Learning achieves slightly bet-

ter estimated correct classification rates than does Q-NP and Q-Linear, particularly

when the number of covariates increases.
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ĝ
o
p
t (H

)}
]

re
fe

rs
to

th
e

es
ti

m
at

ed
co

u
n
te

rf
ac

tu
al

m
ea

n
ou

tc
om

e
u
n
d
er

th
e

es
ti

m
at

ed
op

ti
m

al
D

T
R

.
U

n
d
er

op
ti

m
al

tr
ea

tm
en

t
al

lo
ca

ti
on

Ê
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ĝ
o
p
t )
}

L
ow

er
D
eg
re
e
of

C
on

fo
u
n
d
in
g

n
=

50
0

Q
-L
in
ea
r

7
9.
2
(3
.9
)

7.
3
(0
.1
7)

71
.0

(3
.4
)

7.
1
(0
.1
6)

60
.4

(4
.0
)

6
.7

(0
.1
8
)

Q
-N

P
8
2.
7
(4
.2
)

7.
5
(0
.1
5)

78
.5

(5
.4
)

7.
4
(0
.1
6)

74
.0

(6
.9
)

7
.2

(0
.2
1
)

C
or
re
ct

T
-R

L
7
9.
2
(5
.3
)

7.
3
(0
.1
6)

79
.6

(5
.1
)

7.
3
(0
.1
6)

79
.2

(6
.1
)

7
.3

(0
.1
8
)

P
en

S
IT

8
0.
4
(4
.6
)

7.
3
(0
.1
4)

80
.2

(4
.3
)

7.
3
(0
.1
6)

80
.2

(5
.2
)

7
.3

(0
.1
5
)

In
co
rr
ec
t

T
-R

L
7
9.
6
(5
.9
)

7.
3
(0
.1
7)

78
.8

(5
.4
)

7.
3
(0
.1
7)

77
.7

(6
.1
)

7
.3

(0
.2
1
)

P
en

S
IT

8
0.
3
(4
.3
)

7.
3
(0
.1
5)

80
.4

(4
.4
)

7.
3
(0
.1
5)

80
.0

(5
.5
)

7
.3

(0
.1
7
)

n
=

10
00

Q
-L
in
ea
r

8
3.
1
(2
.9
)

7.
5
(0
.1
4)

78
.0

(3
.0
)

7.
3
(0
.1
4)

71
.2

(2
.7
)

7
.1

(0
.1
4
)

Q
-N

P
8
6.
3
(3
.1
)

7.
6
(0
.1
2)

83
.2

(3
.5
)

7.
5
(0
.1
3)

81
.6

(3
.9
)

7
.5

(0
.1
3
)

C
or
re
ct

T
-R

L
8
0.
1
(4
.3
)

7.
4
(0
.1
4)

80
.0

(4
.6
)

7.
3
(0
.1
4)

79
.7

(4
.4
)

7
.3

(0
.1
4
)

P
en

S
IT

8
1.
0
(3
.7
)

7.
4
(0
.1
2)

81
.0

(3
.9
)

7.
4
(0
.1
3)

80
.6

(3
.6
)

7
.4

(0
.1
3
)

In
co
rr
ec
t

T
-R

L
8
0.
1
(4
.3
)

7.
4
(0
.1
3)

79
.9

(4
.7
)

7.
4
(0
.1
4)

79
.4

(4
.6
)

7
.3

(0
.1
5
)

P
en

S
IT

8
1.
0
(3
.7
)

7.
4
(0
.1
2)

80
.9

(4
.0
)

7.
4
(0
.1
3)

80
.9

(3
.5
)

7
.4

(0
.1
3
)

131



T
ab

le
4.

