
Deer Browsing Effects on Temperate Forest Biogeochemistry, Plant Community Composition, and 

Plant Chemistry 

 

by 

 

Jacqueline M.A. Popma 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy 

(Ecology and Evolutionary Biology) 

in the University of Michigan 

2021 

Doctoral Committee: 

 

Professor Knute Nadelhoffer, Chair  

Professor Deborah Goldberg  

Professor Mark Hunter  

Professor Donald Zak 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

Jacqueline M.A. Popma 

  

popmaj@umich.edu  

 

ORCID iD:  0000-0003-3542-5546 

 

 

 

© Jacqueline M.A. Popma 2021 

 



 ii 

Dedication 

 

 

Voor Thea, Jean, Sophie, en Geert, jullie geven mij moed en vertrouwen. 

 

Voor Rhea en Mira, mijn grootste voorbeelden in het simpelweg gelukkig zijn. 

 

En voor Jeremy, jij inspireert mij om te blijven verkennen en ontdekken. 

 

⸙ 

 

For Thea, Jean, Sophie, and Geert, you give me courage and confidence.  

 

For Rhea and Mira, my two greatest examples of simply being happy.  

 

And to Jeremy, who inspires me to never stop exploring and discovering.  

 

 



 iii 

Acknowledgements 

 

I am most grateful to my advisor, Knute Nadelhoffer, for his enthusiasm, confidence, and 

great advice. And to my committee members, Deborah Goldberg, Mark Hunter, and Don Zak, 

thank you for your ideas, encouragement, and high expectations. I thank all members of the 

Nadelhoffer lab past and present. Special thanks to Buck Castillo, Jim Le Moine, and John den 

Uyl. Thank you to all the wonderful people at the University of Michigan Biological Station. 

This work was made possible with the generous funding of the Rackham Graduate School & the 

EEB department, and the support of the incredible EEB staff. I would never have been able to 

finish graduate school without my brilliant friends and fellow graduate students, especially the 

2014 cohort. A big shout out to Michelle Fearon, Jill Myers, Buck Castillo, John den Uyl, Leslie 

Decker, and Abby Potts. Thank you to my family and friends in the Netherlands: for always 

picking up the phone. I cannot explain in words how much our long-distance connections helped 

me in completing this dissertation. I thank my Graham family, whose love and support are 

always loud and strong. You have made me feel at home in Michigan. I thank Papa, Mama, 

Sophie, and Geert, for always cheering me on and believing in me. Papa, who I share my 

ecologist heart with and Mama, who is my biggest example of strength, you have instilled in me 

a love for learning I am forever grateful for. My sister Sophie who I have looked up to my whole 

life, and my brother Geert who will always remind me of my strengths “je bent een sterke vrouw, 

je kunt het!”. Jeremy has been my biggest support from the beginning. Without his 

encouragement and sacrifices none of this work would have been possible. Our family has grown 

by two since I began this PhD, and Jeremy, Rhea, and Mira continue to brighten my every day.  



 iv 

 

 

 

 

 

Table of Contents 

 

Dedication ii 

Acknowledgements iii 

List of Tables viii 

List of Figures xi 

Abstract xvi 

Chapter 1 Introduction 1 

Alteration of successional pathways: A case study in salt marshes 1 

Increased biomass and productivity with herbivory: A case study in the Serengeti 2 

Decreased productivity with herbivory: A case study in Minnesota grasslands 3 

Conflicting hypotheses 4 

Herbivore effects on nitrogen dynamics 5 

Temperate forests 6 

Soil components, processes, and feedbacks 6 

Deer impacts on temperate forests: what do we know? 7 

White-tailed deer 8 

Range 8 

Physical description 8 

Diet 9 

Implications of deer browsing 10 

Deer browsing in temperate forests: Dissertation outline 11 

Figures 14 

References 15 

Chapter 2 Deer Browsing Effects on Temperate Forest Soil Nitrogen Cycling Shift from 

Positive to Negative Across Fertility Gradients 20 



 v 

Abstract 20 

Introduction 21 

Methods 23 

Study sites 23 

Soil sampling 24 

Soil processes 25 

Leaf litter 25 

Data analysis 26 

Results 27 

N mineralization and CO2 respiration rates across fertility gradients 27 

Browsing effects on N mineralization and CO2 respiration rates across a fertility gradient

