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ABSTRACT 

Cardiovascular disease (CVD) is the leading cause of mortality among US adults, and 

African Americans have a higher burden of CVD morbidity and mortality than any other racial 

group. Identification of novel CVD biomarkers is essential to better identify at-risk individuals, 

advance precision medicine, and inform efforts to reduce CVD burden. DNA methylation 

(DNAm) is an epigenetic mechanism that captures genetic influences as well as imprints of 

lifestyle and environmental exposures throughout the life course. DNAm patterns may help 

identify biological mechanisms contributing to CVD pathogenesis. This dissertation explores the 

effects of DNAm and DNAm-based epigenetic age acceleration (EAA) on cardiometabolic risk 

factors, atherosclerosis, CVD incidence, and target organ damage from hypertension (TOD) in 

African American participants from the Genetic Epidemiology Network of Arteriopathy 

(GENOA). In Aim 1, we used univariate and multivariate linear mixed models to assess the 

epigenome-wide association between DNAm sites (CpGs) and measures of TOD in the heart 

(left ventricular mass index (LVMI) and relative wall thickness (RWT)), kidneys (estimated 

glomerular filtration rate (eGFR) and albuminuria), and brain (white matter hyperintensity). 

LVMI, RWT, and albuminuria were each associated with one CpG in univariate models, and 

seven CpGs were associated with TOD measures in the multivariate (pleiotropy) model (false 

discovery rate (FDR) < 0.1). Mendelian randomization analysis provided evidence of a causal 

pathway between three CpGs and eGFR. In Aim 2, we assessed the associations between four 

measures of EAA, 10 cardiometabolic risk factors, and CVD incidence. We then evaluated 



 xvi 

whether EAA improved the predictive accuracy of two clinically-used CVD risk scores: the 

Framingham risk score (FRS) and the Atherosclerotic Cardiovascular Disease risk equation 

(ASCVD). Increased biological aging, as assessed by EAA, was associated with worse 

cardiometabolic risk profile, but the associations between each of the four EAA measures 

differed across cardiometabolic risk factors. GrimAge acceleration (GrimAA) was associated 

with CVD incidence (hazard ratio per 5-year increase 1.47, 95% CI: 1.05 – 2.01, P = 0.024) after 

adjusting for traditional CVD risk factors. GrimAA improved model fit over clinical risk scores 

using likelihood ratio tests (P = 0.013 for FRS, P = 0.008 for ASCVD), did not improve C 

statistics (P > 0.05), and marginally improved net reclassification index (NRI) which assesses 

reassignment of risk categories (NRI = 0.055, 95% CI: 0.040 – 0.071 for FRS; 0.029, 95% CI: 

0.006 – 0.064 for ASCVD). In Aim 3, we evaluated in prospective analyses whether EAA 

measures, previously identified atherosclerosis-associated CpGs, and methylation risk scores 

(MRSs) derived from these CpGs are associated with single- or multi-site atherosclerosis 

(coronary artery calcification (CAC), abdominal aorta calcification (AAC), and ankle-brachial 

index (ABI)). One and six CpGs were associated with AAC and multi-site atherosclerosis, 

respectively (FDR < 0.1). Both a 5-year increase in GrimAA as well as a one unit increase in the 

MRS for carotid artery plaque were associated with a 1.6-fold increase in AAC and 0.7 units 

increase in multi-site atherosclerosis (score range: 0-12) after adjusting for CVD risk factors 

(Bonferroni-adjusted P < 0.05). Together, these studies support the premise that DNAm plays an 

important role in CVD and TOD and is a promising biomarker that may improve risk assessment 

in African Americans. 
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Chapter 1.  Introduction 

1.1 Overview 

Health disparities are preventable differences in the indicators of health across different 

population groups.1 In the United States, African Americans bear a disproportionate burden of 

disease, death, and disability for a number of health outcomes, most notable of which are 

cardiovascular diseases (CVDs).2 A number of underlying factors contribute to CVD disparities 

including biological, social, and environmental risk factors. Disparities in cardiovascular health 

have been persistent over the last few decades despite the overall declining trends in CVD across 

all groups.3 African Americans ages 18-49 are two times as likely to die from CVD as non-

Hispanic Asian or Pacific Islander individuals.4 Similar disparities exist in the prevalence of 

cardiovascular risk factors and are most pronounced in hypertension, which is associated with 

structural and functional changes in the end organs like the kidneys, eyes, brain, peripheral 

arteries, and heart.5 African Americans over 20 years of age have the highest prevalence of 

hypertension, estimated to be 41% higher than non-Hispanic whites.6  

1.1.1 Clinical Cardiovascular Diseases 

Collectively, CVD includes coronary heart disease (CHD), transient ischemic attack or 

stroke, heart failure, and peripheral arterial disease. CVD is the number one cause of death in the 

US and it is estimated that 9% of the US adult population has heart disease.7 Estimates from the 

National Health and Nutrition Survey (NHANES, 2013-2016) show the prevalence of total CVD 

to be approximately 10.5% among African American adults, with CVD accounting for about 
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30% of the deaths.7 African Americans have a greater burden in the onset of stroke, peripheral 

vascular disease, and heart failure, but not CHD.3,7 Nevertheless, cardiovascular mortality 

remains higher in African Americans compared to whites.8  

CHD clinically manifests as stable angina, unstable angina, or myocardial infarction 

(heart attack). CHD alone contributed to more than 45% of the total deaths attributable to CVD, 

equivalent to approximately 1 of every 7 deaths in the United States in 2011.9 CHD prevalence is 

estimated to be 7.7% in white males, 7.2% in African American males, 6.1% in white females, 

and 6.5% in African American females (NHANES 2013-2016).7 Although CHD prevalence is 

not significantly higher in African Americans compared to whites, African Americans have 

higher overall CVD mortality.3 Analysis of data from the Atherosclerosis Risk in Communities 

(ARIC) study shows that the rate of CHD decline between 1987-2000 for African Americans 

males is only about half the rate for white males (-3.2%/year vs. -6.5%/year) and about two 

thirds the rate for white females (-4.0%/year in African American females vs. 5.8%/year in white 

females).10 Longitudinal follow-up in the ARIC, the Cardiovascular Health Study (CHS), and the 

REasons for Geographic And Racial Differences in Stroke (REGARDS) study show that African 

American males have similar risks of fatal CHD, lower risk of nonfatal CHD, and higher CHD 

case-fatality compared to whites after adjustment for social determinants of health and 

cardiovascular risk factors.11  

Stroke, another major cardiovascular disease, ranks 5th in the causes of death in the US.12 

It is estimated that 7.8 millions of adults in the US have had a stroke.13 The prevalence of stroke 

using NHANES (2013-2016) is 3.1% in African American males, 2.4% in white males, 3.8% in 

African American females, and 2.5% in white females.7 Disparities are also most notable in 

stroke mortality despite overall national trends of decreased mortality and incidence.3,14-16 In 
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adults ages ≥ 45 years, African American males had 54% higher age-adjusted stroke death rates 

than white males, and African American females had a 30% higher death rate than white 

females.14  

1.1.2 Subclinical Cardiovascular Disease and Atherosclerosis 

Atherosclerosis, a precursor for CVD, is a chronic inflammatory condition that develops 

over several decades.17-19 It is a complex process where calcification of the intimal layer of the 

arterial wall occurs as a result of an inflammatory response to lipid accumulation and focal 

plaque formation.20 Intimal calcium deposition is often seen in the coronary arteries surrounding 

the heart and peripheral arteries. Atherosclerotic lesions can lead to diminished blood flow to the 

organs that presents as cardiac ischemia or claudication.  Atherosclerotic plaque rupture leads to 

arterial occlusion with subsequent blood flow interruption that manifests as heart attack, stroke 

or limb ischemia.17,21-23  

Atherosclerosis starts early in life with lesions starting as only fatty streaks consisting of 

monocyte derived macrophages and T lymphocytes.17,24 A number of factors may induce and 

promote atherogenesis such as endothelial dysfunction, elevated low-density lipoproteins, and 

hypertension. The continued inflammation results in further activation and migration of 

macrophages and lymphocytes and an increase in cytokines, chemokines and other growth 

factors. Through these continued cycles of inflammation and migration of cells, the fatty streak 

becomes enlarged and changes into a fibrous plaque with a necrotic core.17 Calcification of the 

plaque may ensue where macrophages in the plaque promote osteogenic differentiation and 

calcium deposition.22 Continued calcification may then stabilize the plaque and provide a wall 

between the plaque and the blood pool, which may decrease the risk of plaque rupturing.22  
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One imaging modality for the quantification of atherosclerosis in the coronaries and aorta 

is noninvasive computed tomography (CT) scans. The Agatston score is used to quantify the sum 

of the total calcified area and maximum density calcification.22,25 For individual lesions, the 

Agatston score is derived by multiplying the lesion area with a density weighting factor (DWF) 

in Hounsfield units (HU) units. The DWF is derived from the maximal CT attenuation within a 

given calcified lesion and reflects increasing categories of Hounsfield units (Hu) (DWF: 130 to 

199 HU = 1; 200 to 299 HU = 2; 300 to 399 HU = 3; and ≥ 400 HU = 4).26 Hence, the Agatston 

score is weighted upward for greater CAC density.27 The scores for all lesions is then summed 

over all lesions to determine the total Agatston score.26 

𝐴𝑔𝑎𝑡𝑠𝑡𝑜𝑛 𝑠𝑐𝑜𝑟𝑒𝑙𝑒𝑠𝑖𝑜𝑛 = 𝐴𝑟𝑒𝑎 × 𝐷𝑊𝐹 

𝐴𝑔𝑎𝑡𝑠𝑡𝑠𝑜𝑛 𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝐴𝑔𝑎𝑡𝑠𝑡𝑜𝑛 𝑠𝑐𝑜𝑟𝑒𝑙𝑒𝑠𝑖𝑜𝑛 

Both coronary artery calcium (CAC) and abdominal aorta calcium (AAC) have been found to be 

independent predictors of CVD incidence and mortality.28-30 Calcification in the peripheral 

arteries can be assessed using the ankle-brachial index (ABI), which is calculated as the ratio of 

systolic blood pressure at the ankles divided by the brachial pressure. Previous studies have 

reported ABI to be a robust predictor of peripheral arterial disease and mortality.31-33 Abnormally 

high ABI (>1.3) suggests the presence of calcified vessels that may not compress normally 

which may occur in the setting of underlying diabetes or end-stage kidney disease.34 

Despite having a higher burden of CVD and traditional risk factors, African Americans 

have a lower prevalence of CAC and AAC.35-40 In about 6,800 MESA participants, the relative 

risk of CAC in African Americans compared to whites was 0.78 (95% CI 0.74–0.82) after 

adjusting for socioeconomic and clinical risk factors.41 African Americans, however, are more 

likely to have carotid atherosclerosis and a higher carotid intima media thickness (IMT). In the 
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same MESA sample, African Americans were found to have the highest common carotid IMT 

compared to other racial groups.42 Finally, African Americans have a higher prevalence of 

peripheral arterial disease that was not explained by traditional and novel risk factors.7,43,44 

1.1.3 Cardiac and Renal Target Organ Damage of the Heart, Kidneys, and Brain  

Among African Americans, the prevalence of hypertension is estimated to be the highest 

in the world, and although awareness and treatment rates are higher than those of other racial 

groups, control of high blood pressures remains lower in African Americans compared to 

whites.45 In this dissertation we defined hypertension as having an average systolic blood 

pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg, or current anti-hypertensive 

medication use, following previously established guidelines. More recent guidelines by the 

American College of Cardiology/American Heart Association (ACC/AHA) apply a lower 

threshold: a systolic blood pressure ≥ 130 mmHg or a diastolic blood pressure ≥ 80 mmHg.46 

Hypertension over time contributes to structural and functional changes in organ systems, 

referred to as target organ damage (TOD). High blood pressure causes reduced arterial plasticity 

and endothelial wall damage, which in turn triggers the deposition of lipids in the wall lesions, 

leading to atherosclerotic plaque build-up and the subsequent obstruction of these vessels.5,47 As 

the vascular resistance increases, the systolic function is increased to maintain adequate organ 

perfusion.5,47 Renal injury occurs when the regulatory mechanisms of the kidneys are unable to 

maintain flow and pressure, resulting in an increase in glomerular hypertension, permeability, 

and proteinuria.5 In the heart, the remodeling of the myocardium ensues as the cardiac muscle 

adapts to the increased resistance in the circulation. This results in hypertrophy and increased 

myocardial thickness that eventually reduces relaxation of the heart muscle.5 In the brain, small 
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vessel disease is associated with decreased blood flow and hypoperfusion and results in lesions 

seen in the white matter.5 

TOD in the heart can be quantified using echocardiography imaging, which provides 

precise measurements of the dimension of the heart such as left ventricular mass and relative 

wall thickness. In the kidneys, TOD can be assessed using glomerular filtration rate and 

albuminuria. Hyperintensity of the white matter on brain MRI is often used to assess TOD in the 

brain. Compared to whites, epidemiological studies have shown that African Americans have 

greater left ventricular mass 48,49, higher incidence of chronic kidney disease, higher incidence of 

end stage renal disease,50,51 and more severe white matter hyperintensity burden,52,53 a trend that 

is in parallel to their higher hypertension burden. 

While subtle TOD may start as asymptomatic in the early course of hypertension, more 

severe organ damage typically happens after long periods of uncontrolled hypertension.54 

Clinical endpoints of TOD include symptomatic chronic kidney disease, systolic and diastolic 

dysfunction, dementia and transient ischemic attack. Further complications can lead to end-stage 

renal disease, myocardial infarction, and stroke.54 These thrombotic effects of hypertension 

leading to clinical events are facilitated by damage to the vessel wall, hypercoagulability, and 

abnormal blood flow.54 In addition, the well documented cardio-renal interactions, where chronic 

dysfunction of one organ may induce dysfunction in the other, can further contribute to the 

progression of TOD into more pronounced clinical and cardiovascular events.55 

1.2 Risk Factors for Cardiovascular Diseases and Target Organ Damage 

Surveillance data from NHANES and the Behavioral Risk Factor Surveillance System 

(BRFSS) show that marked disparities exist in both measured and self-reported cardiovascular 

risk factors which contribute to disparities in cardiovascular health.1 These include traditional 
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risk factors such as hypertension, type 2 diabetes mellitus, dyslipidemia, and obesity as well as 

adverse health behaviors such as smoking, poor diet quality, and physical activity.1,3 In addition, 

there is emerging evidence that social and socioeconomic factors such as educational attainment, 

built-environment, neighborhood environment, access to care, psychosocial stress, and 

discrimination are important factors that contribute to the disparities in cardiovascular 

morbidities and mortality.56  

The age adjusted prevalence of high blood pressure among adults ages ≥ 20 years 

between 2013 and 2016 was 46% for the total US population, 57.6% among African American 

males, 53.2% among African American females, 46.7% among white males, and 38.8% among 

white females.7 The prevalence of diabetes between 2013 and 2016 was 9.8% for the total 

population, 14.7% and 13.4% in African American males and females, and 9.4% and 7.3% in 

white males and females, respectively.7 Longitudinal evidence from the Coronary Artery Risk 

Development in Young Adults (CARDIA) study showed that the higher risk of diabetes onset 

among African Americans appears to be mediated by biological, neighborhood, psychosocial, 

socioeconomic, and behavioral factors.57 Prevalence estimates of dyslipidemia (defined as 

having total cholesterol levels ≥ 240 mg/dl, low density lipoprotein (LDL-C) ≥ 160 mg/dl, high 

density lipoprotein (HDL-C) ≤ 40 mg/dl, or use of lipid-lowering medications) in African 

Americans are comparable to or lower compared to whites.3,7 These prevalence estimates 

contradict with those based on incidence data, where African Americans have a higher rate of 

dyslipidemia that is more pronounced at older ages.58 This discrepancy could be partially 

explained by the higher rates of CVD mortality attributed to dyslipidemia among African 

Americans compared to whites.3 Obesity, defined as body mass index (BMI) ≥ 25 kg/m2, is also 

higher in African Americans across the age spectrum.3 In adults ages ≥ 20 years, the prevalence 
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of obesity in African American males was 37.0% compared to 35.8% in white males, and 55.3% 

in African American females compared to 37.8% in white females.7 Smoking exposure, as both 

active and secondhand smoke, is a strong risk factor for CVD in all groups with no differential 

magnitude of effect or rates of smoking in African Americans compared to whites.3,59 However, 

compared to whites, African Americans have lower quit rates and are more likely to be exposed 

to secondhand smoke.3 Finally, adherence to dietary and activity recommendations remains 

difficult and below target in all racial group including African Americans.3  

1.3 Genetics and Epigenetics in Cardiovascular Disease and Target Organ Damage 

1.3.1 Genetics of Cardiovascular Disease and Target Organ Damage 

In addition to the risk factors discussed above, family history and genetics may also 

contribute to the increased burden of CVD in African Americans. A number of independent loci 

have been identified for cardiovascular diseases in African Americans, including those 

associated with hypertension60,61 and left ventricular mass.62 However, most identified genetic 

loci explain only a small portion of the variance of complex diseases, including CVD.63 Hence, 

despite the role of genetic predisposition and family history in CVD and its risk factors, social 

and environmental conditions are likely to be the most important determinants in CVD risk and 

disparities.1,64  

1.3.2 The Emerging Role of Epigenetics in Health and Disease  

Epigenetic mechanisms are modulated by lifestyle and environmental factors over the life 

course and can capture the influences of early and long-term exposures on health. Their effect is 

translated into changes in gene expression and they are recognized as a molecular bridge 

between the environment and disease.65  Epigenetic markers may be important biomarkers of 

early disease onset and progression and can reveal important information on biological 
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mechanisms and pathways underlying morbidities. Combined with other genetic and phenotypic 

information, epigenetic markers could be used to provide precise characterization of individual 

risk for health conditions, including CVD.   

Currently recognized epigenetic mechanisms include DNA methylation (DNAm), histone 

modifications, and higher order chromatin structure.66 DNA methylation is the covalent addition 

of a methyl group to a cytosine of a cytosine-guanine pair, also known as a CpG site.67 It is the 

most studied and best understood epigenetic mechanism and is a useful biomarker because it can 

be relatively stable over time yet susceptible to change in response to environmental stimuli.66 

Histone modifications are energy dependent post translational processes of nucleosomal 

histones. These modifications include acetylation, methylation, phosphorylation, ubiquitylation, 

and sumoylation and are differently associated with gene activity, gene silencing, or insulation 

between active and inactive gene regions.66 Lastly, higher order chromatin structure involves 

nucleosomal compaction near the nuclear membrane (heterochromatin) or nucleosomal 

accessibility (euchromatin).66 The higher order chromatin structure also partitions the genome 

into regions that are topologically associated resulting in enhancer-promoter interaction.66,68 

1.3.3 Epigenetic clocks 

Epigenetic clocks are novel measures of biological aging that are based on DNA 

methylation. They are added to a growing list of biological aging measures which are used to 

describe the biological aging process beyond chronological age.69 Aging in essence is defined as 

the progressive functional decline that is the leading risk factor for major human morbidities 

including cardiovascular disorders and neurodegenerative diseases.70 The concept of biological 

aging is based on the observation that individuals of the same chronological age do not age 

biologically at the same pace.71 Hence the different trajectories of age-related decline can be 
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better captured by measures of biological aging than chronological age. Biological aging 

measures can be divided into molecular biomarkers, such as epigenetic clocks and telomere 

length, or phenotypic or physiological markers which include clinical measures such as blood 

pressure, grip strength, and lipids.69 Understanding the aging process and pathophysiological 

processes underlying age-related conditions may lead to innovative prevention and therapeutic 

targets. 

The earliest generation of epigenetic clocks, developed by Horvath72 and Hannum73 were 

trained to select CpG sites associated with chronological age using penalized regression models. 

The Horvath measure, based on 353 CpGs, is a multi-tissue measure derived using DNA 

methylation from 8000 samples from 82 publicly available datasets.72 The datasets had 

representation of four racial/ethnic groups; mainly whites, Hispanics, African Americans, and to 

a lesser extent East Asians.72 The Hannum measure, based on 71 CpGs, is derived using DNA 

methylation in whole blood from a sample of 426 whites and 230 Hispanics.73 For both 

measures, the acceleration is based on residuals from a model regressing epigenetic age against 

chronological age. Modified versions of these measures also account for confounding by blood 

cell composition. 74. Intrinsic epigenetic age acceleration (IEAA) is the residual resulting from a 

multivariate regression model of Horvath epigenetic age on chronological age and white blood 

cell counts (naive CD8+ T cells, exhausted CD8+ T cells, plasmablasts, CD4+ T cells, natural 

killer cells, monocytes, and granulocytes) imputed from methylation data. Extrinsic age 

epigenetic age acceleration (EEAA) is based on the residuals from a model of biological age 

calculated using the Hannum measure after incorporating an up-weighted count of three cell 

types known to change with age: naïve cytotoxic T cells, exhausted cytotoxic T cells, and 

plasmablasts.  
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The second generation of the epigenetic aging measures, including PhenoAge and 

GrimAge, account for physiological dysfunction among individuals of the same chronological 

age in their selection of CpGs. PhenoAge was developed using NHANES III as the training 

sample where a proportional mortality hazard penalized regression model was used to narrow 42 

biomarkers to 9 biomarkers and chronological age.75 The 9 selected biomarkers were then used 

to derive phenotypic age. PhenoAge was then derived by regressing phenotypic age on blood 

DNA methylation data from the Invecchiare in Chianti, Aging in the Chianti Area (InCHIANTI) 

study. This produced an estimate of DNAm PhenoAge based on 513 CpGs, and PhenoAge was 

further validated in multiracial cohorts (Women’s health initiative (WHI), Jackson Heart Study 

(JHS), Normative Aging Study (NAS) and Framingham Heart Study (FHS). GrimAge was 

derived by first defining DNA methylation-based surrogate markers of 88 plasma proteins and 

smoking pack-years.76 Out of those, only 12 of the plasma proteins were correlated with the 

surrogate measure (r >0.35). Next, time-to-death due to all-cause mortality was regressed on 

chronological age and the DNA methylation-based biomarkers for the 12 plasma proteins and 

smoking.76 An elastic net regression selected 7 surrogate plasma protein and smoking pack-years 

in addition to chronological age and sex. GrimAge, based on 1030 CpGs, was then derived as the 

linear combination of these covariate values and transformed to be in units of years. GrimAge 

was trained on samples from the FHS and validated in an independent FHS cohort, WHI, JHS, 

and INChianti.76 For both GrimAge and PhenoAge, an acceleration measure is derived as the 

residual from a model regressing the epigenetic aging measure against chronological age.  

1.3.4 Epigenetics of Cardiovascular Diseases and Target Organ Damage 

Epidemiological studies of DNA methylation signatures measured in proxy tissues, such 

as blood, typically employ an epigenome wide approach where differential DNA methylation at 
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individual CpGs is examined in relation to the exposure or outcome of interest. Given the 

immune system involvement and inflammatory responses underlying atherosclerosis and TOD, 

DNA methylation patterns in white blood cells are suitable proxy tissue to study the epigenetic 

signature of the onset and progression of these outcomes. Other methodological approaches, such 

as adaptation of approaches similar to polygenic risk scores to access more variance of complex 

trait, i.e. methylation risk scores, are still limited in use. This is mostly because DNA 

methylation data is more sensitive to confounding by age and tissue and it is difficult to find 

appropriate external weights.77 Conversely, epigenetic age acceleration measures have been used 

more extensively and have been shown to be robust markers of aging and a number of aging 

related diseases.  

To date, a limited number of studies have examined the association between genome 

wide DNA methylation and hypertension and TOD in the kidneys.78,79 More studies have 

examined the genome-wide DNA methylation signatures of subclinical CVD80 and clinical 

CVD.81-84 However, a majority of these studies were in cohorts of European ancestry and/or were 

cross-sectional. Other studies have examined the association between epigenetic age acceleration 

and TOD, 85,86 CVD, and their risk factors86-97, but the overall evidence remains inconclusive 

likely due to heterogeneity in study design, outcomes, and the epigenetic aging measures used. In 

two recent studies of participants of European ancestry, GrimAge acceleration was found to be 

associated with CVD incidence beyond traditional risk factors.86,96 It remains unclear whether 

similar association exits in African Americans. 

1.4 Motivation for further studies 

CVD disparities in the US remain pervasive, and the causes of these disparities are 

complex and elusive. Epigenetic mechanisms are increasingly recognized as important genomic 
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regulators that may influence or be biomarkers of CVD disease risk and progression. Identifying 

and quantifying key epigenetic modifications may help to improve risk stratification of CVD and 

its risk factors. Furthermore, epigenetic studies can help identify underlying disease mechanisms 

and key regulatory processes and gene-environment interactions that may occur over long 

periods of time and contribute to CVD risk.65 Further studies are needed to better characterize 

these associations, replicate previous findings and increase representation of highly burdened 

populations. As such, this dissertation will explore the effects of DNAm and DNAm-based 

epigenetic age acceleration (EAA) on cardiometabolic risk factors, atherosclerosis, CVD 

incidence, and target organ damage (TOD) from hypertension in African American participants 

from the Genetic Epidemiology Network of Arteriopathy (GENOA). 

1.5 The Genetic Epidemiology Network of Arteriopathy (GENOA) study 

The Genetic Epidemiology Network of Arteriopathy (GENOA) is a community-based 

study in Rochester, MN and Jackson, MS that aims to identify genes influencing blood 

pressure98. In the first phase of GENOA (Phase I: 1996 – 2001), sibships with at least two adults 

with clinically diagnosed essential hypertension before age 60 were recruited, and all siblings in 

the sibships were invited to participate regardless of hypertension status [20]. Exclusion criteria 

included secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent 

diabetes mellitus, or active malignancy.  

In Phase I, a total of 1,583 non-Hispanic whites (Rochester, MN) and 1,854 African 

Americans (Jackson, MS) were enrolled. In the second phase (Phase II: 2001 – 2005), all 

participants were invited for a second examination. Eighty percent of African Americans (N = 

1,482) and 75% of non-Hispanic whites (N = 1,213) from Phase 1 returned. At Phase III (2009-

2011), 752 African Americans returned for a third examination. Demographic information, 
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medical history, clinical characteristics, lifestyle factors, and blood samples were collected in 

each phase. 

This dissertation will focus on African American participants who had their DNA 

methylation measured in whole blood samples collected at Phase I (N = 1,106) and/or Phase II 

(N = 304). For these participants, genomic DNA was extracted from stored peripheral blood 

leukocytes using AutoGen FlexStar (AutoGen, Holliston, MA) and DNA methylation was 

measured using the Infinium MethylationEPIC BeadChip. The methods of DNA methylation 

processing have been previously described.99 Following quality control, a total of 1,100 samples 

from Phase I and 294 from Phase II were available for analysis. 

 

1.6 Specific Aims and Hypotheses 

The specific aims and hypotheses for this dissertation are as follows: 

Aim 1 

To assess the longitudinal association between epigenome-wide DNA methylation and five 

measures of target organ damage (TOD) in GENOA African Americans. 

Sub aims 

1. To identify CpGs associated with five measures of TOD in the heart (left ventricular 

mass index and relative wall thickness), kidneys (estimated glomerular filtration rate and 

albuminuria), and brain (white matter hyperintensity) using univariate and multivariate 

regression.  