5:
P

er
fo

rm
an

ce
su

m
m

ar
y

[%
op

t
(I

Q
R

)
an

d
Ê

[Y
∗ {

ĝ
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Ê
{Y
∗ (
ĝ
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Ê

[Y
∗ {

ĝ
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ĝ
o
p
t (H

)}
]

re
fe

rs
to

th
e

es
ti

m
at

ed
co

u
n
te

rf
ac

tu
al

m
ea

n
ou

tc
om

e
u
n
d
er

th
e

es
ti

m
at

ed
op

ti
m

al
D

T
R

.
U

n
d
er

op
ti

m
al

tr
ea

tm
en

t
al

lo
ca

ti
on

Ê
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4.6 Application of PenSIT Learning to MIMIC-III Data

Sepsis is a clinical syndrome characterized by systemic inflammation and infec-

tion and is associated with one of the highest rates of mortality among conditions

commonly treated in emergency departments (EDs) and intensive care units (ICUs)

(Marino, 2014). Due to the large degree of heterogeneity in presentation, which may

include varying degrees of organ dysfunction, sepsis is a difficult condition to diagnose

and even more difficult to successfully treat. Sepsis is routinely treated using fluid

resuscitation, antibiotics, and may also include treatment with vasopressors, mechan-

ical ventilation, and others. The established clinical guidelines for treating sepsis,

known as the “Surviving Sepsis Campaign” (Rhodes et al., 2017), strongly recom-

mends that resuscitation of at least 30 mL/kg of IV fluid be given within the first

3 hours. However, this recommendation is given with a stated “low quality of evi-

dence” due to the fact that results across studies have been inconsistent with indirect

evidence, imprecise results, and a likelihood of bias.

Due to the paucity of strong evidence as to the most beneficial fluid resuscitation

strategy in the early hours of treatment, we estimate an optimal two-stage DTR in

adult septic patients admitted to the intensive care unit after presenting to the ED

(Figure 4.1). We evaluate whether treatment with fluid restrictive or fluid liberal

strategies can be further tailored in order to minimize organ dsyfunction scores mea-

sured by the Sequential Organ Failure Assessment (SOFA; Vincent et al., 1996) at 24

hours following admission. This analysis is conducted using electronic medical record

and administrative data from the Medical Information Mart for Intensive Care III

(MIMIC-III; Johnson et al., 2016; Johnson et al., 2017; Pollard and Johnson, 2016),

a retrospectively-collected and freely-available database accessible through PhysioNet

(Goldberger et al., 2000) that contains de-identified and anonymized data for more

than 45,000 patients treated in an ICU at Beth Israel Deaconness Medical Center in

Boston, Massachusetts.
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Table 4.7: Performance summary [% opt (IQR) and Ê[Y ∗{ĝopt(H)}] (IQR)] for es-
timation of an optimal two-stage dynamic treatment regime (DTR) with 2 possible
treatments per stage to evaluate performance in smaller samples (n = 300) for both
tree- and nontree-type DTRs with a lower degree of confounding. Generated with
training dataset sample of size n = 300 with N2 = 1000 test dataset size; No.Var.H
= number of variables in covariate history H; Propensity model πa(H) is generated
using either “correct” or “incorrect” specification; H generated using multivariate
normal distribution with using exchangeable correlation structure and ρ = 0.20; IQR
= interquartile range; PenSIT = Penalized Spline-Involved Tree-based Learning; T-
RL = Tree-based Reinforcement Learning; Q-Linear = Linear Q-Learning; Q-NP =
Nonparametric Q-Learning; % opt = percent of test set classified to its optimal treat-
ment using a treatment rule estimated using the applicable method; Ê[Y ∗{ĝopt(H)}]
refers to the estimated counterfactual mean outcome under the estimated optimal
DTR. Under optimal treatment allocation Ê[Y ∗{gopt(H)}] = 8.0.