 28 

Discussion 29 

Acknowledgments 33 

Figures 34 

Tables 38 

References 41 

Supplementary Figures 46 

Chapter 3 Deer Browsing Decreases Understory Plant Abundance But Has No Detectable 

Effects on Plant Community Composition 51 

Abstract 51 

Introduction 52 

Methods 56 

Study sites 56 

Plant community structure and composition 57 

Canopy litter inputs to soil 58 

Soil C:N analyses 59 

Data Analyses 59 

Results 61 

Deer browsing effects on plant community structure 61 

Deer browsing effects on plant community composition 62 



 vi 

Discussion 64 

Deer browsing effects on plant community structure 65 

Deer browsing effects on plant community composition 68 

Conclusions 69 

Acknowledgements 70 

Figures 71 

Tables 73 

References 76 

Chapter 4 Deer Browsing Effects on Plant Chemical and Nutrient Concentrations 80 

Abstract 80 

Introduction 81 

Methods 86 

Study sites 86 

Vegetation surveys 87 

Leaves 88 

Environmental variables 89 

Chemical analyses 89 

Data analyses 91 

Results 94 

Deer browsing effects on foliar nitrogen and C:N 94 

Deer browsing effects on plant defense compounds 95 

Plant chemical richness and diversity 96 

Plant chemical composition 98 

Site level chemistry 98 

Discussion 99 

Plant nitrogen and C:N 99 

Plant defense compounds 100 

Plant chemical richness and diversity 103 

Plant chemical composition 103 

Conclusion 105 

Acknowledgements 106 



 vii 

Figures 107 

Tables 119 

References 122 

Chapter 5 Conclusion 128 

Further questions and considerations 130 

References 131 



 viii 

List of Tables 

 

Table 2.1 Study sites and plots (n=8), with average litterfall (kg ha-1 yr-1), C:N ratio in litter and 

soil, deer population density (deer km-2), N mineralization rates (g N g-1 d-1) in non-browsed 

control plots, and CO2 respiration (µmol C m-2 s-1) rates in non-browsed control plots. Mean rates 

of N mineralization and CO2 respiration are shown with standard error range. We excluded the 

Lake Loop plot in the Stony Creek site from statistical analyses due to exceptionally low leaf 

litter C:N and litterfall values in this plot. .................................................................................... 38 

Table 2.2 Mixed effect results for deer browsing effects and soil C:N on N mineralization (g N g-

1 d-1). Marginal R squared values are those associated with the fixed effects, the conditional ones 

are those of the fixed effects plus the random effects. .................................................................. 39 

Table 2.3 Mixed effect results for deer browsing effects and litter C:N on N mineralization (g N 

g-1 d-1). Marginal R squared values are those associated with the fixed effects, the conditional 

ones are those of the fixed effects plus the random effects. ......................................................... 39 

Table 2.4 Mixed effect results for deer browsing effects and soil C:N on CO2 respiration (µmol C 

m-2 s-1). Marginal R squared values are those associated with the fixed effects, the conditional 

ones are those of the fixed effects plus the random effects. ......................................................... 40 

Table 2.5 Mixed effect results for deer browsing effects and litter C:N on CO2 respiration (µmol 

C m-2 s-1). Marginal R squared values are those associated with the fixed effects, the conditional 

ones are those of the fixed effects plus the random effects. ......................................................... 40 

Table 3.1 Factor level criteria for each continuous environmental variable: N mineralization (g N 

g soil -1 d-1), CO2 respiration (µmol C m-2 sec-1), Litterfall (g m-2 yr-1), C:N Soil, and C:N Litter.

....................................................................................................................................................... 73 



 ix 

Table 3.2 Linear mixed effects model summary for plant community structure. (****) indicates 

significance <0.0001, (***) indicates significance <0.001, (**) indicates significance <0.05, (*) 

indicates significance <0.1. Plant community structure data has coefficient estimates for 

significant factors. Deer browsing and other environmental factors have significant effects on 

plant community structure, and significant interactions effects between deer and environmental 

variables were found across structural measures. R2 marginal provides variance explained only 

by fixed effects, and R2 conditional provides the variance explained by the entire model, both 

fixed effects and random effects. .................................................................................................. 74 

Table 3.3 Model summary for PERMANOVA analyses of plant community composition. (*) 

indicates significance p <0.1. The model R2 is 0.4, explaining 40% of variance in plant 

community composition. P-values below 0.1 are considered ecologically significant. ............... 74 

Table 3.4 All plant genus/species found at study sites, with significance indicator of deer 

browsing effects (*p<0.1,**p<0.05, ***p<0.001). Significance is indicated in bold, and 

represents an overall deer browsing effect when considering all sites. Most species were present 

at only a few sites, indicated by “present at site”. Minimum and maximum percent cover, the 

average % cover of species at these sites, and associated plant growth forms are listed as well. 

