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ABSTRACT

The application of a small n, sequential, multiple-assignment randomized trial (snS-

MART) to rare disease studies remains an active research area. In this dissertation,

we present methods that estimate dynamic treatment regimens (DTRs), or tailored

sequences of treatments, for rare diseases, such as focal segmental glomerulosclerosis.

We also develop an snSMART design that allows for removing an inferior treatment

arm. Moreover, we summarize methods and develop new approaches to incorporate

data from both stages in this estimation of the first stage treatment effect in an

snSMART through the use of power priors.

Following an introduction of an snSMART and its potential application in Chapter

I, in Chapter II, we propose a Bayesian joint stage model and a joint stage regression

model, first developed by Wei et al. (2018). These models can be applied to estimate

DTRs by combining information across stages. We show that the estimates from these

two methods are more efficient than that of a standard SMART analysis of weighted

and replicated regression (Nahum-Shani et al., 2012). In addition, we introduce a

sample size calculation method for our snSMART design when implementing the

joint stage regression model with Dunnett’s correction.

In Chapter III, we are motivated by an ongoing snSMART, ARAMIS (NCT02939573),

focusing on the evaluation of three drugs for isolated skin vasculitis. We propose an

alternative design by formulating an interim decision rule for removing one of the

treatments, using Bayesian modelling and the resulting posterior distributions to

provide sufficient evidence that one treatment is inferior to the other treatments. By

doing so, we can remove the worst performing treatment at an interim analysis and

xiii



prevent subsequent participants from receiving the removed treatment. In addition,

by adjusting the decision rule criteria for the posterior probabilities, we can control

the probability of incorrectly removing a treatment, a Bayesian counterpart of Type

I or Type II error rate used in frequentist methods.

In Chapter IV, we develop a novel method to incorporate outcomes from both stages

in an snSMART to estimate the first stage treatment effects using power prior mod-

els. Here, we consider the first stage outcomes from an snSMART as the primary,

or current, data and second stage outcomes as supplemental, or historical. We ap-

ply existing power prior models to snSMART data, and develop new extensions of

power prior models. All methods are compared to each other and to the Bayesian

joint stage model (BJSM) via simulation studies. By comparing the biases and the

efficiency of the response rate estimates among all proposed power prior methods,

we suggest application of Fisher’s exact test or the Bhattacharyya’s overlap measure

to an snSMART to estimate the treatment effect in an snSMART, which both have

performance mostly as good or better than the BJSM.

xiv



CHAPTER I

Introduction

1.1 Motivation

Individualized treatment strategies are encouraged for the treatment of long-term

chronic diseases, such as cancers or psychological disorders. Patients’ pre-existing

conditions are taken into account when treatments are assigned, and their response

to earlier treatments may be evaluated and serve as guidance for later treatments.

The concept of a dynamic treatment regimen (DTR), also known as an adaptive

treatment strategy, was introduced by Lavori et al. (2000), and further described

by Lavori and Dawson (2000), Murphy (2003), and Lavori and Dawson (2004), to

describe this clinical practice of sequences of tailored interventions, and DTRs provide

guidelines for clinical decision making.

In order to develop effective DTRs and identify one that can lead to the best overall

outcome, Murphy (2005a) proposed a clinical trial design called a sequential, multiple

assignment, randomized trial (SMART) that embeds DTRs by its design. A SMART

is a multi-stage design where the participants are randomized to one of the treatment

arms, and the later treatment assignments depend on whether they respond to their

earlier treatment. The numbers of participants enrolled in a SMART usually exceed

200 (Estey et al., 1999; Rush et al., 2004; Kelleher et al., 2017; Ruppert et al., 2019).

1



A RAndomized Multi-center study for Isolated Skin vasculitis (ARAMIS) trial was

a SMART launched in 2016 that started recruiting patients in 2017. Because skin

vasculitis is a rare disease, the expected sample size for this clinical trial is 90 patients,

which is smaller than most of the other SMARTs being conducted. Since most of the

existing methods are usually applied for the settings of a relatively large sample sizes,

new methods need to be developed for the estimation of DTRs in a SMART with

small sample sizes.

Due to the nature of multiple treatment assignments for each patient, a SMART

design is particularly useful to estimate treatment effects of rare disease therapies

because more information can be collected from one patient. Thus, we refer to a

small sample (n) SMART, or snSMART, when the goal of a SMART is to estimate

individual treatment effects in a small sample setting. Wei et al. (2018) has proposed

models to estimate the first stage treatment effect that combine outcomes from two

stages in an snSMART together by making an assumption of proportionality of first

and second stage response rates. However, such an assumption may be hard to

justify in practice. Thus, we present an alternative model that can be used in a more

general setting, which includes the scenario where this assumption of proportionality

is violated.

ARAMIS is a fixed snSMART design, such that no adaptation or interim analyses

were performed. We consider a modification to the original snSMART design to

allow for the dropping of an inferior treatment arm, which potentially appeal to

patients. Many rare disease trials implement adaptation for better recruitment or

early termination.

2



1.2 Summary of Objectives

With the focus on tackling the issues described above, we present the main objectives

of the next three chapters and introduce briefly how we achieve those goals.

In Chapter II, we apply and modify the Bayesian joint stage model and joint stage re-

gression model developed by Wei et al. (2018) to estimate the response rates of DTRs

embedded in an snSMART. We perform simulation studies to compare the perfor-

mance, in terms of biases and root mean squared errors of estimation, of these two

models to the existing weighted and replicated regression model used for larger sam-

ple SMART studies. In addition, we develop a simulation-based method to calculate

the required sample size of an snSMART when there is a control arm.

In Chapter III, we introduce a modified snSMART design incorporating a group

sequential feature, or a group sequential snSMART. In this design, investigators can

decide if a treatment arm should be removed from the trial due to inferiority during

the interim analyses. This new design allows more participants to be assigned to the

better performing treatments since the worst treatment arm tends to be removed. The

probabilities of correctly or incorrectly removing an arm during the interim analyses

are presented.

In Chapter IV, we propose a power prior model approach for the estimation of treat-

ment effects in an snSMART. Different ways of estimating power parameters are

presented, including existing likelihood based methods and a novel application of

measures of closeness. Through simulation studies, we compare these power prior

models to the existing Bayesian joint stage model.

3



CHAPTER II

Frequentist and Bayesian Methods to Estimate

Dynamic Treatment Regimens in a Small n,

Sequential, Multiple-Assignment, Randomized

Trial

2.1 Introduction

Focal segmental glomerulosclerosis (FSGS) is a rare kidney disease with an annual

incidence of 0.2-1.8 cases per 100,000 individuals (Rosenberg and Kopp, 2017). FSGS

has traditionally been diagnosed in patients with persistent proteinuria based on char-

acteristic lesions in a kidney biopsy specimen (D’Agati et al., 2011). The identification

of an effective treatment for FSGS is generally by trial and error, i.e., try a therapy,

assess response, move to alternate treatment option in treatment failures, and then

repeat these steps. There is little evidence to guide the choice of initial therapy or the

selection of subsequent therapies dependent on initial treatment response patterns.

Nephrologists are confronted with several questions when caring for patients with

FSGS. How should treatments targeting a specific mechanism of disease be selected,

implemented, and assessed? Which of these treatments can provide the best short-

and long-term response rate? What is the best sequence to introduce therapy when

4



there are several options? These questions are not unique to FSGS, but similar types

of questions are shared across many rare diseases and have proved difficult to answer

in clinical trials with small samples.

One clinical trial design that could address these questions in FSGS and other rare

diseases is the small n sequential, multiple assignment, randomized trial design (snS-

MART) (Tamura et al., 2016; Wei et al., 2018). An snSMART design is a multi-stage

trial where participants are first randomized to one of the treatment arms and those

who do not respond to the initial treatment are re-randomized to one of the other

treatment options.

Wei et al. (2018) proposed both a frequentist Joint stage regression model (JSRM)

and a Bayesian joint stage model (BJSM) to estimate the treatment effects in an

snSMART where the outcome of interest is a binary indicator of response to treat-

ment. We show here that 1) snSMART designs may be used in settings with two

active treatments and a standard of care, 2) snSMART designs may also be used to

estimate and compare DTRs, and 3) sample size can be calculated via simulation

study when the frequentist model is used.

Several methods exist for comparing DTRs embedded in a SMART. For continuous

and binary data, a weighted and replicated regression approach allows for simultane-

ous estimation of all embedded DTRs while controlling for covariates (Nahum-Shani

et al., 2012; Kidwell et al., 2017), which will be described in more detail in Section

2.2.3. Additional semiparametric methods for estimating and comparing DTRs in-

clude G-estimation (Robins , 2004), regret-regression (Henderson et al., 2010) adapted

from Murphy’s iterative minimization of regrets method (Murphy , 2003) and Q-

learning (Murphy , 2005b). Most of the existing methods, however, are based on large

sample theory, which means that the methods may not provide reliable estimation

when the sample size is small.
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Several Bayesian approaches have been developed in an attempt to obtain efficient

and/or unbiased results for DTRs in small and large samples. One approach uses

data from an observational study to infer the joint posterior predictive distribution

of all baseline covariates, potential first-stage outcomes and second-stage outcomes of

each possible subgroup that an individual may follow (Zajonc, 2012). From this joint

posterior, Zajonc simulated new samples to determine the best DTR using a pre-

specified utility function. In a similar vein, Saarela et al. (2015) proposed a Bayesian

model for estimating DTRs that incorporates inverse probability of treatment weight-

ing to deal with the potential confounding. Two methods have also been proposed for

DTRs with time-to-event outcomes (Thall et al., 2007; Xu et al., 2016). A common

characteristic for both methods is the estimation of DTR-specific mean failure times

based on the sum of the estimated transition times of different stages, which avoids

the need to consider weighting.

In Section 2.2, we present both frequentist and Bayesian models to estimate and

compare first-stage treatment effects sharing information across stages and to estimate

and compare DTRs where interest is in the longer-term course of care. In Section 2.3,

bias and efficiency of the presented models are compared via simulations, which are

motivated by the FSGS setting. In addition, we demonstrate the method to find the

sample size required in an snSMART to compare novel treatments to a standard of

care implementing the frequentist model with Dunnett’s correction. Lastly, we close

with a discussion in Section 2.4.

2.2 Bayesian and Frequentist Analyses of an snSMART

We present Bayesian and frequentist models that can estimate both first stage treat-

ment effects and DTR effects using data from both the first and second stages of

an snSMART. Specifically, we present a Bayesian joint stage model (BJSM) and a
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Figure 2.1: A small n, sequential, multiple assignment, randomized trial (snSMART)
design. Subjects are allocated to one of the three first stage treatment groups A, B,
C at time 0. R represents equal randomization to the following treatments. Based
on the response status at time t, patients either continue the initial treatment or are
re-randomized to one of the other two treatments. Subgroups 1 through 9 denote
the treatment paths that any one patient may follow. Second stage responses can be
obtained at time 2t. The combination of two treatment paths, one for responders and
another for non-responder sharing the same first stage treatment defines a DTR.

frequentist joint stage regression model (JSRM) using generalized estimating equa-

tions (GEE). These models are extensions of those in Wei et al. (2018) allowing

for estimates of DTRs in the presence of potential first and second stage treatment

interactions.

2.2.1 Bayesian Joint Stage Model

For subject i = 1, 2, . . . , N , treatment j = A,B,C, and stage k = 1, 2, we let Y j
ik be

an indicator of response for subject i receiving treatment j in stage k. The first-stage

response rate to treatment j is denoted by πj. The second-stage response rate of

the first-stage responders to treatment j is denoted by β1jπj, and the second-stage
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response rate of the non-responders to first-stage treatment j who receive treatment

j′ in the second stage is denoted by β0jπj′ . Here, β1j and β0j are called linkage

parameters since they link the first stage response rate to the second stage response

rate (Wei et al., 2018). We assume that the first-stage non-responders are less likely

to respond to either of the two other treatments in second stage (β0j < 1). We also

assume that linkage parameters only depend on the first stage treatment.

We are interested in estimating the second stage response rates of all DTRs, de-

noted by πjjj′ , where first j indicates the first stage treatment, second j indicates the

second stage treatment as a first-stage responder, and j′ indicates the second stage

treatment as a first-stage non-responder. For example, the DTR “AAB” encompasses

all patients who received treatment A in the first stage and then would receive either

treatment A or B in the second stage depending on whether the patients respond

to the first stage treatment. The second stage response rate of the DTR “AAB” is

denoted by πAAB. We first obtain the posterior draws of πj, β1j, and β0j through the

BJSM (Wei et al., 2018) as follows:

Y j
i1|πj ∼ Bernoulli(πj) (2.1)

Y j′

i2 |Y
j
i1, πj, πj′ , β1j, β0j ∼ Bernoulli

(
(β1jπj)

Y ji1(β0jπj′)
1−Y ji1

)
(2.2)

πj ∼ Beta(θ1, δ1) (2.3)

β0j ∼ Beta(θ2, δ2) (2.4)

β1j ∼ Gamma(θ3, δ3) (2.5)

Equations 2.1 and 2.2 show the distributions of the first and second stage responses.

The prior distributions for the parameters πj, β0j and β1j are given in Equations 2.3,

2.4 and 2.5. The hyperparameters of the prior distributions should be based on prior
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knowledge from investigators. Specifically, for πj, we assigned the values of θ1 = 0.4

and δ1 = 1.6, which gives a prior mean of 0.2 for the response rates since we believe

that an ineffective treatment or standard of care would have a response rate of 20%.

Similarly, for β0k, we have assigned the values of θ2 = 1.6 and δ2 = 0.4, so that the

average prior response rate for the second stage treatment for non-responders was

assumed a priori to be reduced by 20% compared to the first-stage response rate of

the same treatment. For β1j, we assigned the values of θ3 = 2 and δ3 = 2, so that

the prior mean of 1 indicates that the first stage responders in the first stage are

assumed to have the same response rate to the same treatment in the second stage.

We note the change in the prior distribution of β1j from Wei et al. (2018). We made

the prior distribution more flexible here such that β1j can range from zero to infinity

as opposed to one to infinity.

Next, we compute the posterior draws for each DTR πjjj′ from the following equation

using the the posterior draws of β0j, β1j, and πj:

πjjj′ = πj(πjβ1j) + (1− πj)(πj′β0j) (2.6)

As a result, it is easy to calculate the means and standard deviations of πjjj′ from

their posterior draws.

2.2.2 Joint Stage Regression Model

A joint-stage regression model (JSRM) is a frequentist modeling approach that in-

corporates the responses of both stages as repeated measurements for each subject.