πa(H) Method
No.Var.H = 20 No.Var.H = 50

% opt Ê{Y ∗(ĝopt)} % opt Ê{Y ∗(ĝopt)}
Lower Degree of Confounding

Tree-type DTR
Q-Linear 66.8 (3.2) 6.9 (0.14) 58.4 (3.8) 6.6 (0.16)
Q-NP 76.8 (6.3) 7.3 (0.24) 69.3 (7.8) 7.0 (0.27)

Correct
T-RL 96.6 (7.5) 7.9 (0.21) 95.6 (8.2) 7.8 (0.23)
PenSIT 85.3 (13.3) 7.7 (0.31) 84.5 (12.5) 7.7 (0.31)

Incorrect
T-RL 96.0 (8.3) 7.9 (0.24) 93.3 (12.9) 7.8 (0.31)
PenSIT 84.8 (13.7) 7.7 (0.32) 87.0 (12.3) 7.7 (0.23)

Nontree-type DTR
Q-Linear 75.1 (4.5) 7.2 (0.17) 63.5 (4.3) 6.8 (0.19)
Q-NP 78.4 (6.1) 7.4 (0.17) 71.7 (7.9) 7.2 (0.25)

Correct
T-RL 78.4 (5.8) 7.3 (0.17) 77.6 (7.0) 7.3 (0.22)
PenSIT 79.6 (4.6) 7.3 (0.15) 79.3 (5.7) 7.3 (0.18)

Incorrect
T-RL 78.2 (6.3) 7.3 (0.18) 76.8 (7.4) 7.2 (0.23)
PenSIT 79.4 (4.9) 7.3 (0.14) 78.6 (4.1) 7.3 (0.15)
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Table 4.8: Performance summary [% opt (IQR) and Ê[Y ∗{ĝopt(H)}] (IQR)] for es-
timation of an optimal two-stage dynamic treatment regime (DTR) with 2 possible
treatments per stage to evaluate performance in smaller samples (n = 300) for both
tree- and nontree-type DTRs with a moderate degree of confounding. Generated with
training dataset sample of size n = 300 with N2 = 1000 test dataset size; No.Var.H
= number of variables in covariate history H; Propensity model πa(H) is generated
using either “correct” or “incorrect” specification; H generated using multivariate
normal distribution with using exchangeable correlation structure and ρ = 0.20; IQR
= interquartile range; PenSIT = Penalized Spline-Involved Tree-based Learning; T-
RL = Tree-based Reinforcement Learning; Q-Linear = Linear Q-Learning; Q-NP =
Nonparametric Q-Learning; % opt = percent of test set classified to its optimal treat-
ment using a treatment rule estimated using the applicable method; Ê[Y ∗{ĝopt(H)}]
refers to the estimated counterfactual mean outcome under the estimated optimal
DTR. Under optimal treatment allocation Ê[Y ∗{gopt(H)}] = 8.0.

πa(H) Method
No.Var.H = 20 No.Var.H = 50

% opt Ê{Y ∗(ĝopt)} % opt Ê{Y ∗(ĝopt)}
Moderate Degree of Confounding

Tree-type DTR
Q-Linear 67.5 (3.3) 6.9 (0.15) 58.9 (4.0) 6.6 (0.16)
Q-NP 78.0 (7.4) 7.4 (0.23) 72.6 (7.0) 7.2 (0.26)

Correct
T-RL 94.6 (12.0) 7.8 (0.34) 93.1 (13.0) 7.8 (0.34)
PenSIT 94.7 (11.2) 7.8 (0.27) 93.2 (12.7) 7.8 (0.31)

Incorrect
T-RL 93.4 (14.8) 7.8 (0.38) 86.8 (17.2) 7.6 (0.46)
PenSIT 94.7 (11.4) 7.8 (0.28) 93.2 (12.9) 7.8 (0.31)

Nontree-type DTR
Q-Linear 73.0 (4.8) 7.1 (0.20) 61.7 (5.0) 6.7 (0.22)
Q-NP 75.4 (5.6) 7.3 (0.18) 69.4 (7.3) 7.1 (0.24)

Correct
T-RL 74.7 (7.8) 7.2 (0.23) 74.5 (8.2) 7.2 (0.25)
PenSIT 77.2 (6.1) 7.3 (0.17) 77.0 (6.3) 7.3 (0.19)