Note that “trees” are only seedlings and saplings, not including overstory. ................................. 75 

Table 4.1 Linear mixed effects model summary for plant tissue chemical content and 

composition. (****) indicates significance <0.0001, (***) indicates significance <0.001, (**) 

indicates significance <0.05, (*) indicates significance <0.1. Phenol and Richness results have 

coefficient estimates for significant factors, indicate strength and direction of effect. Quinone has 

a “+” to indicate direction of effect. Linear mixed models were used to analyze %N, C:N, 

richness, diversity, Phenol, terpene, glycoside, and quinone contents were analyzed using linear 

models. ........................................................................................................................................ 119 

Table 4.2 Model summary for PERMANOVA analyses of chemical community composition. 

Significance level p<0.1 is indicated with *, p<0.01***. The model R2 is 0.1. explaining 10% of 

variance in chemical community composition. P-values below 0.1 are considered ecologically 

significant. ................................................................................................................................... 120 



 x 

Table 4.3 Plant species leaf %C and C:N, and the effect of deer on each species. Species marked 

with a “*” were significantly affected by browsing (p<0.05). Deer browsing decreased %C 

overall (p=0.006), but effects varied between species. %C increased in U. americana (p=0.05), 

and decreased in E. umbellata (p=0.01). C:N increased in U. americana (p=0.001) and P. 

quinquefolia (p=0.03), and decreased in E. umbellata (p=0.03). ............................................... 121 

Table 4.4 Plant species leaf %N and the effect of deer on each species’ percent cover. %N values 

marked with a “*” were retrieved from the TRY plant database (Kattge and Knoll 2019). ...... 121 



 xi 

List of Figures 

Figure 1.1 Herbivores can have accelerating and decelerating effects on ecosystem nutrient 

cycling. Accelerating effects are often associated with high nutrient environments, and 

decelerating effects in low nutrient environments. ....................................................................... 14 

Figure 1.2 Microorganisms consume inorganic compounds to construct cells, enzymes and other 

organic compounds needed to grow, they are said to be “immobilizing” nutrients. When 

organisms excrete inorganic waste compounds they are said to be “mineralizing” nutrients. 

These excreted inorganic waste compounds are essential elements for plant growth and are 

assimilated by plant roots to sustain growth ................................................................................. 14 

Figure 2.1 Map of study sites located in southeastern Michigan. Kensington, Stony Creek, and 

Oakwoods, each have three experimental deer exclosures (n=9) ................................................. 34 

Figure 2.2 Net N mineralization (g N g soil -1 day-1 ) with and without deer browsing at each site. 

Filled circles are rates of net N mineralization outside deer exclosures (browsed), and empty 

circles are inside deer exclosures (non-browsed). ........................................................................ 35 

Figure 2.3 CO2 respiration (µmol C m-2 sec-1) rates with and without deer browsing at each site. 

Filled circles are rates of net N mineralization outside deer exclosures (browsed), and empty 

circles are inside deer exclosures (non-browsed). ........................................................................ 36 

Figure 2.4 The effect of deer browsing on (a,b) net N mineralization ( g N g soil -1 day-1, browsed 

minus non-browsed) and (c,d) CO2 respiration (µmol C m-2 sec-1, browsed minus non-browsed) 

across a (a,c) litter C:N gradient, (b,d) soil C:N gradient. The dotted line indicates no difference 

between browsed and control. Values above y=0 indicate that rates increased with browsing, 

while values below y=0 indicate that rates decreased. N Mineralization increased with deer 

browsing at sites with low soil and litter C:N, and decreased with deer browsing at sites with 

high soil C:N(a,b). C respiration decreased with deer browsing at sites with low litter C:N and 

increased with deer browsing at sites with high litter C:N (c). ..................................................... 37 

file:///C:/Users/Jacqueline%20Popma/Box%20Sync/UM/research/DISSERTATION/Popma_PhDdissertation_2021_01_26.docx%23_Toc62553218
file:///C:/Users/Jacqueline%20Popma/Box%20Sync/UM/research/DISSERTATION/Popma_PhDdissertation_2021_01_26.docx%23_Toc62553218


 xii 

Figure 3.1 Plant community structure responses to deer browsing: A) Richness, B) % Cover, C) 