Hence, generalized estimating equations (GEE) are used to estimate the response

rates of each treatment and from these estimates, we can compute the marginal re-

sponse rates for each DTR. For binary outcomes, the logit link is most commonly

applied to estimate the response rate (Lei et al., 2012; Kidwell et al., 2017). However,
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in small samples, the standard errors of parameters tend to be underestimated if we

fit the model with the logit link function (Mancl and DeRouen, 2001). Instead of

applying the bias-corrected variance estimator of Mancl and DeRouen (2001), we use

a log link in our GEE model (Williamson et al., 2013).

For subject i = 1, . . . , N , and stage k = 1, 2, we let Yik be the response of subject i

in stage k. The JSRM with six linkage parameters is as follows:

log(P (Yik = 1)) = α11(jik = A) + α21(jik = B) + α31(jik = C)

+ [α41(Yi1 = 1) + α51(Yi1 = 0)]1(ji1 = A, k = 2)

+ [α61(Yi1 = 1) + α71(Yi1 = 0)]1(ji1 = B, k = 2)

+ [α81(Yi1 = 1) + α91(Yi1 = 0)]1(ji1 = C, k = 2)

(2.7)

where jik is the treatment indicator of subject i in stage k and 1(·) is an indicator

function. In Equation 2.7, α1 to α3 correspond to the first stage response rates of the

treatments A, B, and C, or πA, πB, and πC , respectively. The second stage response

rates start with the first stage response rates, but are then augmented by an amount

depending on both (i) the treatment received in stage 1, and (ii) whether or not

a response occurred in stage 1. For example, consider the individuals who receive

treatment B in stage 2 after not responding to treatment A in stage 1. Their second

stage response rate would be a function of α2, in the first line of Equation 2.7, and

then augmented by α5 to reflect the non-response to treatment A in stage 1.

We assume that the dependency of Yi2 on Yi1 is already taken into account with the

covariates in the JSRM, so we fit this GEE model with the independence working

covariance structure and use a robust “sandwich” estimator to estimate Cov(α̂),

where α = (α1, . . . , α9)
>. Even if there is additional correlation of Yi1 and Yi2 that

is not captured by the working covariance matrix, the use of sandwich estimator

guarantees the unbiasedness of parameter estimates, and it is flexible to change the
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working covariance matrix to other type, such as compound symmetry, if a strong

additional within-subject correlation can be identified.

To estimate the first stage response rates denoted by πj, j = A,B,C, we exponentiate

the first three coefficients in Equation 2.7. Specifically, π̂A = exp(α̂1), π̂B = exp(α̂2),

and π̂C = exp(α̂3). To estimate the response rates of the six embedded DTRs, we use

linear combinations of estimates from Equation 2.7. For example, from Figure 2.1,

DTR “AAB” contains subgroups 1 and 2 and the estimated response rate is π̂AAB =

π̂A × β̂1Aπ̂A + (1− π̂A)× β̂0Aπ̂B, where π̂A = exp(α̂1), π̂B = exp(α̂2), β̂1A = exp(α̂4),

β̂0A = exp(α̂5). The response rates of the other DTRs can be estimated through a

similar approach. The standard error of each estimated DTR response rate can be

obtained from Cov(α̂) using the Delta method.

2.2.3 Weighted and Replicated Regression Model

We briefly review the existing weighted and replicated regression model (WRRM) to

estimate the response rate of DTRs embedded in a SMART design; more details can

be found in Nahum-Shani et al. (2012). We note that WRRM uses only second stage

responses to estimate the response rates of DTRs, in contrast to the previous two

methods which use both first and second stage outcomes. As previously described in

Section 2.1, the subjects are weighted before the model is fit using weights based on

the inverse-probability-of-treatment. To estimate the response rates of different DTRs

simultaneously using standard software, we then need to implement replication. In

general, the second stage outcomes for subjects who are consistent with more than

one DTR are replicated. For example, the subjects who respond to A in the first stage

and continue the same treatment are consistent with two DTRs “AAB” and “AAC”,

meaning that their second stage responses are used in estimation of both DTRs

“AAB” and “AAC”. Thus, we replicate the data of these subjects who are consistent

11



with two DTRs and assign these two sets of data to two DTRs, respectively. For non-

responders to the first stage treatments, they are only consistent with one DTR, so

no replication is required for them, and their second stage outcomes are only used for

the estimation of the corresponding DTRs. As a result of replication of data for the

first stage responders, the data are now considered as repeated measurements, which

is the reason that the estimation of DTR effects is conducted under the framework

of GEE (Nahum-Shani et al., 2012).

Parallel to the JSRM approach, we use a log link function in our model. We follow a

model parametrization so that dummy variable coding indicates the first and second

stage treatments, where the DTR “AAB” is chosen as a reference DTR. Thus, if we

let Yi2r, r = 1, 2, be the second-stage response of subject i, the WRRM is:

log(P (Yi2r = 1)) = α′0 + α′11(ji = B) + α′21(ji = C)

+ α′31(ji = A, j′ir = C) + α′41(ji = B, j′ir = C) + α′51(ji = C, j′ir = B)
(2.8)

where j′ir is the r-th second-stage treatment of the subject i. For the non-responders

to first stage treatment who are consistent with only one DTR, r = 1, and for the

responders to first stage treatment who are consistent with two DTRs, r = 1, 2. We

note that WRRM uses only second stage responses to estimate the response rates of

DTRs, in contrast to the previous two methods which use both first and second stage

outcomes.

After the model is fit, we estimate the response rates for each DTR by consider-

ing linear combinations of the regression parameters. DTR “AAB” is estimated by

exp(α̂′0), DTR “AAC” is estimated by exp(α̂′0 + α̂′3), DTR “BBA” is estimated by

exp(α̂′0 + α̂′1), DTR “BBC” is estimated by exp(α̂′0 + α̂′1 + α̂′4), DTR “CCA” is

estimated by exp(α̂′0 + α̂′2), and DTR “CCB” is estimated by exp(α̂′0 + α̂′2 + α̂′5).

The variances of the estimated response rates for each DTR are calculated using the
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delta method, where the variances and covariances of the estimated parameters in

the models can be computed by the robust “sandwich” variance estimators.

Although both JSRM and WRRM are GEE-based models, they are conceptually

different. The repeated measurements in JSRM represent the first- and second-stage

outcomes of one subject after receiving the treatment in the first and second stages.

However, the repeated measurements in WRRM are the second-stage outcomes for

responders for their associated consistent DTRs in order to use standard software to

simultaneously estimate the DTRs.

2.3 Simulation Results

2.3.1 Scenarios

In order to compare the performance of the methods described in Section 2.2, we con-

ducted simulation studies where we estimated the response rates of DTRs and their

variances from the two-stage design shown in Figure 2.1. We outline the data gen-

eration process here. Each arm in stage 1 contains exactly one-third of the subjects.

Subject responses to first-stage treatments A, B and C are generated from Bernoulli

distributions with parameters πA, πB and πC , respectively. Second-stage responses

for the responders to first-stage treatments are generated from Bernoulli distributions

with parameters specified as the products of first-stage response rates and the corre-

sponding linkage parameters: β1AπA, β1BπB, and β1CπC . Similarly, second-stage re-

sponses for the non-responders to first-stage treatments are generated from Bernoulli

distributions with parameters specified as the products of β0j and πj′ , j = A,B,C.

For example, second-stage responses for the subjects who do not respond to treatment

A in the first stage and receive the treatment B in the second stage (subgroup 2 in

Figure 2.1) are generated from Bernoulli(β0AπB).
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Four sets of scenarios are considered in our study with different true treatment re-

sponse rates. In scenarios 1a-c and 2a-c, two potentially active treatments A and B

have the same response rates, but the treatments A and B in scenarios 2a-c have even

higher response rate. The true response rates in these two sets of scenarios resemble

potential settings in FSGS. In scenarios 3a-c, only one of the potentially active treat-

ments is truly better than the standard of care in terms of response rate. In scenarios

4a-c, both potentially active treatments have higher response rates than that of the

standard of care, but A has a even higher response rate. In each set of scenarios,

there are three different combinations of linkage parameters β0j and β1j, j = A,B,C,

with different assumptions. The true parameter values of each scenario are shown

in Table 2.1. In the scenarios ending with a, β1j, j = A,B,C, are assumed equal,

and β0j, j = A,B,C, only depend on the first stage treatment. For example, for the

non-responders to treatment A, their linkage parameters are 0.8 regardless of which

alternative treatments they receive in the second stage. In the scenarios ending with

b, both β0j and β1j depend on the first stage treatements. In the scenarios ending

with c, the linkage parameters for non-responders depend on both first and second

stage treatments, which violates the assumption on β0k of the BJSM and JSRM.

2.3.2 Estimation with Bayesian and Frequentist Methods

We evaluate the response rate estimates of treatments obtained using different meth-

ods within each set of scenarios. Since the models here differ from those in Wei

et al. (2018), we compare the estimates from the BJSM, JSRM and first stage max-

imum likelihood estimate (FSMLE, the MLE of response rates using only first stage

outcomes). For each scenario, we simulate 1,000 replications and obtain first stage

treatment effect estimates using the BJSM, JSRM and FSMLE. Table 2.2 shows the

biases and rMSEs of the estimated treatment response rates in all twelve scenarios

with the given sample sizes. The sample sizes used in these scenarios were calculated
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Scenario πA πb πC β1A β1B β1C β0AB β0AC β0BA β0BC β0CA β0CB

1 a 0.40 0.40 0.20 1.0 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4
b 1.5 1.0 0.5 0.8 0.8 0.6 0.6 0.4 0.4
c 1.5 1.0 0.5 0.65 0.75 0.7 0.6 0.75 0.45

2 a 0.45 0.45 0.20 1.0 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4
b 1.5 1.0 0.5 0.8 0.8 0.6 0.6 0.4 0.4
c 1.5 1.0 0.5 0.65 0.75 0.7 0.6 0.75 0.45

3 a 0.45 0.20 0.20 1.0 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4
b 1.5 1.0 0.5 0.8 0.8 0.6 0.6 0.4 0.4
c 1.5 1.0 0.5 0.65 0.75 0.7 0.6 0.75 0.45

4 a 0.45 0.30 0.20 1.0 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4
b 1.5 1.0 0.5 0.8 0.8 0.6 0.6 0.4 0.4
c 1.5 1.0 0.5 0.65 0.75 0.7 0.6 0.75 0.45

Table 2.1: Response rates and linkage parameter values used to generate data for all
scenarios. πk (k = A,B,C) is the response rate of treatment K in the first stage.
β1k is the linkage parameter for first stage responders to k, and β0kk′ is the linkage
parameter for first stage non-responders to k who receive k′ in the second stage.

using the method in Section 2.3.3.

In all scenarios, the BJSM has the largest biases among the three models, while the

biases for JSRM and FSMLE are negligible. The only exceptions are scenario c’s

where the biases for JSRM are larger than that of the FSMLE due to the fact that

model assumptions on the linkage parameters for non-responders are violated, i.e.,

the linkage parameters for non-responders depend on both first and second stage

treatments. When looking at the rMSEs, we find that BJSM performs slightly better

than JSRM, and the rMSE of the FSMLE is the highest, which can be expected

because only first-stage outcomes are used. Thus, the BJSM is more efficient than

the other methods, but efficiency comes at a price of computational intensiveness and

some biases. The BJSM and JSRM are preferred over the FSMLE based on efficiency.

The choice between the BJSM and JSRM may depend on the bias-variance tradeoff

and computational resources.

We can evaluate the response rate estimates of DTRs obtained using different methods

within each set of scenarios as well. We compare the estimates from the BJSM, JSRM
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and WRRM. The expected DTR response rates are shown in Table 2.3. Figure 2.2

shows the absolute values of mean biases and mean rMSEs of the estimated DTR

response rates in all twelve scenarios with the calculated sample sizes. The detailed

results for Scenarios 1a-c through 4a-c are tabulated in Table A.1 in Appendix A.

Estimates from the BJSM have the largest biases among the three methods, while

the biases from the other two methods are negligible. However, estimates from BJSM

have the smallest rMSEs, and estimates from WRRM have the largest rMSEs because

only second stage outcomes are used. Similar to the results from first stage treatment

effect estimation, BJSM and JSRM are preferred over the WRRM based on the

efficiency, and the choice between these two methods need to account for the bias-

variance tradeoff and computational resources.

2.3.3 Sample Size Calculation via Dunnett’s Method

A sample size calculation for an snSMART is available for comparing the first stage

response rates (Tamura et al., 2016). This sample size calculation, however, is based

on a frequentist method that does not use all of the second stage data and thus

is not efficient (Wei et al., 2018). Here, we present a simulation-based sample size

calculation using the JSRM with six linkage parameters when interest is in comparing

two active treatments to a control or standard of care with a specified family wise

error rate and power. We use the JSRM for sample size calculation based on its

computation speed and frequentist operating characteristics.

We apply Dunnett’s approach under GEE (Orelien et al., 2002; Hsu, 1992) to identify

a significant difference between the two drugs of interest, in our setting the novel

antifibrotic drug (A) and novel anti-inflammatory drug (B), with the standard of

care (C). The detailed steps of the approach can be found in Orelien et al. (2002).