Incorrect
T-RL 74.3 (8.0) 7.2 (0.25) 72.0 (9.0) 7.1 (0.31)
PenSIT 77.0 (6.3) 7.3 (0.17) 76.5 (6.3) 7.2 (0.19)
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Table 4.9: Performance summary [% opt (IQR) and Ê[Y ∗{ĝopt(H)}] (IQR)] for es-
timation of an optimal two-stage dynamic treatment regime (DTR) with 2 possible
treatments per stage to evaluate performance in smaller samples (n = 300) for both
tree- and nontree-type DTRs with a higher degree of confounding. Generated with
training dataset sample of size n = 300 with N2 = 1000 test dataset size; No.Var.H
= number of variables in covariate history H; Propensity model πa(H) is generated
using either “correct” or “incorrect” specification; H generated using multivariate
normal distribution with using exchangeable correlation structure and ρ = 0.20; IQR
= interquartile range; PenSIT = Penalized Spline-Involved Tree-based Learning; T-
RL = Tree-based Reinforcement Learning; Q-Linear = Linear Q-Learning; Q-NP =
Nonparametric Q-Learning; % opt = percent of test set classified to its optimal treat-
ment using a treatment rule estimated using the applicable method; Ê[Y ∗{ĝopt(H)}]
refers to the estimated counterfactual mean outcome under the estimated optimal
DTR. Under optimal treatment allocation Ê[Y ∗{gopt(H)}] = 8.0.

πa(H) Method
No.Var.H = 20 No.Var.H = 50

% opt Ê{Y ∗(ĝopt)} % opt Ê{Y ∗(ĝopt)}
Higher Degree of Confounding

Tree-type DTR
Q-Linear 67.1 (3.7) 6.9 (0.17) 58.9 (4.4) 6.6 (0.16)
Q-NP 73.8 (5.8) 7.3 (0.20) 70.0 (6.0) 7.2 (0.22)

Correct
T-RL 89.4 (15.5) 7.7 (0.43) 86.6 (18.2) 7.6 (0.47)
PenSIT 94.6 (8.5) 7.8 (0.25) 91.7 (11.7) 7.7 (0.32)

Incorrect
T-RL 86.1 (19.8) 7.7 (0.50) 86.4 (11.3) 7.6 (0.25)
PenSIT 94.4 (8.6) 7.8 (0.27) 92.4 (11.4) 7.8 (0.30)

Nontree-type DTR
Q-Linear 68.6 (6.1) 7.0 (0.22) 57.6 (6.0) 6.6 (0.25)
Q-NP 69.9 (7.8) 7.1 (0.27) 62.8 (8.9) 6.9 (0.36)

Correct
T-RL 71.1 (9.3) 7.1 (0.33) 70.3 (10.1) 7.0 (0.34)
PenSIT 75.0 (6.4) 7.2 (0.18) 74.3 (7.1) 7.2 (0.21)

Incorrect
T-RL 71.7 (11.3) 7.1 (0.36) 61.6 (22.8) 6.8 (0.71)
PenSIT 75.1 (6.4) 7.2 (0.19) 74.4 (7.9) 7.2 (0.24)
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Figure 4.1: Analysis eligibility criteria and patient population. A total of 486 patients
were included in this analysis. Inclusion criteria included being ≥ 18 years old at the
time of medical intensive care unit (MICU) admission from the emergency depart-
ment, having a diagnosis of suspected sepsis (Angus et al., 2001; Horng et al., 2017;
Iwashyna et al., 2014), receiving documented pre-MICU fluids, and surviving at least
48 hours after MICU admission.
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Baseline covariates considered as candidate tailoring variables for treatment strate-

gies included demographics such as gender, age, weight, and racial/ethnic groups,