Diversity, D) Biomass, E) Sapling density, F) %seedlings. Responses to deer browsing are not 

uniform across sites. Overall deer significantly decreased percent cover, sapling density, and tree 

seedlings. Parks are abbreviated as follows: Kensington (K), Oakwoods (OW), and Stony Creek 

(SC). Sites are abbreviated as follows: Spring Hill (SH), Tamarack (TR), Wild Wing (WW), Big 

Tree (BT), Long Bark (LB), Railroad (RR), Lake Loop (LL), Return Trail (RT), and West 

Branch (WB). ................................................................................................................................ 71 

Figure 3.2 Plant community composition NMDS averages with standard error overlaid on 

original NMDS points for C:N litter and C:N soil. Significance is indicated by non-overlapping 

error bars. Continuous data on C:N were binned in three categories: High (black), Medium 

(yellow), and Low (green) for NMDS visualization purposes. .................................................... 72 

Figure 3.3 Percent cover of plants grouped by growth form, with and without deer browsing. 

Linear mixed effect model showed that deer browsing significantly decreases cover of forbs 

(p=0.005 and vines (p=0.05), and significantly increases cover of graminoids (p=0.01). ........... 72 

Figure 4.1 %N in plant leaf tissues with and without deer browsing in the twelve most common 

plant species across all sites. Significance level α=0.05, overall effect of browsing on %N was 

analyzed using a mixed effect model, with sites as random effects. No overall effect was found. 

Browsing effects on individual species were analyzed using a linear model (anova), significance 

was found in two species and is indicated with a *: U. americana decreased %N with browsing 

(p<0.01) and E. umbellata increased %N with browsing (p<0.05). %N also varied between 

species, species with different letters were significantly different. ............................................ 107 

Figure 4.2 Total phenol (µg mg-1) in plant leaves with and without deer browsing, in the twelve 

most common species. Significance level α=0.05, overall effect of browsing on phenol was 

analyzed using a mixed effect model, with sites as random effects. No overall effect of browsing 

was found, but species differed. Browsing effects within individual species were analyzed using 

a linear model, significance was found in four species: A. saccharum, E. umbellata, P. 

quinquefolia, and U. americana.................................................................................................. 108 



 xiii 

Figure 4.3 Total phenol and percent cover per species. Twelve taxa were found overall, five taxa 

were found only in non-browsed plots, one taxon only in browsed plots, and six taxa in both non-

browsed and browsed plots. Phenol concentration varied among species, and not all species 

respond similarly to deer browsing. ............................................................................................ 109 

Figure 4.4 Relative terpene amount and percent cover per species. Twelve taxa were found 

overall, five taxa were only found in non-browsed plots, one taxon only in browsed plots, and six 

taxa in both non-browsed and browsed plots. Relative terpene amount varies among species, and 

not all species respond similarly to deer browsing. .................................................................... 110 

Figure 4.5 Relative glycoside amount and percent cover per species. Twelve taxa were found 

overall, five taxa were only found in non-browsed plots, one taxon only in browsed plots, and six 

taxa in both non-browsed and browsed plots. Relative glycoside amount varies among species, 

and not all species respond similarly to deer browsing. ............................................................. 111 

Figure 4.6 Relative quinone amount and percent cover per species. Twelve taxa were found 

overall, five taxa were only found in non-browsed plots, one taxon only in browsed plots, and six 

taxa in both non-browsed and browsed plots. Relative quinone amount varies among species, and 

not all species respond similarly to deer browsing. .................................................................... 112 

Figure 4.7 Chemical compound richness and diversity with and without deer browsing, across 9 

study sites. Chemical richness varied at the site level (p<0.0001), and browsing effects varied 

(p=0.04); Chemical compound richness at LB (53) and RR (53), was higher than at SH (38). 

Diversity of chemical compounds varied between sites (p<0.0001), but browsing had no effect.