Simulations are conducted to obtain the total sample size to achieve a family-wise
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Scenario
BJSM JSRM FSMLE

Bias rMSE Bias rMSE Bias rMSE

1a πA -0.031 0.068 -0.001 0.069 0.000 0.072
πB -0.021 0.065 0.001 0.069 0.000 0.072
πC -0.009 0.047 -0.002 0.052 -0.003 0.058

1b πA -0.020 0.062 -0.001 0.069 0.000 0.072
πB -0.020 0.065 0.001 0.069 0.000 0.072
πC -0.014 0.048 -0.002 0.052 -0.003 0.058

1c πA -0.001 0.056 0.020 0.071 0.000 0.072
πB -0.040 0.072 -0.021 0.071 0.000 0.072
πC -0.016 0.049 -0.002 0.052 -0.003 0.058

2a πA -0.040 0.083 -0.001 0.086 -0.001 0.089
πB -0.029 0.080 0.001 0.086 0.000 0.089
πC -0.010 0.057 -0.003 0.064 -0.004 0.071

2b πA -0.026 0.075 -0.001 0.086 -0.001 0.089
πB -0.029 0.080 0.001 0.086 0.000 0.089
πC -0.016 0.057 -0.003 0.064 -0.004 0.071

2c πA -0.004 0.068 0.022 0.088 -0.001 0.089
πB -0.047 0.086 -0.023 0.087 0.000 0.089
πC -0.017 0.058 -0.003 0.064 -0.004 0.071

3a πA -0.042 0.077 -0.002 0.076 0.000 0.078
πB -0.009 0.051 0.000 0.057 0.000 0.062
πC -0.009 0.049 -0.002 0.056 -0.003 0.062

3b πA -0.030 0.069 -0.002 0.076 0.000 0.078
πB -0.009 0.051 0.000 0.057 0.000 0.062
πC -0.015 0.050 -0.002 0.056 -0.003 0.062

3c πA -0.009 0.060 0.014 0.076 0.000 0.078
πB -0.019 0.052 -0.013 0.056 0.000 0.062
πC -0.017 0.050 -0.004 0.055 -0.003 0.062

4a πA -0.039 0.076 -0.002 0.075 0.000 0.078
πB -0.016 0.061 0.000 0.067 -0.001 0.071
πC -0.009 0.049 -0.002 0.055 -0.003 0.062

4b πA -0.028 0.069 -0.002 0.075 0.000 0.078
πB -0.016 0.061 0.000 0.067 -0.001 0.071
πC -0.015 0.050 -0.002 0.055 -0.003 0.062

4c πA -0.007 0.060 0.018 0.077 0.000 0.078
πB -0.031 0.065 -0.018 0.067 -0.001 0.071
πC -0.017 0.051 -0.004 0.055 -0.003 0.062

Table 2.2: The bias and root mean squared error (rMSE) of the treatment response
rate estimates using Bayesian Joint Stage Model (BJSM), Joint Stage Regression
Model (JSRM), and first stage MLE (FSMLE). The sample sizes for scenarios 1a-c,
2a-c, 3a-c, and 4a-c, are 135, 90, 120 and 120, respectively.
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Figure 2.2: Left column: The absolute values of means of bias of DTR response rate
estimates across Scenarios 1 to 4. Right column: The means of root mean squared
error (rMSE) of DTR response rate estimates across Scenarios 1 to 4.
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Scenario πAAB πAAC πBBA πBBC πCCA πCCB

1 a 0.352 0.256 0.304 0.232 0.168 0.168
b 0.432 0.336 0.304 0.232 0.148 0.148
c 0.396 0.330 0.328 0.232 0.260 0.164

2 a 0.401 0.291 0.351 0.268 0.184 0.184
b 0.502 0.392 0.351 0.268 0.164 0.164
c 0.465 0.386 0.376 0.268 0.290 0.182

3 a 0.291 0.291 0.256 0.136 0.184 0.104
b 0.392 0.392 0.256 0.136 0.164 0.084
c 0.375 0.386 0.292 0.136 0.290 0.092

4 a 0.334 0.291 0.279 0.174 0.184 0.136
b 0.436 0.392 0.279 0.174 0.164 0.116
c 0.411 0.386 0.310 0.174 0.290 0.128

Table 2.3: The expected response rate of dynamic treatment regimens (DTRs) for
each scenario in Table 2.1. πAAB corresponds to DTR “AAB”, and the rests are
similar.

type I error rate (α) of 10% and 80% power. Since we are performing two pair-wise

comparisons (A vs. C and B vs. C), type I error rate is defined as the probability

that either or both of the two p-values are smaller than the nominal α when all

three drugs have same response rates, and power is defined as the probability that

either or both of the two p-values are smaller than the nominal α if both drugs of

interest truly have higher response rates than the that of the standard of care. One

thousand replicates have been performed for each sample size. We show power curves

in Figure 2.3 under scenarios 1a, 2a, 3a and 4a given in Table 2.1. We find that

the appropriate total sample sizes for these four scenarios are about 135, 90, 120

and 120, respectively. The total sample sizes for scenarios ending in “b” and “c”

resemble that of the corresponding scenarios ending in “a” (results not shown). The

result indicates that an snSMART comparing two active treatments to a control is

feasible for rare disease studies because the sample size can be controlled at the level of

about 100 individuals, and the comparison of DTRs can be performed simultaneously.

Specifically, if the difference in the response rates between active treatments and the

control is 0.25, the sample size of this snSMART can be as small as 90.
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Figure 2.3: Power curve using JSRM with Dunnett’s approach. Two pair-wise com-
parisons (active treatment A vs. standard of care C and active treatment B vs.
standard of care C) are performed for each run. Power is estimated by the propor-
tion of runs in which one or both of the p values from the two pair-wise comparisons
after Dunnett’s correction are smaller than the nominal α.

2.4 Discussion

Using FSGS as an illustrative example, we have outlined how an snSMART design

can be implemented to test the efficacy of novel therapies for rare diseases. An

snSMART design can address important clinical issues regarding the optimal agent for

the disease and the individual patient as well as how treatments can be sequenced and

tailored to produce long-term responses. Moreover, an snSMART design maximizes

the amount of information that can be learned from each patient and is likely to

enhance acceptance of clinical research by patients and their families, and therefore

promote participation in clinical trials.
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We extended the BJSM and JSRM beyond the work of Wei et al. (2018) and focused

on estimating both the first stage response rates and DTR effects from models that

included six linkage parameters. In general, the estimators of response rates from

the BJSM and JSRM are slightly biased relative to estimators from WRRM because

the WRRM does not involve any assumptions on the linkage parameters. However,

when we consider rMSE, which involves both bias and variance, the BJSM is the best

among the all three models under every scenario and sample size. The BJSM and

JSRM may be preferred over WRRM for studying the rare diseases under a SMART

design because of the general low bias and high efficiency. The estimators of response

rates of WRRM are least efficient because only second-stage responses are used.

An assumption of this snSMART design is that the disease of interest should be

relatively stable, and that the disease status of individuals does not wax and wane

dramatically if there is no change in intervention. In some diseases where this assump-

tion might be violated, this snSMART design, as well as other multi-stage designs,

may not be appropriate because the observed outcomes from an individual might

reflect the random fluctuation of the disease status rather than the actual treatment

effects.

Future work includes improving the BJSM and JSRM to include baseline and time-

varying covariates. The WRRM can include baseline and/or intermediate variables

to potentially improve the efficiency of the estimated effects. However, the BJSM

does not easily lend itself to controlling for covariates, and the JSRM model can

only control for baseline measures. Future research will focus on applying precision

medicine in the Bayesian and JSRM methods so that variables, such as age, sex or

adherence to the initial treatment, can be successfully incorporated into our models.

Bayesian analysis has been a recommended approach for trials in the rare disease

setting since the analysis incorporates prior information, more can be gained from
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smaller sample sizes. Bayesian analysis, however, requires a shift in the expectations

of results such that p-values are not generated at the end of a Bayesian analysis.

The analysis instead can provide estimates of the response rates, credible intervals

(similar to confidence intervals) and probabilities that the treatments differ in their

efficacy (e.g., the probability that the standard of care results in 20% less efficacy

than the anti-fibrotic therapy is 90%). The results from Bayesian analyses are often

more intuitive and interpretable than frequentist results.
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CHAPTER III

A Bayesian Group Sequential Small n, Sequential,

Multiple-Assignment, Randomized Trial

3.1 Introduction

As an alternative to a traditional trial design, a small sample (n), sequential, multi-

ple assignment, randomized trial (snSMART) can be used for efficient estimation of

treatment effects in rare diseases (Tamura et al., 2016). An snSMART is a multi-

stage design where participants can be re-randomized at an interim timepoint based

on their responses to initial treatment. A Randomized Multicenter Study for Isolated

Skin Vasculitis (ARAMIS) is an ongoing snSMART of 90 participants designed to

compare the effects of three active treatments for skin vasculitis (NCT02939573), and

the motivating design for our proposed methods.

In contrast, a traditional sequential, multiple assignment, randomized trial (SMART),

first proposed by Lavori and Dawson (2000) and Murphy (2005a), is a multi-stage

design used to evaluate the effects of tailored intervention sequences for treating

disease, or dynamic treatment regimens (Murphy , 2003, 2005a), with a relatively

large number of participants. Thus, although an snSMART may seem similar to a

traditional SMART, the two designs differ significantly in both their objective and

assumed sample size.
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Like traditional clinical trials, investigators may prefer a design that allows for the

potential to remove an inferior treatment arm at an interim point during the trial.

Adapting the snSMART design to allow for removing a treatment arm may also

be favorable to participants because they are expected to receive a more effective

treatment if the worst treatment is removed during the trial. Currently, no formal

group sequential methods exist for an snSMART design, although many such methods

exist for more traditional designs.

Frequentist interim analysis methods for clinical trials have been proposed by Stallard

and Todd (2003), Stallard and Friede (2008), and Magirr et al. (2012). However,

those methods assume that the study has a control arm, and any treatment that

is not superior to the control is removed. However, in our motivating snSMART

design, there is no control arm, but rather three active treatment arms. Shih and

Lavori (2013) did propose an alternative method in which they determine the current

observed best treatment at each interim analysis, and all treatments shown to be

inferior to the current best treatment are removed.

Bayesian approaches also exist for group sequential designs. Rosner and Berry (1995)

focused on the posterior distribution of the difference in the treatment response rates

to determine superiority at each interim analysis. However, they artificially divided

their four treatments into two groups and performed two within-pair comparisons

and one between-pair comparison, which is a limitation for application to a more

general scenario of comparing multiple treatments. Yin et al. (2012) used the poste-

rior predictive probability of treatment difference to decide early stopping boundaries

in their Bayesian group sequential design. However, similar to many of the frequentist

methods, Yin et al. (2012) also selected one treatment as the standard to which all

other treatments were compared. Zhu et al. (2017) and Shi and Yin (2019) developed

methods to control the overall Type I error rate in their Bayesian group sequential

test, but only in the scenario of two treatment arms.
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In our current work, we propose a Bayesian group sequential design that allows for

removal of a worst performing treatment in an snSMART. Similar to a conventional

group sequential design, before the start of an snSMART, we specify the number of

interim analyses (looks) and the criteria for removing an arm at each interim analysis

so that we control the overall probability of removing an arm under the scenario when

three treatments have the same response rate. We describe our method in Section

3.2 and demonstrate the results of our approach via simulation in Section 3.3. We

close with a discussion in Section 3.4.

3.2 Design

3.2.1 Standard snSMART design

3.2.1.1 General setup

The two-stage design of our motivating trial ARAMIS is shown in Figure 3.1(a);

the original design had no interim analyses. In stage 1, participants are randomized

equally to one of the three active treatments and then followed for six months, during

which response to treatment may occur. In stage 2, stage 1 responders continue with

the same treatment, while non-responders are re-randomized to one of the other two

treatments that they did not initially receive. Participants are then followed for an

additional six months for the occurrence of response to treatment. The length of

stage 1 is the same as the length of stage 2, and stage 2 begins immediately after

stage 1 ends. We emphasize that the term “stage” refers to the fixed period of time

from a participant’s receipt of a treatment to the end of their follow-up for response

to that treatment.
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Figure 3.1: (a) A group sequential small n sequential multiple assignment randomized
trial (snSMART) design before an arm being removed, which is also an snSMART
design without interim analysis. (b) A group sequential snSMART design after treat-
ment A is removed. The numbers around the arrows indicate the probabilities that a
participant is assigned to the treatment. R represents randomization to the following
treatments. X represents deterministic assignment to the following treatment.

26



3.2.1.2 Bayesian Joint Stage Model (BJSM) for an snSMART

Wei et al. (2018) developed a Bayesian Joint Stage Model (BJSM) to estimate the

response rates of three treatments in an snSMART with binary outcomes. We briefly

present the BJSM here because it is used in both the decision rule mentioned in

Section 3.2.2.2 and the estimation of response rates at the end of a trial. For partici-

pant i = 1, 2, . . . , N , where N is the number of participants, treatment j = A,B,C,

and stage k = 1, 2, we let Y j
ik be an indicator of response for participant i receiving

treatment j in stage k. The stage 1 response rate to treatment j is denoted by πj.

We then let β1jπj denote the stage 2 response rate of the stage 1 responders to

treatment j, with the assumption that β1j > 1, so that if a participant responds in

stage 1, they are at least as likely to respond again to the same treatment in stage 2.

For stage 1 non-responders to treatment j, we let β0jπj′ denote the reponse rate to

treatment j′ in stage 2, with the assumption that β0j < 1, i.e. stage 1 non-responders

are less likely to respond to either of the two other treatments in stage 2. Wei et al.

(2018) referred to β1j and β0j as linkage parameters because they link the stage 1

response rates to the stage 2 response rates.

The Bayesian Joint Stage Model (BJSM) estimates the response rates of three treat-

ments as follows:

Y j
i1|πj ∼ Bernoulli(πj) (3.1)

Y j′

i2 |Y
j
i1, πj, πj′ , β1j, β0j ∼ Bernoulli

(
(β1jπj)

Y ji1(β0jπj′)
1−Y ji1

)
(3.2)

πj ∼ Beta(θ1, δ1) (3.3)

β0j ∼ Beta(θ2, δ2) (3.4)

β1j ∼ Pareto(1, c) (3.5)
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Beta priors are used for πj and β0j because we assume that they range from 0 to 1,

while Pareto(1, c) is used for β1j because it requires β1j > 1. For more details about

the specification of hyperparameters, see Wei et al. (2018). The response rate for

each treatment is estimated from the posterior distribution of πj using Markov Chain

Monte Carlo (MCMC).

3.2.2 Group Sequential snSMART

3.2.2.1 General Setup

In stage 1, randomization will assign equal numbers of participants to each treat-

ment; in contrast, the number of participants assigned to each treatment in stage 2

will depend upon the proportion of responders in stage 1. Thus, even without in-

terim analyses, more participants are expected to receive the better treatments in an

snSMART. We now wish to determine if we can further increase the number of par-

ticipants assigned to the better treatments if we allow for the removal of an inferior

arm.

In a group sequential snSMART, treatment effects are estimated and compared at

each interim analysis (or look) l = 1, 2, . . . , L, where L is the maximum number of

interim analyses performed during a trial. Here we will assume that L = 2 so that

there are at most two looks in the snSMART. If an interim analysis suggests that

one treatment is inferior to the others, then the treatment is removed and subsequent

participants entering the trial no longer receive the removed treatment. If none of the

treatments is considered inferior after look L, all three treatments are kept to the end

of the trial. We note that “stage” and “look” are two different concepts in our group

sequential snSMART design. Stage refers to a period of time specific to when each

participant is followed for a response, while “look” refers to a period of time specific

to the entire study when the accrued data are analyzed in an interim analysis.
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If an interim analysis suggests removal of a treatment, the trial continues such that

stage 1 non-responders to that inferior treatment are randomized equally to the two

non-inferior treatments, while stage 1 non-responders to each of the non-inferior treat-

ments are deterministically switched to the non-inferior treatment they had not re-

ceived. In addition, stage 1 responders continue to receive the same treatment in

stage 2 regardless of whether or not the treatment has been removed. An example of

a two-stage snSMART design after treatment A is removed at look l is demonstrated

in Figure 3.1(b).