Elixhauser comorbidity score (Elixhauser et al., 1998; van Walraven et al., 2009),

and the time of year in which the patient was treated. Stage 1 treatment was defined

as either a fluid restrictive (< 30 mL/kg) or a fluid liberal (≥ 30 mL/kg) strategy

within the first three hours after admission to the MICU. Intermediate variables col-

lected prior to Stage 2 treatment included indicators of treatment with mechanical

ventilation and vasopressors within the first three hour time period, as well as the

patient’s SOFA score evaluated at three hours post-admission. Stage 2 treatment

was defined as either a fluid restrictive (< 30 mL/kg) or a fluid liberal (≥ 30 mL/kg)

strategy between 3-24 hours after MICU admission. The final outcome of interest is

the SOFA score evaluated at 24 hours post-admission. Because SOFA scores typi-

cally exhibit a right-skewed distribution with values ranging from 0 to 18 and lower

scores indicate better prognosis, values are log-transformed and then inverted (as

6− x) so that larger values represent better outcomes; the resulting transformed val-

ues are approximately symmetric and normally distributed. All models needed to

estimate stage-specific counterfactual outcomes using the PenSI estimator, including

the propensity for assignment to a fluid liberal strategy and the conditional mean

model for the transformed SOFA score, assume an additive linear relationship with

the log odds of assignment or with the outcome, respectively. Selection of variables

to include in the stage-specific propensity models and the conditional mean models

estimated for each treatment within each stage was performed using stepwise variable

selection with the MASS package in R. For implementation of tree-based learning, at

both stages we specify the need for a 2.5% improvement in the counterfactual out-

comes mean across treatments in order to perform a covariate split; after accounting

for the transformation of the outcome used in the regression models, this represents

a SOFA improvement of roughly 0.5, which we consider to be clinically meaningful.
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Additionally, we specify a depth of 3 and a minimum of 20 observations per node.

Four hundred eighty-six (486) patients were included in the analysis cohort. The

average patient was a 69 year old white (76%) male (52%) with 0 reported Elixhauser

comorbidities (Table 4.10). The median length of hospital stay was 7.8 days with

an interquartile range (IQR) of 5.0-13.8. The median fluid input received within 0-3

hours and 3-24 hours post-admission is 41.4 mL/kg (IQR: 22.8-60.9) and 20.2 mL/kg

(IQR: 3.6-52.4), respectively. Summary statistics stratified by treatment stage (i.e.,

0-3 hours and 3-24 hours post-MICU admission) demonstrate covariate imbalance

for age, gender, and weight across fluid resuscitation strategies in the first treatment

stage, for race/ethnicity at the second stage, and for the use of mechanical ventilation

and vasopressors across fluid resuscitation strategies for both stages, suggesting that

confounding is an issue that must be addressed in our analysis in order to make causal

inference.

As can be observed in Figure 4.2, it is recommended that all patients should

receive liberal fluid resuscitation (≥ 30 mL/kg) within the first three hours following

admission to the MICU for treatment of acute emergent sepsis. If the patient has

received the liberal fluid resuscitation by 3 hours post-admission in accordance with

this estimated decision rule, the patient should receive restrictive fluid resuscitation

(< 30 mL/kg) to follow. If the patient was not given liberal fluid resuscitation

within the first three hours following admission, the patient should receive liberal fluid

resuscitation within 3-24 hours post-admission. Notably, no tailoring variables were

identified at the first treatment stage that would result in a meaningful improvement

in outcomes overall. Second stage treatment, however, can be tailored based on the

patient’s first-stage treatment in order to optimize counterfactual outcomes overall.

Although the question of how to optimally treat septic patients is complex and

multi-faceted, we applied a robust and flexible causal method with interpretable re-

sults to determine whether tailoring of fluid resuscitation strategies at each of two
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Table 4.10: Characteristics of the analysis cohort. Summary statistics of demograph-
ics, treatment, and outcomes for MIMIC-III analysis cohort are included. n = sample
size. Stage 1 = 0-3 hours post-admission. Stage 2 = 3-24 hours post-admission. R
= restrictive fluid resuscitation (< 30 mL/kg); L = liberal fluid resuscitation (≥ 30
mL/kg); IQR = interquartile range; kg = kilogram; LOS = length of hospital stay;
Mech Vent = Mechanical Ventilation; Vasos = Vasopressors; L = liters; mL/kg =
milliliters per kilogram; SOFA = sequential organ failure assessment; hrs = hours.
Median (IQR) are presented for continuous variables; frequency (percentage) are pro-
vided for categorical variables.