..................................................................................................................................................... 113 

Figure 4.8 Chemical compound richness and diversity with and without deer browsing in 12 

different plant species that were found inside and outside exclosures. Asterix (*) indicates 

significant browsing effect. Richness significantly increased with browsing in Fraxinus sp. 

(p=0.005). P. peltatum and Fraxinus had highest foliar chemical richness in their leaves (59 and 

58 respectively), and were significantly different from U. americana (38), graminoids (37), and 

E. umbellata (35). diversity increased with browsing in E. umbellata (p=0.003). Fraxinus and C. 

lutetiana had higher diversity (13.4 and 12.0) than the other 10 species. .................................. 114 



 xiv 

Figure 4.9 Chemical community composition NMDS averages with standard error overlaid on 

original NMDS points for deer browsing treatment, C:N soil and C:N litter. Deer browsing 

treatment is “Non-browsed” and “Browsed. Continuous values for C:N were grouped into three 

levels: low (green), medium (yellow) and high (black). ............................................................. 115 

Figure 4.10 Average NMDS points for community composition of chemical compounds with 

standard error bars. PERMANOVA models show differences among twelve most common plant 

species (p=0.001). ....................................................................................................................... 116 

Figure 4.11 Average NMDS points for community composition of chemical compounds with 

standard error bars. Deer browsing effects on plant chemical communities differ among species 

(p=0.001). .................................................................................................................................... 117 

Figure 4.12 Total phenol load per site. Total phenol load represents a weighted sum of phenolic 

concentration per species based on percent cover at each site. A linear model did not detect 

significant browsing effects, but sites varied significantly (p=0.003). SH and LB were 

significantly higher in total phenolic levels than the other 6 sites. ............................................. 118 

Supplementary Figures Chapter 2 

Supplementary Figure 2-1 Soil and litter C:N ratios are not correlated. 46 

Supplementary Figure 2-2 Rates of N mineralization (g N g-1 d-1) correlate positively with litter 

C:N ratios. 46 

Supplementary Figure 2-3 Rates of N mineralization (g N g-1 d-1) correlate positively with soil 

C:N ratios. 46 

Supplementary Figure 2-4 Rates of N mineralization (g N g-1 d-1) in browsed do not correlate 

with litter C:N ratios. 47 

Supplementary Figure 2-5 Rates of N mineralization (g N g-1 d-1) in non-browsed correlate 

positively with litter C:N ratios. 47 



 xv 

Supplementary Figure 2-6 Rates of N mineralization (g N g-1 d-1) in browsed plots correlate 

positively with soil C:N ratios. 47 

Supplementary Figure 2-7 Rates of N mineralization (g N g-1 d-1) in non-browsed plots correlate 

positively with soil C:N ratios. 48 

Supplementary Figure 2-8 Rates of CO2 respiration (µmol C m-2 sec-1) do not correlate with litter 

C:N ratios. 48 

Supplementary Figure 2-9 Rates of CO2 respiration (µmol C m-2 sec-1) do not correlate with soil 

C:N ratios. 48 

Supplementary Figure 2-10 Rates of CO2 respiration (µmol C m-2 sec-1) in browsed plots do not 

correlate with litter C:N ratios. 49 

Supplementary Figure 2-11 Rates of CO2 respiration (µmol C m-2 sec-1) in non-browsed plots do 

not correlate with litter C:N ratios. 49 

Supplementary Figure 2-12 Rates of CO2 respiration (µmol C m-2 sec-1) in browsed plots do not 

correlate with soil C:N ratios. 49 

Supplementary Figure 2-13 Rates of CO2 respiration (µmol C m-2 sec-1) in non-browsed plots do 

not correlate with soil C:N ratios. 50 



 xvi 

Abstract 

 Herbivores influence ecosystem nutrient dynamics in many ways. Impacts on soil 

biogeochemical processes often include increasing nutrient cycling rates under high nutrient 

availability and decreasing nutrient cycling rates under low nutrient availability. Herbivores also 

alter plant communities as well as concentrations of nutrients and secondary defense chemicals 

in plant tissues, which further impact decomposition and nutrient cycling. These patterns are far 

from universal, and interactions between soil fertility and herbivory are under continuing 

investigation. This dissertation focusses on the interactions between herbivores and primary 

producers, more specifically the white-tailed deer (Odocoileus virginianus) and temperate forest 

nutrient cycles. Increasing deer populations have been posing threats to their habitats for 

decades. Deer overabundance affects forest regeneration and understory vegetation cover and 

composition, with consequences across trophic levels such as insects and birds. Research thus 

far, however, has found inconsistent effects of deer overabundance on soil biogeochemical 

processes as well as on plant community structure. The net effects of deer browsing on soils 

remains difficult to predict, which is reflected in inconsistencies within and across studies.  