2. To explore whether DNA methylation at the identified CpGs is associated with proximal 

gene expression.  
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3. To evaluate the causal relationship between the identified CpGs and TOD using 

Mendelian randomization. 

Hypothesis 1: We hypothesize that a number of CpGs will be associated with measures of 

TOD, with evidence of differential proximal gene expression and causality.  

Aim 2 

To investigate whether four epigenetic age acceleration measures (IEAA, EEAA, PhenoAA, and 

GrimAA) are associated with ten cardiometabolic risk factors and CVD incidence in GENOA 

African Americans.  

Sub aims 

1. To assess the cross-sectional association between four epigenetic age acceleration 

measures and ten cardiometabolic markers of hypertension, insulin resistance, and 

dyslipidemia. 

2. To investigate whether four epigenetic age acceleration measures are associated with 

CVD incidence and improve predictive accuracy over two clinical CVD risk scores 

(Framingham risk score (FRS) and the atherosclerotic cardiovascular disease (ASCVD) 

risk equation). 

Hypothesis 2: We hypothesize that increased epigenetic age acceleration, indicative of faster 

biological aging, will be associated with a worse cardiometabolic risk profile and higher 

CVD incidence, and will improve prediction of CVD incidence over the FRS and/or the 

ASCVD risk scores. 

Aim 3 

To evaluate whether four epigenetic age acceleration measures (IEAA, EEAA, PhenoAA, and 

GrimAA), previously identified CpGs for atherosclerosis, and/or methylation risk scores (MRSs) 
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derived from these CpGs are associated with single- or multi-site atherosclerosis in GENOA 

African Americans. 

Sub aims  

1. To assess the associations between four epigenetic age acceleration measures and single- 

or multi-site atherosclerosis (coronary artery calcification, abdominal aorta calcification, 

and ankle-brachial index). 

2. To evaluate the associations between previously-identified CpGs for atherosclerosis, both 

individually and aggregated into MRSs, and single- or multi-site atherosclerosis 

(coronary artery calcification, abdominal aorta calcification, and ankle-brachial index). 

3. To characterize the temporal stability of the potential epigenetic biomarkers for 

atherosclerosis (four epigenetic age acceleration measures and MRSs) using longitudinal 

measures of DNA methylation.  

Hypothesis 3: We hypothesize that increased epigenetic age acceleration and previously-

identified CpGs for atherosclerosis, both individually and aggregated into MRSs, will be 

associated with single- or multi-site atherosclerosis with evidence of temporal stability.  
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Chapter 2.  Epigenome-wide Association Study Identifies DNA Methylation Sites 

Associated with Target Organ Damage in Older African Americans 

2.1 Abstract 

Target organ damage (TOD) manifests as vascular injuries in the body organ systems 

associated with long standing hypertension. DNA methylation in peripheral blood leukocytes can 

capture inflammatory processes and gene expression changes underlying TOD. We investigated 

the association between epigenome-wide DNA methylation and 5 measures of TOD (estimated 

glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), left ventricular mass 

index (LVMI), relative wall thickness (RWT), and white matter hyperintensity (WMH)) in 961 

African Americans from hypertensive sibships. A multivariate (multi-trait) model of eGFR, 

UACR, LVMI, and RWT identified 7 CpGs associated with at least one of the traits 

(cg21134922, cg04816311 near C7orf50, cg09155024, cg10254690 near OAT, cg07660512, 

cg12661888 near IFT43, and cg02264946 near CATSPERD) at FDR q<0.1. Adjusting for blood 

pressure attenuated the association for cg04816311, and further adjustment for body mass index 

and type 2 diabetes attenuated the association for 3 additional CpG sites (cg21134922, 

cg09155024, and cg10254690). Although DNA methylation was associated with cis-gene 

expression for some CpGs, no significant evidence of mediation by gene expression was 

detected. Mendelian randomization analyses suggested causality between three CpGs and eGFR 

(cg04816311, cg10254690, and cg07660512). We also assessed whether the identified CpG sites 

were associated with TOD in 614 African Americans in the Hypertension Genetic Epidemiology 

Network (HyperGEN) study. Out of the 3 CpG sites available for replication, cg04816311 was 
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significantly associated with eGFR (p=0.0003), LVMI (p=0.0003), and RWT (p=0.002). This 

study found evidence of an association between DNA methylation and TOD in African 

Americans and highlights the utility of using a multivariate-based model that leverages 

information across related traits in epigenome-wide association studies. 
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2.2 Introduction 

More than 40% of US adults have hypertension, with African Americans having higher 

prevalence than that of any other racial group.1 According to the 2011-2014 National Health and 

Nutrition Examination Survey, the prevalence of hypertension was 59% in African American 

men and 56% in African American women, compared to a prevalence of 47% and 41% in non-

Hispanic White men and women.1 Due to long standing hypertension, target organ damage 

(TOD) manifests as subclinical or clinical changes to the micro and macro vascular systems of 

the heart, brain, eyes, and kidneys.2 Oxidative stress, endothelial dysfunction, extracellular 

matrix formation, and innate and adaptive immune cells activation and invasion are some of the 

mechanisms recognized to play a role in TOD onset and progression.2,3 Previous research 

indicates that measures of TOD are independent and strong predictors of cardiovascular 

morbidity and mortality and all-cause mortality.4-7 However, there are gaps in our knowledge 

about the progressive effects of hypertension over the life course and which risk factors 

contribute to the development of subclinical changes and symptomatic diseases related to TOD. 

African Americans are especially susceptible to manifestations of target organ damage from 

hypertension leading to a higher risk of adverse cardiovascular and renal outcomes and 

mortality.8,9 Previous studies have shown that African Americans have greater left ventricular 

mass,10,11 higher incidence of chronic kidney disease, and end stage renal disease compared to 

non-Hispanic Whites.12,13 Better understanding of the pathogenesis of TOD could elucidate and 

improve our prediction of related morbidities and mortality, especially in populations with the 

highest burden of hypertension. 

A complex interplay of genetics and the environment contributes to the risk of TOD.  

Heritability studies point to a substantial genetic component, with heritability estimates ranging 
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from 0.17 to 0.76.14-18 Familial clustering patterns in Framingham Heart Study reveal that 

individuals who have at least one parent with TOD had an increase in the odds of any type of 

TOD, even after controlling for hypertension status.19 Epigenetic mechanisms may shed light on 

the ways that genetics, the environment, and traditional risk factors contribute to the progression 

of TOD.20,21 To date, only a handful of well-powered epigenome-wide association studies 

(EWAS) have investigated the association between DNA methylation and blood pressure or 

related organ damage.22-24  

In this study, we investigated the association between DNA methylation, interrogated in 

peripheral blood leukocytes, and 5 TOD measures in a cohort of older African Americans using 

longitudinally collected data. We hypothesized that biological pathways involved in the 

association between DNA methylation and TOD could be unique to each trait or could act in a 

pleiotropic manner. Hence, to gain a better understanding of these biological mechanisms, we 

employed both univariate (single-trait) and multivariate (multi-trait) models. Additionally, we 

assessed whether the effects of CpG sites on TOD were mediated by the expression of nearby 

genes and we used Mendelian randomization (MR) to investigate causality. 

2.3 Methods 

Study sample 

Genetic Epidemiology Network of Arteriopathy (GENOA) is a community-based study 

in Rochester, MN and Jackson, MS that aims to identify genes influencing blood pressure 25. In 

the first phase of GENOA (Phase I: 1996 – 2001), sibships with at least two adults with clinically 

diagnosed essential hypertension before age 60 were recruited, and all siblings in the sibship 

were invited to participate regardless of hypertension status [20]. Exclusion criteria included 

secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent diabetes 
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mellitus, or active malignancy. In Phase I, a total of 1,583 non-Hispanic whites (Rochester, MN) 

and 1,854 African Americans (Jackson, MS) were enrolled. In the second phase (Phase II: 2001 

– 2005), all participants were invited for a second examination. Eighty percent of African 

Americans (N = 1,482) and 75% of non-Hispanic whites (N = 1,213) from Phase 1 returned. 

Demographic information, medical history, clinical characteristics, lifestyle factors, and blood 

samples were collected in each phase.  

This study includes African American participants who had their DNA methylation 

profiles measured in whole blood samples collected at Phase I. Measures of TOD were collected 

at Phase II and/or in an ancillary study of brain magnetic resonance imaging (MRI) conducted 

shortly after Phase II. Gene expression profiles were measured from lymphoblastoid cell lines 

made from blood samples collected after Phase 1 (median time from Phase 1 was 5.8 years). A 

total of 961 participants who had DNA methylation measurements at Phase I and returned for 

Phase II were included in the current study. Written informed consent was obtained from all 

participants and approval was granted by participating institutional review boards (University of 

Michigan, University of Mississippi Medical Center, and Mayo Clinic). 

Target organ damage measures 

Five TOD measurements were selected for the current analyses. Two traits, estimated 

glomerular filtration rate (eGFR) and urinary-albumin-creatinine ratio (UACR), measured 

diminishing kidney function. Left ventricular mass index (LVMI) and relative wall thickness 

(RWT) captured structural remodeling of the heart. White matter hyperintensity (WMH) 

captured altered areas of white matter in the brain using MRI. eGFR, UACR, LVMI, and RWT 

were assessed at Phase II. WMH was assessed in an ancillary study shortly after Phase II.  

Estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR) 
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Blood was drawn on the morning of the study visit after an overnight fast of at least 8 

hours. Serum creatinine was assessed with enzymatic assays on a Hitachi 911 Chemistry 

Analyzer (Roche Diagnostics, Indianapolis, IN). The CKD-EPI formula was used to calculate the 

estimated glomerular filtration rate (eGFR).26 A first-morning sample urine was collected on the 

morning of the study visit. Urine creatinine and urine albumin were assessed with enzymatic 

assays on a Hitachi 911 Chemistry Analyzer (Roche Diagnostics, Indianapolis, IN).  

Left ventricular mass index (LVMI) and relative wall thickness (RWT) 

Left ventricular mass (LVM) was estimated as previously described.27 Briefly, Doppler, 

two-dimensional (2D) and M-mode (2D-guided) echocardiograms were performed following a 

standardized protocol.28 Measurements were made at the echocardiography reading center using 

a computerized review station equipped with a digitizing tablet and monitor overlay used for 

calibration and quantification (Digisonics, Inc., Houston, Texas). LVM was calculated using 

end-diastolic dimensions by an anatomically validated formula and LVMI was derived by 

indexing LVM to the height raised to the power of 2.7.29 RWT was calculated as twice the 

posterior wall thickness divided by the left ventricular internal dimension.28 

White matter hyperintensity (WMH) 

Brain magnetic resonance imaging was performed using Signa 1.5 T MRI scanners (GE 

Medical Systems, Waukesha, WI, USA) and images were processed at Mayo Clinic.30 Total 

brain and WMH volume in the corona-radiata and periventricular zone were determined from 

axial fluid-attenuated inversion recovery (FLAIR) images.31 Brain scans with cortical infarctions 

were excluded from the analyses because of the distortion of the WMH volume estimates that 

would be introduced in the automated segmentation algorithm. For additional details, see Smith 

et al.32 Models assessing WMH were adjusted for total intracranial volume (TIV).  
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Methylation measures 

Genomic DNA from 1,106 African American participants from Phase I was extracted 

from stored peripheral blood leukocytes using AutoGen FlexStar (AutoGen, Holliston, MA). 

Bisulfite conversion was done using with the EZ DNA Methylation Kit (Zymo Research, Irvine, 

CA) and then DNA methylation was measured using the Infinium MethylationEPIC BeadChip. 

IDAT files were imported using the Minfi R package33 and sex mismatches and outliers were 

excluded using the shinyMethyl R package.34 Probes with detection p-value < 10-16 were 

considered to be successfully detected35 and both samples and probes that failed a detection rate 

of at least 10% were removed. Samples with incomplete bisulfite conversion identified using the 

QCinfo function in the ENmix R package36 were removed. Sample identity was checked using 

the 59 SNP probes included in the EPIC BeadChip and mismatched samples were removed. 

Afterwards, the Noob method was used for individual background and dye-bias normalization.37 

Since two types of probes were present on the EPIC BeadChip (Infinium I and Infinium II), we 

used the Regression on Correlated Probes (RCP) method to adjust for the probe-type bias in the 

data.38 Cross-hybridizing probes and those on sex chromosomes were removed using DMRcate 

R package.39  

Methylation beta values were changed to M-values using logit transformation 

(𝑙𝑜𝑔2[𝐵𝑒𝑡𝑎 1 − 𝐵𝑒𝑡𝑎⁄ ]).40 Sample plate, sentrix ID and sample row were identified as batch 

effect variables using principle variance component analysis. White blood cell type proportions 

within the blood sample were estimated using Houseman’s method.41 Methylation M-values 

were adjusted for white blood cell type counts and batch effects using linear mixed modeling and 

the residuals were added to the mean. After quality control, a total of 1,100 participants remained 

for further analysis.  
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Gene expression measures 

Gene expression levels in GENOA African American participants were measured in 

Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines using the Affymetrix Human 

Transcriptome Array 2.0. The Affymetrix Expression Console provided by Affymetrix was used 

for array quality control and all array images passed visual inspection. Affymetrix CEL files 

were normalized using the Robust Multichip Average algorithm in the Affymetrix Power Tool 

software.42 The Brainarray custom CDF version 19 was used to map the probes to genes43 and 

Combat44 was used to adjust batch effects and other technical covariates. A total of 17,616 

autosomal protein coding genes were available for analysis. A total of 1,205 samples remained 

after quality control. 

Genotyping and imputation information for MR analysis 

GENOA African American samples were genotyped on the Affymetrix® Genome-Wide 

Human SNP Array 6.0 platform, Illumina® Human1M-Duo, or Human660W-Quad BeadChips. 

Participants were excluded if they had a missing SNP call rate ≥ 0.05 or were an outlier ≥ 6 

standard deviations (SD) from the mean of the first 10 genome-wide principal components from 

genotype data. SNPs were excluded if they had unknown chromosomal location, < 95% call rate, 

or minor allele frequency less than 0.01. Imputation was performed separately by chip 

(Affymetrix or Illumina) using the 1000 Genomes Phase3 v5 reference panel and post-

imputation comparison between the two groups revealed no substantial differences in genotype 

and allele frequencies. SNPs with imputation quality < 0.8 were removed before MR analysis. 

Covariates 

Height was measured by stadiometer and weight by electronic balance. Body mass index 

(BMI) was calculated as weight in kilograms divided by the square of height in meters. Resting 
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systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured by a random 

zero sphygmomanometer and a cuff appropriate for arm size. The second and third of three 

readings, after the participant sat for at least 5 minutes, were averaged for analysis.45 Information 

on current anti-hypertensive medication use was collected. Smoking was categorized as current, 

former, or never smokers. Type 2 diabetes (T2D) was defined as fasting serum glucose 

concentration >126 mg/dl or self-reported physician-diagnosed diabetes and current anti-diabetes 

medication use (insulin or hypoglycemic agents).  

Statistical analyses 

Epigenome-wide association analysis of TOD 

TOD traits were rank-based inverse normalized to ensure they follow a Gaussian 

distribution and outliers at 4 standard deviations from the mean were removed. Analyses were 

performed using the multivariate linear mixed model implemented in the Genome-wide Efficient 

Mixed Model Association (GEMMA) software.46 Random effects in the linear mixed models 

were used to adjust for familial relationship by using the genetic relatedness matrix. SNP-based 

heritability (h2) of the TOD traits was additionally estimated using GEMMA.47 TOD traits were 

investigated individually using univariate (single-trait) linear mixed models and jointly using a 

multivariate (multi-trait) linear mixed model. The multivariate method tests a hypothesis of a 

given CpG being associated with at least one of the TOD traits. We hypothesized that given the 

correlation between the TOD traits and potentially similar underlying biological mechanisms, 

some CpG sites will have true pleiotropic effects on the different TOD traits and using this 

approach will provide a better model fit. Additionally, using a multivariate approach will 

increase our statistical power, even if the methylation sites are not associated with all of the TOD 

traits at the univariate level.47 The multivariate model included eGFR, UACR, LVMI and RWT 
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as outcome variables. WMH was not included as the sample size is significantly smaller (N = 

539). Following multivariate regression, we tested the association between the significant sites 

identified in the multivariate model and WMH.  

Univariate and multivariate models were adjusted for age at trait measurement, sex, time 

between measurements, smoking status, and 4 genetic principal components (PCs) (model 1).        

The minimally adjusted multivariate model (model 1) was considered our main analysis model.  

For significant CpG sites identified in the main analysis model, we examined the scatterplots of 

the CpGs against TOD to identify and potentially remove any extreme outliers or leverage 

points. We investigated attenuation of effects for the CpG sites identified in the main analysis by 

adjusting for SBP, DBP and antihypertensive medication use (model 2) and T2D status and BMI 

(model 3). To account for multiple comparisons, the Benjamini-Hochberg procedure was applied 

to control the false discovery rate (FDR) at a threshold of q<10%.48  

Illumina documentation was used to annotate significant CpG sites with functional and 

regulatory features that mapped their genomic location relative to CpG islands and nearby genes. 

Additionally, we examined any overlap with regulatory elements reported by the Encyclopedia 

of DNA Elements (ENCODE)49 and the Functional ANnoTation Of the Mammalian genome 

(FANTOM).50  

Mediation of CpG-TOD associations by gene expression levels 

For significant CpG sites identified in the main analysis model, we selected genes within 

a 250 Kb range with expression levels associated with the corresponding CpG at p-value < 0.1 

for formal mediation analysis. Linear mixed models were adjusted for familial relationship, age, 

sex, time between the measures, and 4 genetic PCs. UACR was natural log transformed as 

ln(UACR+1). The mediation R package was then used to test for mediation by proximal gene 
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expression levels between each CpG site and TOD association.51,52 To account for multiple 

testing, an FDR q < 0.1 was applied across all CpG-mediator-TOD associations. 

Mendelian randomization analysis of CpG-TOD associations 

To assess whether the significant CpG sites identified contributed causally to TOD 

measures, we performed one-sample Mendelian randomization (MR) analysis. We opted to use 

one-sample MR given the limited availability of public methylation quantitative trait locus 

(mQTL) databases and TOD genome wide association studies (GWAS) in participants of African 

ancestry. After excluding SNPs with minor allele frequency < 0.05, instrumental variables (IV) 

were drawn from SNPs within ± 1 Mb of each corresponding significant CpG site. RVTEST was 

used to assess the CpG-SNP association and identify eligible SNPs (FDR q < 0.1).53 Clumping 

for independence using the Phase 3, version 5 of the 1000 Genomes dataset for Africans (AFR), 

at r2 of 0.1 and physical distance threshold of 100kb, was done using PLINK v1.07.54 Causal 

estimates were obtained using the inverse-variance weighted (IVW) model in the 

MendelianRandomization R package55 for each TOD trait. UACR was natural log transformed as 

ln(UACR+1). Models were adjusted for familial relationship, age at baseline, sex, and 4 genetic 

PCs. A p-value < 0.05 was used. Additionally, we applied the MR Egger test to examine 

pleiotropy because IVW MR is invalid in the presence of horizontal pleiotropic effects of IVs.56 

Finally, since both the IVW and Egger methods rely on summary data, we also calculated the 

causal estimates for the significant results using two-stage least squares regression.57 

Replication analysis 

 For the 7 CpG sites identified in the multivariate model 1 in GENOA, we sought to test 

the association between each CpG site and each TOD trait univariately in 614 African Americans 

from the Hypertension Genetic Epidemiology Network (HyperGEN) study. Like GENOA, 
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families in HyperGEN were selected if sibships had ≥2 siblings who had been diagnosed with 

hypertension before age 60. DNA methylation was assayed from peripheral blood leukocytes 

(buffy coat) using the Infinium HumanMethylation450 BeadChip (450K). Further details about 

HyperGEN can be found in the Supplemental Text. 

2.4 Results 

Descriptive statistics 

Sample characteristics are described in Table 1. The mean age of the participants was 

57.7 years at baseline and the majority of the participants were females. The mean follow-up 

time between phases was approximately 5 years. Mean SBP and DBP was 137.8 mmHg and 79.3 

mmHg, respectively. Of the sample, about 12% were current smokers and 60% were never 

smokers. TOD heritability estimates ranged between 0.214 for WMH and 0.523 for LVMI. TOD 

traits were significantly correlated at p-value < 0.05 (r range: -0.21 to 0.36, Table S1) with the 

exception of WMH and UACR (r=0.08). 

Epigenome-wide association analysis of TOD 

Results from the minimally adjusted univariate and multivariate (4-trait: eGFR, UACR, 

LVMI, and RWT) epigenome-wide association analyses are shown in Table 2. The 

corresponding QQ plots are shown in the Figure S1.  RWT, LVMI, and UACR models each 

identified a single CpG site at FDR q < 0.1, while no site reached the statistical significance 

threshold for eGFR.  Our initial analysis identified 8 significant CpG sites associated with TOD 

at FDR q < 0.1 for our main multivariate model. However, upon inspection of scatterplots, we 

identified one CpG site (cg07235511) with an outlier that drove the association. This site was 

excluded from our report of findings, leaving a total of 7 CpG sites in the minimally adjusted 

model (model 1).  
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We extended the multivariate model 1 by adjusting for SBP, DBP, antihypertensive 

medication use, BMI, and T2D status. Table 3 shows the results of the adjusted models for the 7 

CpG sites previously identified in model 1 (q<0.1). Adjusting for hypertension (Model 2) 

attenuated the association for one CpG site (cg04816311) while the remaining 6 CpG sites 

remained significant. Adjustment for BMI and T2D further attenuated the association for 3 more 

CpG sites (cg21134922, cg09155024, and cg10254690). In addition, one new CpG site was 

found significant at the same threshold (Model 3, cg02204965, p-value = 5.02 × 10-7, FDR q = 

0.098).  

We next performed follow-up analysis for the 7 identified CpG sites from multivariate 

Model 1 to: [1] assess their association with the individual TOD traits univariately, [2] identify 

which combination of traits were driving the multivariate association, and [3] examine the 

association between the identified CpG sites and WMH. The results of the univariate models for 

each of these sites with each TOD trait are shown in the Table S2. In model 1, 4 of the 7 

identified sites were significantly associated with two TOD traits using a Bonferroni adjusted 

cutoff of p-value < 0.007, while the other 3 were associated with only LVMI. Both cg04816311 

and cg12661888 had a consistent effect in which increased methylation was associated with 

worse TOD outcomes (higher UACR, lower eGFR and/or higher LVMI). To aid in the clinical 

interpretation of the results, equivalent linear mixed models were run for each significant CpG 

site identified in the main analysis model and each of the TOD traits without normalization 

(Table S3). Individual TOD values were calculated at the mean - 1SD and mean + 1SD M-value 

methylation levels for each CpG site. Adjusting for SBP, DBP, and antihypertensive medication 

use did not substantively change the results from Model 1, except that cg02264946 became 

associated with RWT in addition to LVMI. Further adjustment for BMI and T2D attenuated the 
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association between cg04816311 and LVMI but not UACR. None of the 7 CpG sites identified 

were associated with WMH at p-value < 0.05 (Table S4). 

Bioinformatic characterization of CpG sites and mediation of CpG-TOD associations by 

gene expression levels 

We characterized significant CpG sites bioinformatically and by examining their 

association with proximal gene expression. Five out of the 7 sites identified in the multivariate 

model were located in DNase hypersensitivity sites (Table S5), but no overlap was found with 

any FANTOM sites. Gene expression was derived from cell lines created from blood samples 

that were taken a minimum of 1.9 years after methylation measurement. Within the identified 

range of ± 250 Kb of the 7 CpG sites identified, a total of 14 genes were marginally associated 

with nearby CpG methylation levels at p-value < 0.1 (Table 4). These genes were selected for 

the mediation analysis. Methylation at the examined CpG sites was associated with decreased 

expression of the SAFB2, UNCX, MORN3, HPD, and OAT genes as well as a number of long 

noncoding RNA molecules. Formal mediation analyses did not identify mediation by gene 

expression for any of the CpG-TOD traits associations at FDR q < 0.1; however, post hoc power 

calculation showed that statistical power for the mediation analysis was low (<50%).   

Mendelian randomization analysis of CpG-TOD associations 

 Table 5 shows the results of inverse-variance weighted models to assess whether the 

identified CpG sites were casually associated with each of the TOD traits. For 4 of the 7 CpG 

sites, we identified significant independent SNPs within ±1 Mb that had a CpG-SNP FDR q < 

0.1 (Table S6). eGFR was inversely influenced by methylation at cg10254690 near OAT (effect 

estimate = -5.75 mL/min/1.73m2 and p-value = 0.027) and cg07660512 (effect estimate = -14.91 

mL/min/1.73m2 and p-value = 0.042).  Methylation at cg04816311 near C7orf50 positively 
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influenced eGFR (effect estimate = 8.84 mL/min/1.73m2 and p-value = 0.014). The effect 

estimates were consistent in direction, but of greater magnitude, than those estimated by our 

baseline association analysis at the univariate level. Figure S2 (A-C) shows the plots of these 

causal estimates using the IVW method, which shows an overall consistent effect of the SNPs. 

The MR Egger test suggested no evidence of horizontal pleiotropy for all CpGs with the 

exception of the effect of cg10254690 on eGFR, where the MR Egger test showed no evidence 

of causality. Effect estimates and standard errors using two stage least squares regression were 

slightly larger than with the summary methods, but the p-values were similar (Table S7). The 

associations were only significant at a p-value threshold of 0.05, and none would reach statistical 

significance if corrected for multiple testing.   

Replication analysis 

 Sample characteristics of the HyperGEN replication cohort are shown in Table S8. 

HyperGEN participants were younger than GENOA participants with a mean age of 48.4 (SD = 

11.1) years. Mean BMI and antihypertensive medication use were similar in both cohorts. 

HyperGEN had a lower percentage of diabetic participants and a higher percentage of smokers. 

Both UACR and LVMI were higher in HyperGEN compared to GENOA. Out of 7 CpG sites 

significant at FDR q < 0.1 in GENOA, only 3 sites (cg04816311, cg09155024, and cg10254690) 

were present on the 450K chip used in HyperGEN. Table S9 shows the univariate associations 

for each of the 3 CpG sites with each of the 4 TOD traits. In the minimally adjusted model 

(Model 1), cg04816311 was associated with eGFR, LVMI, and RWT at p-value < 0.05. Effect 

directions were consistent in that increased methylation was associated with increased TOD: 

higher LVMI in both cohorts, higher RWT in HyperGEN, and higher UACR in GENOA. 

However, it was also associated with lower eGFR in HyperGEN (an indicator of less TOD). The 
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second CpG, cg09155024 was not associated with any of the TOD measures in HyperGEN. The 

third CpG, cg10254690, which was associated with LVMI in GENOA, had the same beta 

coefficient direction in HyperGEN but did not reach statistical significance (p-value = 0.18). 