Overall
(n=486)

Stage 1 Stage 2
Restrictive
(n=163)

Liberal
(n=323)

Restrictive
(n=289)

Liberal
(n=197)

Patient Characteristics

Age (years) 69 [54-82] 71 [57-81] 68 [53-82] 69 [55-82] 69 [54-82]

Gender

Male 252 (52) 94 (58) 158 (49) 149 (52) 103 (52)

Female 234 (48) 69 (42) 165 (51) 140 (48) 96 (48)

Race/Ethnicity

White 371 (76) 123 (76) 248 (77) 226 (78) 145 (74)

Nonwhite 115 (24) 40 (24) 75 (23) 63 (22) 52 (26)

Weight (kg) 77 [65-91] 83 [69-98] 74 [62-87] 80 [68-94] 72 [62-85]

LOS (days)
7.8

[5.0-13.8]
8.5

[5.0-15.7]
7.7

[5.0-12.7]
7.3

[4.8-12.0]
8.2

[5.8-14.8]

0-3 hours post-Admission

Use of Mech Vent 111 (23) 43 (26) 68 (21) 74 (26) 37 (19)

Use of Vasos 89 (18) 16 (10) 73 (23) 50 (17) 39 (20)

Total Input (L)
3.0

[2.0-5.0]
1.2

[0.9-2.0]
4.0

[3.0-5.2]
2.9

[1.5-4.0]
4.0

[2.5-5.3]

Total Input (mL/kg)
41.4

[22.8-60.9]
16.7

[11.2-22.9]
53.8

[41.4-71.4]
35.2

[17.4-51.9]
53.3

[34.0-74.4]

SOFA (3 hours) 4 [2-6] 4 [2-6] 4 [2-6] 5 [3-6] 4 [2-6]

3-24 hours post-Admission

Use of Mech Vent 197 (41) 69 (42) 128 (40) 99 (34) 98 (50)

Use of Vasos 189 (39) 49 (30) 140 (43) 80 (28) 109 (55)

Total Input (L)
2.5

[1.0-4.5]
1.5

[1.0-2.7]
3.2

[1.3-5.5]
1.0

[0.7-1.6]
4.5

[3.3-6.0]

Total Input (mL/kg)
20.2

[3.6-52.4]
10.7

[0.0-25.2]
30.3

[9.0-62.7]
7.2

[0.0-16.9]
58.9

[44.0-87.3]

SOFA (24 hours) 5 [3-7] 5 [3-7] 5 [3-8] 5 [3-6] 6 [3-9]
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stages within the first 24 hours after MICU admission can be used to improve out-

comes overall. Consistent with the Surviving Sepsis Campaign best practice recom-

mendations, we find that liberal fluid resuscitation should be given as early as possible

in this patient population in order to reduce early indicators of organ dysfunction.

4.7 Discussion

PenSIT Learning retrofits a decision tree with a novel PenSI purity measure that

incorporates the estimated propensity for treatment assignment as a spline predictor

rather than a weight (Zhou et al., 2019). Not only does PenSIT Learning retain the

flexibility of T-RL and other tree-based optimal DTR estimation methods, but it

provides added robustness under conditions of a high degree of confounding. Addi-

tionally, the PenSI estimator of the counterfactual mean utilized within the PenSI

purity measure fulfills the properties of consistency and double robustness in asymp-

totia under standard regularity conditions.