By sampling inside and outside deer exclosures across a network of forest sites in 

southeast Michigan, I investigated deer browsing effects on temperate forest soil nitrogen (N) 

and carbon (C) cycling along gradients of soil and litter C:N and canopy litterfall. Deer browsing 

increased net N mineralization rates in high nutrient environments and decreased N 

mineralization rates in low nutrient environments, whereas browsing decreased soil CO2 

respiration in high nutrient environments and increased soil CO2 respiration in low nutrient 
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environments. My work shows that deer browsing can have significant effects on net N 

mineralization and C respiration in temperate forest soils and that the direction and magnitude of 

deer browsing effects on soil N and C cycling vary across fertility gradients.  

Differences in deer browsing effects on soil processes could be mediated by plant 

responses to herbivory across gradients of resource availability. Deer effects on plant 

communities were significant but did not vary with environmental factors. Browsing 

significantly decreased several plant structural measures, including plant percent cover, tree 

seedling cover, and sapling density, but had no detectable effects on plant community 

composition overall. Other important browsing effects on plant community composition, 

however, are reflected in significant changes in percent cover of nearly 25% of plant species and 

3 plant functional types with deer browsing.  

Furthermore, my detailed analyses of plant chemical composition in temperate forest 

understory plant communities showed that deer browsing alters plant chemistry and that plant 

species vary in their response to browsing. Together with inherent differences among plant 

species in chemical and nutrient concentrations, this work highlights the importance of both 

selective browsing and browsing-induced defenses for ecosystem nutrient dynamics. Foliar 

chemistry did not vary with environmental variables, indicating that among-species differences 

are more important than within-species responses to browsing in driving plant community 

chemical responses to browsing.  

Understanding the factors that contribute to changes in forest C and N cycling continues 

to be critically important, especially considering predicted scenarios of climate change. Overall, 

my dissertation provides support and insights into how interactions between above- and 

belowground processes are important drivers of ecosystem functioning.
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Chapter 1 Introduction 

The world consists of a complex web of trophic interactions, many of which influence 

ecosystem functioning and energy cycling (Wardle 2002). Numerous interactions between 

organisms within and across trophic levels, including primary producers, herbivores, and top 

predators, influence plant chemistry and ecosystem nutrient cycling through a variety of 

pathways (Hunter 2001, Sterner and Elser 2002, Wardle 2002, Hunter et al. 2012). This 

dissertation focuses on interactions between herbivores and primary producers, specifically the 

role of white-tailed deer (Odocoileus virginianus) in temperate forest plant community 

composition, plant chemistry, as well as nutrient cycling. Herbivores drive important changes in 

various ecosystems around the world in different ways, which I discuss below through a series of 

case study examples.  

Alteration of successional pathways: A case study in salt marshes 

Succession can be highly impacted by herbivory in a wide range of ecosystems including 

plankton turnover in lakes and the successional trajectories of boreal forests (Leibold 1989, 

Hidding et al. 2013). Succession is largely driven by a trade-off between competitive and 

dispersal ability, with fast growing and high dispersing plants colonizing disturbed habitat first, 

but over time being replaced by slow growing more competitive species (Tilman 1988). 

Consumers can alter rates of species replacement, and thereby participate in long-term ecosystem 

dynamics and autotroph chemistry on a large scale. In particular, herbivore disturbance can 

increase species diversity by suppressing dominant, highly competitive species (Pierce et al. 

2007).  
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For example, in Argentinian salt marshes, crabs and wild guinea pigs selectively consume 

cordgrass, Spartina densiflora, which is a secondary successional species, and in the absence of 

herbivory is a dominant competitor. This selective consumption of cordgrass allows early 

successional species like pickleweed, Sacrocornia perennis, and alkaliweed, Cressa truxillensis, 

to successfully colonize and dominate disturbed patches (Daleo et al. 2014). Consequently, the 

presence of herbivores slows down the rate of succession. This is an example of how selective 

browsing pressure on late-successional species, slows species replacement and the ecosystem 

remains in a state of early succession. 