In order to better describe the process of the trial, we demonstrate an example of

a group sequential snSMART with two interim analyses, in Figure 3.2. Here we

assume that three participants are enrolled in the trial every month, and recruitment

continues for thirty months. The interim analyses are planned after the 30th and

60th patients have completed stage 1. When the stage 1 outcome from the 30th

participant is collected (marked by the first dashed box at month 16 in Figure 3.2), the

first look occurs and response rates are estimated using the BJSM, and consideration

of removing a treatment is based on the decision rule presented in Figure 3.3, the

details for which are found in Section 3.2.2.2. We note that the stage 2 outcomes

from some early participants are available for model fitting when the interim analysis

is conducted, but not all participants will have stage 2 outcomes.
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Figure 3.3: The detailed procedure of the proposed two-step Bayesian decision rule
performed at an interim analysis l. If an one-step rule is applied, then the procedure
starts from computing Qj,l, j = A,B,C.

If a treatment is removed at the first look, the second look would not occur. If no arm

is removed at the first look, the second look would occur when the stage 1 outcome
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from the 60th participant is collected (marked by the second dashed box at month 26

in Figure 3.2). At this point, whether an arm is removed depends on the result from

the BJSM and the decision rule, but no more looks would be conducted until the

final data analysis at the end of the trial. After the trial ends, we apply the BJSM

to estimate the response rates of the three treatments using the stage 1 and stage

2 response indicators from all participants. Note that if the trial had been designed

with only one look, that look could be conducted when the stage 1 outcome from the

45th participant was collected.

3.2.2.2 Bayesian Decision Rules

To consider the removal of a treatment arm, we introduce a two-step decision rule

based on the posterior distributions of the response rates at each interim look l. The

sample size for each look l is Nl, which is a cumulative number of all the accrued

participants until look l, and the total sample size for the snSMART is denoted by

NT . In our design, an equal number of participants is accrued between looks, i.e.,

Nl −Nl−1 = NT/(L+ 1). At each look, the BJSM is able to produce posterior draws

of the response rates of all treatments even though stage 2 outcomes may be missing

from some participants. In this case, the participants that provide Y j
i2 are a subset of

the participants that provide Y j
i1.

We let Pj,l = Pl(πj > πj′ for all j′ 6= j|Datal) denote the interim posterior probability

that treatment j has the greatest response rate given the data up to the look l, and

the posterior probability Qj,l = Pl(πj < πj′ for all j′ 6= j|Datal) denote the interim

posterior probability that treatment j has the smallest response rate given the data

up to the look l, where Datal are all available Y j
i1 and Y j

i2 for all j = A,B,C at look l.

The first step of the decision rule is based on Pj,l and the second step is based upon

Qj,l, conditional upon the value of Pj,l. A visual presentation of the detailed two-step
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decision rule is shown in the Figure 3.3.

Specific steps are:

1. For each treatment j = A,B,C, compute Pj,l and compare to the pre-specified

cutoff τl.

2. (a) If Pj,l > τl for any of the j = A,B,C, then compute Qj′,l for treatments

j′ 6= j and remove the treatment with higher Qj′,l.

(b) If Pj,l ≤ τl for all j = A,B,C, then compute Qj,l for all j and compare

the posterior probability Qj,l with the pre-specified cutoff ψl. If Qj,l > ψl

for any of the j = A,B,C, then remove treatment j. Otherwise, keep all

three treatments.

Our two-step approach is quite intuitive. If enough evidence shows that one treat-

ment is best (Step 2(a)), then one of the two inferior treatments should be removed.

Similarly, if no single best treatment is identified, but there is enough evidence that

one treatment is worst (Step 2(b)), then the worst treatment should be removed.

Since we want to guarantee that at least two treatments remain until the end of the

trial, at most one treatment can be removed at an interim analysis, after which, no

more interim analyses would be conducted. Thus, when we refer to a design with L

looks in the following sections, we mean that at most L looks may take place. If a

treatment arm is removed at an early look, the total number of looks may be smaller

than L.

The thresholds τl and ψl used in Steps 1 and 2 can be selected by a user through a

grid search as follows. First, consider a “null” setting in which all three treatments

have the same response rate (πA = πB = πC). If we let αl denote the probability

of incorrectly removing an arm from the trial at look l, the overall probability of

making such an incorrect decision during the trial is equal to α =
∑L

l=1 αl. Thus, for

a pre-defined value of α, we recommend assigning the same values to each τl and to
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each ψl in a range from 0.98 to 0.80 with a step size of 0.02. Simulations are then run

with these pre-assigned τl and ψl under the “null” scenario and the resulting value

of α is recorded to obtain an approximate range of values assigned to τl and ψl that

all result in our pre-specified α. We can then apply these values to new “non-null”

settings in which all three treatments do not have the same response rates to assess

the probability that an inferior arm is now correctly dropped.

Without loss of generality, we assume that πA ≤ πB ≤ πC . There are four possible

scenarios for the values of these response rates. We describe how our two-step decision

rule works in each of these scenarios.

(1) πA = πB = πC : Pj,l > τl is unlikely to be true for j = A,B,C, meaning that

none of the arms is superior, then Qj,l > ψl is also unlikely to be true. The rule

results in keeping all three arms.

(2) πA < πB = πC : Pj,l > τl is unlikely to be true because PB,l and PC,l should be

close, but QA,l > ψl is likely to be true. The rule results in removing arm A.

(3) πA = πB < πC : PC,l > τl is likely to be true. The rule results in removing either

arm A or arm B with nearly identical probabilities.

(4) πA < πB < πC : PC,l > τl is likely to be true. The rule results in removing arm

A more often than arm B because QA,l > QB,l is more likely to be true.

Although our decision rule is comprised of two steps, we could modify the rule to

only have one step based solely on each Qj,l. Specifically, if any of the Qj,l exceeds

the pre-specified ψl, treatment j should be removed. Thus, in the one-step rule, we

only consider inferiority of a treatment, whereas in the two-step rule we also consider

superiority of a treatment. We investigate the operating characteristics of group

sequential snSMARTs with both one-step and two-step decision rules in Section 3.3.2.
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3.2.2.3 Estimation of treatment effects under the decision rule

In an snSMART without interim analyses, response rates are estimated by pooling

the first and second stage outcomes using the BJSM. We will show that due to the

sequential randomization, each response rate obtained from the BJSM is an unbiased

estimate of the true treatment response rate. In our group sequential snSMART, it is

possible that stage 2 randomization is not conducted for some first stage responders

because one treatment arm is removed. We now justify that an unbiased estimate of

the response rate can be obtained even when the second stage treatment allocation

is deterministic for some non-responders.

To distinguish from the observed first and second stage outcomes Y j
1 and Y j′

2 (sub-

script i is omitted here for simplicity), respectively, we denote the counterfactual

outcomes for first stage treatment j and second stage treatment j′ by Y1(j) and

Y2(j, j
′). We also denote the first and second stage treatment assignments by J1 and

J2. Under the consistency assumption, the individual with observed treatment J1 = j

or (J1, J2) = (j, j′) has the observed outcomes Y j
1 and Y j′

2 equal to his counterfactual

outcomes Y1(j) and Y2(j, j
′). In addition, randomization guarantees that the assign-

ment of treatment is independent of the counterfactual outcomes, or J1 ⊥ Y1(j),

J1 ⊥ Y2(j, j
′) and J2 ⊥ Y2(j, j

′). For the first stage outcomes, under the consistency

assumption and randomization:

P (Y j
1 = 1|J1 = j) = P (Y1(j) = 1|J1 = j) (consistency)

= P (Y1(j) = 1) (first stage randomization)

= πj

The observed response rate of participants who did not respond to j in the first stage

and receive j′ in the second stage can be expressed by P (Y j′

2 = 1|J1 = j, Y j
1 = 0, J2 =
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j′). Thus, under the consistency assumption and randomization:

P (Y j′

2 = 1|J1 = j, Y j
1 = 0, J2 = j′) = P (Y2(j, j

′) = 1|J1 = j, Y j
1 = 0, J2 = j′) (consistency)

= P (Y2(j, j
′) = 1|J1 = j, Y j

1 = 0) (second stage randomization)

= P (Y2(j, j
′) = 1|J1 = j, Y1(j) = 0) (consistency)

= P (Y2(j, j
′) = 1|Y1(j) = 0) (first stage randomization)

= β0jπj′

The relationship of observed and true second stage response rates for first stage

responders to treatment j can be derived using a similar approach. Thus, valid

inference can be made for πj with the observed response rates from both stages using

the BJSM in an snSMART without interim analysis, meaning that the estimated

response rates from BJSM are unbiased.

In a group sequential snSMART, if arm A is removed after an interim analysis, the

subsequent participants are not randomized to A, and the non-responders to B (or

C) in the first stage are assigned C (or B) in the second stage deterministically (Fig-

ure 3.1(b)). The failure to conduct second stage randomization may undermine the

above derivation such that P (Y2(B,C) = 1|J1 = B, Y B
1 = 0, J2 = C) 6= P (Y2(B,C) =

1|J1 = B, Y B
1 = 0). However, in this specific case, we see that the condition “J2 = C”

is equivalent to the condition “J1 = B and Y B
1 = 0”, and this idea can be gener-

alized to situations where other second stage response rates are of interest. Thus,

P (Y2(B,C) = 1|J1 = B, Y B
1 = 0, J2 = C) = P (Y2(B,C) = 1|J1 = B, Y B

1 = 0) is valid

for group sequential snSMART even if the second stage randomization does not occur

for some first stage non-responders, leading to the conclusion that the second stage

response rate of C obtained from the observed outcomes, P (Y C
2 = 1|J1 = B, Y B

1 =

0, J2 = C) is still an unbiased estimate of the true second stage response rate, β0BπC .
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3.3 Simulation

3.3.1 Data generation

We conducted simulation studies to examine the impact of interim analyses in an

snSMART in four specific scenarios: (1) πA = πB = πC = 0.25; (2) πA = 0.25, πB =

πC = 0.5; (3) πA = πB = 0.25, πC = 0.5; (4) πA = 0.25, πB = 0.45, πC = 0.65.

For analysis with the BJSM, we let β1A = β1B = β1C = 1.5 and β0A = β0B =

β0C = 0.8. The prior distributions for πj, β1j and β0j are Beta(0.4, 1.6), Pareto(1, 3)

and Beta(1.6, 0.4), respectively, which have respective prior means of 0.2, 1.5, and

0.8. The hyperparameters of the prior distributions were chosen based on the prior

knowledge of the stage 1 and stage 2 treatment effects motivated by ARAMIS.

We examined a group sequential snSMART that uses a maximum of 1 look, one

that uses a maximum of 2 looks, as well as a traditional snSMART with no interim

analyses. The interim analyses will be based on both the one-step and two-step

decision rules described in Section 3.2.2.2. We also examine accrual rates of 2, 3,

and 5 participants per month. In all trials, the number of participants was NT = 90

and values for τl and ψl in the decision rule were chosen such that the probability of

dropping a treatment in scenario 1 is close to a pre-specified value of α = 0.1.

3.3.2 Simulation results

Table 3.1 presents a summary of the simulations for all four scenarios when three

participants accrue each month. In this table we wish to see how operating charac-

teristics first change as a function of the decision rule, and then how they change as

a function of the number of interim analyses.

By comparing the top two rows of Table 3.1 to the middle two rows, we find that the

probability of correctly removing an arm in scenario 2 is relatively unaffected whether
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one step or two steps are used in the decision rule. However, in scenarios 3 and 4, we

see that the two-step rule performs better than the one-step rule, with an increase

of 20-30 percentage points in the probability of removing a treatment arm. We note

that this observed difference in probability of correctly removing a treatment arm

increases as NT increases (data not shown). Thus, a two-step rule is preferred to a

one-step rule.

Next, we compare the middle two rows of Table 3.1 to the bottom two rows to assess

the impact of moving from one interim analysis to two interim analyses. In all of

scenarios 2, 3, and 4, we see that the probability of correctly removing a treatment arm

increases when two interim analyses are performed relative to one interim analysis.

When NT = 300 (data not shown), the benefit of two interim analyses is no longer

apparent, mostly because with such a large sample size, the probability of correctly

removing a treatment arm with one look already reaches 0.95.

In Figure 3.4, we assess how interim analyses impact the number of stage 2 partic-

ipants assigned to the best treatment in a group sequential snSMART. The height

of each bar represents the ratio of the number of participants assigned to each treat-

ment relative to the number of participants that would occur in an snSMART without

interim analyses. In scenario 1, we see bar heights close to 1.0, indicating that in-

terim analyses have little impact on patient allocation, relative to no interim analyses,

because all three response rates are equal.
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Figure 3.4: The ratio of the second stage participant count under a group sequential
snSMART with the given rule (one-step or two-step) and number of maximum interim
analyses (one look or two looks) to the second stage participant count under an
snSMART without interim analyses. The four scenarios are listed in the Section
3.3.2. The total number of participants on trial NT = 90.

In scenarios 2, 3 and 4, we see bars with heights greater than 1.0 corresponding to

treatments with the highest response rate and bars with heights less than 1.0 for treat-

ments with the lowest response rate. This indicates that including interim analyses

leads to assigning more participants to the better performing treatments compared

to the snSMART without interim analyses. Furthermore, the ratio for the best treat-

ment is highest when the two-step decision rule is used with two interim analyses,

which agrees with the pattern of probabilities of correctly removing a treatment arm

shown in Table 3.1. We obtained a similar pattern if we focused on the stage 1

participant counts (data not shown). Thus, with regard to participant assignment,
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a two-step decision rule with two interim analyses is preferred for all scenarios for

NT = 90.

In Table 3.2, we assess how interim analyses impact the numbers of responders to each

treatment in each scenario. In scenario 1, since all response rates are equal, there

are almost equal numbers of participants responding to each treatment. However,

in scenarios 2, 3 and 4, we see that incorporating interim analyses leads to more

responders to the treatments with higher response rates. Most importantly, when

the response rates of three treatments are not equal, a group sequential design has

more responders than that of a design without interim analyses. Together with the

result in Figure 3.4, we conclude that group sequential snSMARTs allocate more

participants to the better treatment, and more participants can benefit from their

assigned treatment.