2.5 Discussion  

 The study identified 7 CpG sites associated with 4 TOD measures in a cohort of older 

African Americans using a multivariate approach. The multivariate model had more power to 

detect significant CpG sites than the univariate models which detected a single CpG site for 3 of 

the TOD traits. This is in line with evidence from the literature on the power gains associated 

with multivariate over standard univariate analyses in genetic studies.46,47,58-60 Testing the 

significant CpG sites identified in the multivariate model at the univariate level showed that not 

all of the sites reached statistical significance. While counterintuitive, this is expected as 

unassociated traits in the multivariate analysis increase power if they are correlated with the 

associated trait.46,47 Our initial hypothesis was that DNA methylation would have the same 

direction of effect across the different TOD traits; however, our findings show that this may not 

be true for all CpG sites. None of the sites identified were associated with WMH, which may 

indicate a different underlying mechanism for that trait or may be due to the relatively low 

variability of WMH in this sample. 

Five out of the 7 sites identified in the multivariate model were located in DNase 

hypersensitivity sites, which are regions of chromatin that are not highly condensed, rendering 

the chromatin exposed and accessible for transcription. After adjusting for hypertension-related 

covariates, 6 of these associations remained significant, and 3 remained significant when BMI 

and T2D were included. Although there was evidence for an association between the identified 

CpG sites and cis-gene expression, including both protein coding and long non-coding RNA 
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molecules, none were statistically significant in formal mediation analyses. MR analysis 

provided some evidence of causality between at least two CpG sites and eGFR. 

The CpG site that was identified in GENOA and replicated in HyperGEN, cg04816311 

near C7orf50, was previously reported to be associated with T2D in Mexican-Americans and 

sub-Saharan Africans.61,62 cg04816311 was also associated with BMI in African Americans.63 

The direction of effect reported in the study by Meeks et al. showed that hypermethylation was 

observed at cg04816311 among T2D cases compared to the controls.62 In our study, a change in 

M-value methylation (mean -1SD to mean +1SD) was associated with approximately 13 mg/g 

increase in UACR and 2.6 g/height2.7 increase in LVMI in GENOA. In the model adjusting for 

BMI and T2D, the methylation effect was attenuated and was no longer significant. Genetic 

variants in this locus were also found to be associated with lipid levels,64 blood pressure,65,66 and 

longevity67 in GWAS studies.  

Methylation at the cg10254690 site, which maps near the OAT gene promoter region, was 

associated with significantly decreased expression of OAT. Additionally, MR analysis using 

IVW suggested a causal effect equivalent to approximately 6 mL/min/1.73m2 units decrease in 

eGFR for each 1 unit M-value increase in DNA methylation. The OAT gene codes for ornithine 

aminotransferase, a key mitochondrial enzyme found in the liver, intestine, brain, and kidney that 

converts arginine and ornithine into glutamate and GABA.68 Ornithine is involved in the urea 

cycle and synthesis of nitric oxide (NO). It is an important messenger molecule that regulates 

blood vessel dilation and has other thrombotic and inflammatory effects.69,70 Studies suggest that 

OAT is involved in controlling the proliferation of several cell lines, including vascular smooth 

muscle cells, and it acts as a modulator of collagen synthesis and of extracellular matrix 

formation.68,71 In addition, there is evidence that OAT is involved in metabolic reprogramming in 
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activated T-cells by providing ornithine and α-KG.72 One previous study found a nominal 

association between DNA methylation at cg10254690 and cortisol stress reactivity,73 and genetic 

variants in OAT were also associated with diastolic blood pressure.74 

Other genes identified in the multivariate model were IFT43 and CATSPERD. IFT43, 

near cg12661888, encodes a subunit of the intraflagellar transport complex A, a multi-protein 

complex involved in in cilia assembly and maintenance. This subunit is essential in regulating 

the Sonic Hedgehog signaling pathway, which is involved in regulating the growth, 

differentiation, and patterning of cells, especially during embryonic development.75 CATSPERD, 

near cg02264946, encodes an auxiliary subunit of sperm calcium channel pore-forming proteins 

required for the motility of spermatozoa and male fertility.76 cg03042953 near SSBP3, a single-

stranded DNA-binding protein 3, was only significant for the RWT trait model. Genetic loci in 

the SSBP3 locus were associated with P wave duration,77 blood urea nitrogen,78 and BMI.79,80 

The single trait model for UACR identified cg04816311 near C7orf50, which was also 

significant in the multivariate outcome model. cg21134922, found significant for LVMI, was not 

near a gene.  

Changes in methylation may not affect the expression of the genes immediately proximal 

to the CpG site, and CpG regulatory effects could be more distal or in trans (i.e. affecting genes 

on different chromosomes).81 When we evaluated whether CpG sites were associated with 

transcriptional changes, a number of genes within the range of 250 Kb showed decreased 

expression levels with increasing methylation. Previous literature identified DNA sequence 

variants in one of these genes, UNCX near cg04816311, to be associated with eGFR and other 

kidney-related traits in GWAS studies.82,83 However, our study did not identify any significant 

mediation effects using formal mediation analysis. This could be attributed to the lack of 
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statistical power and/or the different cell types used for the methylation-gene expression 

measures (EBV-transformed lymphocytes cell line for gene expression versus peripheral blood 

leukocytes for DNA methylation). There is conflicting evidence on whether the methylation 

patterns of these cell lines are similar, whether the EBV transformation preserves the gene 

expression profile, and whether that translates to a similar gene expression profile in both.84-87 

This study is among the very few studies that assessed the association between DNA 

methylation and TOD. To the best of our knowledge, it the first study to employ a pleiotropy-

informed analysis to examine epigenome-wide DNA methylation sites associated with correlated 

TOD traits. However, this study has a number of limitations. First, although we employed a 

longitudinal design, it is difficult to rule out reverse causality, especially for TOD traits where 

disease onset and duration is difficult to detect. In addition, although MR analyses allowed us to 

characterize the direction of the association, findings did not reach statistical significance when 

accounting for multiple testing, which could be attributed to small sample size and low power. 

None of the sites identified in this study replicated epigenome-wide significant CpG sites from 

the limited epigenome-wide studies available for TOD traits.22-24  

In conclusion, our study addresses an important gap in the literature on the role of DNA 

methylation in TOD in African Americans. CpG sites mapped to important genes that can further 

our understanding of biological mechanisms underlying these conditions. Future studies are 

needed to replicate these findings and further investigate gene expression and epigenetic profiles 

in more relevant tissue types such as the kidney and the heart, in addition to investigating the 

associations in different racial and ethnic groups. Findings from such research may direct future 

efforts that target early detection and intervention.  
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2.7 Tables 

Table 2-1: Characteristics of participants in GENOA African Americans1 (N = 961) 

 Mean (SD) or 

N (%) 

h2 heritability  

(95% CI) 

 Female 685 (71.3%)  

Age  (years) 62.7 (9.7)  

Age at phase I (years) 57.7 (10.3)  

Time between phases I and II 5.2 (1.3)  

BMI  (kg/m2) 31.8 (6.8)  

Systolic blood pressure (mmHg) 137.8 (21.1)  

Diastolic blood pressure (mmHg) 79.3 (11.1)  

Antihypertensive medication use   

     No 284 (29.6%)  

     Yes 662 (68.9%)  

     Missing 15 (1.6%)  

Smoking status   

    Current 118 (12.3%)  

    Former 257 (26.7%)  

    Never 571 (59.4%)  

    Missing 15 (1.6%)  

Diabetes status2   

    No 653 (68.0%)  

    Yes 289 (30.1%)  

    Missing 19 (2.0%)  

Estimated glomerular filtration rate (eGFR, 

mL/min/1.73m2) 
89.9 (21.2) 0.31 (0.113 – 0.50) 

Urine albumin-to-creatinine ratio (UACR, 

mg/g) 
48.4 (192.9) 0.49 (0.301 – 0.68) 

Left ventricular mass index (LVMI, g/height2.7) 39.1 (10.3) 0.52 (0.352 – 0.70) 

Relative wall thickness (RWT) 0.32 (0.05) 0.30 (0.123 – 0.46) 

White matter hyperintensity (WMH, cm3) 9.49 (8.0) 0.21 (0 – 0.43) 

Total intracranial volume (cm3) 1373 (134.7)  

SD: Standard deviation; CI: Confidence interval; BMI: Body mass index  

Sample sizes for target organ damage measures: eGFR (n=940), UACR (n=943), LVMI (n=910), RWT 

(n=915), WMH (n=539) 
1 Measured at phase II unless stated otherwise 
2 Defined as glucose level ≥ 126 mg/dL or taking diabetes medications 
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Table 2-2: Statistically significant CpG sites associated with TOD traits at FDR q < 0.1 using univariate and multivariate models in 

GENOA African Americans 

  

Chr: chromosome; FDR: false discovery rate; UACR: urinary albumin to creatinine ratio; LVMI: left ventricular mass index; RWT: relative wall 

thickness; eGFR: estimated glomerular filtration rate 

Model 1 is adjusted for age at phase II, sex, time between measurement, smoking status, and 4 genetic principal components 
1 Multivariate model includes eGFR, UACR, LVMI, and RWT as outcome measures 
2 Within 1500 kb of the gene start site (promoter region) 

  

 Model 1 – univariate 

Outcome 

measure 
CpG site Gene Chr 

Relation to 

CpG site 
Relation to gene p-value FDR q Beta (SE) 

RWT cg03042953 SSBP3 1 Island Body 9.53 × 10-8 0.072 1.361 (0.253) 

LVMI cg21134922  5   1.59 × 10-8 0.013 0.663 (0.116) 

UACR cg04816311 C7orf50 7 North Shore Body 5.52 × 10-8 0.044 0.513 (0.094) 

     Model 1 – multivariate 1 

     Beta (SE) for each TOD trait   

CpG site Gene Chr 

Relation 

to CpG 

site 

Relation 

to gene 
eGFR UACR LVMI RWT p-value FDR 

cg21134922  5   -0.035 (0.106) 0.124 (0.118) 0.663 (0.117) 0.004 (0.113) 6.54 × 10-7 0.044 

cg04816311 C7orf50 7 North Shore Body 0.178 (0.089) 0.492 (0.097) 0.390 (0.098) 0.093 (0.094) 1.06 × 10-7 0.042 

cg09155024  10   0.188 (0.057) -0.070 (0.063) -0.042 (0.064) 0.269 (0.060) 3.35 × 10-7 0.044 

cg10254690 OAT 10 
Island 

TSS1500
2 

-0.154 (0.064) -0.044 (0.071) -0.359 (0.070) -0.062 (0.068) 2.75 × 10-7 0.065 

cg07660512  12   -0.527 (0.162) -0.795 (0.179) -0.003 (0.182) -0.242 (0.173) 2.62 × 10-7 0.044 

cg12661888 IFT43 14  Body -0.306 (0.072) 0.259 (0.080) -0.117 (0.081) 0.019 (0.077) 4.68 × 10-7 0.053 

cg02264946 CATSPERD 19  Body 0.236 (0.125) 0.203 (0.137) -0.489 (0.137) 0.341 (0.132) 6.16 × 10-8 0.042 



 52 

Table 2-3: Adjusted multivariate models for statistically significant CpG sites from Model 1 in GENOA African Americans 

FDR: false discovery rate; SE: standard error; eGFR: estimated glomerular filtration rate; UACR: urinary albumin to creatinine ratio; LVMI: left 

ventricular mass index; RWT: relative wall thickness 

Model 2 is adjusted for age at phase II, sex, time between measurement, smoking status, 4 genetic principal components, systolic blood pressure, 

diastolic blood pressure and antihypertensive medication use  

Model 3 is adjusted for Model 2 variables plus body mass index and type 2 diabetes status  

Results with a significant FDR q < 0.1 are in bold font 
1 Multivariate model includes eGFR, UACR, LVMI, and RWT as outcome measure

   Model 2 – multivariate1  Model 3 – multivariate1 

   Beta (SE) for each TOD trait    Beta (SE) for each TOD trait  

CpG site Gene  eGFR UACR LVMI RWT p-value FDR   eGFR UACR LVMI RWT p-value FDR  

cg21134922   
-0.022 

(0.011) 

0.093 

(0.013) 

0.611 

(0.012) 

0.001 

(0.012) 
8.54 × 10-7 0.096  

0.004 

(0.011) 

0.076 

(0.012) 

0.421 

(0.010) 

-0.022 

(0.012) 
6.52 × 10-4 0.9119 

cg04816311 C7orf50  
0.179 

(0.008) 

0.428 

(0.009) 

0.312 

(0.009) 

0.058 

(0.009) 
1.74 × 10-6 0.172  

0.141 

(0.008) 

0.243 

(0.008) 

0.148 

(0.007) 

-0.025 

(0.008) 
1.49 × 10-2 0.9904 

cg09155024   
0.176 

(0.003) 

-0.096 

(0.004) 

-0.063 

(0.004) 

0.249 

(0.004) 
7.49 × 10-7 0.096  

0.164 

(0.003) 

-0.123 

(0.003) 

0.018 

(0.003) 

0.242 

(0.004) 
3.03 × 10-6 0.2885 

cg10254690 OAT  
-0.164 

(0.004) 

-0.038 

(0.005) 

-0.340 

(0.004) 

-0.060 

(0.004) 
6.88 × 10-7 0.096  

-0.166 

(0.004) 

-0.224 

(0.004) 

-0.039 

(0.004) 

-0.008 

(0.004) 
3.08 × 10-4 0.8776 

cg07660512   
-0.559 

(0.026) 

-0.800 

(0.029) 

0.020 

(0.029) 

-0.268 

(0.029) 
3.49 × 10-8 0.028  

-0.548 

(0.025) 

-0.703 

(0.027) 

0.114 

(0.024) 

-0.227 

(0.028) 
8.00 × 10-8 0.0363 

cg12661888 IFT43  
-0.312 

(0.005) 

0.236 

(0.006) 

-0.137 

(0.006) 

-0.002 

(0.006) 
4.96 × 10-7 0.096  

-0.319 

(0.005) 

0.225 

(0.005) 

-0.122 

(0.005) 

-0.006 

(0.006) 
6.21 × 10-7 0.0981 

cg02264946 CATSPERD  
0.219 

(0.015) 

0.261 

(0.017) 

-0.416 

(0.017) 

0.380 

(0.017) 
8.48 × 10-8 0.034  

0.224 

(0.015) 

0.280 

(0.015) 

-0.338 

(0.014) 

0.396 

(0.017) 
9.19 × 10-7 0.0363 
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Table 2-4: Associations between statistically significant CpG sites from multivariate Model 1 

and nearby gene expression (± 250 Kb, p-value < 0.1) in GENOA African Americans 

CpG site Gene Protein Type Beta SE p-value 

cg04816311  AC073957.1 LncRNA -0.156 0.050 0.002 

AC073094.1 LncRNA -0.183 0.060 0.003 

AC091729.2 LncRNA -0.127 0.057 0.026 

UNCX Protein-coding -0.108 0.058 0.063 

cg10254690 OAT Protein-coding -0.163 0.057 0.005 

cg07660512  MORN3 Protein-coding -0.096 0.044 0.031 

AC079360.1 LncRNA -0.060 0.028 0.035 

HPD Protein-coding -0.085 0.043 0.050 

cg02264946 AC011444.1 LncRNA -0.095 0.044 0.030 

SAFB2 Protein-coding -0.147 0.073 0.045 

SE: standard error 
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Table 2-5: Mendelian randomization results showing the inverse-variance weighted effects of multiple SNPs used as instrumental 

variables in the association of CpG sites and TOD traits in GENOA African Americans 

TOD trait  Chr CpG site 

Independent 

SNPs with CpG-

SNP FDR q < 0.1 

Causal effect 

estimate 1 

Causal effect 

estimate SE 

Lower 

bound of 

causal 

estimate 

Upper 

bound of 

causal 

estimate 

p-value 

Estimated 

glomerular filtration 

rate (eGFR), 

mL/min/1.73m2 

5 cg21134922 6 8.718 6.2 -3.432 20.869 0.16 

7 cg04816311 15 8.844 3.584 1.819 15.868 0.014 

10 cg10254690 10 -5.752 2.594 -10.836 -0.669 0.027 

12 cg07660512 13 -14.912 7.321 -29.262 -0.563 0.042 

Urinary albumin-to-

creatinine ratio 

(UACR), mg/g 

5 cg21134922 6 0.075 0.485 -0.876 1.026 0.877 

7 cg04816311 15 0.285 0.254 -0.213 0.783 0.261 

10 cg10254690 10 0.359 0.222 -0.076 0.793 0.106 

12 cg07660512 13 -0.57 0.571 -1.69 0.55 0.319 

Left ventricular mass 

index (LVMI), 

g/height2.7 

5 cg21134922 6 6.292 3.299 -0.173 12.757 0.056 

7 cg04816311 15 1.816 1.919 -1.946 5.578 0.344 

10 cg10254690 10 -2.485 1.378 -5.186 0.216 0.071 

12 cg07660512 13 -5.694 3.689 -12.925 1.537 0.123 

Relative wall 

thickness (RWT) 

5 cg21134922 6 0.004 0.016 -0.027 0.036 0.780 

7 cg04816311 15 0.015 0.009 -0.002 0.031 0.084 

10 cg10254690 10 -0.002 0.007 -0.015 0.011 0.798 

12 cg07660512 13 0 0.02 -0.04 0.039 0.994 

Chr: chromosome; SE: standard error 
1The causal effect estimate is the pooled estimate calculated using inverse-variance weighted models from the Mendelian randomization analyses 

and is interpreted as the effect per 1 unit change in DNA methylation (M-value) using genetic variants on target organ damage trait 
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2.8 Supplementary Material 

Table SM 2-1: Pearson correlation coefficients of TOD traits in GENOA African Americans 

 Estimated 

glomerular 

filtration rate 

(eGFR) 

Urinary 

albumin-

creatinine ratio 

(UACR) 

Left ventricular 

mass index 

(LVMI) 

Relative wall 

thickness 

(RWT) 

Estimated glomerular filtration rate 

(eGFR) 
    

Urinary albumin-creatinine ratio 

(UACR) 
-0.20****    

Left ventricular mass index (LVMI) -0.15**** 0.17****   

Relative wall thickness (RWT) -0.18**** 0.09** 0.36****  

White matter hyperintensity (WMH) -0.21**** 0.08 0.14** 0.11* 

p-value < 0.0001 ‘****’, p-value < 0.001 ‘***’, p-value < 0.01 ‘**’, p-value < 0.05 ‘*’ 
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Table SM 2-2: Univariate associations between CpG sites1 and each TOD trait in GENOA African Americans1 

 

CpG site 
eGFR  UACR  LVMI  RWT 

 

Beta SE p-value  Beta SE p-value  Beta SE    p-value  Beta SE p-value 

M
o

d
el

 1
 

cg21134922 -0.008 0.104 9.42E-01  0.142 0.115 2.20E-01  0.663 0.116 1.59E-08  0.009 0.112 9.36E-01 

cg04816311 0.179 0.086 3.66E-02  0.513 0.094 5.52E-08  0.389 0.098 8.01E-05  0.100 0.094 2.86E-01 

cg09155024 0.181 0.056 1.19E-03  -0.077 0.062 2.14E-01  -0.043 0.063 5.01E-01  0.264 0.060 1.29E-05 

cg10254690 -0.149 0.062 1.74E-02  -0.030 0.069 6.61E-01  -0.362 0.070 2.64E-07  -0.059 0.068 3.85E-01 

cg07660512 -0.443 0.159 5.43E-03  -0.754 0.175 1.79E-05  -0.009 0.181 9.60E-01  -0.248 0.172 1.50E-01 

cg12661888 -0.317 0.070 6.10E-06  0.246 0.077 1.54E-03  -0.117 0.081 1.49E-01  0.016 0.077 8.38E-01 

cg02264946 0.236 0.123 5.56E-02  0.173 0.135 2.02E-01  -0.478 0.136 4.64E-04  0.340 0.131 9.59E-03 

M
o

d
el

 2
 

cg21134922 0.007 0.103 9.45E-01  0.104 0.110 3.47E-01  0.608 0.110 3.84E-08  0.000 0.111 9.97E-01 

cg04816311 0.184 0.085 3.07E-02  0.452 0.089 5.38E-07  0.310 0.093 8.36E-04  0.069 0.092 4.53E-01 

cg09155024 0.171 0.055 2.11E-03  -0.103 0.059 8.08E-02  -0.065 0.060 2.75E-01  0.242 0.059 4.81E-05 

cg10254690 -0.156 0.062 1.24E-02  -0.025 0.066 7.01E-01  -0.346 0.066 1.88E-07  -0.059 0.066 3.73E-01 

cg07660512 -0.473 0.158 2.81E-03  -0.779 0.166 3.27E-06  0.004 0.170 9.80E-01  -0.281 0.169 9.58E-02 

cg12661888 -0.327 0.069 2.62E-06  0.223 0.074 2.57E-03  -0.136 0.076 7.41E-02  -0.006 0.076 9.34E-01 

cg02264946 0.218 0.122 7.53E-02  0.225 0.129 8.09E-02  -0.400 0.129 1.96E-03  0.371 0.129 4.06E-03 

M
o

d
el

 3
  

cg21134922 0.035 0.103 7.36E-01  0.080 0.106 4.53E-01  0.411 0.101 4.98E-05  -0.025 0.110 8.23E-01 

cg04816311 0.157 0.085 6.46E-02  0.271 0.087 1.96E-03  0.142 0.085 9.48E-02  -0.019 0.092 8.38E-01 

cg09155024 0.166 0.056 2.89E-03  -0.120 0.057 3.59E-02  -0.019 0.055 7.26E-01  0.240 0.059 5.22E-05 

cg10254690 -0.159 0.062 1.03E-02  -0.007 0.064 9.06E-01  -0.225 0.060 2.10E-04  -0.038 0.066 5.63E-01 

cg07660512 -0.473 0.157 2.66E-03  -0.684 0.161 2.50E-05  0.097 0.156 5.32E-01  -0.233 0.168 1.66E-01 

cg12661888 -0.335 0.069 1.31E-06  0.211 0.071 3.11E-03  -0.122 0.069 7.86E-02  -0.004 0.075 9.61E-01 

cg02264946 0.226 0.122 6.34E-02  0.267 0.124 3.19E-02  -0.325 0.118 5.94E-03  0.392 0.128 2.32E-03 

SE: standard error; eGFR: estimated glomerular filtration rate; UACR: urinary albumin to creatinine ratio; LVMI: left ventricular mass index; RWT: relative wall thickness 

Model 1 is adjusted for age at phase II, sex, time between measurements, smoking status, and 4 genetic principal components 

Model 2 is adjusted for Model 1 variables plus systolic blood pressure, diastolic blood pressure and antihypertensive medication use  

Model 3 is adjusted for Model 2 variables plus body mass index and type 2 diabetes status  

Results significant at Bonferroni adjusted p-value are in bold font  
1 Only CpG sites that were statistically significant in multivariate Model 1 were included in this analysis 
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Table SM 2-3: Predicted change in TOD associated with CpG sites1 using linear mixed models and TOD modeled without 

normalization in GENOA African Americans1 

CpG site 
CpG mean (SD) 

in M-values 

eGFR  

(mL/min/1.73m2) 

UACR2 

(mg/g) 

LVMI 

(g/height2.7) 
RWT 

cg21134922 1.61 (0.27) -0.215 2.698 3.328 0.001 

cg04816311 1.10 (0.33) 2.160 13.111 2.559 0.004 

cg09155024 4.41 (0.50) 3.453 -2.438 0.024 0.012 

cg10254690 -4.01 (0.45) -2.778 -0.427 -2.871 -0.002 

cg07660512 -0.51 (0.18) -3.209 -12.176 -0.049 -0.004 

cg12661888 4.11 (0.40) -5.214 6.786 -0.967 0.002 

cg02264946 5.01 (0.23) 2.110 3.246 -2.096 0.008 

SD: standard deviation; eGFR: estimated glomerular filtration rate; UACR: urinary albumin to creatinine ratio; LVMI: left ventricular mass index; 

RWT: relative wall thickness 

Estimates are calculated from linear mixed regression models of DNA methylation (M-values) on each of the TOD traits after adjusting for age at 

phase II, sex, time between measurements, smoking status, 4 genetic principal components, and pedigree information as a random effect. Shown 

values of TOD were calculated based on the difference in predicted TOD between those with less (-1SD) and those with more (+1SD) from mean 

DNA methylation M-values. 