Increased biomass and productivity with herbivory: A case study in the Serengeti 

Herbivory increases productivity in systems in which plants respond to the stressor by 

compensatory growth to enable fast recovery. In turn, increased productivity can result in rapid 

decomposition of litter, and increased mineralization rates due to nitrogen (N) rich waste 

products of herbivores (McNaughton 1976). Herbivory can thus increase nutrient availability, 

stimulating aboveground productivity and resulting in a positive feedback that increases 

production.  

The Serengeti grassland ecosystem, located in Tanzania and Kenya, is a key example of 

how herbivores can increase productivity (McNaughton 1976, Mcnaughton 1985). The Serengeti 

grasslands are heavily populated by large herds of ungulate browsers and grazers such as zebra, 

wildebeest, gazelle, buffalo, and many others. These large herds of migratory grazers have the 

capacity to consume vast swaths of grassland areas, substantially impacting grassland 

productivity. The wildebeest population was estimated to be around 1.4 million in 1974, 

contributing roughly 50-70% to the total migratory population. When passing through grassland 

areas, which takes the herds about 4 days, green biomass was reduced up to 85% and plant 

height by 56%. After the herd moved through, the areas that were grazed sustained net primary 
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productivity of 2.6 g m-2, whereas areas protected from grazing showed a biomass decline of 4.9 

g m-2. This increase in productivity in grazed areas demonstrates that the wildebeest transformed 

a previously senescent plant community into a productive one and provides a clear example of 

how ungulate grazing can change ecosystem dynamics. 

Decreased productivity with herbivory: A case study in Minnesota grasslands 

Alternatively, herbivores can decrease productivity and rates of nutrient cycling via 

selective browsing on nutrient rich species. When herbivores selectively browse on nutrient rich 

species, more browse-resistant and nutrient poor plant species can increase in dominance. Leaf 

litter from these resistant species will decompose more slowly than leaf litter from nutrient rich 

species, thereby reducing nutrient availability in soils (Hobbie 1992, Hobbs 1996, Ritchie et al. 

1998). Reduced nutrient availability favors competition by more nutrient-poor species with low 

nutrient requirements, leading to a positive feedback loop that reduces productivity and nutrient 

availability. For example, exclusion of herbivores (deer, Homoptera and Orthoptera spp.) greatly 

increased plant cover and biomass in a nitrogen-limited savanna in Minnesota (Ritchie et al. 

1998). Decreased belowground biomass was observed associated with increased aboveground 

biomass. Aboveground biomass, leaf litter, and belowground tissue also showed increases in N 

concentration after exclosure from herbivory. Increases in biomass and nutrient concentration 

resulted in higher soil nitrate availability and total available N; total soil and plant N were not 

altered. These results suggest that herbivory can decrease nutrient cycling rates, by removing 

plant species with high N content. Furthermore, the effects may be particularly strong when 

browsers forage selectively on a few important species that control resource abundance, such as 

nitrogen-fixing legumes (Ritchie and Tilman 1995).  
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Conflicting hypotheses 

These two conflicting hypotheses (Figure 1.1) indicate that the effect herbivory has on 

nutrient cycling and productivity can vary, and might depend on the resource by which plants are 

most limited (Ritchie and Tilman 1995). If the dominant plant community is primarily N limited, 

and thus has lower N concentration in tissues, herbivores are likely to slow down nutrient cycling 

(Tilman 1988). However, if the plant community is high in N content, and is limited more by 

other factors (e.g. light, water), or resists browsing in a way that does not involve tissue 

chemistry, herbivores might accelerate nutrient cycling (Hobbie 1992). The research described 

above on grasslands and savannas has shown both acceleration and deceleration of nutrient 

cycling by herbivores, yet questions remain on how herbivores impact temperate forest nutrient 

cycling. Although there has been progress in understanding biogeochemical responses to grazing 

in grassland ecosystems (McNaughton et al. 1997), boreal forests (Pastor and Cohen 1997), and 

managed lands (Bardgett et al. 2001), it remains hard to predict the effects herbivores will have 

on nutrient cycling (Sitters and Olde Venterink 2015, Forbes et al. 2019). Studies report mixed 

results, sometimes nitrogen (N) mineralization rates increase (McNaughton et al. 1997), decrease 

(Persson et al. 2005), or are not affected due to browsing (Barthelemy et al. 2015). Most 

conceptual models predict increased nutrient cycling rates under high nutrient availability and 

decreased in nutrient cycling rates under low nutrient availability (Cherif and Loreau 2013). 