In Figure 3.5, we assess the impact of interim analyses on the bias and root mean-

squared error (rMSE) of the response rates using the BJSM. We focus solely on a

design with two interim analyses that use the two-step decision rule, as that design

was seen to be best in terms of patient assignment. In general, the interim analy-

sis does appear to lead to a slightly higher bias, but the overall biases still remain

small compared to the true response rates. We note that the bias corresponding to

the worst treatment can be higher than the bias of the other treatments, which is

expected because fewer participants are assigned to the worst treatment. As with

bias, rMSE is impacted to a small degree when interim analyses are incoporated in

the design. Although there is a little impact on the rMSE of the best treatment,

the efficiency corresponding to the worst treatment is compromised in the group se-

quential snSMART, again because fewer participants are assigned to this treatment

when interim analyses are used. Furthermore, the conditional bias using only the

simulations where a treatment arm was removed increased slightly in the scenarios

where (1) Pdrop was small or (2) the response rates of a treatment was small (results
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Looks Steps τl ψl Treatment
Mean number of treatment responders in stage 2
Scenario 1 Scenario 2 Scenario 3 Scenario 4

NT = 90

NA NA NA NA

A 7.52 7.53 7.52 7.53
B 7.41 14.89 7.42 13.39
C 7.50 15.02 15.01 19.51

Total 22.43 37.43 29.95 40.43

1 1 NA 0.89

A 7.29 4.48 6.26 4.17
B 7.25 20.35 6.46 15.96
C 7.24 20.28 21.10 31.86

Total 21.78 45.11 33.81 51.99

2 1 0.95 0.91

A 7.27 4.55 6.07 3.83
B 7.24 20.31 6.26 16.00
C 7.28 20.14 22.08 32.84

Total 21.79 45.01 34.40 52.67

2 2
0.96,
0.95

0.96,
0.95

A 7.27 4.50 5.86 3.78
B 7.27 20.40 6.30 15.86
C 7.34 19.96 22.20 33.21

Total 21.88 44.85 34.36 52.85

Table 3.2: The average numbers of responders to the treatments in the second stage
of a standard snSMART (snSMART without interim analyses) or a group sequential
snSMART with the given type of rule (one-step or two-step), for a given number of
interim analyses (one look or two looks) under all four scenarios listed in Section 3.3.2.
The mean numbers of responders to each treatment and all treatments are listed for
each design under each scenario.
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not shown). This increase is expected because these biases were calculated using

the results from fewer simulations and/or fewer participants assigned to a treatment.

When neither of the above conditions was true, the conditional bias was almost as

small as the marginal bias shown in Figure 3.5.

In Table 3.3, we examine how the probability of correctly removing a treatment is

impacted by the accrual rate, as faster (slower) accrual implies a higher (lower) pro-

portion of participants who have not completed stage 2 by the time of the interim

analysis. The top two rows of Table 3.3 summarize when accrual is faster (5 partici-

pants/month), the middle two rows are the original accrual (3 participants/month),

and the bottom two rows correspond to slower accrual (2 participants/month).

In scenarios 2, 3, and 4, we see generally as the accrual rate increases, there is a

decrease in the probability of correctly removing a treatment arm, which is likely

due to the increasing proportion of missing stage 2 outcomes. Correspondingly, when

the accrual rate is slower, more stage 2 outcomes from participants can be collected

for model fitting and there is an increase in the probability of correctly removing

a treatment arm. Nonetheless, although the slower accrual rate leads to a slightly

higher probability of correctly removing a treatment arm, the slower accrual rate also

leads to a longer trial. Certainly the accrual rate will vary with the rarity of the

disease and the number of sites that recruit participants, but overall, we expect that

realistic rates of accrual will only slightly affect the probabilities of correctly removing

a treatment arm.

3.4 Discussion

We provide a framework for incorporating interim analyses into an snSMART to po-

tentially remove one of three treatment arms. With the proposed two-step Bayesian

decision rule, a group sequential snSMART with two interim analyses may be more
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Figure 3.5: (a) The bias of the estimated response rates under the four scenarios
listed in the Section 3.3.2. (b) The root mean squared error (rMSE) of the estimated
response rates under the same four scenarios. “2 steps 2 looks” means the group
sequential snSMART design using the two-step decision rule with at most two looks,
and the “standard snSMART” means the snSMART without interim analyses. The
total number of participants on trial NT = 90.
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appealing to both those designing the trial and those participating in the trial. In

a group sequential snSMART, fewer participants are expected to receive the worst

treatment and the estimation of the response rate of the best treatment is not com-

promised relative to an snSMART without interim analyses. Similar to traditional

group sequential designs, we can control the overall probability of removing an arm

under a “null” scenario when three response rates are equal by using simulations to

determine the values used for the cutoff values in the decision rule.

Our group sequential snSMART design can be used more flexibly in real practice.

First, the proposed decision rule can be extended if there are interactions between

stage 1 and 2 treatments that vary depending upon which treatments are used. Sec-

ond, we assumed that interim analyses were performed when stage 1 outcomes were

collected from a fixed number of participants at equal intervals. Instead, we can easily

adjust the design to accommodate interim analyses at any interval of time. Third, the

prior distributions of the response rates and linkage parameters can also be changed

to reflect prior beliefs in the treatment response rates and linkage parameters. We

assumed a Pareto distribution for the linkage parameters β1 because we believed that

responders were more likely to respond again in stage 2 had they already responded

in the stage 1. However, we can change this prior distribution to a gamma or log-

normal distribution, which ranges from 0 to infinity, under different assumptions for

the responders. Similarly, the other prior distributions and their hyperparameters

could differ given the specific trial setting. Based upon other simulations (results not

shown), even if the prior distributions are centered away from the true parameter

values, estimation of the response rates shows little bias.

We note that in a traditional group sequential design, the number of interim analyses

is often decided by many factors, including the total sample size, the power under the

expected treatment effect difference, the effort to carry out interim analyses (Jenni-

son and Turnbull , 1999). Practioners can decide an appropriate number of interim
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analyses through simulation studies after the total sample size, power under expected

treatment effect difference, accrual rate and maximum number of interim analyses

are pre-specified in group sequential snSMART designs. In small sample scenarios,

such as 90 participants in our simulations, we do not recommend more than two in-

terim analyses. A greater number of interim analyses will not substantially enhance

the probability of correctly removing an arm because insufficient information will be

available for decision making at the earlier interim analyses. Furthermore, if one

wants to remove an arm more quickly when some early evidence of strong inferiority

can be identified, then earlier interim analysis would be desired. On the contrary, if

one wants to be more conservative about making a decision to remove an arm, a late

interim analysis would be preferred.

Choosing the specific values of response rates under scenario 1 is arbitrary as long

as the three response rates are equal. In our simulations we chose 0.25 as the “null”

response rates for all three treatments because this response rate was considered inef-

fective across treatments for our setting. Although different response rates for scenario

1 might change the chosen threshold values τl and ψl, we have found that the small

difference in threshold values does not greatly change the operating characteristics of

the group sequential snSMART in scenarios 2, 3 and 4 (data not shown). In addition,

we investigated simulation studies with different true “null” response rates, where

the threshold values were chosen assuming null response rates of 0.25, but true null

response rates were 0.35 or 0.45. For both “null” values of 0.35 and 0.45, we found

α = 0.09, which was very close to the nominal value of 0.10.

The posterior probabilities Qj′,l of the two-step decision rule can be equal in extremely

rare cases because these two probabilities were computed using the posterior draws

from MCMC. For example, in scenario 3, where treatments A and B have the same

response rate that is smaller than that of C, it is possible, though very unlikely, that

QA,l and QB,l are equal at the second step of the decision rule. As a solution, one
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could randomly remove one of the two treatments or instead decide not to remove

either arm and wait for a later look to make a decision.

Our group sequential snSMART is preferred for rare disease trials or trials where the

accrual rate is relatively slow. If patient accrual is much faster than the timing of

outcome measurements, most treatment allocations will be completed before interim

analyses can be performed. In this case, the removal of a treatment arm will have a

very limited effect in allocating patients to potentially better treatments.

Our two-step decision rule is currently only applicable to a three arm trial, where

there is a single best or worst treatment if three treatments do not have the same

response rate. Thus, future work includes the development of a more general decision

rule that can be applied to an snSMART with more than three arms. Moreover, if

many arms are compared at the same time, we would like to develop a decision rule

that can remove more than one arm.
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CHAPTER IV

Power Prior Models for Treatment Effect

Estimation in a Small n, Sequential,

Multiple-Assignment, Randomized Trial

4.1 Introduction

In rare disease studies, estimating treatment effects efficiently is often a challenging

task because information is collected from a relatively small number of participants.

Developed to meet this challenge, a small n, sequential, multiple assignment, ran-

domized trial (snSMART) is a two-stage design where participants are given up to

two treatments sequentially; whether they receive the same or different treatment in

the second stage depends on how they respond to the first stage treatment (Tamura

et al., 2016). Primary interest in an snSMART is the first stage treatment effect, but

when multiple outcomes are obtained from each participant, a method to combine

the information across stages can be used to efficiently estimate the treatment effects

of interest.

Frequentist and Bayesian approaches have been proposed to pool the results together

for estimation. Tamura et al. (2016) presented a weighted Z-statistic to perform the

estimation, but the Z-statistic is not based on all the collected data. To address
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these limitations, Wei et al. (2018) and Chao et al. (2020) presented both a Bayesian

joint stage model (BJSM) and a joint stage regression model, each of which includes

parameters that link first and second stage treatment responses to provide more

efficient treatment effect estimates. Here, we present an alternative approach that

links data from the two stages through a power prior, which was first proposed by

Ibrahim et al. (2000).

A power prior contains the likelihood of the historical data, power parameters that

quantify the compatibility of the historical and the current data, and prior distribu-

tions for the parameters in the likelihood of the current data. The power parameters

can be either fixed or random and there are numerous ways the parameters are spec-

ified or determined. Extensions of this power prior approach include modified power

priors, or normalized power priors (Duan et al., 2006; Neuenschwander et al., 2009;

Hobbs et al., 2011; Banbeta et al., 2019; van Rosmalen et al., 2018), power prior in

Bayesian hierarchical models (Chen et al., 2006), commensurate power priors (Hobbs

et al., 2011; van Rosmalen et al., 2018), power priors with an empirical Bayesian ap-

proach (Gravestock and Held , 2017) and power priors with a likelihood-based weight

selection criterion (Ibrahim et al., 2003, 2015).

Pan et al. (2017) proposed a calibrated power prior that utilizes a nonparametric

Kolmogorov-Smirnov statistic to measure the compatibility of historical and current

data in biosimilar designs. Nikolakopoulos et al. (2018) developed another calibrated

power prior that quantifies the conflict of historical to current data through prior

predictive p-values. Li and Yuan (2020) applied the notion of a power prior model to

control information borrowing through Bayesian model averaging between pediatric

and adult phase I oncology trials.

In previous studies, the idea of power prior models was applied to control how much

information should be borrowed from historical data or earlier trials to a current
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trial. However, information sharing is also crucial in a multistage clinical trial, which

motivates our work. In this study, we propose a novel application of power prior

models to the estimation of treatment effects in an snSMART, which is a two-stage

design. In addition, we first introduce novel measures of closeness to describe the

compatibility of stage 1 and 2 data in our snSMART. In our setting, we consider

stage 1 responses as “current” data and stage 2 responses as “historical” data, which

may seem counterintuitive. However, because a second stage outcome is obtained

after a first stage outcome, second stage outcomes are conditional on the treatments

received in the first stage and response to that first stage treatment. Because of this

biased sampling scheme, the second stage outcomes are viewed as supplemental data,

and the first stage outcomes are viewed as the primary data, since they are collected

in an unbiased, randomized design.

Small sample size is another challenge when applying power prior models to the

snSMART setting. In existing designs, the historical data are often assumed to come

from a multitude of participants who received the same treatment. In contrast, in

an snSMART, it is possible that outcomes will only be obtained from a very small

number of participants in the second stage. The operating characteristics of power

prior models with small samples has not been investigated before, and thus, we seek

to examine their performance in the snSMART setting relative to the existing BJSM.

In our current work, we propose three different power prior models to estimate the

response rates of three active treatments in an snSMART. In Section 4.2, we motivate

the use of power prior models in snSMART designs and briefly describe the existing

BJSM. In Section 4.3, we present the power prior models with different power pa-

rameter specification approaches. In Section 4.4, we use simulations to examine how

these power prior models perform and compare them to the BJSM under different

scenarios, and we close with a discussion in Section 4.5.
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4.2 Motivating example and existing methods

4.2.1 ARAMIS trial

Our methods are motivated by the snSMART, A RAndomized Multicenter study for

Isolated Skin vasculitis (ARAMIS) (Micheletti et al., 2020), Wei et al. (2018) and

Chao et al. (2020) and shown in Figure 2.1. In brief, all enrolled individuals are

randomized to one of the three treatments in the first stage. During a specific period

of follow-up of six months, each individual is assessed for a response. The individuals

who respond in the first stage receive the same treatment in the second stage, while

non-responders in the first stage are randomized to one of the alternative treatments

in the second stage and followed for six more months for response.

The first stage is a traditional randomized trial; thus, we can estimate treatment

effects using only the first stage data. In the proposed power prior methods, these first

stage outcomes are called “current data”. By contrast, the second stage outcomes

alone could not be used to correctly estimate the response rates because they are

conditional on first stage treatment and responses to that treatment. Thus, second

stage outcomes serve as “historical” data. Inclusion of “historical” data can provide

additional information and increase the efficiency of estimation of treatment effects

in small samples. Thus, the application of power prior models to our setting provides

a way to incorporate both stages of data such that first stage data are weighted fully,

and second stage data receive partial weight through the power prior to provide more

efficient treatment estimates in small samples.

4.2.2 Joint stage models

Frequentist and Bayesian joint stage models are existing approaches that estimate

the treatment effects in an snSMART, where the details can be found in Wei et al.
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(2018) and Chao et al. (2020). Because the results from both models are similar, we

briefly present the BJSM here due to our focus on Bayesian methods.

The (first stage) response rate of a treatment k is denoted by πk, where k = A,B,C.

Since the response rate of a treatment in the second stage can differ from that in the

first stage, and because stage 2 response rates are conditional on stage 1 treatments

and responses, we denote the second stage response rates of the first stage responders

to treatment k by β1πk, and the second stage response rates of the first stage non-

responders to k who receive k′ in the second stage by β0πk′ . β1 and β0 are called

linkage parameters for stage 1 responders and non-responders, respectively, because

they link the first stage and second stage response rates. An assumption of the BJSM

is that the linkage parameters, β0 and β1, do not depend on the first and second stage

treatments received. The parameters, πk, β1 and β0, can be estimated via Markov

Chain Monte Carlo with appropriate prior distributions on these parameters.

However, we may not have a priori information about the possible relationship be-

tween first stage and second response rates, particularly in the rare disease settings,

which may make it difficult to pre-specify prior distributions of the linkage parameters.