There are several distinct advantages of PenSIT Learning. First, the PenSI es-

timator of counterfactual outcomes is derived using standard regression models for

the treatment assignments and the conditional outcomes at all stages, suggesting

that the standard knowledge base surrounding regression models, including model

building and selection, model fit diagnostics, etc., can and should be applied liber-

ally. Moreover, although our simulation experiments were designed such that the

same variables were used to define both counterfactual outcomes within each stage,

PenSIT Learning allows modeling choices for the counterfactual outcomes within a

stage to differ, which makes practical sense as there is no reason why we would expect

the true mechanisms to be the same. Finally, although we focused on a continuous

outcome that is approximately symmetric, the simplicity of PenSIT Learning makes

it straightforward to make adjustments to regression models based on the scale of the

outcome, e.g., using a generalized linear mixed model framework.
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Figure 4.2: Two stage treatment strategy to optimize the patient-level Sequential
Organ Failure Assessment (SOFA) score evaluated at 24 hours following admission.
We estimate that all patients should receive a high volume fluid resuscitation strategy
(≥ 30 mL/kg) within three hours after admission to the Medical Intensive Care
Unit (MICU). If the patient receives high volume fluid resuscitation within the first
three hours following admission in accordance with this strategy, they should receive
low volume fluid resuscitation (< 30 mL/kg) between 3-24 hours following MICU
admission. If they did not receive an initial high volume resuscitation strategy in
accordance with the estimated guideline, however, they should receive high volume
(≥ 30 mL/kg) fluid resuscitation between 3-24 hours following MICU admission.
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Several cautions should be heeded when applying PenSIT Learning. First, PenSIT

Learning involves a spline function of the estimated propensity score in the conditional

mean model. Whereas this allows for a flexible relationship between the propensity

score and the outcome, the propensity model should, in theory, be correctly specified.

In practice, however, simulation results suggest that the assumption of a correctly-

specified propensity model is perhaps less critical. Second, our method is based on

fulfilling the assumptions of consistency, positivity, and ignorability. The consistency

assumption is generally reasonable in many experimental settings, although a priori

assessment is of course required. Positivity can also generally be evaluated using con-

tent knowledge and by covariate balance diagnostics conditional on the propensity

score; however, in the setting with a large number of covariates and/or multiple treat-

ments and stages, some accommodations to ensure positivity may be needed (Crump

et al., 2009; Gutman and Rubin, 2015; Ho et al., 2007; Rosenbaum, 2012). Ignor-

ability, conversely, may not always be reasonable in an observational data setting,

although investigators may be willing to proceed under an assumption of ignorabil-

ity due to the fact that optimal DTR estimation is largely an exploratory pursuit

that should be challenged in confirmatory studies. Lastly, supplemental simulation

studies reveal that PenSIT Learning may be particularly sensitive to the choice of

λ, especially when there is a lower degree of confounding of the relationship between

the treatment and the outcome. However, we do generally expect a moderate to

high degree of confounding when using observational data to evaluate causal effects

in a medical setting and we maintain the view that the choice of λ and other tuning

parameters should be guided by scientific knowledge.

There are several extensions to PenSIT Learning that we believe would be of inter-

est to the research community. The first would be to explore the performance of Pen-

SIT Learning using more flexible modeling approaches for the treatment assignment

and/or the conditional counterfactual outcome models (e.g., using BART, random
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forests, kernel-based methods, etc.). It is possible that these methods may improve

performance under more complex data generation settings, and may be more desir-

able for accommodating an abundance of data, e.g., from electronic medical records,

from which there are few a priori patterns or insights. Second, although we strongly

believe that the choice of λ should be driven based on scientific knowledge, in the

absence of information about a suitable λ, data-driven approaches for selecting the

tuning parameters could be explored. Finally, extensions of PenSIT Learning to ac-

count for potential overfitting inherent in decision tree-type constructs, for example,

with stochastic tree search or incorporating a lookahead procedure, can be considered.
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CHAPTER V

Summary and Future Work

In this dissertation we have addressed three open challenges in the estimation

of optimal multi-stage multi-treatment dynamic treatment regimes with the goal of

improving the delivery of healthcare. We provide the means to evaluate previously

unaddressed problems commonly encountered in the medical and healthcare sphere

and we envision extensions of these methods to tackle new challenges.