Results significant at Bonferroni adjusted p-value in the univariate Model 1 are in bold font 
1 Only CpG sites that were statistically significant in multivariate Model 1 were included in this analysis 
2 UACR was log-transformed, results shown were calculated using exponentiated coefficients 
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Table SM 2-4: Association between CpG sites1 and white matter hyperintensity in GENOA African Americans1 

CpG site Beta SE p-value 

cg21134922 -0.203 0.130 0.118 

cg04816311 0.195 0.104 0.063 

cg09155024 -0.039 0.067 0.554 

cg10254690 -0.116 0.077 0.131 

cg07660512 -0.028 0.192 0.884 

cg12661888 -0.026 0.085 0.757 

cg02264946 0.131 0.150 0.383 

SE: standard error 

Model is adjusted for age at white matter hyperintensity measurement, sex, time between measurements, smoking status, 4 genetic principal 

components, and total intracranial volume 
1 Only CpG sites that were statistically significant in multivariate Model 1 were included in this analysis 
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Table SM 2-5: DNase hypersensitivity annotation for statistically significant CpG sites in GENOA African Americans1 

 

 

 

 

 

 
1 Only CpG sites that were statistically significant in multivariate Model 1 were included in this analysis 

  

CpG site DNase Hypersensitivity 

cg21134922 chr5:60586580-60587255 

cg04816311 chr7:1066385-1067595 

cg09155024  

cg10254690 chr10:126107765-126108135 

cg07660512 chr12:122087245-122087650 

cg12661888  

cg02264946 chr19:5775685-5776015 
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Table SM 2-6: Independent SNPs identified as instrumental variables at FDR q < 0.1 for Mendelian randomization analyses in 

GENOA African Americans 

Chromosome CpG site Number of 

SNPs 

rs ID1 

5 cg21134922 6 rs6864367 

rs372083232 

rs111793128 

rs11382326 

rs7712470 

rs6449494 

7 cg04816311 15 rs2362529 

rs74652290 

rs79808627 

rs12702456 

rs4723350 

rs2030958 

rs183727057 

rs112493548 

rs111875889 

rs12701824 

rs11764167 

rs35174522 

rs4723974 

rs4916968 

rs4916971 

10 cg10254690 10 rs9422806 

rs11815286 

rs138831926 

rs17151852 

rs6597838 

rs11819582 

rs2674335 

rs11812766 

rs201985927 

rs115375556 

12 cg07660512 13 rs11043181 

rs11833075 

rs115316599 

rs151282886 

rs28613497 

rs144083908 

rs145352774 

rs140202929 

rs370447554 

rs138657431 

rs10773287 

rs143897726 

rs56785986 

1 Independent based on clumping (r2=0.1 and physical distance threshold=100kb) using the Phase 3, version 5 of the 1000 Genomes dataset for 

Africans (AFR) and CpG-SNP FDR q < 0.1 
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Table SM 2-7: Significant Mendelian randomization results with causal estimates of CpG sites and TOD traits calculated using the 

two-stage least squares regression method in GENOA African Americans 

TOD trait  Chr CpG site 

Independent SNPs 

with CpG-SNP 

FDR q < 0.1 

Causal 

effect 

estimate 

Causal 

effect 

estimate 

SE 

p-value 

Estimated glomerular 

filtration rate (eGFR), 

mL/min/1.73m2 

7 cg04816311 15 11.836 4.591 0.010 

10 cg10254690 10 -6.764 3.011 0.025 

12 cg07660512 13 -15.879 8.251 0.055 

Chr: chromosome; SE: standard error 
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Table SM 2-8: Characteristics of participants in HyperGEN (N = 614) 

 Mean (SD) or N (%) 

Female 409 (66.6%) 

Age (years) 48.4 (11.1) 

BMI (kg/m2) 32.4 (8.2) 

Systolic blood pressure (mmHg) 131.6 (23.6) 

Diastolic blood pressure (mmHg) 75.5 (12.6) 

Antihypertensive medication use  

     No 175 (28.6%) 

     Yes 438 (71.5%) 

     Missing 1 (0.0%) 

Smoking status  

    Current 193 (31.4%) 

    Former 149 (24.3%) 

    Never 262 (42.7%) 

    Missing 10 (1.6%) 

Diabetes status1  

    No 492 (80.1%) 

    Yes 122 (19.9%) 

    Missing 0 (0.0%) 

Estimated glomerular filtration rate (eGFR, mL/min/1.73m2) 92.1 (21.9) 

Urine albumin-to-creatinine ratio (UACR, mg/g) 81.6 (403.3) 

Left ventricular mass index (LVMI, g/height2.7) 45.0 (16.1) 

Relative wall thickness (RWT) 0.3 (0.1) 

SD: Standard deviation; CI: Confidence interval; BMI: Body mass index  

Sample sizes for target organ damage measures: eGFR (N=613), UACR (N=606), LVMI (N=611), RWT (N=613)  
1 Defined as glucose level ≥ 126 mg/dL or taking diabetes medication
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 Table SM 2-9: Univariate associations between CpG sites1 and each TOD trait in HyperGEN 

Model 1 is adjusted for age at phase II, sex, smoking status, 4 genetic principal components, and family (random) 

Model 2 is adjusted for Model 1 variables plus systolic blood pressure, diastolic blood pressure and antihypertensive medication use  

Model 3 is adjusted for Model 2 variables plus body mass index and type 2 diabetes status 

Results significant at p-value <0.05 are in bold font  
1 Only CpG sites that were statistically significant in multivariate Model 1 in GENOA were included in this replication analysis  

 
CpG site 

eGFR  UACR  LVMI  RWT 
 

Beta SE p-value  Beta SE p-value  Beta SE p-value  Beta SE p-value 

M
o

d
el

 1
 cg04816311 0.473 0.131 3.07E-04  0.141 0.139 0.32  0.402 0.004 3.33E-04  0.422 0.137 2.13E-03 

cg09155024 0.047 0.126 0.71  -0.162 0.134 0.23  -0.168 0.133 0.21  
-

0.041 
0.133 0.76 

cg10254690 0.181 0.110 9.79E-02  -0.147 0.115 0.20  -0.153 0.114 0.18  
-

0.187 
0.115 0.10 

M
o

d
el

 2
 

cg04816311 0.496 0.132 1.78E-04  0.051 0.131 0.69  0.244 0.123 4.63E-02  0.349 0.133 8.62E-03 

cg09155024 0.041 0.127 0.75  -0.146 0.125 0.24  -0.153 0.116 0.19  
-

0.029 
0.127 0.82 

cg10254690 0.172 0.111 0.12  -0.144 0.108 0.18  -0.086 0.101 0.39  
-

0.170 
0.111 0.12 

M
o

d
el

 3
 

cg04816311 0.502 0.135 2.08E-04  -0.008 0.130 0.54  0.070 0.113 0.54  0.337 0.135 1.27E-02 

cg09155024 0.057 0.127 0.65  -0.085 0.122 0.48  -0.113 0.105 0.28  
-

0.015 
0.127 0.90 

cg10254690 0.170 0.111 0.13  -0.120 0.105 0.26  -0.051 0.091 0.58  
-

0.175 
0.110 0.11 
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B: Urinary albumin-creatinine ratio (UACR) C: Relative wall thickness (RWT) 

D: Left ventricular mass index (LVMI) E: Multivariate model (eGFR, UACR, RWT, LVMI) 

A: Estimated glomerular filtration rate (eGFR) 

Figure SM 2-1: QQ plots of the association between DNA methylation and TOD using univariate and multivariate model 1 in 

GENOA African Americans 
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Figure SM 2-2: Mendelian randomization (MR) scatter plots of estimated glomerular filtration rate (A-C). Causal estimates are based 

on inverse-variance weighted (IVW) estimates using cis-SNPs within ± 1Mb of the corresponding CpG site 
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Chapter 3.  Epigenetic Age Acceleration in African Americans Associates with 

Cardiometabolic Risk Factors and Clinical Cardiovascular Disease Risk Scores 

3.1 Abstract 

Cardiovascular disease (CVD) is the leading cause of mortality among US adults. African 

Americans have higher burden of CVD morbidity and mortality compared to any other racial 

group. Identifying biomarkers for clinical risk prediction of CVD offers an opportunity for 

precision prevention and earlier intervention. Using linear mixed models, we investigated the 

cross-sectional association between four measures of epigenetic age acceleration (intrinsic 

(IEAA), extrinsic (EEAA), PhenoAge (PhenoAA), and GrimAge (GrimAA)) and ten 

cardiometabolic markers of hypertension, insulin resistance, and dyslipidemia in 1,100 primarily 

hypertensive African Americans from sibships in the Genetic Epidemiology Network of 

Arteriopathy (GENOA). We then assessed the association between epigenetic age acceleration 

and time to self-reported incident CVD using frailty hazard models and investigated CVD risk 

prediction improvement compared to models with clinical risk scores (Framingham risk score 

(FRS) and the atherosclerotic cardiovascular disease (ASCVD) risk equation). After adjusting for 

sex and chronological age, increased epigenetic age acceleration was associated with higher 

systolic blood pressure (IEAA), higher pulse pressure (EEAA and GrimAA), higher fasting 

glucose (PhenoAA and GrimAA), higher fasting insulin (EEAA), lower low density cholesterol 

(GrimAA), and higher triglycerides (GrimAA). A five year increase in GrimAA was associated 

with CVD incidence with a hazard ratio of 1.54 (95% CI 1.22–2.01) and remained significant 

after adjusting for CVD risk factors. The addition of GrimAA to risk score models improved 
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model fit using likelihood ratio tests (P = 0.013 for FRS and P = 0.008 for ASCVD), but did not 

improve C statistics (P > 0.05). Net reclassification index (NRI) showed small but significant 

improvement in reassignment of risk categories with the addition of GrimAA to FRS (NRI: 

0.055, 95% CI 0.040–0.071) and the ASCVD equation (NRI: 0.029, 95% CI 0.006–0.064). 

Epigenetic age acceleration measures are associated with traditional CVD risk factors in an 

African American cohort with a high prevalence of hypertension. GrimAA was associated with 

CVD incidence, and slightly improved prediction of CVD events over clinical risk scores.  
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3.2 Introduction 

Cardiovascular disease (CVD) is the leading cause of mortality among US adults.1 

African Americans have the highest CVD morbidity and mortality burden, a trend which has 

been consistent over the last few decades.2 Underlying this higher CVD prevalence is a greater 

burden of a number of risk factors, including hypertension, type 2 diabetes, and obesity.3-5 Yet a 

focus on established risk factors and their management has failed to fully reduce the excess CVD 

burden among African Americans. Identification of novel biomarkers that go beyond traditional 

ones may help better identify at-risk individuals, advance precision medicine, and inform efforts 

to reduce CVD burden.  

Epigenetic aging, based on DNA methylation (DNAm) at CpG dinucleotides, is a novel 

measure of biological aging that offers the opportunity to identify molecular markers of disease 

risk. The first generation of epigenetic aging measures, the HorvathAge 6 and HannumAge 7 

epigenetic clocks, were trained on chronological age and are estimated based on 363 and 71 CpG 

sites selected using elastic net regression modeling, respectively. HorvathAge was trained using 

multi-tissue samples from children and adults, while HannumAge was trained using a single 

tissue (whole blood) from adults. Modified versions of these two measures were later derived to 

account for confounding by blood cell composition: intrinsic epigenetic age acceleration (IEAA) 

based on HorvathAge explicitly adjusts for blood cell composition, and extrinsic epigenetic age 

acceleration (EEAA) based on the HannumAge is a composite measure that includes a weighted 

average of cell counts known to vary strongly with age.8 PhenoAge, a more recent measure 

based on whole blood from adults, was estimated using 513 CpG sites and was trained on a 

composite clinical measure of phenotypic age that is based on chronological age and nine 

biomarkers including albumin, creatinine, serum glucose, white blood cell counts.9 The 
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biomarkers were selected for their association with the hazard of mortality using a Cox penalized 

regression model. GrimAge is another recent measure constructed based on the linear 

combination of 1030 CpG sites that represent DNAm-based surrogate measures for a number of 

plasma proteins and smoking pack-years.10 Like PhenoAge, it is based on whole blood from 

adults. In addition to chronological age, both PhenoAge and GrimAge account for physiological 

dysfunction among individuals of the same chronological age in their selection of CpGs. For 

each of these measures, epigenetic age acceleration is defined as the discrepancy between 

epigenetic age and chronological age. These four epigenetic age acceleration measures are 

hypothesized to be capturing different aspects of aging and are based mostly on unique CpG 

sites.11 

A growing body of literature has examined the association between epigenetic age 

acceleration and CVD and its risk factors, such as blood pressure and lipids, but the overall 

evidence remains inconclusive likely due to heterogeneity in study design, the specific outcomes 

examined, and the epigenetic aging measures used.12-21
 PhenoAge and GrimAge are more 

recently developed measures, and so validation of their associations and comparisons to the first-

generation measures are in early stages. Two recent studies in participants of European ancestry 

show that GrimAA outperforms other measures in its association with CVD incidence after 

adjusting for CVD risk factors,21,22 and additional studies report similar findings with all-cause 

mortality.21-24 Yet it is unclear whether epigenetic age acceleration measures could be used to 

improve CVD prediction in a clinical setting.  

In this study, we investigated the relationship between four epigenetic age acceleration 

measures and ten cardiometabolic markers of hypertension, insulin resistance, and dyslipidemia 

in 1,100 primarily hypertensive African Americans in the Genetic Epidemiology Network of 
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Arteriopathy (GENOA) study. We additionally assessed the association between four epigenetic 

age acceleration measures and incident CVD. Finally, we examined whether epigenetic age 

acceleration measures can improve the predictive accuracy of two clinically-used CVD risk 

scores: the Framingham risk score (FRS)25 and the more recently developed atherosclerotic 

cardiovascular disease (ASCVD) risk equation.26  

3.3 Methods 

Study sample  

Genetic Epidemiology Network of Arteriopathy (GENOA) is a community-based study 

in Rochester, MN and Jackson, MS that was established to identify genes influencing blood 

pressure and development of target organ disease.44 In the first phase of GENOA (Phase I: 1996 

– 2001), sibships with at least two adults with clinically diagnosed essential hypertension before 

age 60 were recruited, and all siblings in the sibship were invited to participate regardless of 

hypertension status. Exclusion criteria included secondary hypertension, alcoholism or drug 

abuse, pregnancy, insulin-dependent diabetes mellitus, or active malignancy. In Phase I (i.e. 

baseline), a total of 1,583 non-Hispanic whites (Rochester, MN) and 1,854 African Americans 

(Jackson, MS) were enrolled. In the second phase (Phase II: 2001 – 2005), all participants were 

invited for a second examination. Eighty percent of African Americans (N = 1,482) and 75% of 

non-Hispanic whites (N = 1,213) from Phase 1 returned. At Phase III (2009-2011), 752 African 

Americans returned for a third examination. This study includes African American participants 

who had their DNA methylation profiles measured in whole blood samples collected at Phase I. 

Demographic information, medical history, clinical characteristics, lifestyle factors, and blood 

samples were collected in each phase. Written informed consent was obtained from all 
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participants and approval was granted by participating institutional review boards (University of 

Michigan, University of Mississippi Medical Center, and Mayo Clinic). 

DNA methylation and epigenetic age acceleration measures 

The methods of DNA methylation processing have been previously described.45 Briefly, 

genomic DNA from 1,106 African American participants from Phase I and 304 from Phase II 

was extracted from stored peripheral blood leukocytes using AutoGen FlexStar (AutoGen, 

Holliston, MA). Sex mismatches and outliers were excluded using the shinyMethyl R package,46 

probes with detection P-value < 10-16 were considered to be successfully detected47 and both 

samples and probes that failed a detection rate of at least 10% were removed. The Noob method 

was used for individual background and dye-bias normalization48 and the Regression on 

Correlated Probes method was used to adjust for the probe-type bias in the data.49 White blood 

cell type proportions within the blood sample were estimated using Houseman’s method.50  

After quality control, a total of 1,100 samples from Phase I and 294 from Phase II were 

available for assessment of epigenetic age acceleration; however, only Phase I measures were 

included in this study. Methylation beta values were uploaded to the online Horvath epigenetic 

age calculator to calculate DNAm Age.51 Four measures of epigenetic age (HannumAge, 

HorvathAge, PhenoAge and GrimAge) were estimated for the current analysis. IEAA based on 

the Horvath measure, are the regression residuals after adjusting for chronological age and blood 

cell count.6-8 EEAA was calculated using the Hannum epigenetic age after incorporating 

weighted averages of three white blood cell types (naïve cytotoxic T cells, exhausted cytotoxic T 

cells, and plasmablasts).7,8 PhenoAge and GrimAge are considered to be extrinsic measures of 

aging because they capture both cell intrinsic methylation changes as well as extracellular 

changes in blood cell composition.9,10,31 We also estimated 7 DNAm based surrogate plasma 
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proteins (adrenomedullin (ADM), beta-2-microglobulin, cystatin C, GDF-15, leptin, 

plasminogen activator inhibitor antigen type 1 (PAI-1), tissue inhibitor metalloproteinases 1 

(TIMP-1)), and smoking pack-years that comprise GrimAge in order to identify individual 

components that may drive associations or that are more predictive than the overall measure 

itself.10 

Cardiometabolic risk factors 

Resting systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured 

by a random zero sphygmomanometer and a cuff appropriate for arm size. The second and third 

of three readings, after the participant sat for at least 5 minutes, were averaged for analysis.52  

Mean arterial pressure (MAP) was calculated as the weighted average of SBP and DBP 

(1/3*SBP + 2/3*DBP) and pulse pressure (PP) was calculated as the difference between SBP and 

DBP (SBP – DBP). Information on current anti-hypertensive medication use and lipid-lowering 

statin medication use were collected. Hypertension was defined as SBP ≥ 140 mmHg, DBP ≥ 90 

mmHg, or antihypertensive medication use. Smoking was categorized as current, former, or 

never. Blood glucose and insulin levels were measured for participants fasting for at least 10 

hours. Serum total cholesterol, HDL-C, and triglycerides (TGs) were measured by standard 

enzymatic methods on a Hitcahi 911 Chemistry Analyzer (Roche Diagnostics, Indianapolis, IN). 

LDL-C was calculated using the Friedewald formula [LDL in mg/dl = TC – HDL-C – (TGs/5)]53 

and individuals with triglycerides levels ≥ 400 mg/dl were excluded from LDL-C association 

analysis. Type 2 diabetes was defined as fasting serum glucose concentration > 126 mg/dl or 

self-reported physician-diagnosed diabetes and current medication use (insulin or hypoglycemic 

agents). Educational attainment was based on self-reported years of education. Alcohol 

consumption was calculated as the number of drinks per week based on aggregated 
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measurements of a variety of alcoholic drinks. Height was measured by stadiometer and weight 

by electronic balance and body mass index (BMI) was calculated as weight in kilograms divided 

by the square of height in meters. 

CVD events and risk scores 

Framingham risk score (FRS), predicting the 10-year risk of a CVD (defined as coronary 

death, myocardial infarction, coronary insufficiency, angina, ischemic stroke, hemorrhagic 

stroke, transient ischemic attack, peripheral artery disease, and heart failure), was estimated 

using age, sex, total cholesterol, HDL-C, anti-hypertensive medication use, SBP, smoking status, 

and type 2 diabetes status after limiting the sample to individuals aged between 30 – 74 years 

(N= 945, events = 69, person-years = 7874.9).25 While FRS was developed in participants of 

European ancestry, ASCVD was developed using a pooled community-based population cohort 

with a higher proportion of African Americans and has been validated for prediction of clinical 

events in more race/ethnically-diverse cohorts. 26 It is based on the same covariates as FRS and 

predicts the 10-year risk of developing a first ASCVD event, defined as nonfatal myocardial 

infarction or coronary heart disease death or fatal or nonfatal stroke. Using sex- and race-specific 

parameters, we estimated the ASCVD risk equation, after limiting the sample those between the 

ages of 20 – 79 years (N = 988, events = 71, person-years = 8115.5). Risk scores were modeled 

as continuous variables and as categorical predictors where they were used to group participants 

into low risk (10-year risk ≤ 7.5%) or high risk (> 7.5%) groups.26  

Information about CVD, as reported by participants, was collected at baseline and at each 

subsequent follow-up phase. An event was defined as myocardial infarction, coronary 

revascularization (stenting, balloon angioplasty, or coronary artery bypass grafting), stroke 

(ischemic or hemorrhagic events), or surgical carotid artery revascularization. Participants only 
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reported the year of CVD events. Time to CVD was modeled by setting the CVD event time at 

the mid-point of the year in which participants reported an event. For censored participants, 

follow-up time was set at the time point they were last interviewed.   

Statistical analysis 

Outliers at more than 5 standard deviations from the mean were removed for the 

cardiometabolic outcomes and the epigenetic age acceleration measures. Glucose, insulin, HDL-

C and triglycerides were natural log-transformed as ln(measure +1). Linear mixed models that 

account for familial relatedness were used to assess the cross-sectional univariate association 

between each epigenetic age acceleration measure (predictor) and each cardiometabolic risk 

factors (outcome) at Phase I. Base models were adjusted for age and sex (Model 1). In 

subsequent models, we additionally adjusted for education, smoking status, body mass index, 

and alcohol consumption (Model 2) and white blood cell counts for PhenoAA and GrimAA to 

assess confounding by changes in cell composition (Model 3). For LDL-C and triglycerides, we 

performed sensitivity analyses excluding participants who were not fasting for at least 10 hours 

before the blood draw.  

After excluding participants with baseline CVD events, associations with time to first 

CVD event (incident CVD) were assessed using Cox proportional hazards models, and hazard 

ratios (HR) and 95% confidence intervals were estimated. A simple random effects (frailty) term 

in the Cox model was included to take into account family structure.54 We next adjusted for 

traditional CVD risk factors (age, sex, education, body mass index, alcohol consumption, total 

cholesterol, HDL-C, anti-hypertensive medication use, SBP, smoking status, and type 2 diabetes 

status). Finally, we adjusted for white blood cell counts. The proportional hazard assumption was 

evaluated using Schoenfeld residuals, and all models satisfied the assumption. As a sensitivity 
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analysis, we additionally modeled time to CVD using interval censoring using the iceReg 

package.55 

Likelihood ratio (LR) testing of nested models (addition of epigenetic age acceleration to 

a base model with either FRS or ASCVD) was used to assess improvement in model fit. For 

measures with P < 0.05, we assessed improvement in risk prediction of incident CVD by adding 

the epigenetic age acceleration measure to the base model with the clinical risk scores. We 

assessed the improvement in CVD risk prediction using C-statistics computed from Cox 

proportional hazards models of time to CVD events and risk scores as continuous predictors.56 

We additionally used the net reclassification index (NRI) to assess net improvement in 

reassignment of the risk categories.28 Categorized CVD risk scores were used in the base model 

and improvement in risk reassignment was then assessed after the addition of epigenetic 

acceleration measures. For this analysis, we also examined the associations excluding individuals 

taking lipid-lowering statin medications (N = 40).  

Statistical tests were two-sided and a P value of < 0.05 was considered nominally 

significant. We also applied a Bonferroni threshold for statistical significance (0.05/10 = adjusted 

P < 0.005) to account for multiple testing in assessing the association between epigenetic 

acceleration measures and the 10 cardiometabolic traits. For NRI, bootstrapping (10,000 

iterations) was used to compute 95% confidence intervals, and an empirical P < 0.05 was 

considered significant. Analyses were performed using R (Version 4.0.2)57 and the following 

packages: lme4,58 survival,59,60 nricens, and DescTools. 

3.4 Results 

Descriptive statistics 



 76 

Baseline characteristics of the participants are shown in Table 1. The 1,100 participants 

from 530 sibships had a mean age of 57.1 years, and 71% were women. About 60% were never 

smokers and mean alcohol consumption was 0.66 drinks per week. About 70% of the 

participants had hypertension and 20% had type 2 diabetes at baseline. At baseline, 91 

participants had prevalent CVD and another 72 developed incident CVD over 8,161 person-years 

of follow-up. The mean Framingham risk score (FRS) was 14.4% and the mean of the 

atherosclerotic cardiovascular disease (ASCVD) risk equation was 11.6%. FRS and ASCVD 

were positively and significantly correlated (r = 0.94, P = 2.2 × 10-16). Supplemental Figure 1 

shows the scatterplots for each of the DNAm age measures with chronological age.  As 

previously reported, all of the DNAm age measures were strongly and significantly correlated 

with chronological age (all r > 0.8, Supplemental Table 1).27 The means of the age acceleration 

measures ranged between 0.11 years for GrimAA and 0.38 years for PhenoAA. The acceleration 

measures were not strongly correlated with each other (r range: 0.19 – 0.50), nor where they 

correlated with chronological age (Supplemental Table 1, Supplemental Figure 2). 

Association between epigenetic age acceleration and cardiometabolic risk factors 

Table 2 shows the regression results from linear mixed models for the univariate 

associations between the epigenetic age acceleration measures and cardiometabolic risk factors 

with beta coefficients for 1-year increase in epigenetic age acceleration after adjusting for age, 

sex, and familial relatedness. Effect sizes are also reported below per 5-year increase, which is 

equivalent to approximately one standard deviation of the epigenetic acceleration measures. At P 

< 0.05, IEAA, EEAA, and PhenoAA were each associated with four cardiometabolic risk factors, 

while GrimAA was associated with five. 
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IEAA was associated with higher systolic blood pressure (SBP), and both EEAA and 

GrimAA were associated with higher pulse pressure after accounting for multiple testing. A 5-

year increase in IEAA was associated with an approximately 1.85 mmHg increase in SBP (95% 

CI 0.55–3.14). For EEAA and GrimAA, a 5-year increase was associated with a 1.20 mmHg 

(95% CI 0.41–2.0) and a 1.75 mmHg (95% CI 0.73–2.72) increase in pulse pressure, 

respectively. 

GrimAA was associated with higher fasting glucose levels and EEAA was associated 

with higher fasting insulin levels after accounting for multiple testing. A 5-year increase in 

GrimAA was associated with a 4.08% increase (95% CI 1.51%–6.18%) in glucose levels. EEAA 

was the only measure associated with insulin, where a 5-year increase was associated with a 

5.13% increase (95% CI 2.53%–10.5%).  

Only GrimAA was associated with any of the lipid traits examined after accounting for 

multiple testing. A 5-year increase in GrimAA was associated with a 3.85 mg/dl (95% CI -6.50 

to -1.20) decrease in low density lipoprotein (LDL-C) and a 5.13% (95% CI 3.05%–8.87%) 

increase in triglyceride levels. The associations between the lipid measures and GrimAA 

remained significant after excluding participants who were not fasting for at least 10 hours (β = -

1.01, P = 0.001, N = 863 for LDL-C and β = 0.011, P = 0.001, N = 881 for triglycerides).  

Supplemental Table 2 shows the adjusted linear mixed model regression results for associations 

significant at P < 0.05 from Table 2. Although some of the nominally significant associations 

fully attenuated after adjusting for education, smoking status, body mass index (BMI), and 

alcohol consumption (Model 2), all of the associations that were significant after multiple testing 

in the base model (Bonferroni-corrected P < 0.05) remained significant at P < 0.05. When we 

further adjusted PhenoAA and GrimAA associations for white blood cell counts (Model 3), all of 
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the associations became less significant, and the associations between PhenoAA and glucose and 

GrimAA and pulse pressure were fully attenuated (P = 0.100 and P = 0.054, respectively). 

GrimAA, however, remained significantly associated with glucose, LDL-C, and triglycerides (P 

< 0.05). 

Epigenetic age acceleration associations with clinical cardiovascular risk scores and 

incident CVD  

All epigenetic age acceleration measures were significantly associated with the FRS and 

the ASCVD risk equation, except for IEAA with FRS. The effect estimates from the linear 

mixed models were in the expected direction with increased biological aging associated with an 

increase in the predicted 10-year risk of CVD (Table 3). The largest effect estimate was 

observed for GrimAA, where a 5-year increase in epigenetic age acceleration was associated 

with a 2.9% (95% CI 2.2%–3.6%) and a 2.2% (95% CI 1.7%–2.8%) increase in the 10-year 

CVD risk using FRS and ASCVD equations, respectively.  

When we examined whether epigenetic acceleration measures were associated with time 

to first CVD event, a similar trend emerged with GrimAA showing the only significant 

association with incidence of CVD events. Table 4 shows the hazard ratios (HR) and 95% 

confidence intervals estimated from Cox proportional hazards models with a frailty term for the 

associations of the four epigenetic age acceleration measures with incident CVD. A 5-year 

increase in GrimAA was associated with a HR of 1.54 (95% CI 1.22–2.01) in the base model 

(adjusted for age, sex, and family structure). Further adjusting for traditional CVD risk factors 

(education, alcohol consumption, body mass index, total cholesterol, HDL-C, anti-hypertensive 

medication use, SBP, smoking status, and type 2 diabetes status) only slightly attenuated the 

association (HR per 5-year increase in GrimAA: 1.47, 95% CI 1.05–2.01, P = 0.024). 

Additionally adjusting for white blood cell counts did not attenuate the association (HR per 5-
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year increase in GrimAA: 1.54, 95% CI 1.10–2.19, P = 0.01). Findings were similar when time 

to CVD was modeled using interval censoring. Last, we examined the association between the 

individual components comprising GrimAge and incident CVD to identify components that may 

be driving the association between GrimAA and CVD or outperform the overall GrimAA 

measure itself (Supplemental Table 3). Adrenomedullin (ADM), smoking pack-years, and 

plasminogen activator inhibitor antigen type 1 (PAI-1) were associated with incident CVD (P < 

0.05) in the base model after further adjustment for white blood cell types, with HRs only 

slightly lower than that of GrimAA. Figure 1 shows the box plots of the standardized DNAm 

surrogate measures of the 7 plasma protein and smoking pack-years in GrimAge by incident 

CVD status. The means of ADM, smoking pack-years, and PAI-1 were higher among those with 

incident CVD.  

Evaluating the performance of epigenetic age acceleration measures in CVD prediction 

Likelihood ratio (LR) tests of nested models showed that GrimAA improved model fit 

when added to a model with age, sex, and FRS (HR per 1-year increase in GrimAA: 1.07, 95% 

CI 1.02–1.13, P for LR test of model fit = 0.013) or the ASCVD equation (HR per 1-year 

increase in GrimAA: 1.08, 95% CI 1.02–1.13, P for LR test = 0.008) (Table 5). None of the 

other age acceleration measures improved model fit.  