Thus, the power prior approaches presented next provide a framework to circumvent

the requirement of assuming the proportionality of response rates from the stage 1 to

2.

4.3 Methods

We first briefly review the power prior models and their associated notation. We

let π = {πA, πB, πC}, where the elements are the response rates of treatments A, B,

and C, respectively, and δ = {δj} denote power parameters for different subgroups of

individuals, where j = 1, . . . , J and J is the number of subgroups. In our design, we

separate the second stage data into two distinct sets: those from first stage responders
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and those from first stage non-responders. The individuals in these two subgroups

are assumed to share some common within-group characteristics that may affect how

they respond to the second stage treatments. Thus, each subgroup can be regarded

as a distinct set of “historical” data, and we assume that J = 2 in this study. We also

made this assumption of J = 2 because a parsimonious model is preferred when the

sample size is small, and two power parameters mimics the two linkage parameters

from the BJSM. Let n
(1)
k and Z

(1)
k denote the number of individuals assigned to

treatment k and the corresponding number of responders to k in stage 1, respectively,

where k = A,B,C. Similarly, we let n
(2)
k,j and Z

(2)
k,j be the numbers of individuals in

stage 2 assigned to treatment k within subgroup j and the corresponding number of

responders to k in subgroup j, respectively. Let D(1) = {n(1)
k , Z

(1)
k ; k = A,B,C} and

D(2) = {n(2)
k,j, Z

(2)
k,j ; k = A,B,C; j = 1, . . . , J}.

In its simplest form, the joint power prior distribution of the first stage response rates

in our setting can be formulated as

p(π|D(2), δ) ∝
∏

k=A,B,C

[ ∏
j=1,...,J

L(Z
(2)
k,j ; πk)

δj

]
p0(πk) (4.1)

where L(Z
(2)
k,j ; πk) is a likelihood function for second stage outcomes, p0(πk) is the

initial prior for πk, and 0 ≤ δj ≤ 1 for all j. We interpret δj as a measure of

compatibility of the “current” data and the “historical” data from subgroup j. When

δj = 0, the corresponding “historical” data, i.e., second stage data, from subgroup

j contribute nothing to the estimation of response rates, while δj = 1 indicates that

the corresponding “historical” data from subgroup j can be pooled together with

“current” data. When combining with the likelihood function of first stage outcomes,

the posterior distribution of π is
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q(π|D(1),D(2), δ) ∝

[ ∏
k=A,B,C

L(Z
(1)
k ; πk)

]
p(π|D(2), δ)

=
∏

k=A,B,C

[
L(Z

(1)
k ; πk)

∏
j=1,...,J

L(Z
(2)
k,j ; πk)

δj

]
p0(πk) (4.2)

The key issue in the application of power prior models lies in the choice of δj. Thus,

we next introduce three types of approaches for choosing δj and investigate to what

extent stage 2 data can be incorporated with stage 1 data to estimate πk.

4.3.1 Power prior models with likelihood-type criteria

The power parameters δ1 and δ2 can be taken as fixed values and determined by

likelihood-type criteria, which was first proposed by Ibrahim et al. (2003) and ex-

tended from Bayesian Information Criterion (BIC). The rationale of utilizing likelihood-

type criteria is to use both “current” and “historical” data to choose the optimal val-

ues for δ1 and δ2 that minimize the criteria function. Two criteria applied to power

prior models are the penalized likelihood-type criterion (PLC) (Ibrahim et al., 2003,

2015) and the marginal likelihood criterion (MLC) (Ibrahim et al., 2015; Gravestock

and Held , 2017), the latter of which is also referred to as the empirical Bayesian

method.

For the PLC, the “current” and “historical” data are combined in the function

m∗(δ) =

∫
π

∏
k

[
L(Z

(1)
k ; πk)

∏
j

L(Z
(2)
k,j ; πk)

δjp0(πk)

]
dπ

= M
∏
k

{
B

(
Z

(1)
k +

∑
j

Z
(2)
k,j δj + aπ, n

(1)
k − Z

(1)
k +

∑
j

(
n
(2)
k,j − Z

(2)
k,j

)
δj + bπ

)}
(4.3)
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where M is a constant unrelated to any of the parameters, and B(·, ·) is a beta

function. The power parameters δ1 and δ2 can then be determined by minimizing the

PLC function

G(δ) = −2 log [m∗(δ)] +
∑
j

log(
∑

k n
(2)
k,j)

δj
. (4.4)

The penalty term
∑

j[log(
∑

k n
(2)
k,j)/δj] allows for the chosen δj being higher when the

sample size of subgroup j is larger, which corresponds to more weight applied to a

subgroup with a larger sample size. After the optimal δ is determined by δPLC =

arg minδ G(δ), we then treat δPLC as fixed and use Equation (4.2) to obtain the

posterior distribution of all πk.

For the MLC, we use the marginal likelihood of δ

m(δ) =

∫
π

∏
k

[
L(Z

(1)
k ; πk)

∏
j L(Z

(2)
k,j ; πk)

δjp0(πk)
]
dπ∫

π

∏
k

[∏
j L(Z

(2)
k,j ; πk)

δjp0(πk)
]
dπ

= M ′

∏
k

{
B
(
Z

(1)
k +

∑
j Z

(2)
k,j δj + aπ, n

(1)
k − Z

(1)
k +

∑
j

(
n
(2)
k,j − Z

(2)
k,j

)
δj + bπ

)}
∏

k

{
B
(∑

j Z
(2)
k,j δj + aπ,

∑
j

(
n
(2)
k,j − Z

(2)
k,j

)
δj + bπ

)}
(4.5)

where M ′ is a constant unrelated to any of the parameters. Values for the power

parameters are determined as δMLC = arg minδ{−2 log[m(δ)]}.

4.3.2 Modified power prior model

The modified power prior (MPP) model proposed by Duan et al. (2006) treats δ1 and

δ2 as random variables; Banbeta et al. (2019) applied the MPP to estimate treatment

effects that incorporate control arms into a current trial. In our study, the MPP is
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given by

pMPP (π, δ|D(2)) =

[∏
k

∏
j L(Z

(2)
k,j ; πk)

δj

] [∏
j p0(δj)

]
[
∏

k p0(πk)]

C(δ)
(4.6)

where

C(δ) =

∫
π

[∏
k

∏
j

L(Z
(2)
k,j ; πk)

δj

][∏
k

p0(πk)

]
dπ (4.7)

and p0(δj) is an initial prior distribution of δj. The normalizing constant C(δ) is

necessary in the formulation of MPP when δj is random to enforce the likelihood

principle (Duan et al., 2006; Banbeta et al., 2019).

We assume that Z
(1)
k and Z

(2)
k,j are distributed as Binomial(n

(1)
k , πk) and Binomial(n

(2)
k,j, πk),

respectively. The initial prior distributions p0(πk) and p0(δj) are Beta(aπ, bπ) and

Beta(aδ, bδ), respectively. After plugging in these distributions and likelihood func-

tions to Equation (4.6), we can analytically derive the MPP as follows, which is a

multi-parameter version of the formula derived in Banbeta et al., 2019:

pMPP (π, δ|D(2)) ∝

∏
k

{
π
∑
j Z

(2)
k,jδj+aπ−1

k (1− πk)
∑
j

(
n
(2)
k,j−Z

(2)
k,j

)
δj+bπ−1

}{∏
j

δ
aδ−1

j (1−δj)bδ−1

B(aδ,bδ)

}
∏

k

{
B
(∑

j Z
(2)
k,j δj + aπ,

∑
j

(
n
(2)
k,j − Z

(2)
k,j

)
δj + bπ

)}
(4.8)

The choice of hyperparameters aπ, bπ, aδ and bδ reflects our belief in the response rates

of treatments and the compatibility of “current” and “historical” in our snSMART.

If we do not have previous knowledge about πk and δj, their prior distribution can be

set as Beta(1,1).
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4.3.3 Power prior model with closeness measure

In addition to likelihood-based approaches, we can define a metric that describes

the closeness of the posterior distributions of first stage and second stage response

rates. A natural choice of such a metric is Bhattacharyya’s overlap measure (BOM)

(Bhattacharyya, 1946). If distributions from two populations are continuous with

probability density functions f1(θ) and f2(θ), the BOM is defined as O(f1, f2) =∫∞
−∞

√
f1(θ)f2(θ)dθ. The BOM is useful in our setting because it takes values in

the interval [0, 1], in which O(f1, f2) = 0 indicates that two distributions are fully

separated, while O(f1, f2) = 1 means that two distributions are identical. This agrees

with the interpretation of power parameters in power prior models.

We define the posterior distributions of response rates of treatment k in stage 1 and

stage 2 (within a specific subgroup j) as p1(πk|D(1)) and p2j(πk|D(2)), respectively,

where p1(πk|D(1)) ∝ L(Z
(1)
k ; πk)p0(πk) and p2j(πk|D(2)) ∝ L(Z

(2)
k,j ; πk)p0(πk). Because

we assume that the prior distributions of πk are Beta distributions, the posterior

distributions p1 and p2j will also follow Beta(a1, b1) and Beta(a2j, b2j), respectively.

Thus, we have

Ok(p1, p2j) =

∫ 1

0

√
p1(πk|D(1))p2j(πk|D(2))dπk

=

∫ 1

0

√
π
a1+a2j−2
k (1− πk)b1+b2j−2
B(a1, b1)B(a2j, b2j)

dπk

=
B(

a1+a2j
2

,
b1+b2j

2
)√

B(a1, b1)B(a2j, b2j)
(4.9)

where a1 = Z
(1)
k + aπ, b1 = n

(1)
k − Z

(1)
k + bπ, a2j = Z

(2)
k,j + aπ, b2j = n

(2)
k,j − Z

(2)
k,j + bπ.

We then derive values for δ1 and δ2 as the average of BOM for all three treatments,

or δBOMj =
∑

k Ok(p1, p2j)/3.

Alternatively, the two-sided p-value of a Fisher’s exact test (FET) from stage 1 and
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stage 2 data from subgroup j can be used to quantify the closeness of treatment

response rates in both stages. Specifically, we construct a 2 × 2 table where the

rows contain the numbers of participants from stage 1 or stage 2 subgroup j and

the columns contain the numbers of responders or non-responders. The two-sided

p-value is computed using all the tables that are equally or more extreme than the

observed table where extremity is defined by a table’s hypergeometric probability.

If the response rates change across the stages, the p-value from the FET should be

small, suggesting that the data from stage 1 and stage 2 subgroup j are incompatible.

On the contrary, if the response rates do not change across the stages, we can expect

a p-value close to 1, indicating that a higher weight should be put on the “historical”

data in subgroup j. Similar to the δBOMj , we can calculate δFETj =
∑

k Pk,j/3, in

which Pk,j is the p-value for subgroup j and treatment k.

4.4 Simulation studies

4.4.1 Data generation

We conducted Monte Carlo simulations to compare the performance of the power prior

models described in Section 4.3. The seven scenarios that we examined are listed in

Table 4.1. In all scenarios in stage 1, exactly 1/3 of participants are assigned to each

of the three possible treatments. Their stage 1 responses are generated by a Bernoulli

distribution with the response rates corresponding to the assigned treatments, shown

in Table 4.1(a). Their stage 2 responses are also generated by a Bernoulli distribution

with the response rates corresponding to the assigned stage 1 and 2 treatments, shown

in Table 4.1(b). In scenarios 1-5, the first stage response rates of the treatments differ

from each other, whereas these response rates are identical in scenarios 6 and 7. The

last two scenarios can be used to examine the performance of estimation under the

“null” cases.
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(a) First stage response rates

A B C

Scenario 1-5 0.2 0.3 0.4
Scenario 6-7 0.3 0.3 0.3

(b) Second stage response rates

Stage 1 treatment Stage 1 treatment

A B C A B C

Scenario 1 Scenario 2

Stage 2
treatment

A 0.2 0.2 0.2 0.4 0.2 0.2
B 0.3 0.3 0.3 0.3 0.6 0.3
C 0.4 0.4 0.4 0.4 0.4 0.8

Scenario 3 Scenario 4

Stage 2
treatment

A 0.2 0.1 0.1 0.4 0.3 0.3
B 0.15 0.3 0.15 0.45 0.6 0.45
C 0.2 0.2 0.4 0.6 0.6 0.8

Scenario 5 Scenario 6

Stage 2
treatment

A 0.6 0.4 0.4 0.3 0.3 0.3
B 0.6 0.6 0.15 0.3 0.3 0.3
C 0.2 0.2 0.6 0.3 0.3 0.3

Scenario 7

Stage 2
treatment

A 0.2 0.2 0.2
B 0.3 0.3 0.3
C 0.4 0.4 0.4

Table 4.1: The true first and second stage response rates for simulation scenarios
1-7. (a) The response rates of the treatments in the first stage, which is the response
rates of the interest. (b) The response rates of the treatments in the second stage,
which depend on the first stage treatment and whether an individual responds to
it. According to the snSMART design in Figure 2.1, responders to their first stage
treatment continue with the same treatments in the second stage, and the response
rates of which are highlighted in gray. The non-highlighted response rates correspond
to those from first stage non-responders.
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The rationale of designing the scenarios is as follows:

Scenario 1 The response rates remain unchanged in stage 2; there is full compata-

bility between stage 1 and 2 data.

Scenario 2 The stage 2 response rates double if participants respond in stage 1;

there is full compatibility between stage 1 data and stage 2 data only for stage

1 non-responders.

Scenario 3 The stage 2 response rates are halved for participants who do not respond

in stage 1; there is full compatability between stage 1 data and stage 2 data

only for stage 1 responders.

Scenario 4 The stage 2 response rates increase, but the scale of increase differs

between stage 1 responders and non-responders; there is not full compatibility

between stage 1 and stage 2 data.

Scenario 5 Stage 2 response rates change with respect to both first and second

stage treatments, which violates a main assumption of the BJSM; there is not

full compatibility between stage 1 and stage 2 data.

Scenario 6 All stage 1 and stage 2 response rates are equal; there is full compatibility

between stage 1 and 2 data.

Scenario 7 Response rates are the same in stage 1 but not stage 2, and these depend

on both first and second stage treatment (this violates a main assumption of

the BJSM); there is not full compatibility between stage 1 and stage 2 data.

In Section 4.4.2, we use scenarios 1-4 to investigate the impact on δj when a part of

or the whole stage 2 data are not compatible with the stage 1 data. We expect that:

(1) both δ1 and δ2 are close to 1 in scenario 1; (2) δ1 should should move closer to 0

in scenario 2; (3) δ2 should move closer to 0 in scenario 3; (4) both δ1 and δ2 should

move closer to 0 in scenarios 4. In Section 4.4.3, we evaluate the estimation of πk
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using scenarios 4-7, with which we compare the performance either within different

power prior models or between power prior models and the BJSM. We also examine

whether partial borrowing of information from second stage data (0 < δj < 1) can

outperform situations when instead complete borrowing (δj = 1) or no borrowing

(δj = 0) is applied.