Chapter II introduced ReST-L, which builds an estimated DTR using a sub-tree

defined by a subset of candidate tailoring variables that are determined based on prior

knowledge to be clinically or scientifically meaningful. Although an existing method,

T-RL, also incorporates an AIPW-style estimator into a decision tree construct, we

provide the theoretical justification to include only a subset of variables in an esti-

mated decision rule at each stage, but to include all possible variables in the AIPW

estimator for the counterfactual outcomes. While straightforward in principle, it pro-

vides a channel for DTR estimation under a scenario that is commonly encountered

in medical research.

Next we consider data from a Clustered SMART, in which interventions are ap-

plied at the level of the cluster but the outcome of interest lies at the level of the

individual within the cluster, a trial design that is becoming increasingly popular in

mental health, education, and implementation science research. In Chapter III we
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introduced Clustered Q-Learning to estimate model parameters of the Q-functions

when clustering occurs by nature of the study design. We further propose the M-out-

of-N Cluster Bootstrap, a method extending the m-out-of-n standard bootstrap, for

estimating confidence intervals for parameters defining the Q-functions under condi-

tions of nonregularity. Although Clustered Q-Learning and the M-out-of-N Cluster

Bootstrap are straightforward extensions of existing methods to the clustered data

setting, this is an important contribution to the statistical literature.

Finally, in Chapter IV we introduced PenSIT Learning, which incorporates into

a decision-tree type framework a novel purity measure derived from an estimator

previously proposed within the missing data literature. PenSIT Learning, while still

maintaining the flexible and interpretable structure of the decision tree framework,

diverges from the use of IPW-style estimators of the counterfactual outcomes as these

may become unstable when weights are large, a phenomenon that may occur in prac-

tice with higher levels of confounding or as the number of stages and treatments within

each stage increase. PenSIT Learning provides another method for statisticians and

clinicians to estimate a multi-stage multi-treatment DTR that may add robustness

in scenarios of higher confounding, which is likely to occur with observational data

collected in a medical setting.

There are several extensions of our work that may be considered. First, ReST-L

and PenSIT Learning are ripe for use with outcomes and treatments on alternate

scales. In the medical community, for example, time-to-event outcomes subject to

censoring mechanisms are common across many clinical specialties, and could be a

target for future work. PenSIT Learning, for example, could be a prime candidate

for use with a time-to-event outcome as it can easily be adapted for use within a Cox

proportional hazards model. In our estimation of tailored fluid resuscitation strate-

gies for patients with acute sepsis, for example, outcomes of ICU- and hospital- length

of stay, as well as survival overall, could be investigated. Additionally, whereas we
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approach both ReST-L and PenSIT Learning from the perspective of discrete treat-

ments, which is of course reasonable and common for medical treatments, we could

extend these methods to acccount for continuous treatments. In our analysis of pa-

tients with acute sepsis, for example, although we evaluate restrictive versus liberal

fluid resuscitation using a documented treatment strategy (i.e., using a cut point of

30mL/kg), an estimated DTR based on a continuous treatment scale could be of great

interest. Finally, whereas we estimate propensity models and conditional mean mod-

els parametrically for ReST-L and we utilize parametric and semi-parametric models

within PenSIT Learning, the use of more flexible methods to estimate counterfactual

outcomes could be particularly desirable given the abundance of observational data

often available to answer a research question.

With regard to Clustered Q-Learning, we effectively address a clinical scenario in

which there are a relatively large number of clusters–each with a moderate cluster size.

Although we reveal low bias and near nominal coverage across two intervention stages

under these conditions, we find that both bias and coverage suffer when the number

of clusters is small and, to a smaller extent, when the number of clusters is large

but the cluster sizes are small. Therefore, methods that accommodate the clustering

mechanism but also address constraints of a smaller cluster size would be desirable.

Secondly, just as an abundance of novel modeling choices has been proposed to date for

standard Q-Learning, we expect these developments are well-positioned to take hold

within Clustered Q-Learning, as well. Finally, although our Clustered Q-Learning

was motivated by data collected from a Clustered SMART, a straightforward use of

Clustered Q-Learning with observational data with the necessary model adjustments

to account for the confounding inherent in these settings is also reasonable.
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