Since GrimAA improved model fit, we next evaluated whether it could improve CVD 

risk prediction compared with the FRS and ASCVD risk equations using the C-statistic and the 

net reclassification index (NRI). The C-statistic is the probability that a randomly selected 

participant who experienced the CVD event will have a higher predicted probability of having 

the event compared to a randomly selected participant who did not experience the event. Table 6 

shows the C-statistics for the performance of GrimAA in predicting incident CVD. The addition 
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of GrimAA to a model with each risk score increased the C-statistic to 0.698 for FRS and to 

0.685 for the ASCVD risk equation (all P > 0.05). Supplementary Figure 3 shows the receiver 

operator characteristic (ROC) curves for the risk scores before and after adding GrimAA to the 

model.  

Next, we compared the classification of CVD events with and without GrimAA using the 

net reclassification index (NRI). The NRI is an index of the net improvement in reassignment of 

the risk categories.28 The FRS categorized 36.5% of the GENOA cohort as low risk (≤ 7.5%) 

while the ASCVD equation categorized 47.2% of the cohort as low risk. Net reclassification for 

CVD was small but significant with the addition of GrimAA to a model of age, sex, and FRS 

(NRI: 0.055, 95% CI 0.040–0.071, P < 0.0001), and for a similar model of age, sex, and the 

ASCVD equation (NRI: 0.029, 95% CI 0.006–0.064, P = 0.0011). Supplemental Figure 4 

shows the reclassification tables of predicted CVD based on the NRI for models with FRS or 

ASCVD and GrimAA. The improvement in risk prediction was driven by the classification of 

CVD nonevents as low risk.  

When we excluded participants taking lipid-lowering statin medications, improvement in 

risk prediction in models with GrimAA was almost identical to that of the full sample. GrimAA 

remained associated with incident CVD after adding it to a base model with FRS and ASCVD 

(HR = 1.08 in both models, P = 0.004 and P = 0.003, respectively). As in the full sample, 

addition of GrimAA to a model with FRS or the ASCVD equation increased the C-statistics, but 

the increases were not significant at P < 0.05. The NRIs with the addition of GrimAA to the risk 

scores were also similar (NRI = 0.052 for FRS, NRI = 0.030 for the ASCVD equation).  
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3.5 Discussion 

In this study of primarily hypertensive African American participants from GENOA, we 

showed that increased biological aging is associated with a worse cardiometabolic risk profile, 

although the associations with specific cardiometabolic risk factors varied across the age 

acceleration measures. All of the epigenetic acceleration measures were correlated with risk of 

CVD onset as modeled by clinical CVD risk scores (FRS and ASCVD equation). GrimAA 

outperformed IEAA, EEAA, and PhenoAA in predicting CVD incidence, and the association 

remained significant after adjusting for traditional CVD risk factors. The addition of GrimAA to 

FRS or ASCVD did not improve the C-statistics of CVD risk prediction; however, the NRIs 

showed small but significant improvement in the reassignment of risk categories.  

Differences in the cardiometabolic risk factor and CVD incidence associations among the 

various epigenetic clocks may be attributed to a number of factors. IEAA, EEAA, and PhenoAA 

share only between 5 and 36 CpG sites.9 Information on the CpGs included in GrimAge are not 

publicly available, so we cannot assess how many CpG sites this measure shares with the other 

three. In addition to differences in training algorithms (chronological age for IEAA and EEAA 

vs. aging correlates and outcomes for PhenoAA and GrimAA), the second generation of 

epigenetic measures (PhenoAA and GrimAA) were trained using longitudinal data.29 This is 

particularly relevant for studies assessing their prediction of aging related outcomes. The use of 

cross-sectional training data may have biased the algorithm as individuals with accelerated aging 

rates will have a higher morality burden and may have been selected out from the training 

samples.29,30 Nevertheless, an analysis of the transcriptional profiles of IEAA, EEAA, and 

PhenoAge shows that they have relatively similar transcriptional signatures.11 
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Our study found cross-sectional associations between epigenetic age acceleration and a 

number of cardiometabolic risk factors. Out of the 10 cardiometabolic risk factors examined in 

the base model, GrimAA was associated with 4 measures, EEAA with 2 measures, and IEAA 

and PhenoAA with 1 measure after accounting for multiple testing. Some of the associations 

were unique to one specific cardiometabolic feature such as the association between GrimAA 

and lipid traits. For the significant associations between the acceleration measures and 

cardiometabolic risk factors, the effect directions were as expected with the exception of the 

association between GrimAA and LDL-C. Higher epigenetic acceleration, indicative of tissue 

aging faster than expected by chronological age, was associated with worsening outcomes as 

measured by cardiometabolic risk factors. Increased tissue aging in blood is accompanied by 

changes in cell-type composition.31 However, the associations between GrimAA and 

cardiometabolic risk factors were not attenuated after adjusting for blood cell composition, with 

the exception of the association between GrimAA and pulse pressure. This suggests that the 

associations observed are not due to age-related changes in blood cell composition and that 

GrimAA is capturing cell-intrinsic properties or innate changes related to aging rather than 

changes in immune cell composition.  

In our study, IEAA was associated with SBP, and both EEAA and GrimAA were associated with 

pulse pressure. Previous studies on the association between IEAA and EEAA and 

cardiometabolic phenotypes show inconsistent findings.13,20,32,33 A previous study of IEAA and 

EEAA in the Women’s Health initiative (WHI) found no associations with systolic or diastolic 

blood pressure after adjusting for diet and metabolic syndrome symptoms.32 However, in a 

smaller sample of African Americans from the Bogalusa Heart Study (N=288), both IEAA and 

EEAA were associated with hypertension.20 Another study of approximately 5,000 individuals 



 83 

from the Generation Scotland: Scottish Family Health Study found evidence of an association 

between EEAA and high blood pressure, but not IEAA.34 A previous analysis in GENOA found 

no association between blood pressure measured at Phase II and IEAA or EEAA,35 although 

significant associations were detected in this study using concurrently measured blood pressure 

(Phase I). PhenoAA and GrimAA were more recently developed, so fewer studies have assessed 

their associations with cardiometabolic risk factors. However, in WHI, both PhenoAA and 

GrimAA were significantly correlated with SBP but not DBP.9,10   

In this study, we also found evidence of associations between PhenoAA and GrimAA and 

glucose, and EEAA and insulin. GrimAA was the only measure associated with any of the lipid 

traits. In WHI, no associations between measures of insulin resistance and dyslipidemia (HDL-C 

and triglycerides) were detected with IEAA or EEAA, except for an association between EEAA 

and triglycerides (β = 0.004, P value = 0.04).20 However, other studies have reported an inverse 

association between fasting HDL-C levels and EEAA13 and IEAA.34 Cross-sectional 

examination of WHI revealed correlations between both PhenoAA and GrimAA and insulin, 

glucose, triglycerides, and HDL-C.9 PhenoAA, but not GrimAA, was also correlated with LDL-

C.10 As in our study, GrimAA was associated with lower total cholesterol and LDL-C in a cross-

sectional analyses of 709 individuals from the Lothian Birth Cohort.36 Another study in the 

Methyl Epigenome Network Association and a Spanish cohort found significant correlations 

between GrimAA and glucose levels, HDL-C, and triglycerides.37 

In our analyses, higher GrimAA was the only measure associated with CVD incidence in 

GENOA African Americans independent of CVD risk factors. Adjustment for white blood cell 

counts did not attenuate the association. Neither EEAA nor IEAA were associated with incident 

coronary heart disease in WHI.20 However, among Black participants from the Atherosclerosis 
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Risk in Communities (ARIC) study, epigenetic age acceleration based on the Horvath and 

Hannum measures were both associated with increased hazard of fatal coronary heart disease 

(HR: 1.17, 95% CI 1.02–1.33 and HR: 1.22, 95% CI 1.04–1.44, respectively).17 A German case-

cohort study reported an increase in the hazard of cardiovascular mortality associated with 

Horvath age acceleration,38 while a study in the Melbourne Collaborative Cohort found no 

association with the Horvath or Hannum measures.16 Increased PhenoAA, but not HorvathAA, 

was also associated with increased risk of cardiovascular mortality in 500 males from the US 

Normative Aging Study.39  

Our findings are in line with the literature in cohorts of European ancestry showing that 

GrimAA outperforms other measures in its association with CVD incidence.21,22 The effect size 

of GrimAA on CVD incidence appears to be remarkably similar across studies in European 

ancestry, and similar to our estimate in African Americans. Comparing the same four measures 

of epigenetic acceleration that we investigated, Hillary et al. found that over thirteen years of 

follow-up, GrimAA outperforms the other measures in terms of its association with incidence of 

heart disease (HR: 1.41, 95% CI 1.18–1.68,  per 1 SD).21 Wang et al. found that a 1 SD increase 

in GrimAA was associated with elevated risk of myocardial infarction (HR: 1.44, 95% CI 1.16–

1.79) and stroke (HR: 1.42, 95% CI 1.06–1.91) in a study of elderly participants from the 

Normative Ageing Study and the Cooperative Health Research in the Region Augsburg (KORA) 

study.22  

To our knowledge, no previous study has assessed the performance of the epigenetic age 

acceleration measures in improving the predictive accuracy of clinical risk scores of CVD. 

GrimAA appears to marginally improve prediction of CVD events beyond traditional risk factors 

when assessed using NRI but not using changes in the area of the ROC curves. The net gains in 
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risk prediction were mostly due to the down-classification of non-cases as low risk, with fewer 

up-classification of non-cases as high risk. More studies are needed to validate and replicate 

these findings and assess their utility in clinical settings. In addition, each of our clinical score 

measures predict a different set of outcomes. FRS is a predictor of total CVD, including coronary 

death, peripheral artery disease and heart failure. The ASCVD, on the other hand, predicts 

outcomes related to coronary heart disease and stroke. Further studies are needed to fully 

investigate the predictive performance of GrimAA in relation to different cardiovascular 

outcomes. However, GrimAA may be a promising biomarker since it is a composite measure of 

multiple plasma proteins, some of which have been shown to be independent biomarkers that can 

improve CVD prediction.40-43 Additionally, for some of the components of GrimAge (PAI-1, 

TIMP-1, and cystatin C), DNAm-based surrogates were found to outperform the observed 

biomarkers.10 Lu et al. found that DNAm smoking pack-years was a more significant predictor of 

lifespan than self-reported smoking and that it predicted mortality even among non-smokers. 

This may be related to errors in self-reporting or because DNAm pack-years may capture 

intrinsic variation across individuals with lasting biological damage related to smoking.10  

Our study has a number of limitations. Our findings were based on self-reported events, 

with only the year of the event reported, which could be subject to recall bias. We also note that 

there was loss to follow-up between baseline and Phases II and III. Those lost to follow-up 

between baseline and Phase III were 1.63 years older and had 3.5 mmHg higher systolic blood 

pressure on average (P = 0.014). Additionally, individuals lost to follow up had higher GrimAA, 

FRS, and ASCVD risk scores (all P < 0.05). This indicates that participants at greater risk of 

CVD events were more likely to be lost to follow-up. Another limitation is that although we 

adjusted for a number of important confounders, we lacked information on dietary data in 
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GENOA African Americans. Finally, our sample is predominantly hypertensive and has an 

overrepresentation of women, so our findings may not be representative of other cohorts. A 

strength is that our study provides insights on the association between four different epigenetic 

aging measures and cardiometabolic risk factors and CVD in a relatively large cohort of older 

African Americans. In addition, we also explored improvement of CVD risk prediction by 

incorporating epigenetic aging measures in clinical risk equations and investigated potential 

molecular drivers of the observed associations. 

Epigenetic information is an important molecular readout of lifetime exposures. We have 

shown that epigenetic aging measures are associated with some cardiometabolic risk factors in 

this relatively large cohort of African Americans. GrimAge acceleration was the only measure 

associated with CVD incidence after adjusting for CVD risk factors. Further studies are needed 

to replicate and further investigate potential improvement of clinical risk prediction using 

GrimAge acceleration. 
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3.7 Tables 

Table 3-1: Descriptive characteristics of GENOA African Americans (N = 1,100) † 

  
Mean (SD) or N (%) 

Female 781 (71.0%) 

Age (years) 57.1 (10.6) 

Education (years) 12.3 (3.5) 

Smoking status  

     Never 666 (60.5%) 

     Former 255 (23.2%) 

     Current 179 (16.3%) 

Alcohol consumption (drinks/week) 0.66 (2.6) 

BMI (kg/m2) 31.20 (6.6) 

Type 2 diabetes 216 (19.6%) 

Anti-hypertensive medication use 649 (59.0%) 

Hypertension 771 (70.1%) 

Epigenetic age acceleration  

IEAA (years) (N = 1099) 0.15 (4.8) 

EEAA (years) 0.27 (5.9) 

PhenoAA (years) (N = 1099) 0.38 (7.2) 

GrimAA (years) (N = 1099) 0.11 (5.0) 

Cardiometabolic parameters  

Systolic blood pressure (mmHg) 133.8 (21.6) 

Diastolic blood pressure (mmHg) 77.7 (11.9) 

Mean arterial pulse pressure (mmHg) 96.4 (13.5) 

Pulse pressure (mmHg) 56.2 (17.7) 

Glucose (mg/dl) (N = 883) 109.2 (42.1) 

Insulin (mIU/l) (N = 882) 11.5 (13.4) 

Total cholesterol (mg/dl)  (N = 1098) 204.3 (45.2) 

HDL-C (mg/dl) 55.2 (17.9) 

LDL-C (mg/dl) (N = 1076) 120.8 (41.5) 

Triglycerides (mg/dl) (N = 1099) 146.0 (82.1) 

CVD 10-year risk scores  

Framingham risk score (%) (N = 945) 14.4 (12.7) 

ASCVD risk equation (%) (N = 988) 11.6 (11.1) 

Prevalent CVD at baseline 91 (8.3%) 

Incident CVD at follow-up 72 (8.8 per 1000 person-years) 

Abbreviations: SD, standard deviation; IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic 

epigenetic age acceleration; BMI, body mass index; HDL-C, high density lipoprotein; LDL-C, low 

density lipoprotein; CVD, cardiovascular disease; ASCVD, Atherosclerotic cardiovascular disease. 

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery 

revascularization, cerebrovascular events, or surgical carotid artery revascularization. 
†Total N = 991 at Phase II and N = 496 at Phase III with DNAm measures. 
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Table 3-2: Association between epigenetic age acceleration and cardiometabolic risk factors in GENOA African Americans 

Abbreviations: IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration; SBP, systolic blood pressure; DBP, diastolic 

blood pressure; MAP, mean arterial pressure; PP, pulse pressure; HDL-C, high density lipoprotein; LDL-C, low density lipoprotein. 

Models are adjusted for age, sex and familial relatedness. 

Effect sizes (β) correspond to the change in the cardiometabolic risk factor associated with a 1-year increase in the epigenetic age acceleration measure. 

Associations significant at P < 0.05 are shown in bold; †Associations significant at Bonferroni adjusted P < 0.005.

  IEAA  EEAA  PhenoAA  GrimAA 

Cardiometabolic 

Risk Factor 

(Outcome)  

β 95% CI P value  β 95% CI P value  β 95% CI P value  β 95% CI P value 

SBP  0.37 0.109, 0.627 0.005†  0.27 0.055, 0.485 0.014  0.22 0.050, 0.395 0.012  0.36 0.093, 0.627 0.008 

DBP  0.16 0.009, 0.303 0.037  0.04 -0.083, 0.160 0.534  0.07 -0.033, 0.163 0.195  0.02 -0.133, 0.170 0.809 

MAP  0.23 0.056, 0.393 0.009  0.11 -0.026, 0.253 0.112  0.12 0.004 0.229 0.042  0.13 -0.042, 0.305 0.138 

PP  0.22 0.026, 0.414 0.027  0.24 0.082, 0.403 0.003†  0.16 0.033, 0.293 0.014  0.35 0.145, 0.544 0.001† 

Log glucose  2 × 10-3 -0.002, 0.006 0.280  3 × 10-3 0, 0.007 0.049  4 × 10-3 0.001, 0.007 0.004†  8 × 10-3 0.003, 0.012 4.0 × 10-4† 

Log insulin  2 × 10-3 -0.008, 0.011 0.724  0.01 0.005, 0.020 0.002†  0.01 0, 0.012 0.056  2 × 10-3 -0.008, 0.011 0.722 

Total 

cholesterol 
 -0.22 -0.778, 0.332 0.430  -0.17 -0.627, 0.291 0.473  -0.06 -0.431, 0.309 0.748  -0.49 -1.057, 0.080 0.092 

Log HDL-C  -3 × 10-4 -0.004, 0.003 0.855  -1 × 10-3 -0.004, 0.002 0.475  1 × 10-3 -0.001, 0.003 0.444  -2 × 10-3 -0.005, 0.002 0.328 

LDL-C  -0.38 -0.894, 0.144 0.157  -0.15 -0.579, 0.281 0.498  -0.23 -0.576, 0.120 0.199  -0.77 -1.303, -0.236 0.005† 

Log 

Triglycerides 
 3 × 10-3 -0.002, 0.009 0.214  1 × 10-3 -0.004, 0.005 0.758  3 × 10-3 -0.001, 0.007 0.105  0.01 0.006, 0.017 1.05 × 10-4† 
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Table 3-3: Association between epigenetic age acceleration and clinical CVD risk scores in 

GENOA African Americans 

 
Framingham risk score 

(FRS)  

(N = 945) 

 

Atherosclerotic cardiovascular disease 

equation (ASCVD)  

(N = 988) 

Epigenetic 

Age 

Acceleration 

(Predictor) 

β (95% CI) P value 

 

β (95% CI) P value 

IEAA 0.12 (-0.02 – 0.26) 0.088  0.17 (0.06 – 0.29) 0.004 

EEAA 0.21 (0.10 – 0.32) 3.77 × 10-4  0.23 (0.13 – 0.33) 3.85 × 10-6 

PhenoAA 0.15 (0.06 – 0.24) 0.001  0.18 (0.10 – 0.26) 4.78 × 10-6 

GrimAA 0.58 (0.44 – 0.71) 4.53 × 10-16  0.44 (0.33 – 0.56) 2.38 × 10-13 

Abbreviations: IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration. 

Models are adjusted for age, sex and familial relatedness. 

FRS and ASCVD are modeled as continuous predictors. 

Effect sizes (β) correspond to the change in predicted 10-year risk of CVD using the FRS or ASCVD risk 

equation associated with 1-year increase in the epigenetic age acceleration measure. 

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery 

revascularization, cerebrovascular events, or surgical carotid artery revascularization. 

Associations significant at P < 0.05 are shown in bold. 
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Table 3-4: Incident CVD hazard ratios for epigenetic age acceleration in GENOA African 

Americans 

Epigenetic Age 

Acceleration (Predictor) 
HR (95% CI) P value 

IEAA 0.97 (0.93 – 1.02) 0.300 

EEAA 1.04 (1.00 – 1.08) 0.057 

PhenoAA 1.00 (0.97 – 1.04) 0.810 

GrimAA 1.09 (1.04 – 1.15) 4.20 × 10-4 

Abbreviations: CVD, cardiovascular disease; HR, hazard ratio; IEAA, intrinsic epigenetic 

age acceleration; EEAA, extrinsic epigenetic age acceleration. 

Models are adjusted for age, sex and familial relatedness. 

Hazard ratios correspond to the risk of a CVD event associated with a 1-year increase in 

the epigenetic age acceleration measure. 

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, 

coronary artery revascularization, cerebrovascular events, or surgical carotid artery 

revascularization. 

Associations significant at P < 0.05 are shown in bold. 
 



 96 

 

Table 3-5: Incident CVD hazard ratios for GrimAA and clinical CVD risk scores in GENOA African Americans 
 

Adjusted HR (95% CI) 

Predictor 
FRS only 

(N = 945) 

ASCVD only 

(N = 988) 

FRS + GrimAA 

(N = 945) 

ASCVD + GrimAA 

(N = 988) 

FRS 
1.03 (1.02 - 1.05) 

P = 9.5 × 10-6 
-- 

1.03 (1.01 – 1.05) 

P = 4.7 × 10-4 
-- 

ASCVD -- 
1.04 (1.02 – 1.06) 

P = 2.7 × 10-5 
-- 

1.03 (1.01 – 1.05) 

P = 9.8 × 10-4 

GrimAA -- -- 
1.07 (1.02 – 1.13) 

P = 0.011 

1.08 (1.02 – 1.13) 

P = 0.007 

Abbreviations: CVD, cardiovascular disease; HR, hazard ratio; FRS, Framingham risk score; ASCVD, atherosclerotic cardiovascular disease. 

Models consisted of clinical risk scores with and without GrimAA. All models were adjusted for age, sex and familial relatedness. 

Adjusted hazard ratios correspond to the risk of a CVD event associated with a 1-unit increase in the clinical risk score or the epigenetic age acceleration 

measure. 

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery revascularization, cerebrovascular events, or surgical carotid 

artery revascularization. 
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Table 3-6: C-statistics evaluating the predictive performance of GrimAA on incident CVD in GENOA African Americans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: CVD, cardiovascular disease; FRS, Framingham risk score; ASCVD, atherosclerotic cardiovascular disease. 

The C statistics associated with a set of nested models for time to CVD events are shown. All models are adjusted for familial relatedness. 

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery revascularization, cerebrovascular events, or surgical carotid 

artery revascularization 

Model C-statistic 95% CI 

N = 945     

Base model (age + sex) 0.595 0.525 – 0.664 

Age + sex + GrimAA 0.643 0.576 – 0.709 

Age + sex + FRS 0.687 0.624 – 0.749 

Age + sex + FRS + GrimAA 0.698 0.637 – 0.759 

N = 988     

Base model (age + sex) 0.588 0.521 –  0.656 

Age + sex + GrimAA 0.636 0.571 –  0.701 

Age + sex + ASCVD 0.670 0.606 –  0.728 

Age + sex + ASCVD + GrimAA 0.685 0.625 –  0.746 
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3.8 Figures 

Figure 3-1: Boxplots of standardized GrimAge components by incident CVD status 

 
CVD, cardiovascular disease. 

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery 

revascularization, cerebrovascular events, or surgical carotid artery revascularization. 

† GrimAge components significantly associated with incident CVD in models adjusted for age, sex, and 

familial relatedness (P < 0.05). 
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3.9 Supplementary Material 

Table SM 3-1: Pearson correlations between age, DNA methylation age, and epigenetic age acceleration in GENOA African 

Americans 
 

 Age HorvathAge HannumAge PhenoAge GrimAge IEAA EEAA PhenoAA 

HorvathAge  0.86***        

HannumAge  0.90*** 0.90***       

PhenoAge  0.82*** 0.84*** 0.85***      

GrimAge  0.85*** 0.78*** 0.81*** 0.80***     

IEAA   0.02 0.51*** 0.24*** 0.28*** 0.12***    

EEAA   0.00 0.28*** 0.43*** 0.30*** 0.15*** 0.43***   

PhenoAA   -0.01 0.23*** 0.20*** 0.56*** 0.16*** 0.44*** 0.50***  

GrimAA   -0.02 0.07* 0.07* 0.17*** 0.50*** 0.19*** 0.27*** 0.32*** 

*** p < .0001; ** p < .01; * p < .05 

IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration. 
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Table SM 3-2: Adjusted associations between epigenetic age acceleration and cardiometabolic 

risk factors for associations with P < 0.05 in the base model (Model 1) in GENOA African 

Americans 

IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration; SBP, systolic blood 

pressure; DBP, diastolic blood pressure; HDL-C, high density lipoprotein; LDL-C, low density lipoprotein. 

Model 1 (base model) is adjusted for age, sex, and familial relatedness. Results for Model 1 are shown in Table 2. 

Only associations that were significant in Model 1 (P<0.05) were further evaluated and reported in this table.  

Model 2 is adjusted for Model 1 and years of education, smoking status, body mass index, and alcohol consumption.  

Model 3 is adjusted for Model 2 and white blood cell counts.  

Effect sizes (β) correspond to the change in the cardiometabolic risk factor associated with a 1-year increase in the 

epigenetic age acceleration measure. 

Associations significant at P < 0.05 are shown in bold. 

  
 

Model 2  Model 3 

Cardiometab

olic Risk 

Factor 

(Outcome) 

Epigenetic 

Age 

Acceleratio

n 

(Predictor) 
 

β 95% CI P value 

 

β 95% CI 
P 

value 

SBP 

IEAA  0.33 0.075, 0.594   0.012     

EEAA  0.23 0.012, 0.443   0.039     

PhenoAA  0.17 -0.002, 0.347   0.053  0.14 -0.047, 0.329   0.141 

GrimAA  0.31 -0.024, 0.638   0.069  0.29 -0.070, 0.639   0.115 

DBP IEAA  0.16 0.010, 0.305   0.037     

Mean arterial 

pressure 

IEAA  0.22 0.0459, 0.385   0.013     

PhenoAA  0.10 -0.018, 0.210  0.100  0.10 -0.019, 0.226   0.099 

Pulse 

pressure 

IEAA  0.18 -0.010, 0.378   0.063     

EEAA  0.20 0.043, 0.365   0.013     

PhenoAA  0.12 -0.011, 0.25 0.073  0.06 -0.080, 0.200 0.403 

GrimAA  0.34 0.095, 0.588   0.007  0.26 -0.004, 0.523   0.054 

Log glucose 

EEAA  2 × 10-3 -0.001, 0.006  0.137     

PhenoAA  3 × 10-3 0, 0.005  0.047  2 × 10-3 -0.001, 0.005   0.100 

GrimAA  8 × 10-3 0.003, 0.013   0.001  8 × 10-3  0.003, 0.013   0.004 

Log insulin EEAA  0.010 0.003, 0.017  0.004     

LDL-C GrimAA  -1.05 -1.709, -0.383   0.002  -0.74 -1.444, -0.025 0.043 

Log 

Triglycerides 
GrimAA  0.01 0.001, 0.015   0.026 

 
0.01 0.0002, 0.015   0.045 
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Table SM 3-3: Incident CVD hazard ratios for GrimAge components in GENOA African Americans 

GrimAge component  

(Predictor) 
HR (95% CI) P value 

Adrenomedullin (ADM) 1.45 (1.07 – 1.98) 0.017 

Beta-2-microglobulim (B2M) 1.04 (0.77 – 1.41) 0.780 

Cystatin C  1.38 (0.95 – 1.99) 0.089 

Growth differentiation factor 15 (GDF-15) 1.21 (0.92 – 1.59) 0.170 

Leptin 1.38 (0.91 – 2.10) 0.130 

Smoking pack-years 1.36 (1.09 – 1.72) 0.0076 

Plasminogen activator inhibitor antigen type 1 (PAI-1)  1.48 (1.17 – 1.87) 0.0012 

Tissue inhibitor metalloproteinases 1 (TIMP-1) 1.59 (0.97 – 2.60) 0.068 

Abbreviations: CVD, cardiovascular disease; HR, hazard ratio. 

Models adjusted for age, sex, white blood cell counts, and familial relatedness. 

Hazard ratios significant at P < 0.05 are shown in bold font. 

Hazard ratios correspond to the risk of a CVD event associated with a one-standard deviation increase in the GrimAge component. 

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery revascularization, cerebrovascular events, or 

surgical carotid artery revascularization. 