The prior distribution of πk was Beta(1,1) for all methods, and the prior distribution

of δj was Beta(1,1) in MPP. To maximize the flexibility of the BJSM, we set the prior

distributions of both linkage parameters to gamma distributions with the support of

(0,∞) and the prior mean of 1. All simulation studies were performed with 10,000

runs, and the total sample size for each run was either 90 or 300.

4.4.2 Estimation of δ1 and δ2 for power prior models

In Table 4.2, we present the mean estimated δ1 and δ2 and their Monte Carlo standard

errors obtained from five different power prior models in scenarios 1-4. Presently, we

restrict our focus on scenarios 1-4 because these scenarios are designed to examine

how δ changes when data from the two stages become incompatible.

When N = 90, we first observe the differences in δ when comparing scenarios 2-4 to

scenario 1, in which the data from stages 1 and 2 are fully compatible. In MLC, the

mean estimated δ1 is 0.65 in scenario 1 compared to 0.32 in scenario 2 and 0.08 in

scenario 4 where the stage 2 data from stage 1 responders is not compatible with the

stage 1 data. The mean estimated δ2 is from 0.75 in scenario 1 compared to 0.40 in

scenario 3 and 0.45 in scenario 4 where the stage 2 data from stage 1 non-responders

is not compatible with the stage 1 data.

Similarly, we can see the same pattern in MPP, PLC, BOM and FET, but the scale of

difference varies. The differences are about 0.2 to 0.4 when comparing δ from scenario

1 to scenarios 2-4 in FET and BOM, 0.1 to 0.2 in MPP, and less than 0.1 in PLC. The
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differences become larger when N = 300 for all methods. However, there is a trade-

off between the difference in δ across various scenarios and the standard errors of

estimated δ. The estimated δ from MLC have much larger standard errors than that

of all other methods. In contrast, the estimates δ from PLC slightly change across

different scenarios, resulting in relatively small standard errors of the estimates.

In addition, we also investigated the ranges of the mean estimated δ from different

methods. When N = 90, the values of δ from the BOM are close to 0.5 even when the

data from two stages are incompatible, which indicates that the BOM tends to put

higher weights on “historical” data, regardless of the compatibility of first and second

stages data. In contrast, the values of δ from PLC are between 0.2 and 0.35 in all

scenarios, which agrees with the finding in Ibrahim et al. (2003) that the estimated δ

from this method is relatively small in general. For MPP, MLC and FET, the values

of δ are greater than 0.5 when data from two stages are compatible, whereas the

values of δ are smaller than 0.5 if data are incompatible.

We note that data compatibility is not the only driving force of the value of δ for MPP.

The prior distribution of δ also plays an important role in the range of mean estimated

δ. In Table 4.3, we let the prior distributions of δ be Beta(0.4,1.6), Beta(1,1), and

Beta(1.6,0.4), which correspond to the prior means of 0.2, 0.5 and 0.8, respectively.

We can see that the range of δ is centered at the prior mean of δ, especially when

N = 90. When N = 300, the data have more capacity to adjust the estimated δ

in addition to the influence from the prior distributions. Thus, we conclude, similar

to Neuenschwander et al. (2009), that the specification of the prior distribution of δ

can greatly impact the results from the MPP method. The mean estimated δ under

scenarios 5-7 for all methods can be found in the Table B.1 in Appendix B.

We further examine the distributions of estimated δ from different methods under

scenarios 1-4 in Figure 4.1 when N = 90. The histograms from the PLC under four
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N = 90

Scenario
E(δ) = 0.20 E(δ) = 0.50 E(δ) = 0.80

δ1 δ2 δ1 δ2 δ1 δ2
1 0.23(0.05) 0.31(0.06) 0.51(0.06) 0.54(0.07) 0.80(0.04) 0.81(0.05)
2 0.15(0.05) 0.36(0.07) 0.41(0.09) 0.61(0.06) 0.73(0.08) 0.86(0.03)
3 0.25(0.05) 0.23(0.08) 0.54(0.07) 0.44(0.11) 0.82(0.05) 0.73(0.11)
4 0.11(0.05) 0.23(0.10) 0.33(0.10) 0.46(0.14) 0.65(0.11) 0.75(0.13)

N = 300

Scenario
E(δ) = 0.20 E(δ) = 0.50 E(δ) = 0.80

δ1 δ2 δ1 δ2 δ1 δ2
1 0.25(0.05) 0.33(0.07) 0.52(0.06) 0.55(0.08) 0.81(0.04) 0.81(0.05)
2 0.08(0.04) 0.42(0.07) 0.25(0.10) 0.66(0.06) 0.50(0.15) 0.88(0.04)
3 0.34(0.07) 0.12(0.06) 0.60(0.07) 0.26(0.11) 0.85(0.04) 0.49(0.17)
4 0.03(0.02) 0.14(0.09) 0.10(0.04) 0.28(0.15) 0.22(0.11) 0.51(0.23)

Table 4.3: The means and standard errors (in parentheses) of δ1 and δ2 obtained
from modified power prior model (MPP) with different E(δ), or prior mean of δ.
Scenarios 1-4 in Table 4.1 are used to evaluate how these δs change with different
levels of compatibility between first and second stage data. All simulation studies are
done at N = 90 or 300.

scenarios do not differ much, indicating that the power parameters obtained from

PLC do not vary with the changing scenarios. For MLC, the chance of choosing 0 or

1 for power parameters is extremely high, which is not a desirable property because

second stage data are likely to be completely ignored even when the data across stages

are fully compatible. This result suggests that the estimated δ from the power prior

model with MLC is highly sensitive to slight changes in the number of responders.

In particular, when the expected number of responders to a treatment in a subgroup

in stage 2 is smaller than 10, which may be common in an snSMART, a change in

the observed number of responders by 1 or 2 can result in a sharp decrease of the

estimated δ from 1 to 0 or vice versa. The histograms from the MPP, BOM and FET

are more appealing. In scenario 1, a large portion of distributions of δ1 and δ2 can

overlap, while in other scenarios, we can easily see the move of either one or both

distributions when part of or all the second stage data are not compatible with first
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stage data.

MPP PLC MLC BOM FET

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

δ

de
ns

ity

subgroup

δ1

δ2

Scenario 1

MPP PLC MLC BOM FET

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

δ

de
ns

ity

subgroup

δ1

δ2

Scenario 2

MPP PLC MLC BOM FET

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

5

10

15

δ

de
ns

ity

subgroup

δ1

δ2

Scenario 3

MPP PLC MLC BOM FET

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

δ

de
ns

ity

subgroup

δ1

δ2

Scenario 4

MPP PLC MLC BOM FET

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

δ

de
ns

ity

subgroup

δ1

δ2

Scenario 1

MPP PLC MLC BOM FET

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

δ

de
ns

ity

subgroup

δ1

δ2

Scenario 2

MPP PLC MLC BOM FET

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

5

10

15

δ

de
ns

ity

subgroup

δ1

δ2

Scenario 3

MPP PLC MLC BOM FET

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

δ

de
ns

ity

subgroup

δ1

δ2

Scenario 4

Figure 4.1: The distributions of δ1 and δ2 from modified power prior (MPP), power
prior with penalized likelihood-type criterion (PLC), marginal likelihood criterion
(MLC), Bhattacharyya’s overlap measure (BOM) and measure from Fisher’s exact
test (FET) under scenarios 1-4. N = 90

When N = 300, the distributions for δ1 and δ2 in Figure 4.2. For FET, BOM and

MPP, due to the increased sample size, the distributions move more when the data

are incompatible, compared to the histograms in Figure 4.1. For MLC, it seems

that the chance of assigning the wrong power parameters becomes lower compared

to N = 90, but completely ignoring the second stage data is still undesirable even

when the data across stages are not compatible. Borrowing some information from
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incompatible second stage data may still increase efficiency given that the bias may

increase as well, which we will discuss in next Section 4.4.3. The distributions of δ1

and δ2 under scenarios 5-7 can be found in the Figures B.1 and B.2 in Appendix B.
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Figure 4.2: The distributions of δ1 and δ2 from modified power prior (MPP), power
prior with penalized likelihood-type criterion (PLC), marginal likelihood criterion
(MLC), Bhattacharyya’s overlap measure (BOM) and measure from Fisher’s exact
test (FET) under scenarios 1-4. N = 300

4.4.3 Estimation of π

In Figure 4.3, each bar is the simulation-wide average absolute value of bias or root

mean squared error (rMSE) of the three treatment response rate estimates from each
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of the methods. We include results for power prior models when δ is fixed at 0 or 1

for reference, as these two approaches only perform well in either fully compatible or

highly incompatible scenarios, and are not preferred in most realistic settings.

In scenario 4, we first note that BJSM has smallest bias and rMSE among all methods

because the assumption of the linkage parameters is met in this scenario. Among

all the power prior methods, we expect some bias because stage 2 data are highly

incompatible with stage 1 data. Although the estimation from MLC is least biased

because the estimated δ are close to 0 in a large portion of simulated runs, we see

that the rMSE of MLC is close to that from MPP, PLC and FET due to the high

Monte Carlo variability of the MLC estimates. In scenario 5, the power prior models

are more able to appropriately weight the second stage data, leading to lower rMSE

compared to the BJSM because of violation to assumptions needed for the BJSM.

In scenario 6, the data from two stages are compatible, and although the bias for all

methods is small, we see that the rMSEs of BOM are smaller than other methods.

This is because the distributions of δ1 and δ2 for BOM in Figure B.1 in Appendix B

are clustered at the right half of the distribution, indicating power parameters closer

to 1 compared to other histograms.

Scenario 7 is similar to scenario 5 in terms of data incompatibility and violation of an

assumption of the BJSM, but the level of data incompatibility is less strong according

to Figure B.1. Thus, we see that the rMSE of the power prior models is lower than

the rMSE from the BJSM. The details of the bias and rMSE for all methods under

scenarios 1-7 can be found in Tables B.2 and B.3 in Appendix B. We also have

examined the patterns of bias and rMSE when N = 60, 75 or 300, and the patterns

are similar to N = 90 (results not shown). Thus, the power prior models can still be

applied to snSMARTs with even smaller sample sizes.
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Figure 4.3: The barplots of the mean absolute biases and root mean squared errors
(rMSEs) of the treatment response rate estimates under different methods. The
results from scenarios 4-7 are shown. MPP=modified power prior model; PLC=power
prior model with penalized likelihood-type criterion; MLC=power prior model with
marginal likelihood criterion; BOM=power prior model with Bhattacharyya’s overlap
measure; FET=power prior models with Fisher’s exact test; BJSM=Bayesian joint
stage model. Power prior model is also applied with all δ fixed at 1 (or 0), meaning
that the second stage data are completely used (or ignored). N = 90
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4.5 Discussion

Overall, we do not recommend use of the power prior models with the MPP, PLC or

MLC. For the MPP, the choice of δ highly depends on its prior distribution, especially

in an snSMART where the sample size is small. For the PLC, the estimated δ stay

relatively constant across different scenarios in snSMARTs, regardless of whether the

data from the two stages are compatible. For the MLC, the mean estimated δ can

change along with the compatibility across two stages, but the value for δ is highly

sensitive to small changes in number of responders in an snSMART. This sensitivity

of the MLC leads to a high chance of choosing 0 or 1.

Therefore, we feel that PLC and MLC should not be used to estimate response rates

in an snSMART because it is undesirable to choose a fixed value or extreme values of

0 or 1 with high probability. MPP is not preferred as well because the weights highly

depend on their prior distributions.

Hence, the suggested candidate models for treatment effect estimation in an snS-

MART are the BJSM and the power prior models with BOM or FET when consid-

ering both the performance of treatment effect estimation and reasonable values of

δ.

For the FET, we acknowledge that the stage 2 outcomes from stage 1 responders

and their stage 1 outcomes may not be independent, which is an assumption of the

Fisher’s exact test, but we believe that the smaller p-values are reasonable because less

weight should be put on second stage data when the within-individual correlation of

first and second stage responses can affect the determination of dependency between

stages and responses to treatment. Moreover, the number of correlated observations

is likely to be small especially in rare disease trials. For the BOM, we can see that

the assigned weights to “historical” data tend to be larger than the weights from

other methods. For the BJSM, we need to assume that the relationship between first
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and second stage response rates can be described proportionally through the linkage

parameters. This assumption may be difficult to justify.

When selecting a primary method of analysis, some background information about the

treatments of interest in an snSMART may influence model choice in the estimation

of treatment effects. If investigators believe that the second stage response rates

are proportional to the first stage response rates and the proportionality (linkage)

parameters do not depend on first and second stage treatments, then the BJSM may

be preferred since it is most efficient when its assumptions are met. For example,

the BJSM can be used if we believe that the response rates of all treatments will

double in the second stage for all first stage responders. However, if this assumption

is violated, which may be very likely, then power prior models with BOM or FET may

be considered. The BOM is preferred if the data from two stages are more compatible,

while the FET is preferred in the cases of less compatibility between data from two

stages. If prior information about possible first and second stage response rates of

all treatments exists, simulation studies can be conducted to help decide the prior

distribution of δ and π.

An extension of the SMART is the proposal by Liu et al. (2017) that the design be

enriched at later stages of the trial by the inclusion of subjects that received previous

stage treatments outside of the trial. They used the term, SMARTER, for a SMART

with enrichment. While this design assumed larger sample sizes, the same idea can

apply to an snSMART. In an snSMART, it is not clear how a subject’s information

outside of the trial should be incorporated by the BJSM. However, this enrichment is

not a problem for the power prior model methods since these methods do not link an

individual subject’s responses between stages. Thus, our power prior models might

be more appropriate for SMARTER designs.

Moreover, a different number of subgroups in stage 2 of an snSMART can be pre-
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specified instead of J = 2 in our study. In simulations, we have tried J = 6, where

the δ can differ depending on the individuals’ first stage responses and their stage

1 treatment assignments. However, due to the resulting small sample sizes in each

subgroup, the extra power parameters did not improve the bias and efficiency of

the estimation (results not shown). The application of a Bhattacharyya’s overlap

measure or Fisher’s exact test in power prior models is not limited to our snSMART

settings, but also can be used in more general cases when data from historical trials

are used to facilitate the data analysis of a current clinical trial. In this setting, the

potential issue of independence between samples no longer exists because patients

from different trials should be uncorrelated.
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CHAPTER V

Summary and Future Work

Motivated by ARAMIS, an snSMART for skin vasculitis, this dissertation has focused

on different models that can be applied to estimate the response rates of first stage

treatments or DTRs in small samples. In addition, we modified the standard snS-

MART by incorporating a group sequential design to allow dropping of an inferior

treatment arm at an interim analysis.