Associations significant at P < 0.05 are shown in bold. 
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Figure SM 3-1: Scatterplots of DNA methylation age measures against 

chronological age in GENOA African Americans 
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  Figure SM 3-2: Scatterplots of epigenetic age acceleration measures against chronological 

age in GENOA African Americans 
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(A)  FRS vs. FRS + GrimAA                                               (B) ASCVD vs. ASCVD + GrimAA 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Receiver operator curves for time to CVD for models of Framingham risk score (blue line) vs. Framingham risk score + GrimAA (red line) (N = 945). 

(B) Receiver operator curves for time to CVD for models of ASCVD score (blue line) vs. ASCVD + GrimAA (red line) (N = 988). 

Models are adjusted for age, sex and familial relatedness. 

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery revascularization, cerebrovascular events, or surgical carotid 

artery revascularization. 

CVD, cardiovascular disease; FRS, Framingham risk score; ASCVD, atherosclerotic cardiovascular disease.  

Figure SM 3-3: Receiver operator characteristic (ROC) curves for incident CVD in GENOA African Americans 
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Figure SM 3-4: Improvement in reclassification of incident CVD in GENOA African Americans 

 

 

 

Columns and rows refer to categories of predicted risk using (A) FRS and GrimAA and (B) ASCVD and GrimAA. The counts in the cells represent the number of individuals assigned to 

the indicated risk category.  

Blue shaded cells represent correctly reclassified individuals, and orange shaded cells represent incorrectly classified individuals.  

NRI = P(up|case) – P(down|case) – P(up|noncase) + P(down|noncase) 

In the model with FRS and GrimAA (A), 1 individual was incorrectly up-classified and 49 individuals were correctly down-classified (NRI = 49/876 – 1/876) 

In the model with ASCVD and GrimAA (B), 1 individual was correctly-up classified. 9 individuals were incorrectly up-classified, and 23 individuals were correctly down-classified (NRI 

= 1/71 – 9/917 + 23/917) 

Abbreviations: CVD, cardiovascular disease; FRS, Framingham risk score; ASCVD, atherosclerotic cardiovascular disease  

Models are adjusted for age, sex and familial relatedness. 

Cardiovascular disease (CVD) was defined as self-reported myocardial infarction, coronary artery revascularization, cerebrovascular events, or surgical carotid artery revascularization 

FRS 

model 

Standard CVD Model + GrimAA 

≤ 7.5% > 7.5% 
Total no. (%) 

of participants 

C
V

D
 E

v
en

ts
 ≤ 7.5% 7 0 7 

> 7.5% 0 62 62 

Total no. (%) 

of participants 
7 (10.1) 62 (89.9) 69 

C
V

D
 N

o
n
ev

en
ts

 

≤ 7.5% 337 1 338 

> 7.5% 49 489 538 

Total no. (%) 

of participants 
386 (44.1) 490 (55.9) 876 

ASCVD  

model 

Standard CVD Model + GrimAA 

≤ 7.5% > 7.5% 
Total no. (%) 

of participants 

C
V

D
 E

v
en

ts
 ≤ 7.5% 14 1 15 

> 7.5% 0 56 56 

Total no. (%) 

of participants 
14 (19.7) 57 (80.3) 71 

C
V

D
 N

o
n
ev

en
ts

 

≤ 7.5% 442 9 451 

> 7.5% 23 443 466 

Total no. (%) 

of participants 
465 (49.7) 452 (50.3) 917 

(A)  FRS + GrimAA (B)  ASCVD + GrimAA 



 106 

Chapter 4.  Epigenetics of Single and Multisite Atherosclerosis in African Americans from 

the Genetic Epidemiology Network of Arteriopathy (GENOA) 

4.1 Abstract 

DNA methylation, an epigenetic mechanism modulated by lifestyle and environmental 

factors, may be an important biomarker of complex diseases including cardiovascular diseases 

(CVD) and subclinical atherosclerosis. Novel biomarkers of CVD may help to improve risk 

prediction and advance precision medicine. DNA methylation in blood samples from 391 

African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) was 

assessed at baseline, and atherosclerosis was assessed 5 and 12 years later. Using linear mixed 

models, we examined the association between previously-identified CpGs for coronary artery 

and carotid artery calcification, both individually and aggregated into methylation risk scores 

(MRSCAC and MRScartoid), and four measures of atherosclerosis (coronary artery calcification 

(CAC), abdominal aorta calcification (AAC), ankle brachial index (ABI), and a multi-

atherosclerosis score combining the three measures). We also examined the association between 

four epigenetic age acceleration measures (IEAA, EEAA, PhenoAge acceleration, and GrimAge 

acceleration) and the four atherosclerosis measures. Finally, we characterized the temporal 

stability of the potential epigenetic markers for atherosclerosis (epigenetic age acceleration and 

MRSs) using longitudinal measures of DNA methylation measured five years after baseline for a 

subset of 193 participants. One and six CpGs were associated with AAC and multisite 

atherosclerosis, respectively, after adjusting for age, sex, and traditional CVD risk factors at false 

discovery rate (FDR) < 0.1. A one-unit increase in MRScarotid was associated with an 
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approximately 1.6-fold increase in the Agatston score of CAC and AAC, and a 0.7 units increase 

in the multisite atherosclerosis score (score range 0-12) after adjusting for CVD risk factors 

(Bonferroni adjusted P < 0.05). The MRScarotid explained 5.3%, 2.7%, and 5.5% of the variability 

of CAC, AAC, and multisite atherosclerosis. A 5-year increase in GrimAA (~1 SD) was 

associated with a 1.6-fold (95% CI 1.11–2.25) increase in the Agatston score of AAC and 0.7 

units (95% CI 0.33–1.07) increase in multisite atherosclerosis score after adjusting for CVD risk 

factors (Bonferroni adjusted P < 0.05). All epigenetic measures were relatively stable,with the 

highest intraclass correlation coefficients observed for MRScarotid and GrimAge acceleration 

(0.82 and 0.89, respectively). Our study found evidence of an association between a number of 

CpGs and two epigenetic measures, an atherosclerosis methylation risk score (MRScarotid) and 

GrimAge acceleration, and atherosclerosis at multiple vascular sites in a sample of African 

Americans. These epigenetic measures were relatively stable over time. These findings deepen 

our understanding of the relationship between aging and atherosclerosis and suggest that further 

evaluation of these potential biomarkers is warranted. 
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4.2 Introduction 

Cardiovascular diseases (CVD), including coronary heart disease, myocardial infarction, 

stroke, and peripheral artery disease, are the leading cause of death in the US.1 In African 

Americans, the CVD mortality burden is 21% higher compared to whites despite modest 

decreases in racial disparities at the national level since 2005.2 Genetic factors, along with non-

genetic risk factors, such as age, smoking, and hypertension contribute to CVD. However, much 

of the variability in CVD, as well as the persistent causes of CVD disparities, remains 

unexplained. 

Vascular calcification can occur in either the intimal or medial layers of the arterial wall.3 

The intima is the innermost layer consisting of a smooth endothelium layer covered by elastic 

tissue. The aorta is associated with atherosclerosis.3 Atherosclerosis is a chronic inflammatory 

age-related condition that develops over several decades and is a precursor for CVD.4-6 Coronary 

artery calcification (CAC) is a strong predictor of incident CVD and coronary heart disease 

beyond traditional CVD risk factors.7-10 Medial calcification occurs in the tunica media which 

consists of smooth muscles cells and elastic fibers. It affects lower limb arteries, in addition to 

the aorta, and is typically associated with peripheral artery disease.3 Medial lesions are thought to 

calcify earlier than intimal ones and result in vascular stiffness and reduced vessel 

compliance,11,12 and they may be also associated with CVD.8,13 Medial calcification increases 

with aging and is prevalent in individuals with chronic kidney disease and diabetes mellitus. In 

the peripheral arteries, it can be assessed the using ankle-brachial pressure index ratio.11  

Epigenetics, which captures both genetic influences as well as imprints of lifestyle and 

environmental exposures throughout the life course, may help identify biological mechanisms 

contributing to CVD pathogenesis and atherosclerosis. As such, epigenetic markers may have 
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potential as biomarkers of CVD risk. Similarly, epigenetic age acceleration measures, including 

first generation measures (Horvath14 and Hannum15), which were trained on chronological age, 

and more recent measures trained on a number of biological and physiological markers and 

chronological age, such as PhenoAge16 and GrimAge,17 are DNA methylation-based markers of 

biological aging that are associated with late-life onset diseases and mortality.14,15,17-19 Previous 

studies of genome-wide DNA methylation patterns or epigenetic age acceleration measures have 

reported significant associations between epigenetic markers and CVD,20-26 however, a majority 

of these studies were in cohorts of European ancestry and/or were cross-sectional rather than 

longitudinal. 

Only a few epidemiological studies have examined the association between DNA 

methylation and subclinical CVD or atherosclerosis.27,28 A recent cross-sectional transcriptome 

and epigenome analyses of atherosclerosis in 1,208 participants from the Multi-Ethnic Study of 

Atherosclerosis (MESA) identified 82 differentially methylated CpGs associated with either 

CAC or carotid plaque score at false discovery rate (FDR) ≤ 0.1.27 The sample was comprised of 

45.9% Caucasians, 21.5% African Americans, and 32.6% Hispanics. Race-specific analyses 

showed that the directions of the methylation changes were generally consistent across 

ethnicities, although some sites were not significant for African Americans and Hispanics.27 The 

most significant CpG associated with carotid plaque, cg05575921, is located in the AHRR gene 

body and is a well-documented smoking marker.29-32 

In this study, we evaluated the association between potential epigenetic markers of 

atherosclerosis and single- or multi-site atherosclerosis in 391 African Americans from the 

Genetic Epidemiology Network of Arteriopathy (GENOA) during a mean follow-up of 12 years. 

Our definition of atherosclerosis included both intimal and medial calcification measures: CAC, 
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abdominal aorta calcification (AAC), and ABI. Epigenetic markers included the previously-

identified CpGs for atherosclerosis,27 methylation risk scores (MRSs) derived from these CpGs, 

and four epigenetic age acceleration measures (Horvath (IEAA),14 Hannum (EEAA),15 

PhenoAge (PhenoAA),16 and GrimAge (GrimAA)).17 Finally, we characterized the temporal 

stability of the epigenetic age acceleration measures and the MRSs using longitudinal measures 

of DNA methylation for a subset of the sample (N=129).   

4.3 Methods 

Study sample  

Genetic Epidemiology Network of Arteriopathy (GENOA) is a community-based study 

in Rochester, MN and Jackson, MS that was established to identify genes influencing blood 

pressure.33 In the first phase of GENOA (Phase I: 1996 – 2001), sibships with at least two adults 

with clinically diagnosed essential hypertension before age 60 were recruited, and all siblings in 

the sibship were invited to participate regardless of hypertension status. Exclusion criteria 

included secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent 

diabetes mellitus, or active malignancy. 

At baseline (Phase I), a total of 1,583 non-Hispanic whites (Rochester, MN) and 1,854 

African Americans (Jackson, MS) were enrolled. In the second phase (Phase II: 2001 – 2005), all 

participants were invited for a second examination. Eighty percent of African Americans (N = 

1,482) and 75% of non-Hispanic whites (N = 1,213) from Phase 1 returned. At Phase III (2009-

2011), 752 African Americans returned for a third examination. Demographic information, 

medical history, clinical characteristics, lifestyle factors, and blood samples were collected in 

each phase. This study includes 391 African American participants from 277 sibships who had 

their DNA methylation measured in whole blood samples collected at Phase I and were seen in 
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Phase III. For a subset of 129 participants that were seen in Phase III, DNA methylation was 

measured at both Phase I and Phase II. Written informed consent was obtained from all 

participants and approval was granted by participating institutional review boards (University of 

Michigan, University of Mississippi Medical Center, and Mayo Clinic). 

Study measurements 

Height was measured by stadiometer and weight by electronic balance. Body mass index 

(BMI) was calculated as weight in kilograms divided by the square of height in meters. Smoking 

was categorized as current, former, or never. Resting systolic (SBP) and diastolic blood pressure 

(DBP) were measured by a random zero sphygmomanometer and a cuff appropriate for arm size. 

The second and third of three readings, after the participant sat for at least 5 minutes, were 

averaged for analysis.34 Information on current anti-hypertensive medication and statin use were 

collected. Hypertension was defined having an average SBP ≥ 140 mmHg or DBP ≥ 90 mmHg, 

or current anti-hypertensive medication use. Type 2 diabetes status (T2D) was defined as having 

fasting blood glucose levels ≥ 126 mg/dL or self-reported physician diagnosed diabetes and 

current diabetes medications use. Serum total cholesterol (TC), HDL-C, and triglycerides (TGs) 

were measured by standard enzymatic methods on a Hitcahi 911 Chemistry Analyzer (Roche 

Diagnostics, Indianapolis, IN). TC was adjusted for statin use as TC/0.8. LDL-C was calculated 

using the Friedewald formula for individuals with triglycerides below 400 mg/dl.35 

DNA methylation, epigenetic age acceleration and methylation risk scores 

Genomic DNA from 1,106 African American participants from Phase I and 304 from 

Phase II was extracted from stored peripheral blood leukocytes using AutoGen FlexStar 

(AutoGen, Holliston, MA) and DNA methylation was measured using the Infinium 

MethylationEPIC BeadChip. DNA methylation processing procedures have been previously 
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described.36 Briefly, Sex mismatches and outliers were excluded using the shinyMethyl R 

package.37 Probes with detection P-value < 10-16 were considered to be successfully detected.38 

Samples and probes that failed a detection rate of at least 10% were removed. The Noob method 

was used for individual background and dye-bias normalization.39 Regression on Correlated 

Probes method was used to adjust for the probe-type bias in the data.40 White blood cell type 

proportions within the blood sample were estimated using Houseman’s method.41A total of 1,100 

samples from Phase I and 294 from Phase II were available after quality control. 

We derived two methylation risk scores based on the regression coefficients for CpG 

sites associated with CAC and/or carotid plaque at FDR≤ 0.1 in MESA.27 At FDR of ≤ 0.1, 16 

CpG sites were associated with CAC in MESA, 15 of which were available in GENOA. For 

carotid plaque, 68 CpG sites were reported in the MESA study, 62 of which were available in 

GENOA, and two of which overlapped with those associated with CAC (cg07033253 and 

cg23661483). Methylation M-values were adjusted for batch effects (modeled as random effects 

of plate, row and column) and white blood cell counts modeled as fixed effects. The adjusted 

means plus residuals were then used to calculate two methylation risk scores, MRSCAC and 

MRScarotid. The MRSs were scored so that higher values correspond to greater risk of 

atherosclerosis.  

Methylation beta values for Phase I and Phase II DNA methylation were uploaded to the 

online Horvath epigenetic age calculator to calculate DNAm Age.42 Four measures of epigenetic 

age – HorvathAge, HannumAge, PhenoAge and GrimAge – were estimated. Intrinsic epigenetic 

age acceleration (IEAA) is based on the regression residuals from a model of chronological age 

and blood cell counts and Horvath age as the outcome.14,15 Extrinsic epigenetic age acceleration 

(EEAA) is derived similarly based on the Hannum epigenetic age measure but incorporates 
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weighted averages of three white blood cell types (naïve cytotoxic T cells, exhausted cytotoxic T 

cells, and plasmablasts).15,43 PhenoAA is a residual measure from a model of phenotypic age, 

calculated based on clinical measures such as albumin, creatinine, and white blood cell counts, as 

well as chronological age.18 GrimAA is based on the residuals from a model of GrimAge and 

chronological age. GrimAge is a composite biomarker of smoking pack-years and 7 surrogate 

measures of plasma proteins selected for their significant association with time-to-death. The 

components are adrenomedullin (ADM), beta-2-microglobulin, cystatin C, GDF-15, leptin, 

plasminogen activator inhibitor antigen type 1 (PAI-1), and tissue inhibitor metalloproteinases 1 

(TIMP-1).17  

Atherosclerosis measurements 

Computed tomography (CT) imaging was used to quantify calcification in the coronary 

arteries and the abdominal aorta. CT images were read by trained technologists and the amount 

of calcified plaque was calculated by multiplying each lesion area are by a weighted attenuation 

score (Hounsfield units) on a TeraRecon Aquarius Workstation (TeraRecon, San Mateo, CA). 

The amount of calcification was quantified using the Agatston score. Both CAC and abdominal 

aorta calcification (AAC) were natural log-transformed as ln (measure +1) when examined 

individually as outcomes.  

The ankle-brachial index was used to quantify atherosclerosis in the peripheral arteries. 

Details about the ABI measurement has been previously described.44 Briefly, a Doppler 

ultrasonic instrument (Medisonics, Minneapolis, MN) was used to detect the pulse at each arm 

and ankle using appropriately sized blood pressure cuffs. ABI was calculated as the systolic 

blood pressure at each ankle site divided by the higher of the two brachial pressures. The lower 
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of the average ABIs from both legs was used. Individuals with ABI > 1.50 were excluded as they 

may have non-compressible arteries and medial arterial calcification.  

Multisite atherosclerosis score was defined similarly to that described by Zhao et al.45 Both CAC 

and AAC were scored separately as follows: 0 if absent, or for those with calcification as a score 

between 1 and 4 according to gender-specific quartiles of each measure. ABI was scored 

between 1 and 4 for the highest to lowest gender-specific quartiles for ABI < 1.0; 0 for 1 ≤ ABI 

< 1.4, and 1 if ABI ≥ 1.4 and ≤ 1.50. The multisite atherosclerosis score was then calculated as 

the sum of the three measures (range: 0-12) and was modeled as a continuous outcome.  

Statistical analysis 

Outliers beyond 5 standard deviations from the mean of the outcome and epigenetic 

measures were removed. We calculated the Pearson correlation coefficients between the single 

site atherosclerosis measures, and among the epigenetic age acceleration measures and MRSs. 

We also calculated the correlations between the individual GrimAge components and the MRSs. 

We use linear mixed models that account for familial relatedness to assess the association 

between the previously identified atherosclerosis-associated CpGs in MESA and MRSs derived 

from these CpGs (predictors) and the single- or multi-site atherosclerosis measures (outcomes). 

The minimally adjusted model (Model 1) was adjusted for age at baseline, sex, first 4 genetic 

principal components (PCs), and time between the measures. The time covariate was calculated 

based on the age difference of the participants at the time of atherosclerosis assessment (Phase II 

or Phase III) and DNA methylation assessment (Phase I). For models of multisite atherosclerosis, 

we included two time covariates – the age difference between Phase III and Phase I, and an 

additional covariate for the age difference between Phase III and Phase II – to account for the 

differences in the assessment times of ABI (at Phase II) and CAC and AAC (at Phase III). Model 
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2 was additionally adjusted for smoking status, and Model 3 was further adjusted for 

cardiovascular risk factors (T2D status, hypertension status, BMI, and statin-adjusted total 

cholesterol levels).  

We used a similar procedure as described above to assess the association between the 

four epigenetic age acceleration measures and atherosclerosis without including the PCs. This 

approach of not adjusting for genetic PCs is consistent with other studies and allow for 

comparability of findings. As sensitivity analysis, we also performed this analysis after adjusting 

for the first four genetic PCs. We additionally carried out sensitivity analyses adjusting for white 

blood cell counts for significant associations with PhenoAA and GrimAA to assess confounding 

by changes in blood cell composition.16,17,46 For GrimAA, we investigated the association 

between the individual GrimAge components and atherosclerosis to identify components that 

may be driving the association between GrimAA and atherosclerosis or that outperform the 

overall GrimAA measure itself. For this analysis, GrimAge components were scaled and 

centered. Models were adjusted for age, sex, and white blood cell counts.  

For the subset of individuals with repeated DNA methylation measurements, we used 

chi-square and t-tests as appropriate to compare the demographic and clinical characteristics of 

the subset to the full sample. We used linear mixed-effect models adjusted for age and sex to 

calculate the intraclass correlation coefficients (ICC) between Phases I and II for the methylation 

risk scores and the epigenetic age acceleration measures. Parametric bootstrapping (1000 

iterations) was used to calculate the 95% confidence intervals of the ICC coefficients.47,48 

Additionally, for these participants, we assessed the associations between all of the epigenetic 

biomarkers at Phase II and atherosclerosis after adjusting for age at Phase II, sex, time between 

measures, and the first 4 PCs (Model 1). Finally, we used generalized estimating equation (GEE) 
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models to assess the intra-individual changes in the epigenetic predictors during follow-up in 

models adjusted for age and sex.   

Statistical tests were two-sided. False discovery rate (FDR)49 of 0.1 was considered 

significant for the associations between the individual CpGs and the atherosclerosis measures. A 

Bonferroni adjusted P value of < 0.025 (for MRS association analyses) and P < 0.0125 (for 

epigenetic age acceleration association analyses) were considered significant. Analyses were 

conducted in R (Version 3.4.1),50 using the lme4,51 rptR,48 and geepack 52 packages.  

4.4 Results 

Sample characteristics 

Baseline characteristics of the participants are shown in Table 1. The mean age of the 

participants was 56 years (SD = 9.0) at Phase I. Women comprised about 76% of the sample. 

Phase III was on average 12 years (SD = 1.2) after Phase I. About 64% of the participants had 

hypertension and 16% had T2D at Phase I. Distributions of the atherosclerosis measures and 

MRSs are shown in Supplemental Figures 1 and 2, respectively. For MRSCAC, one outlier 

beyond 5 SD from the mean was removed from the analysis. 

Correlations among the methylation risk scores, epigenetic age acceleration measures, and 

atherosclerosis measures 

CAC and AAC were correlated at r = 0.57 (P < 2.2 × 10-16). ABI was negatively 

correlated with AAC (r = -0.14, P = 0.004), but only weakly correlated with CAC (r = -0.08, p = 

0.09). Supplemental Table 1 shows the correlation between the epigenetic predictors. The two 

MRSs were correlated at r = 0.39 (P = 6 × 10-16). The correlation between the acceleration 

measures was weak to moderate (r range: 0.21 – 0.46). The epigenetic age acceleration measures 

and MRSs were weakly correlated (r range: 0.08 – 0.25), with the exception of GrimAA and 
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MRScarotid which were correlated at r = 0.62 (P = 2.2 × 10-16). Supplemental Figure 3 shows the 

scatterplots of the MRSs against the epigenetic age acceleration measures. Of the GrimAge 

components, smoking pack years slightly more correlated with MRScarotid than the overall 

GrimAA measure (r = 0.68, P = 2.2 × 10-16), with the second highest correlation between 

MRScarotid and PAI-1 (r = 0.24, P = 1.1 × 10-6).  

Associations between previously identified atherosclerosis-associated CpGs and 

atherosclerosis 

CAC, AAC, ABI, and multisite atherosclerosis were associated with 11, 17, 4, and 21 

CpGs in Model 1, respectively (FDR < 0.1). The regression results are shown in Supplemental 

Table 2. One CpG, cg05246522, was a CAC-associated CpG in MESA and the remainder of the 

significant CpGs in GENOA were carotid plaque-associated CpGs in MESA. Supplemental 

Table 3 shows the regression results for the CpGs that remained significantly associated with 

atherosclerosis after adjustment for cardiovascular risk factors (Model 3) in GENOA. After 

adjusting for cardiovascular risk factors, 6 CpGs (cg05575921 (AHRR), cg04761231 (RPL35), 

cg08958747 (RAB26), cg09935388 (GFI1), cg16661609 (LILRB4), and cg21161138 (AHRR)) 

remained significantly associated with multisite atherosclerosis, and cg05575921 was also 

associated with AAC (FDR < 0.1). All of these CpGs were carotid plaque-associated CpGs in 

MESA. Hypermethylation at all of the significant CpGs (FDR < 0.1 in Model 3) was associated 

with decreased multisite atherosclerosis. Significant CpG,s in Model 3 explained between 0.3% 

and 6.5% of the variability of multisite atherosclerosis, and cg05575921 explained 2.7% of the 

variability of AAC.  

Given the previous reports of an association between three of the identified CpGs 

(cg05575921, cg21161138, and cg09935388) and smoking, we examined their methylation 

levels by smoking status in GENOA. As expected, the plots show a dose response effect where 
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current smokers had the lowest methylation levels and never smokers had the highest 

methylation levels (Supplemental Figure 4).  

Associations between methylation risk scores and atherosclerosis  

Table 2 shows the associations between MRSCAC and MRScarotid and single or multisite 

atherosclerosis measures. The beta coefficients shown in the tables correspond to the change in 

the atherosclerosis measures associated with a 1-unit increase in the MRS. In Model 1, MRSCAC 

was associated with log-transformed CAC (Beta = 0.421, 95%CI 0.080–0.762, P = 0.016) but 

the association was not significant after adjusting for CVD risk factors (Models 2 and 3). 

MRScarotid was associated with both log-transformed CAC (Beta = 0.778, 95%CI 0.433–1.12, P = 

1.26 × 10-5) and log-transformed AAC (Beta = 1.062, 95%CI 0.688–1.44, P = 5.13 × 10-8). 

Associations remained associated after adjusting for smoking (Model 2) and other traditional 

CVD risk factors (Model 3), where a one unit increase in MRScarotid was associated with a 0.479 

units increase in log transformed CAC (95%CI 0.083–0.875, P = 0.018) and a 0.551 units 

increase in log-transformed AAC (95%CI 0.118–0.984). This is equivalent to an approximately 

1.6-fold increase in the Agatston score of CAC and AAC. A one unit increase in MRScarotid was 

associated with a 0.7 units (95%CI 0.21–1.13) increase in the multisite atherosclerosis score after 

adjusting for CVD risk factors (Model 3). The MRScarotid explained 5.3%, 2.7%, 0.29%, and 

5.5% of the variability of CAC, AAC, ABI, and multisite atherosclerosis after adjusting for CVD 

risk factors.  

Associations between epigenetic age acceleration and atherosclerosis 

Associations between the epigenetic age acceleration measures and atherosclerosis are 

shown in Table 3. PhenoAA was associated with multisite atherosclerosis in Model 1, but the 

association attenuated after adjusting for CVD risk factors. GrimAA was positively associated 
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with all measures of atherosclerosis in the minimally adjusted model (Model 1) and remained 

significant after adjusting for CVD risk factors for AAC and multisite atherosclerosis. A 5-year 

increase in GrimAA (~1 SD) was associated with a 1.6-fold (95% CI 1.11–2.25) increase in the 

Agatston score of AAC and a 0.7 units (95% CI 0.33–1.07) increase in multisite atherosclerosis 

score in Model 3. Increased GrimAA was nominally associated with lower ABI (higher 

atherosclerosis), but the association was not significant after accounting for multiple testing. The 

effect estimates were unchanged after adjusting for the first 4 genetic PCs. Supplemental Table 

4 shows the associations for PhenoAA and GrimAA after adjusting for white blood cell counts. 

The associations between GrimAA and AAC and multisite atherosclerosis in Model 3 slightly 

attenuated after adjusting for white blood cells counts but remained significant at P < 0.05. 

The associations between the DNA methylation based surrogate measures comprising GrimAge 

and atherosclerosis are shown in Supplemental Table 5. Associations were adjusted for age, 

sex, time between measures, and white blood cell counts. All components were associated with 

at least one single or multi-site atherosclerosis measure, with the exception of leptin and TIMP-1 

(P < 0.05). DNAm smoking pack years was associated with each of the atherosclerosis measures 

and was the most significant predictor of CAC, AAC and multisite atherosclerosis, with 

consistent effect directions across all of the measures. Compared to the corresponding model 

using GrimAA (Supplemental Table 3; Model 1), DNAm smoking pack years was more 

significantly associated with single- and multi-site atherosclerosis, with greater magnitude of 

effects, than the overall GrimAA measure.  

Longitudinal correlation of methylation risk scores and epigenetic age acceleration 

measures between Phases I and II 

Compared to the remaining sample, the 129 individuals with longitudinal measures of 

DNA methylation were younger (mean age of 53.4 vs. 57.3 years, P < 0.001), had a lower 
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multisite atherosclerosis score (mean of 4.51 vs. 5.26, P = 0.026) and a lower PhenoAA (mean of 

-1.11 vs. 0.41, P = 0.043). All the remaining epigenetic and atherosclerosis measures were 

similar across both samples (P > 0.05). The mean time difference between the DNA methylation 

measurements was 5.5 years (standard deviation = 1.1 years). All of the epigenetic measures 

were relatively stable between Phases I and II, with both MRScarotid and GrimAA showing the 

highest stability (ICC > 0.8), and MRSCAC showing the lowest stability (ICC = 0.519) (Table 4). 

MRScarotid derived at Phase II was associated with consistent effect direction but reduced effect 

magnitude for log-transformed AAC (Beta = 0.894, 95% CI 0.241–1.55, P = 0.008) and multisite 

atherosclerosis (Beta = 0.891, 95% CI 0.238–1.54, P = 0.009) compared to the full sample 

analysis using Phase I MRSs (Table 2, Model 1). Neither MRS was associated with CAC or 

ABI at Phase II (Supplemental Table 6). For the epigenetic age acceleration measures from 

Phase II, only GrimAA was associated with multisite atherosclerosis score (Beta = 0.123, 95%CI 

0.015–0.231, P = 0.028 in Model 1). Supplemental Figure 5 shows the change MRSs and 

epigenetic age acceleration measures by age. As expected, both MRSs were significantly and 

positively associated with age (p<0.05), while the epigenetic acceleration measures were not.  

4.5 Discussion 

In this study of African Americans, we examined the association between whole blood 

DNA methylation patterns, measured at baseline, and multisite atherosclerosis assessed 5 and 12 

years later. After adjusting for CVD risk factors, six CpGs were associated with multisite 

atherosclerosis and an aggregate risk score (MRScarotid) was associated with CAC, AAC, and 

multisite atherosclerosis. The mean of MRScarotid was negative, indicative of a general trend of 

hypomethylation at the individual CpGs associated with carotid plaque. GrimAA was the only 

epigenetic age acceleration measure associated with atherosclerosis. GrimAA and MRScarotid 
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were moderately correlated with each other, and both measures were relatively stable over 5 

years in a small subset of participants with repeated DNA methylation measurement. Although 

our findings cannot establish causality, the relatively long time period between the DNA 

methylation and atherosclerosis assessments help establish temporal patterning between changes 

in DNA methylation and the development of subclinical markers of CVD. Our findings 

additionally highlight the role of age-related methylation changes, as measured by the epigenetic 

clocks, and vascular calcification.  

After adjusting for CVD risk factors, 1 CpG was associated with AAC, and another 5 

were also associated with multisite atherosclerosis at FDR < 0.1. The direction of effects 

between the individual CpG sites and atherosclerosis in our study were consistent with MESA, 

where hypomethylation was associated with increased carotid plaque. Three of the significant 

CpGs (cg05575921, cg21161138, and cg09935388) were previously found to be associated with 

smoking.29-32 Both cg05575921 and cg21161138 are located in the AHRR gene body. AHRR is an 

aryl hydrocarbon receptor repressor, which among other roles, inhibits the metabolism of 

polycyclic aromatic hydrocarbons and dioxins by competing with AHR.53,54 The significant 

association between these CpGs and atherosclerosis after adjusting for smoking status in our 

study could potentially be related to residual confounding, errors in self-reporting of smoking, 

and/or interindividual sensitivities to smoking with lasting biological effects. In a previous 

analysis in MESA that used a candidate gene approach to assess the association between CpG 

sites in AHRR and atherosclerosis, hypomethylation at cg05575921 (P = 3.08×10−10) and 

cg21161138 (P = 7.73×10−8) was significantly associated with carotid plaque score.55 Similar to 

our findings, the association with cg05575921 remained significant after adjusting for self-

reported smoking exposure, urinary cotinine, and other CVD risk factors, and remained 
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significant in stratified analysis of former smokers and current smokers but not never smokers. 

Other studies have also reported evidence of cg05575921 differential methylation by air 

pollution in adults,56 by maternal smoking in neonates,57,58 and by smoking in atherosclerotic 

plaque specimens.59  

Similarly, cg09935388 located in the GFI1 gene body has been found to be associated 

with smoking 32,60,61 and exposure to maternal smoking in fetuses.62,63 The growth factor 

independent 1 transcriptional repressor gene, GFI1, encodes a nuclear zinc finger protein that 

plays a role in hematopoiesis, oncogenesis, and in controlling histone modification as part of a 

complex with other cofactors.64,65 cg04761231 is located in the gene body of RPL35, which 

encodes a ribosomal protein, and was also associated with smoking.66,67 cg08958747 is located in 

the gene body region of RAB26, a member of the RAB protein family which are important 

regulators of vesicular fusion and trafficking.68 cg16661609 is located upstream of a 

transcription start site of the LILRB4 gene. LILRB4 (leukocyte immunoglobulin like receptor B4) 

is a member of the leukocyte immunoglobulin-like receptor family. The receptor is expressed on 

immune cells where it transduces a negative signal that inhibits stimulation of an immune 

response and controls inflammatory responses and cytotoxicity to help focus the immune 

responses. One notable finding in MESA was that both the transcriptome signature of AT-rich 

interaction domain 5B (ARID5B) and a cg25953130 site in the gene were associated with CAC 

and carotid plaque atherosclerosis measures.27 In GENOA, cg25953130 was only nominally 

associated with multisite atherosclerosis after adjusting for CVD risk factors (Beta = -0.625, 

95%CI 0.17–1.23, P = 0.044), but the effect direction was consistent across studies. 

In our study, MRSCAC was associated only with CAC, and the association became non-

significant after adjusting for CVD risk factors. MRScarotid was associated with CAC, AAC, and 
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the derived multisite atherosclerosis score. Two of the significant CpGs in MRScarotid explained a 

slightly higher percent of the variability of multisite atherosclerosis compared to that explained 

by MRScarotid, potentially due to added noise generated by including CpGs not as strongly 

associated with atherosclerosis in African Americans. It is not clear why in our sample, carotid 

plaque-associated CpGs were better predictors of atherosclerosis than CAC-associated ones. In 

MESA, out of 7 CpGs associated with CAC (FDR < 0.05) in the full sample, only 3 were 

significant in the African American sub-sample, although the magnitude and direction of effect 

were consistent across ancestry groups. Also, despite having similar age distributions, MESA 

multi-ethnic participants had a higher median CAC score than African Americans in GENOA, 

and MESA also had a lower percentage of females. The prevalence of CAC in GENOA was low 

(median: 18.7 and IQR: 0 – 195.7) with about 40% of the sample having an Agatston score of 

zero while in MESA, participants had a median CAC score of 46 (IQR: 0 – 305), and the 

proportion with no CAC was not reported. This is consistent with evidence from epidemiological 

studies showing that African Americans tend to have lower calcification in the coronary arteries 

compared to whites.69-71 Hence, the CpGs included in the MRSCAC could be related to a more 

extreme form of the trait versus the lower atherosclerosis burden seen in GENOA. Another 

difference between MESA and GENOA is that the methylation signature in MESA was 

measured in monocytes, which have a well-established role in atherogenesis,72,73 while the DNA 

methylation in GENOA was measured in all white blood cells. This could have the effect of 

diluting the associations observed in MESA if some cell types have different methylation 

patterns compared to monocytes.27 Additionally, the ICC of MRSCAC was low, which could 

indicate a lower stability of methylation at these sites. This could be particularly relevant to 
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GENOA, as we assessed the association with CAC 12 years after DNA methylation 

measurement, while in MESA methylation and atherosclerosis were assessed concurrently. 

GrimAA was the only epigenetic age acceleration measure associated with 

atherosclerosis in GENOA. Increased GrimAA, indicative of increased biological aging, was 

associated with higher atherosclerosis. Very few other studies have examined epigenetic age 

associations with subclinical measures of CVD. In a cross-sectional analysis of 2,500 African 

Americans from the Atherosclerosis Risk in Communities (ARIC) study, a 5-year increase in 

both Horvath and the Hannum acceleration measures was associated with an approximately 0.01 

mm increase in carotid intima thickness.28 We did not find associations between the Horvath and 

Hannum measures we evaluated (IEAA and EEAA) and atherosclerosis, and in general our 

findings were varied across our four epigenetic age acceleration measures. These measures 

include different CpG sites, differ in how they were trained, and are hypothesized to capture 

different biological processes and aspects of aging.18,46 Both GrimAA and PhenoAA were 

trained using longitudinal data, making them better predictors of aging-related outcomes.74,75 

Two recent studies of participants of European ancestry have additionally shown that GrimAA 

outperforms the other acceleration measures in its association with incident CVD 25,26 and all-

cause mortality.25,76 Our reported associations attenuated slightly after adjusting for white blood 

cell counts but remained significant, suggesting that the effects were not mediated by blood cell 

composition. In our study, GrimAA was correlated with MRScarotid, with the smoking pack-years 

component of GrimAge being slightly more correlated with MRScarotid than the overall GrimAA 

measure. While we do not know individual the CpGs comprising GrimAge, we know of one 

CpG overlap, cg05575921,17 between GrimAge and MRScarotid, and potentially other smoking 

related CpGs, which partially explains the observed correlations.  
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Our results show that the epigenetic measures most strongly associated with 

atherosclerosis, GrimAA and MRScarotid, had moderate stability (ICC: 0.822 and 0.888, 

respectively) across repeated samples taken approximately 5 years apart. The characteristic of 

reliability over time is an important consideration for biomarkers that may be used for risk 

prediction. Further studies are needed to fully characterize the longitudinal patterns of DNA 

methylation, especially in response to known drivers of DNA methylation changes, such as 

smoking. In GENOA, smoking status was unchanged for the majority of the sample between 

Phases I and III, with only 27 current smokers becoming former smokers. One study that looked 

at the longitudinal changes of fetal DNA methylation in response to maternal smoking using 

serial samples at birth, age 7, and age 17 found evidence of reversible methylation changes at 

cg09935388 (GFI1) and persistent methylation changes at cg05575921 (AHRR).63 An 

epigenome-wide study of adult smoking reported that out of approximately 2,600 CpGs that 

were differentially methylated between current versus never smokers, 185 CpGs showed patterns 

of persistent methylation changes between former versus never smokers, including cg05575921, 

cg09935388, and cg21161138 CpGs.66 Most recently, Dugue et al. reported a reversibility 

coefficient (ratio of regression coefficients comparing former to current smokers and never to 

current smokers) between 69% and 75% at cg05575921, cg09935388, and cg21161138.77 Little 

is known regarding the longitudinal trends of GrimAA; however, a longitudinal trend of 

increased GrimAA with increasing age has been observed in one study.78 

One strength of our study is that we examined atherosclerosis at multiple vascular sites 

which reflect both intimal and medial vascular changes that may manifest differentially over 

time. CAC has been more extensively studied because it appears in a more clinically relevant 

vascular site 79 and is more strongly associated with coronary disease compared to carotid intima 
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thickness.80 Abdominal aorta atherosclerosis has been less extensively studied, yet recent 

evidence suggests that the associations of CAC and AAC with CVD are independent and 

additive.8,13 AAC starts earlier in life and is more prevalent than CAC and may be associated 

with an increased risk of onset and progression of CAC and/or lower ABI.81,82 Given the low 

prevalence of CAC and previous findings that it may not carry the same pathobiologic 

significance in African Americans,83 incorporating extracoronary calcification may be more 

informative and useful for risk assessment. A limitation of our study is the attrition of 

participants between Phases I and III. In a previous work, we have noted that participants who 

were lost to follow-up had higher epigenetic age acceleration and higher CVD risk.84 

Additionally, we did not have measures of carotid plaque which was included in the multisite 

atherosclerosis score that we used as a model for our score in GENOA,45 and the GENOA 

atherosclerosis measures were not all assessed concurrently. Furthermore, seven significant 

CpGs from MESA were not available in GENOA because of the different arrays used.  

In conclusion, our study found evidence of associations between DNA methylation and 

atherosclerosis at multiple vascular sites after accounting for traditional CVD risk factors. DNA 

methylation changes were at CpGs with inflammatory and smoking-related regulatory functions, 

which further highlights the relevance of inflammation and smoking in atherosclerosis. Despite 

being derived from CpGs associated with carotid plaque, MRScarotid was associated with 

atherosclerosis in the coronary arteries and abdominal aorta suggesting common pathobiological 

mechanisms of atherosclerosis on a systemic level. GrimAA was also associated with multisite 

atherosclerosis beyond traditional CVD risk factors. This is one of the very few studies to 

examine the DNA methylation signature of multiple atherosclerosis measures in a population-

based cohort. These results further our understanding of the relationship between aging and 
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atherosclerosis. Further work in this area may lead to better prediction of those at increased risk 

for atherosclerosis. 
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4.7 Tables 

 

Table 4-1: Descriptive characteristics of GENOA African Americans 

 Characteristicsa Overall (N = 391) 

Females (%) 297 (76.0%) 

Age at Phase I (years) 56.0 ± 9.0 

Age at Phase III (years) 68.0 ± 8.4 

Cardiovascular risk factors at Phase I  

Smoking status  

     Never (%) 241 (61.6%) 

     Former (%) 93 (23.8%) 

     Current (%) 57 (14.6%) 

Body mass index (kg/m2) 31.4 ± 6.2 

Hypertension 249 (63.7%) 

Type 2 diabetes 63 (16.1%) 

Total cholesterolb (mg/dl) 208.56 ± 50.4  

Low density lipoproteinc (mg/dl) 121.8 (42.8) 

Statin use (%) 18 (4.6%) 

Atherosclerosis measures at Phase III  

Coronary artery calcium score, median (IQR) 18.7 (0 – 195.7) 

Abdominal aorta calcium score, median (IQR) 500.8 (18.9 – 1800.5) 

Ankle-brachial index, median (range)d 0.985 (0.474 – 1.274) 

Multisite atherosclerosis score, median (IQR) (range: 0 – 12) 5 (2 – 7) 

Methylation risk scores at Phase I  

MRSCAC 
e 0.86 ± 0.71 

MRScarotid -3.60 ± 0.71 

Epigenetic age acceleration at Phase I  

Horvath (years) 52.8 ± 8.9 

Hannum (years) 46.2 ± 9.5 

PhenoAge (years) 42.7 ± 11.5 

GrimAge (years) 52.8 ± 7.9 

, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration; IQR, interquartile 

range 
a Means ± standard deviation 
b Adjusted for statin use as total cholesterol/0.8 
c Calculated using the Freidwald formula for participants with triglycerides < 400 mg/dl (N=386) 
d Measured at Phase II (mean: 5.2 ± 1.3 years from Phase I)   
e N = 390, after removing one outlier beyond 5 standard deviation units from the mean
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Table 4-2: Association between methylation risk scores and atherosclerosis measures in GENOA African Americans 

  

  
Model 1   Model 2   Model 3 

Outcome 

Methylation 

risk score 

Beta SE P   Beta SE P   Beta SE P 

Coronary artery 

calcium score 

(CAC)a 

MRSCAC 0.421 0.174 0.016  0.330 0.173 0.057  0.290 0.165 0.079 

MRScarotid 0.778 0.176 1.26 × 10-5  0.484 0.211 0.022  0.479 0.202 0.018 

             

Abdominal aorta 

calcification score 

(AAC)a 

MRSCAC 0.448 0.191 0.020  0.268 0.184 0.145  0.267 0.180 0.138 

MRScarotid 1.062 0.191 5.13 × 10-8  0.527 0.224 0.019  0.551 0.221 0.013 

             

Ankle-brachial 

index (ABI) 

MRSCAC 0.012 0.007 0.074  0.014 0.007 0.041  0.014 0.007 0.042 

MRScarotid -0.012 0.007 0.085  -0.005 0.008 0.586  -0.003 0.008 0.717 

             

Multisite 

atherosclerosis 

score 

MRSCAC 0.443 0.204 0.030  0.295 0.196 0.134  0.283 0.193 0.143 

MRScarotid 1.196 0.202 7.58 × 10-9   0.679 0.238 0.005   0.669 0.236 0.005 

Model 1 is adjusted for age, sex, time between measures, and 4 genetic principal components  

Model 2 is adjusted for Model 1 covariates and smoking status 

Model 3 is adjusted for Model 2 covariates, hypertension status, diabetes status, body mass index, and total cholesterol levels adjusted for statin use 

Beta is the change in the atherosclerosis measure associated with a 1 unit increase in the MRS. 

P-values significant after Bonferroni correction (P < 0.025) are shown in bold font 
a Coronary artery calcium score and abdominal aorta calcification score were transformed as ln[(CAC+1)] and ln[(AAC+1)] 
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Table 4-3: Associations between epigenetic age acceleration and atherosclerosis measures in GENOA African Americans 

  
Model 1  Model 2  Model 3 

Outcome 

Epigenetic age 

acceleration 
Beta SE P   Beta SE P   Beta SE P 

Coronary 

artery calcium 

score (CAC)a 

IEAA 0.016 0.027 0.555  0.008 0.026 0.750  -0.008 0.025 0.741 

EEAA 0.018 0.023 0.436  0.012 0.022 0.589  0.003 0.021 0.901 

PhenoAA 0.034 0.018 0.056  0.023 0.017 0.191  0.010 0.017 0.532 

GrimAA 0.149 0.028 2.04 × 10-7  0.105 0.034 0.002  0.074 0.033 0.025 

             

Abdominal 

aorta 

calcification 

score (AAC)a 

IEAA -0.016 0.029 0.591  -0.025 0.028 0.366  -0.040 0.027 0.139 

EEAA 0.027 0.025 0.285  0.024 0.024 0.311  0.018 0.024 0.437 

PhenoAA 0.046 0.019 0.018  0.033 0.018 0.073  0.028 0.018 0.133 

GrimAA 0.188 0.031 2.94 × 10-9  0.106 0.036 0.004  0.092 0.036 0.012 

             

Ankle-

brachial index 

(ABI) 

IEAA -0.001 0.001 0.562  0 0.001 0.644  -0.001 0.001 0.580 

EEAA 0 0.001 0.649  0 0.001 0.755  0 0.001 0.795 

PhenoAA -0.001 0.001 0.076  -0.001 0.001 0.133  -0.001 0.001 0.149 

GrimAA -0.004 0.001 0.002  -0.003 0.001 0.024  -0.003 0.001 0.026 

             

Multisite 

atherosclerosis 

score 

IEAA 0.021 0.031 0.489  0.011 0.029 0.713  -0.002 0.029 0.942 

EEAA 0.027 0.027 0.318  0.021 0.026 0.417  0.013 0.025 0.613 

PhenoAA 0.067 0.020 0.001  0.052 0.020 0.008  0.044 0.019 0.023 

GrimAA 0.231 0.032 4.59 × 10-12   0.158 0.038 4.58 × 10-5   0.140 0.038 3.01  × 10-4 

IEAA: intrinsic epigenetic age acceleration; EEAA: extrinsic epigenetic age acceleration; PhenoAgeAccel: PhenoAge acceleration; GrimAgeAccel: 

GrimAge acceleration 

Model 1 is adjusted for age, sex, and time between measures 

Model 2 is adjusted for Model 1 covariates and smoking status 

Model 3 is adjusted for Model 2 covariates, hypertension status, diabetes status, body mass index, and total cholesterol levels adjusted for statin use 

Beta is the change in the atherosclerosis measure associated with a 1 unit increase in the epigenetic age acceleration measure 

P-values significant after Bonferroni correction (P < 0.0125) are shown in bold font 
a Coronary artery calcium score and abdominal aorta calcification score were transformed as ln[(CAC+1)] and ln[(AAC+1)] 
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Table 4-4: Inter-individual correlations for methylation risk scores and epigenetic age 

acceleration measures between Phases I and II in GENOA African Americans (N=129) 

Measures Intraclass correlation coefficient (95%CI) 

MRSCAC 0.519 (0.385 – 0.645) 

MRSCarotid 0.822 (0.764 – 0.874) 

IEAA 0.726 (0.635 – 0.802) 

EEAA 0.799 (0.726 – 0.854) 

PhenoAA 0.676 (0.569 – 0.758) 

GrimAA 0.888 (0.848 – 0.921) 

IEAA: intrinsic epigenetic age acceleration; EEAA: extrinsic epigenetic age acceleration; 

PhenoAgeAccel: PhenoAge acceleration; GrimAgeAccel: GrimAge acceleration  
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5.1 Supplementary material 

Table SM 4-1: Pearson correlations between epigenetic age acceleration measures and methylation risk scores in GENOA African 

Americans 

  IEAA EEAA AgeAccelPheno AgeAccelGrim MRSCAC 

IEAA           

EEAA 0.39****         

AgeAccelPheno 0.44**** 0.46****       

AgeAccelGrim 0.21**** 0.27**** 0.31****     

MRSCAC 0.08 0.20*** 0.15** 0.19****   

MRScarotid 0.19*** 0.25**** 0.21**** 0.62**** 0.39**** 
*** p < .0001; ** p < .01; * p < .05 

IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration 
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Table SM 4-2: Association between previously-identified atherosclerosis-associated CpGs and atherosclerosis measures in GENOA 

African Americans a 

  
Multisite atherosclerosis 

Coronary artery calcium score 

 (CAC)b 

Abdominal aorta calcification score 

(AAC)b 

Ankle-brachial index 

(ABI) 

CpGs Beta SE P FDR Beta SE P FDR Beta SE P FDR Beta SE P FDR 

cg05575921 -1.109 0.160 1.64E-11 8.75E-10† -0.570 0.141 6.32E-05 0.005 -1.050 0.150 1.16E-11 8.32E-10† 0.019 0.006 0.001 0.039 

cg21161138 -2.495 0.435 1.93E-08 5.14E-07† -1.382 0.381 3.26E-04 0.008 -2.168 0.412 2.34E-07 8.37E-06 0.047 0.015 0.002 0.039 

cg09935388 -1.158 0.212 8.67E-08 1.54E-06† -0.676 0.184 2.81E-04 0.008 -1.013 0.201 6.83E-07 1.63E-05 0.023 0.007 0.001 0.039 

cg21566642 -1.525 0.353 1.97E-05 2.63E-04 -0.759 0.306 0.013 0.092 -1.520 0.331 6.05E-06 1.08E-04 0.017 0.012 0.161  

cg01940273 -1.530 0.398 1.41E-04 0.001 -0.614 0.343 0.075  -1.519 0.374 5.79E-05 0.001 0.017 0.014 0.204  

cg08958747 -1.869 0.488 1.49E-04 0.001† -1.310 0.420 0.002 0.036 -0.818 0.466 0.080  0.032 0.017 0.054  

cg24859433 -1.224 0.340 3.69E-04 0.003 -0.860 0.295 0.004 0.057 -1.064 0.322 0.001 0.009 0.015 0.011 0.186  

cg14753356 -1.511 0.447 0.001 0.005 -1.069 0.384 0.006 0.063 -1.143 0.422 0.007 0.046 0.022 0.015 0.138  

cg19572487 -1.325 0.390 0.001 0.005 -0.707 0.340 0.038  -1.479 0.364 0.000 0.001 0.021 0.013 0.108  

cg04761231 -2.169 0.676 0.001 0.007† -0.945 0.581 0.104  -1.420 0.640 0.027  0.030 0.023 0.200  

cg25953130 -1.019 0.319 0.001 0.007 -0.509 0.274 0.064  -0.759 0.301 0.012 0.061 0.021 0.011 0.057  

cg03636183 -0.841 0.273 0.002 0.010 -0.597 0.232 0.011 0.079 -0.767 0.258 0.003 0.025 0.010 0.009 0.286  

cg18168448 -1.076 0.369 0.004 0.016 -0.872 0.316 0.006 0.063 -0.627 0.349 0.073  0.012 0.012 0.348  

cg15342087 -1.070 0.375 0.005 0.017 -0.865 0.322 0.008 0.063 -0.926 0.354 0.009 0.055 0.018 0.013 0.151  

cg18446336 -0.658 0.275 0.017 0.061 -0.462 0.235 0.050  -0.903 0.257 0.000 0.005 0.000 0.009 0.961  

cg16661609 -1.386 0.603 0.022 0.070† -0.250 0.519 0.631  -1.312 0.568 0.021 0.090 0.010 0.020 0.619  

cg19979108 -0.988 0.429 0.022 0.070 -0.683 0.369 0.065  -0.497 0.406 0.222  0.023 0.014 0.119  

cg09646173 -1.115 0.497 0.025 0.075 -0.502 0.430 0.244  -0.211 0.470 0.653  0.023 0.017 0.177  

cg05246522 -0.838 0.386 0.030 0.085 -0.658 0.334 0.050  -0.612 0.363 0.093  -0.007 0.013 0.599  

cg15501219 -1.820 0.878 0.039 0.099 -1.090 0.753 0.148  0.157 0.831 0.850  0.056 0.029 0.056  

cg21271420 -1.345 0.650 0.039 0.099 -1.008 0.560 0.073  -0.612 0.614 0.320  0.025 0.022 0.262  

cg03295554 -0.649 0.328 0.049  -0.439 0.281 0.119  -0.763 0.308 0.014 0.061 -0.002 0.011 0.878  

cg03738331 0.979 0.492 0.047  0.165 0.424 0.697  1.144 0.461 0.014 0.061 -0.034 0.016 0.040  

cg12547807 -1.191 0.598 0.047  -0.375 0.514 0.466  -0.792 0.565 0.162  0.057 0.020 0.005 0.070 

cg15344028 -0.480 0.308 0.120  -0.371 0.261 0.156  -0.832 0.287 0.004 0.029 -0.005 0.010 0.619  

cg20507228 0.303 0.351 0.389  0.805 0.299 0.007 0.063 0.844 0.327 0.010 0.057 0.028 0.012 0.016  

Model 1 is adjusted for age, sex, time between measures, and 4 genetic principal components 

Beta is the change in the atherosclerosis measure associated with a 1 unit increase in the CpG methylation. 

FDR > 0.10 are left blank 
a Only associations with FDR<0.1 in Model 1 for any of the four measures of atherosclerosis are shown. 
b Coronary artery calcium score and abdominal aorta calcification score were transformed as ln[(CAC+1)] and ln[(AAC+1)] 

†Associations that remained significant in Model 3 (adjusted for Model 1 plus smoking status, type 2 diabetes status, hypertension status, BMI, and statin-

adjusted total cholesterol levels) at FDR< 0.1. 
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Table SM 4-3: Association between previously-identified atherosclerosis-associated CpGs and atherosclerosis measures in GENOA 

African Americans (FDR < 0.1 in Model 3)a 

 

 

 

 

 

 

 

 

 

 

 

 

Model 3 is adjusted for age, sex, time between measures, 4 genetic principal components, smoking, T2D status, hypertension status, BMI, and statin-adjusted 

total cholesterol levels. 