In Chapter II, we demonstrated how the Bayesian joint stage model (BJSM) and the

joint stage regression model (JSRM) proposed by Wei et al. (2018) can be used to

estimate DTRs in an snSMART and compared them with the existing weighted and

replicated regression model by Nahum-Shani et al. (2012). The BJSM and JSRM

perform better in terms of efficiency because the data from both stages are used. We

also proposed a simulation-based sample size calculation method using the JSRM for

an snSMART when the goal of the trial is the estimation of first stage treatment

response rates. This approach involves Dunnett’s correction method for multiple

comparisons under the GEE model.

In Chapter III, we proposed a group sequential snSMART where a decision of whether

an arm should be removed can be made at each interim look. Compared to a standard

snSMART, more participants were expected to be assigned to the better performing

treatments in our group sequential snSMART, which is an attractive property of this
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design. Moreover, the probability of incorrectly removing an arm during all interim

analyses can be controlled by the pre-specified cutoff values for the decision rules.

In Chapter IV, we introduced a new application of power prior models to the estima-

tion of treatment effect in an snSMART by assuming that first stage outcomes are

“current data” and second stage outcomes are “historical data”. Compared to the

BJSM, the power prior model performs better when second stage treatment response

rates change with respect to both first and second stage treatments, which violates

an assumption of the BJSM.

In addition to the group sequential snSMART design that we introduced in Chapter

III, we examined some other adaptive designs that change the treatment allocation

rule. For example, we explored Bayesian adaptive randomization, where the ran-

domization probabilities to each treatment are altered based on the posterior proba-

bilities from interim outcomes (Thall and Wathen, 2007). However, we found some

potential issues with this approach. First, it is hard to decide an appropriate map-

ping from interim outcomes to randomization probabilities. In our group sequential

snSMART, we can pre-specify a desired probability of incorrectly removing an arm

through thresholds for the posterior probabilities in the two-step decision rule. How-

ever, in Bayesian adaptive randomization, we do not have an objective criterion to

choose an appropriate power term c if the randomization probability of j = J is

determined by rJ =
P (πJ is the largest)c∑
allj P (πj is the largest)c

, which is similar to Thall and Wathen

(2007). Second, since the sample size for an snSMART is small, the effect of changing

randomization probabilities is also small in terms of treatment allocation compared

to that of a standard snSMART. Based on our simulation results (not shown), if

our group sequential snSMART is applied instead of other adaptive randomization

approaches, more patients are expected be allocated to better performing treatments.

In Chapter IV, we introduced a new application of measures of closeness to the
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estimation of power parameters in the power prior models. However, we only have

tried this approach in our snSMART with binary outcomes. In the future, since

more and more data will be generated or collected from different clinical studies,

drawing inference from a combination of data from several sources would be of more

importance. Thus, it would be interesting to investigate if this application can be

generalized to the incorporation, or integration, of historical and current data of

clinical trials with different endpoints.

75



APPENDICES

76



APPENDIX A

Chapter II: Additional Simulation Results

Table A.1: The bias and root mean squared error (rMSE) of the dynamic treatment
regimen (DTR) response rate estimates using Bayesian Joint Stage Model (BJSM),
Joint Stage Regression Model (JSRM), and Weighted and Replicated Regression
Model (WRRM). The sample sizes for scenarios 1a-c, 2a-c, 3a-c, and 4a-c (see Table
2.1 in the main text), are 135, 90, 120 and 120, respectively.

Begin of Table

Scenario
BJSM JSRM WRRM

Bias rMSE Bias rMSE Bias rMSE

1a

AAB -0.018 0.056 -0.009 0.080 -0.007 0.087

AAC -0.019 0.052 -0.009 0.062 -0.009 0.076

BBA 0.013 0.056 0.002 0.075 -0.001 0.082

BBC 0.003 0.050 0.001 0.060 0.004 0.073

CCA 0.033 0.063 0.000 0.057 0.000 0.071

CCB 0.037 0.066 0.000 0.057 0.000 0.071

1b

AAB -0.024 0.066 0.000 0.082 0.001 0.090

AAC -0.027 0.063 0.001 0.067 0.001 0.083

BBA 0.017 0.057 0.002 0.075 -0.001 0.082

BBC 0.000 0.050 0.001 0.060 0.004 0.073

CCA 0.045 0.070 0.001 0.054 0.001 0.068

CCB 0.045 0.070 0.001 0.054 0.001 0.069

1c

AAB -0.001 0.062 0.012 0.080 0.000 0.088

AAC -0.017 0.060 0.006 0.068 0.001 0.082

BBA 0.006 0.055 -0.006 0.078 -0.001 0.085
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Continuation of Table A.1

Scenario
BJSM JSRM WRRM

Bias rMSE Bias rMSE Bias rMSE

BBC -0.003 0.049 0.000 0.059 0.004 0.073

CCA 0.002 0.057 -0.036 0.076 0.002 0.087

CCB 0.073 0.089 0.039 0.072 0.000 0.072

2a

AAB -0.029 0.070 -0.014 0.099 -0.011 0.106

AAC -0.030 0.067 -0.012 0.078 -0.012 0.094

BBA 0.009 0.066 0.003 0.095 0.000 0.102

BBC -0.004 0.063 0.002 0.077 0.006 0.092

CCA 0.044 0.077 0.000 0.071 0.000 0.088

CCB 0.049 0.082 0.000 0.071 -0.001 0.088

2b

AAB -0.038 0.083 0.000 0.100 0.000 0.109

AAC -0.040 0.081 0.001 0.084 0.003 0.104

BBA 0.014 0.067 0.003 0.095 0.000 0.102

BBC -0.007 0.063 0.002 0.077 0.006 0.092

CCA 0.060 0.088 0.001 0.068 0.002 0.086

CCB 0.058 0.087 0.002 0.068 0.000 0.085

2c

AAB -0.010 0.074 0.015 0.099 0.000 0.108

AAC -0.027 0.076 0.010 0.086 0.004 0.104

BBA 0.001 0.064 -0.007 0.098 -0.002 0.104

BBC -0.012 0.063 -0.002 0.075 0.006 0.092

CCA 0.005 0.067 -0.039 0.093 0.004 0.108

CCB 0.086 0.104 0.046 0.089 0.001 0.090

3a

AAB -0.029 0.060 -0.009 0.073 -0.009 0.082

AAC -0.029 0.061 -0.010 0.073 -0.009 0.083

BBA 0.027 0.062 0.002 0.081 -0.001 0.089

BBC 0.017 0.041 0.001 0.049 0.004 0.068

CCA 0.047 0.077 0.000 0.070 0.000 0.078

CCB 0.024 0.045 0.000 0.043 0.000 0.056

3b

AAB -0.036 0.074 0.001 0.078 0.000 0.090

AAC -0.038 0.073 0.000 0.078 0.003 0.091

BBA 0.033 0.065 0.002 0.081 -0.001 0.089

BBC 0.013 0.039 0.001 0.049 0.004 0.068

CCA 0.060 0.085 0.001 0.067 0.001 0.076
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Continuation of Table A.1

Scenario
BJSM JSRM WRRM

Bias rMSE Bias rMSE Bias rMSE

CCB 0.033 0.048 0.001 0.038 0.001 0.052

3c

AAB -0.015 0.066 0.013 0.078 0.000 0.088

AAC -0.025 0.068 0.006 0.078 0.003 0.090

BBA 0.021 0.061 -0.005 0.086 -0.002 0.094

BBC 0.015 0.040 0.007 0.050 0.004 0.068

CCA 0.014 0.061 -0.022 0.087 0.003 0.095

CCB 0.048 0.060 0.027 0.051 0.001 0.055

4a

AAB -0.027 0.061 -0.010 0.079 -0.009 0.087

AAC -0.027 0.060 -0.010 0.071 -0.009 0.083

BBA 0.022 0.060 0.002 0.081 -0.001 0.088

BBC 0.010 0.045 0.000 0.056 0.004 0.072

CCA 0.042 0.074 0.000 0.066 0.000 0.078

CCB 0.032 0.057 0.000 0.051 -0.001 0.066

4b

AAB -0.034 0.073 0.001 0.082 0.000 0.093

AAC -0.036 0.073 0.000 0.076 0.003 0.091

BBA 0.027 0.063 0.002 0.081 -0.001 0.088

BBC 0.007 0.044 0.000 0.056 0.004 0.072

CCA 0.056 0.082 0.001 0.064 0.001 0.076

CCB 0.041 0.061 0.001 0.047 0.000 0.063

4c

AAB -0.011 0.066 0.014 0.082 0.000 0.092

AAC -0.023 0.067 0.007 0.076 0.003 0.091

BBA 0.016 0.058 -0.003 0.085 0.000 0.092

BBC 0.006 0.043 0.004 0.055 0.004 0.072

CCA 0.009 0.062 -0.031 0.085 0.003 0.095

CCB 0.064 0.077 0.035 0.064 0.001 0.066

End of Table

79



APPENDIX B

Chapter IV: Additional Simulation Results
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Figure B.1: The distributions of δ1 and δ2 from modified power prior (MPP), power
prior with penalized likelihood-type criterion (PLC), marginal likelihood criterion
(MLC), Bhattacharyya’s overlap measure (BOM) and measure from Fisher’s exact
test (FET) under scenarios 5-7. N = 90
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Figure B.2: The distributions of δ1 and δ2 from modified power prior (MPP), power
prior with penalized likelihood-type criterion (PLC), marginal likelihood criterion
(MLC), Bhattacharyya’s overlap measure (BOM) and measure from Fisher’s exact
test (FET) under scenarios 5-7. N = 300
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Scenario Treatment MPP PLC MLC BOM FET BJSM δ = 1 δ = 0

1
A 0.012 0.015 0.011 0.010 0.011 0.015 0.010 0.020
B 0.011 0.012 0.010 0.008 0.009 0.016 0.008 0.017
C -0.001 0.005 0.003 0.003 0.004 0.013 0.002 0.008

2
A 0.023 0.024 0.018 0.021 0.018 0.019 0.030 0.020
B 0.032 0.032 0.024 0.031 0.024 0.025 0.051 0.017
C 0.036 0.038 0.027 0.044 0.032 0.032 0.075 0.008

3
A -0.005 0.000 0.000 -0.013 -0.002 0.011 -0.025 0.020
B -0.015 -0.010 -0.007 -0.027 -0.013 0.009 -0.043 0.017
C -0.037 -0.026 -0.020 -0.044 -0.027 0.004 -0.064 0.008

4
A 0.039 0.036 0.030 0.046 0.034 0.022 0.065 0.020
B 0.057 0.050 0.037 0.070 0.049 0.031 0.102 0.017
C 0.068 0.062 0.040 0.097 0.068 0.039 0.141 0.008

5
A 0.070 0.056 0.051 0.083 0.058 0.099 0.120 0.020
B 0.054 0.045 0.038 0.061 0.042 0.051 0.089 0.017
C -0.018 -0.003 -0.011 -0.022 -0.011 -0.066 -0.028 0.008

6
A 0.007 0.009 0.006 0.006 0.007 0.014 0.005 0.013
B 0.010 0.011 0.009 0.007 0.008 0.015 0.007 0.016
C 0.004 0.010 0.007 0.007 0.008 0.014 0.006 0.014

7
A -0.022 -0.010 -0.016 -0.033 -0.021 -0.035 -0.043 0.013
B 0.010 0.011 0.010 0.008 0.009 0.014 0.007 0.016
C 0.032 0.029 0.030 0.045 0.036 0.059 0.054 0.014

Table B.2: The bias of the estimates of treatment response rates under different
methods. MPP, PLC, MLC, BOM, FET and BJSM stand for modified power prior
model, power prior model with penalized likelihood-type criterion, power prior model
with marginal likelihood criterion, power prior model with Bhattacharyya’s overlap
measure and power prior models with Fisher’s exact test and Bayesian joint stage
model, respectively. Power prior model is also applied with all δ fixed at 1 (or 0),
meaning that the second stage data are completely used (or ignored). N = 90.
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Scenario Treatment MPP PLC MLC BOM FET BJSM δ = 1 δ = 0

1
A 0.055 0.060 0.058 0.053 0.056 0.058 0.052 0.071
B 0.062 0.067 0.065 0.059 0.062 0.066 0.058 0.080
C 0.064 0.069 0.069 0.060 0.063 0.072 0.059 0.085

2
A 0.061 0.066 0.061 0.061 0.061 0.057 0.065 0.071
B 0.073 0.077 0.072 0.072 0.072 0.065 0.083 0.080
C 0.080 0.085 0.082 0.082 0.078 0.074 0.102 0.085

3
A 0.056 0.058 0.061 0.055 0.059 0.060 0.054 0.071
B 0.065 0.067 0.072 0.066 0.066 0.069 0.069 0.080
C 0.076 0.076 0.080 0.077 0.073 0.075 0.087 0.085

4
A 0.072 0.071 0.071 0.075 0.071 0.055 0.087 0.071
B 0.090 0.086 0.085 0.097 0.087 0.064 0.121 0.080
C 0.103 0.099 0.095 0.120 0.102 0.075 0.156 0.085

5
A 0.096 0.085 0.090 0.105 0.088 0.114 0.136 0.071
B 0.088 0.084 0.086 0.091 0.084 0.079 0.110 0.080
C 0.076 0.074 0.085 0.074 0.078 0.094 0.070 0.085

6
A 0.061 0.066 0.065 0.058 0.062 0.066 0.057 0.079
B 0.062 0.067 0.065 0.059 0.062 0.067 0.058 0.080
C 0.061 0.067 0.066 0.058 0.061 0.066 0.058 0.081

7
A 0.063 0.064 0.069 0.064 0.064 0.071 0.067 0.079
B 0.063 0.067 0.068 0.059 0.063 0.067 0.058 0.080
C 0.072 0.074 0.077 0.076 0.074 0.088 0.081 0.081

Table B.3: The root mean square error (rMSE) of the estimates of treatment response
rates under different methods. MPP, PLC, MLC, BOM, FET and BJSM stand
for modified power prior model, power prior model with penalized likelihood-type
criterion, power prior model with marginal likelihood criterion, power prior model
with Bhattacharyya’s overlap measure, power prior models with Fisher’s exact test
and Bayesian joint stage model, respectively. Power prior model is also applied with
all δ fixed at 1 (or 0), meaning that the second stage data are completely used (or
ignored). N = 90.
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