Beta is the change in the atherosclerosis measure associated with a 1 unit increase in the CpG methylation. 

FDR > 0.10 are left blank 
a Only associations with FDR<0.1 in Model 3 for any of the four measures of atherosclerosis are shown.  

b Coronary artery calcium score and abdominal aorta calcification score were transformed as ln[(CAC+1)] and ln[(AAC+1)

    
Multisite atherosclerosis  Coronary artery calcium 

score (CAC)b 
 Abdominal aorta calcification 

score (AAC)b 
 Ankle-brachial index  

(ABI) 

CpGs  Beta SE P FDR  Beta SE P FDR  Beta SE P FDR  Beta SE P FDR 

cg05575921  -0.806 0.223 3.38E-04 0.020  -0.390 0.193 0.044   -0.760 0.208 2.88E-04 0.019  0.016 0.008 0.040  

cg04761231  -1.710 0.646 0.008 0.091  -0.812 0.550 0.141   -1.169 0.604 0.054   0.017 0.023 0.469  

cg08958747  -1.267 0.474 0.008 0.091  -0.841 0.404 0.038   -0.338 0.446 0.449   0.022 0.017 0.199  

cg09935388  -0.609 0.232 0.009 0.091  -0.323 0.198 0.104   -0.482 0.217 0.027   0.018 0.008 0.027  

cg16661609  -1.583 0.570 0.006 0.091  -0.496 0.487 0.309   -1.541 0.531 0.004   0.011 0.021 0.577  

cg21161138  -1.415 0.497 0.005 0.091  -0.721 0.427 0.092   -1.226 0.464 0.009   0.035 0.018 0.048  



 

 

141 

 

Table SM 4-4: Association between epigenetic age acceleration measures and single and multisite atherosclerosis after adjusting for 

white blood cell counts in GENOA African Americans 

  Model 1   Model 2   Model 3 

Outcome 

Epigenetic age 

acceleration 
Beta SE P   Beta SE P   Beta SE P 

Coronary artery 

calcium score 

(CAC)a 

PhenoAA 0.041 0.019 0.030  0.024 0.019 0.202  0.010 0.018 0.595 

GrimAA 0.149 0.029 2.85 × 10-7  0.108 0.036 0.003  0.073 0.035 0.036 
             

Abdominal aorta 

calcification 

score  

(AAC)a 

PhenoAA 0.052 0.020 0.012  0.029 0.020 0.149  0.020 0.019 0.300 

GrimAA 0.194 0.031 1.07 × 10-9  0.106 0.038 0.005  0.087 0.038 0.023 

             

Ankle-brachial 

index  

(ABI) 

PhenoAA -0.001 0.001 0.069  -0.001 0.001 0.135  -0.001 0.001 0.135 

GrimAA -0.003 0.001 0.002  -0.003 0.001 0.016  -0.004 0.001 0.016 
             

Multisite 

atherosclerosis 

score 

PhenoAA 0.074 0.022 0.001  0.050 0.021 0.019  0.040 0.021 0.054 

GrimAA 0.231 0.033 7.25 × 10-11  0.157 0.040 1.08 × 10-4  0.137 0.040 7.87 × 10-4 

PhenoAgeAccel: PhenoAge acceleration; GrimAgeAccel: GrimAge acceleration 

Model 1 is adjusted for age, sex, time between measures, and 5 white blood cell counts 

Model 2 is adjusted for Model 1 covariates and smoking status 

Model 3 is adjusted for Model 2 covariates, hypertension status, diabetes status, body mass index, and total cholesterol levels adjusted for lipid lowering 

medications  

Beta is the change in the atherosclerosis measure associated with a 1 year increase in the epigenetic age acceleration measure.  

Association with P < 0.05 are shown in bold font 
a Coronary artery calcium score and abdominal aorta calcification score were transformed as ln[(CAC+1)] and ln[(AAC+1)] 
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Table SM 4-5: Association between components of GrimAge and single and multisite atherosclerosis in GENOA African Americans 

 

 

Coronary artery calcium 

score 

(CAC)a 

 Abdominal aorta 

calcification score 

(AAC)a 

 
Ankle brachial index 

(ABI) 

 

Multisite atherosclerosis score 

GrimAge component 

(Predictor)  
Beta SE P 

 
Beta SE P 

 
Beta SE P 

 
Beta SE P 

DNAm  

Adrenomedullin 

(ADM) 

 0.333 0.182 0.068 
 

0.037 0.2 0.853 
 

-0.012 0.007 0.104 
 

0.472 0.211 0.026 

DNAm Beta-2-

microglobulim (B2M) 
 0.372 0.167 0.026 

 
0.582 0.184 0.002 

 
-0.013 0.007 0.052 

 
0.557 0.195 0.005 

DNAm Cystatin C  0.558 0.23 0.016 
 

0.393 0.256 0.126 
 

-0.035 0.009 1.12E-04 
 

0.859 0.269 0.002 

DNAm 

Growth Differentiation 

Factor 15 (GDF15) 

 0.354 0.158 0.026 
 

0.512 0.174 0.003 
 

-0.003 0.006 0.579 
 

0.431 0.185 0.021 

DNAm Leptin  0.424 0.238 0.076 
 

0.175 0.26 0.502 
 

4.68E-04 0.009 0.959 
 

0.281 0.276 0.31 

DNAm Smoking pack-

years 
 0.569 0.132 2.21E-05 

 
1.05 0.139 3.19E-13 

 
-0.012 0.005 0.024 

 
1.021 0.149 3.23E-11 

DNAm Plasminogen 

activator inhibitor 

antigen type 1 (PAI1) 

 0.457 0.127 3.48E-04 
 

0.282 0.141 0.046 
 

0.001 0.005 0.892 
 

0.447 0.148 0.003 

DNAm Tissue inhibitor 

metalloproteinases 1 

(TIMP1) 

 0.413 0.216 0.058 
 

-0.013 0.241 0.958 
 

-0.009 0.009 0.288 
 

0.345 0.256 0.178 

 



 

 

143 

 

Table SM 4-6: Association between methylation risk scores at Phase II and atherosclerosis 

measures in GENOA African Americans (N = 129) 

Outcome Epigenetic measure Beta SE P 

Coronary artery calcium 

score  

(CAC) a 

MRSCAC 0.156 0.315 0.621 

MRSCarotid 0.297 0.306 0.333 

         

Abdominal aorta 

calcification score  

(AAC) a 

MRSCAC 0.154 0.353 0.663 

MRSCarotid 0.894 0.333 0.008 

         

Ankle Brachial Index  

(ABI) 

MRSCAC 0 0.011 0.949 

MRSCarotid -0.010 0.011 0.596 
         

Multisite atherosclerosis 

score 

MRSCAC 0.133 0.354 0.707 

MRSCarotid 0.891 0.333 0.009 
Model is adjusted for age, sex, time between measures, and 4 genetic principal components  
Beta is the change in the atherosclerosis measure associated with a 1 unit increase in the MRS. 
P-values significant after Bonferroni correction (P < 0.025) are shown in bold font 
a Coronary artery calcium score and abdominal aorta calcification score were transformed as ln[(CAC+1)] and 

ln[(AAC+1)] 
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Figure SM 4-1: Distribution of single- and multi-site atherosclerosis measures in GENOA African Americans 

CAC, coronary artery calcification; AAC, abdominal aorta calcification; ABI, ankle brachial index 
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Figure SM 4-2: Distribution of MRSCAC and MRScarotid in GENOA African Americans 

CAC, coronary artery calcification; MRS, methylation risk score 
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 IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration. 

B 

Figure SM 4-3: Scatterplots and Pearson correlation coefficients for MRSCAC (A) and MRScarotid (B) and epigenetic age acceleration 

(IEAA, EEAA, PhenoAA, and GrimAA) in GENOA African Americans. 

A B 
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Figure SM 4-4: Methylation at the cg05575921 (A), cg21161138 (B) and cg09935388 (C) by 

smoking status at Phase I in GENOA African Americans 

A B 
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IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age acceleration. 

Blue lines indicate the mean change of the methylation risk scores or epigenetic age acceleration measures by age using generalized estimating equation (GEE) 

models adjusted for sex. 
 

Figure SM 4-5: Spaghetti plots for the change in participant methylation risk scores (MRSCAC and MRScarotid) and epigenetic age 

acceleration (IEAA, EEAA, PhenoAA, and GrimAA) between Phase I and Phase II in GENOA African Americans 
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Chapter 5.  Conclusions 

5.1 Summary and Implications of Main Findings 

The primary goals of this dissertation were to: (1) examine the epigenome wide 

association between DNA methylation and 5 TOD measures of functional and structural changes 

in the heart, kidneys and brain using univariate and multivariate models; (2) evaluate whether 

epigenetic age acceleration measures are associated with cardiometabolic markers and CVD 

incidence; and (3) examine the association between epigenetic age acceleration measures and 

previously-identified CpGs for atherosclerosis, both individually and aggregated into MRSs, and 

single- or multi-site atherosclerosis. Findings from this work advance our knowledge about the 

relationship between DNA methylation, aging, and CVD, highlighting the important role of 

epigenetics in subclinical and clinical CVD and TOD.  

In Chapter 2, we addressed whether DNA methylation sites are associated with eGFR, 

albuminuria, left ventricular mass index, relative wall thickness, and white matter hyperintensity 

in GENOA African Americans. For TOD traits related to the heart and kidneys, we used a 

multivariate (pleiotropy) model that leverages the correlation between those traits to identify 

differentially methylated CpGs. Using this model, we successfully identified seven CpGs: 

cg21134922, cg04816311 near C7orf50, cg09155024, cg10254690 near OAT, cg07660512, 

cg12661888 near IFT43, and cg02264946 near CATSPERD at FDR < 0.1. Three CpGs remained 

significant after adjusting for hypertension, BMI, and type 2 diabetes. DNA methylation was 

associated with proximal gene expression for some CpGs, but we did not find evidence of 
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mediation by gene expression. Mendelian randomization analyses suggested causality between 

three CpGs and eGFR (cg04816311, cg10254690, and cg07660512). In a replication analysis in 

an independent cohort of 614 African Americans from the Hypertension Genetic Epidemiology 

Network (HyperGEN), One site, cg04816311, was significantly associated with eGFR (P = 

0.0003), LVMI (P = 0.0003), and RWT (P = 0.002).  

Our study findings are important because they fill in the gap in the current literature on 

the role of epigenetics in TOD. To date, very few studies have examined the association between 

genome-wide DNA methylation and TOD traits.1 Our sample which was comprised of largely 

hypertensive African Americans is representative of the population group most burdened by 

hypertension and downstream TOD. We have additionally showed the utility of using a 

pleiotropy informed analysis to increase statistical power and improve detection of significant 

DNA methylation sites. Finally, our conclusions were further supported by our ability to adjust 

for important comorbidities to delineate potentially important biological TOD pathways, the use 

of Mendelian randomization to assess causality, and the replication of some of our findings in an 

independent cohort of African Americans.   

In Chapter 3, we investigated the association between four DNAm-based epigenetic age 

acceleration measure and ten cardiometabolic risk factors and CVD incidence in GENOA 

African Americans. Overall, increased epigenetic age acceleration, indicative of faster biological 

aging was associated with a worse cardiometabolic risk profile, although the associations with 

specific cardiometabolic risk factors varied across the age acceleration measures.  All of the 

epigenetic acceleration measures were correlated with risk of CVD onset as modeled by clinical 

CVD risk scores (FRS and ASCVD equation). The direction of association was as expected (i.e. 

increased biological aging was associated with increased risk of CVD as predicted by FRS 
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and/or ASCVD). GrimAA outperformed IEAA, EEAA, and PhenoAA in predicting CVD 

incidence, and the association remained significant after adjusting for traditional CVD risk 

factors. A 5-year increase in GrimAA, was associated with a hazard ratio of 1.47 (95% CI: 1.05 

– 2.01, P = 0.024) for incident CVD. Finally, we examined whether GrimAA could be used to 

improve the predictive accuracy of clinical CVD risk scores. GrimAA improved model fit over 

clinical risk scores using likelihood ratio tests (P = 0.013 for FRS, P = 0.008 for ASCVD), did 

not improve C statistics (P > 0.05), and marginally improved the net reclassification index (NRI 

= 0.055, 95% CI: 0.040 – 0.071 for FRS; 0.029, 95% CI: 0.006 – 0.064 for ASCVD). 

The results of this study are important because they add to the growing literature 

examining the associations between epigenetic age acceleration measures, CVD, and its risk 

factors. Our study included two “first generation” and two “second generations” measures. The 

observation that GrimAA, a “second generation” measure, outperforms the other 3 measures in 

predicting incident CVD has also been observed in two large cohorts with participants of 

Europeans/Caucasian ancestry.2,3 Our findings suggest that the association between GrimAA and 

CVD incidence is shared across these two racial groups, with similar effect sizes across the three 

studies. Our study was the first to go beyond evaluating statistical associations by assessing the 

predictive utility of epigenetic age acceleration measures to improve CVD risk prediction. Our 

findings highlight the potential relevance of epigenetic markers for the improvement of risk 

stratification of CVD beyond traditional risk factors and CVD risk scores currently used 

clinically.  

In Chapter 4, we build upon our findings in Chapter 3 where we found evidence of 

association between epigenetic age acceleration measures and CVD. In this study, we examined 

the association between previously identified atherosclerosis-associated CpGs (individually and 
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aggregated into MRSs), epigenetic age acceleration measures, and subclinical CVD. To quantify 

subclinical CVD, we used three measures of atherosclerosis in the coronary arteries (CAC), 

abdominal aorta (AAC), and peripheral arteries (ABI). We additionally derived a multisite 

atherosclerosis score combining these three measures. When we examined the association with 

previously-identified CpGs, one and six CpGs were associated with AAC and multi-site 

atherosclerosis, respectively (FDR < 0.1). A one unit increase in the MRS for carotid artery 

calcification was associated with a 1.6-fold increase in AAC and 0.7 units increase in multi-site 

atherosclerosis (score range: 0-12) after adjusting for CVD risk factors (Bonferroni-adjusted P < 

0.05). As we expected based on our findings in Chapter 3, GrimAA was the only measure 

associated with AAC and multisite atherosclerosis after adjustment for CVD risk factors 

(Bonferroni-adjusted P < 0.05). We also observed that the epigenetic measures most strongly 

associated with atherosclerosis, GrimAA and MRScarotid, had moderate stability (ICC: 0.822 and 

0.888, respectively) across repeated samples taken approximately 5 years apart. 

To our knowledge, this is one of the few studies to examine the whole blood DNA 

methylation signature of multiple atherosclerosis measures in a population-based cohort. It is 

also one of the few studies to use a prospective design where DNA methylation was measured 

approximately 5 and 12 years prior to the assessment of atherosclerosis. Our finding that 

GrimAA, but not other measures of epigenetic age, is associated with subclinical CVD supports 

our previously reported association between GrimAA and CVD incidence. We also found that 

some associations between DNA methylation and atherosclerosis are consistent across African 

Americans in GENOA and white participants in other studies. Finally, our results support the 

notion that associations between epigenetic biomarkers and atherosclerosis have similarities 
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across vascular sites and suggests common underlying biological mechanisms of atherosclerosis 

at these sites. 

More studies are needed to better elucidate the biological pathways implicated in the 

associations described in this dissertation and fully explore regulatory and downstream gene 

expression changes. In Chapter 2, our multivariate model and subsequent univariate models 

confirm our hypothesis that common biological mechanisms underly the TOD measures of 

multiple organ systems. For the identified CpGs, we only investigated proximal gene expression 

changes and lacked the power to detect mediating effects. However, our findings shed light on 

the potential role of pathways related to nitric oxide (NO) as an underlying mechanism of TOD. 

NO is an important messenger molecule that regulates blood vessel dilation and has other 

thrombotic and inflammatory effects.4 Further, one identified CpG, cg04816311 near C7orf50, 

has been previously associated with type 2 diabetes and BMI. This suggests the possibility of 

common biological mechanisms underlying comorbidities in multiple organ systems.    

In Chapter 3, we found a significant association between GrimAA and CVD incidence. 

Since information about the individual CpGs comprising GrimAge are not available, we 

explored the association between each component of GrimAge and CVD incidence to understand 

potential biological pathways leading to the observed association. Of the GrimAge components, 

we found that adrenomedullin, plasminogen activator inhibitor antigen type 1, and smoking 

pack-years are associated with CVD incidence. Adrenomedullin is a free-circulating peptide that 

is an important vasodilator and has other biological functions, especially involving the heart.5 

Studies suggest that adrenomedullin levels are increased in acute myocardial infarction and in 

hypertrophied and failing hearts as a protective mechanism against cardiac dysfunction, 

myocardial remodeling, or both.5 Plasminogen activator inhibitor antigen type I (PAI-1) is a 
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biomarker of fibrinolysis, the degradation of fibrin as a result of complex interaction among 

multiple plasminogen activators and inhibitors. PAI-1 is one of the most important inhibitors of 

plasma fibrinolytic activity. In vivo, PAI-1 expression suppresses fibrinolysis leading to 

pathological fibrin deposition resulting in atherothrombosis and tissue damage.6-8 PAI-1 

expression has been found to play an important role in subclinical and clinical conditions related 

to aging including increased inflammation, atherosclerosis, and obesity.6  

Smoking is a well-established risk factor for CVD. Evidence from animal and clinical 

studies show that a number of mechanisms precipitate the effects of smoking on CVD. Smoking 

has been reported to reduce flow-mediated dilatation in the systemic arteries which is an early 

marker for endothelial dysfunction.9 It has also been associated with quantitative and qualitative 

modulation of lipids leading to increased levels of total cholesterol, LDL-C, and triglycerides in 

addition to increased lipid oxidation.9 Furthermore, smoking is associated with increased 

activation of the immune system, both systematically and locally, which is an important 

constituent of atherogenesis. The increased inflammation results in increased white blood cell 

counts, changes in the vascular wall leading to increased expression of matrix 

metalloproteinases, and increased endothelial adhesion molecules leading to leukocyte 

recruitment.9 Hence, our findings lend further evidence to the potential role of these components 

in shaping cardiovascular health and risk. Finally, it is important to note that the DNAm-based 

surrogate measures of these components may be more strongly associated than the measures 

themselves.10 In the case of smoking, this may be due to inaccurate reporting or exposure to 

secondhand smoking, but it can also be due to DNAm capturing the intrinsic variations 

associated with long-term biological changes related to the plasma proteins and/or smoking. 
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In Chapter 4, we found similar evidence of the role of smoking in atherosclerosis, which 

was evident in the hypomethylation signature at a number of CpGs in the AHRR and GFI1 genes. 

Additionally, we found evidence of an association between hypomethylation at cg16661609, 

located upstream of a transcription start site of the LILRB4, and atherosclerosis. This gene 

encodes a protein belonging to the subfamily B class of the leukocyte immunoglobulin-like 

receptors and is expressed on immune cells. This receptor binds to antigen-presenting cells and 

transduces a negative signal that inhibits stimulation of an immune response. We additionally 

found evidence of association between increased biological aging, as measured by GrimAge, and 

atherosclerosis. Each of the GrimAge components was associated with multisite atherosclerosis 

with the exception of Leptin and Tissue inhibitor metalloproteinases 1 (TIMP1). Smoking pack-

years was the most strongly associated component, and it was associated with all the 

atherosclerosis measures in GENOA. 

While it is well known that atherosclerosis is an aging disease, it is not clearly understood 

how the association between aging and atherosclerosis unfolds. DNA methylation, under both 

genetic and environmental control, may be an important link by which increased aging leads to 

atherosclerosis. Epigenetic changes with chronological age are currently recognized to be either 

age-related methylation changes or epigenetic drift.11,12 Age-related methylation refers to the 

predictable, direction-specific changes in DNA methylation levels that occur with chronological 

age.13,14 This concept is linked to epigenetic age acceleration measures or clocks. Epigenetic 

drift, on the other hand, is a reflection of deficient maintenance of epigenetic marks leading to 

the loss of hypomethylation in hypermethylated regions and gains in hypomethylated ones. 

These changes in the epigenome are thought to be stochastic, bidirectional, and to have varying 

contribution to the epigenome across the life course.14 Recently, Kochmanski and colleagues 
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coined the term “environmental deflection” to refer to a process by which an environment can 

increase or decrease age-related methylation and epigenetic drift.14 Our study found evidence of 

association between age-related DNA methylation changes (GrimAA), other CpGs combined 

into MRSs, and atherosclerosis. It is possible that the epigenetic biomarkers associated with 

atherosclerosis in our study could be showing evidence of environmental deflection, potentially 

due to traditional CVD risk factors including smoking. Evidence of epigenetic deflection due to 

smoking has been observed, for example, in our most significant CpG, cg05575921 in the AHRR 

gene region.15 

Collective findings from this dissertation advance our knowledge about the associations 

between DNA methylation changes and DNA methylation based aging measures and CVD risk 

factors, subclinical and clinical disease in African Americans. Replication studies are needed to 

characterize whether our findings generalize to other cohorts of African Americans, as well as 

other African and non-African ancestries. Our GENOA cohort was recruited from Jackson, 

Mississippi, and most African ancestry individuals in this area are from coastal Western African 

and Nigerian origins.16,17 Ancestry analysis of GENOA African Americans using genetic 

principal components confirms that this is a population with relatively homogenous ancestry. 

Both genetic variation and environmental factors impact DNA methylation.18 Hence, our 

findings may not generalize to other African American cohorts of similar genetic ancestry due to 

differences in environmental exposures which can influence the epigenome during the early 

stages of embryo development and later in life.17-20 Likewise, it remains unclear whether our 

findings are generalizable to other cohorts of different ancestries. Future studies with multiethnic 

participants and repeated DNA methylation measurements, including early in life, may elucidate 
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the differences in DNA methylation between different groups and improve our understanding of 

the contribution of differential DNA methylation to human variation and phenotypes. 

5.2 Strengths and Limitations 

While this dissertation contributes to our understanding of the role of DNA methylation 

in CVD, TOD, and their risk factors, it has several important limitations. First, our sample is 

comprised of individuals from sibships with a strong family history of hypertension. This may 

limit the generalizability of our findings. To address these concerns, we have adjusted our 

findings for hypertension or blood pressure measurements when appropriate. Second, we note 

the attrition of participants between Phase I and the follow-up visits (Phases II and III). We 

addressed concerns regarding selection bias by comparing the baseline characteristics of those 

lost to follow up and those who returned for later Phases. We noted that loss to follow-up may 

have biased the associations towards the null. Third, CVD events were defined based on 

participant reports, and were not validated using medical records examination. Given this, our 

findings regarding CVD risk prediction should be validated in studies with access to medical 

records. Last, although we used longitudinal data and Mendelian randomization for some of the 

reported associations, it remains difficult to establish causality between changes in the 

epigenome and CVD or TOD. 

This dissertation has several strengths. First, we used a prospective design where DNA 

methylation was assessed prior to our outcomes of interest. For CVD and TOD, it is difficult to 

determine the timeline of true onset. However, our study design partially addresses concerns 

related to reverse causation and offers further validation of previous cross-sectional reports. 

Second, our rich phenotyping, which included a number of lifestyle and clinical measures in 

addition to genetic and transcriptomic data, allowed us to control for important confounders, 
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explore the causality of our associations using Mendelian randomization analysis, and 

characterize potential functional effects by assessing gene expression changes. Third, our 

findings further our understanding of the role of DNAm in CVD in African Americans who are 

underrepresented in previous literature. Finally, we employed multiple methods to assess the 

associations between DNA methylation and related outcomes. In Aim 1, we used multivariate 

modelling that leverages the correlation between TOD measures and increases statistical power 

and decreases the burden of multiple testing. In Aim 3, we took a different approach by creating 

a multisite atherosclerosis score based on three single site atherosclerosis measures. This 

approach allowed us to model the associations with the different atherosclerosis measures and 

draw conclusions on the presence of multisite atherosclerosis. Such conclusions would not have 

been possible using multivariate approaches which would have allowed us to only test whether 

DNA methylation is associated with at least one of the single site atherosclerosis measures.  

5.3 Future Directions 

This dissertation builds upon previous work that identified DNAm to be an important 

mechanism that captures the imprints of lifestyle and environmental exposures throughout the 

life course. The collective results generated from this dissertation have important implications 

that may be leveraged to improve risk stratification and prediction of CVD and TOD. Our 

findings emphasize that the etiology of these complex disease is intricate and is a result of 

interaction between different “omic” layers and environmental factors. Future studies that are 

able to more fully integrate “omic” data, including transcriptomics, proteomics, and 

metabolmics, can answer important questions regarding underlying biological mechanisms and 

processes for the associations identified. Furthermore, closer examination of downstream gene 
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expression changes due to DNAm changes can answer important questions on the proximal and 

distal regulatory effects of DNAm on gene expression in relation to CVD and TOD.  

Additionally, beyond identification of significant CpGs and/or biomarkers, future studies 

with the capacity to delineate pathways of associations are of utmost importance. This could be 

achieved by using Mendelian randomization to identify causal effects of DNAm on CVD and its 

risk factors white controlling for confounding and reverse causation. DNAm associations with 

CVD and TOD could be due to causal pathways that can be targeted for potential interventions. 

Mendelian randomization could be used to refute causality where the DNAm patterns in the 

white blood cells are reflective of early signs of disease onset and elevated disease risk. Hence, 

DNAm offers the potential for identifying and quantifying key epigenetic modifications that may 

help to improve risk stratification and prediction of CVD and TOD.  Combined with other 

precision medicine efforts, this may translate into tailored interventions based on genomic and 

molecular profiles, in addition to environmental exposures, of individuals. 

Finally, larger studies with longer follow-up periods and repeated DNA methylation 

measurement would be better powered to investigate the role of DNA methylation in these age-

related outcomes. Such studies would be less biased by reverse causality and are better powered 

to detect associations with health conditions that have long onset durations. In this dissertation, 

our outcome measures were assessed after DNA methylation, which helped establish temporal 

patterning for our associations. We additionally used Mendelian randomization to help further 

investigate the causality of our findings when possible. Repeated DNA methylation measurement 

was also essential to help further our understanding of DNA methylation changes over time. In 

Aim 3, we used a small sample of about 130 participants with repeated DNA methylation 

measurements to investigate the temporal stability of our epigenetic predictors. GEE models 
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allow us to model the methylation as repeated measures while incorporating within-subject and 

between-subject variations into model fitting. However, a larger sample size would have allowed 

us to further investigate trends and increased our statistical power. Hence, future adequately 

powered studies with repeated measures are essential to further our understanding of the role of 

DNA methylation in CVD and TOD.  

5.5 Conclusion 

Together, these studies support the premise that DNAm plays an important role in CVD 

and TOD and is a promising biomarker that may improve risk assessment in African Americans. 

Chapter 2 identified seven CpGs associated with TOD with suggestive evidence of causality. 

Findings from Chapters 3 and 4 shed important insights on the role of DNAm in atherosclerosis, 

CVD risk factors, and subsequent CVD incidence. Our findings contribute to the rapidly 

evolving picture of the role of epigenetics in CVD and TOD in African Americans. Insights from 

this dissertation can chart a new path forward for improved risk prediction, advances in precision 

medicine and ultimately inform efforts to reduce disease burden, especially among highly 

burdened populations.
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