High nutrient environments allow for plants to have high nutrient content, and herbivores 

increase nutrient cycling by excreting highly labile N and phosphorous (hereafter, P) products, 

thus stimulating compensatory plant growth. When nutrients are scarce, some plant species 

increase their chemical defenses instead of tolerating browsing with compensatory growth. 

Damaged plants often become tougher and higher in polyphenol concentrations in response to 

tissue loss due to herbivory (Hunter and Schultz 1993), which consequently decreases 
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decomposition and nutrient cycling (Findlay et al. 1996). To make better predictions about how 

herbivores affect nutrient cycling, more long-term experimental studies on the relative strength 

of the different mechanisms driving these effects are needed.  

Herbivore effects on nitrogen dynamics 

Nutrient cycling studies focus mainly on N, because it is one of the most limiting factors 

of productivity in boreal, temperate, and several types of tropical forests (Barnes et al. 1998). 

Spatial patterns in N availability often determine plant biomass, competitive relationships, and 

biodiversity (Gilliam 2007). Ungulate herbivores can influence nutrient cycling directly and 

indirectly; therefore, it is important to determine the magnitudes of direct and indirect effects in 

order to better understand community structure (Abrams 1995). Ungulate herbivores can directly 

increase nutrient cycling rates in soils through excretion of fecal pellets on the forest floor 

(Murray et al. 2013). Alternatively, ungulates can indirectly effect plant communities by 

selectively browsing on palatable species. As consumption reduces relative abundance of 

palatable plants, which are usually high in nutrients and easily decomposed, less favorable 

species increase in relative abundance and decompose more slowly, and nutrient cycling rates 

can decrease (Pastor et al. 1993, Pastor and Cohen 1997). Results of the effects of large 

ungulates (i.e. moose and deer) on nutrient cycling are mixed; sometimes N cycling increases 

(McNaughton et al. 1997, Frank and Groffman 1998, Stark et al. 2000), and sometimes N 

cycling decreases (Pastor et al. 1993, Ritchie et al. 1998, Côté et al. 2004) with ungulate 

herbivory. The relative magnitude of direct and indirect effects at play can vary and cause 

variation in browsing effects on nutrient cycling.  
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Temperate forests 

Temperate forests represent 25% of forests worldwide, and regulate important ecosystem 

functions including energy cycling, hydrologic cycling, and atmospheric composition (Barnes et 

al. 1998). Globally, forests store an estimated 45% of terrestrial C in biomass and soils, and are 

becoming increaslingly important in a changing global climate (Landsberg and Waring 2014). 

Temperate forests occur in both the Northern and Southern hemisphere, and can be classified 

into three main biogeographic regions based on vegetation characteristics: Evergreen coniferous 

temperate fotests, evergeen deciduous temperate forests, and mixed temperate forests (Currie and 

Bergen 2008, Landsberg and Waring 2014). 

 Northern US forests are good systems to explore herbivore effects on ecosystem 

processes because deer densities have been increasing and range from almost 0 deer per km2 to 

more than 20 deer per km2 across this region (Mudrak et al. 2009). Moreover, most forests within 

the Northern US region are mixed temperate forests and thus comparable to one another (Barnes 

et al. 1998).  

Soil components, processes, and feedbacks 

Soil is central to forest functioning, providing physical support, recycling of nutrients, 

and water retention. Soils are diverse and rich with organisms including macrofauna (millipedes, 

worms, centipedes), mesofauna (arthropods), microbiota (protists, rotifers, nematodes), 

prokaryotes (bacteria, archaea), and eukaryotic microorganisms (fungi) (Thomas and Packham 

2007). The energy and nutrient inputs to these organisms and the food webs they populate comes 

from litter produced by aboveground vegetation. Carbon and nutrients in litterfall are recycled 

through decomposition and mineralization. Nitrogen (N) is an important nutrient to make 

proteins in any living organism, including soil organisms and plants. Plant growth (and thus C 

sequestration) is limited by N, and relies on N mineralization by soil microbes (Vitousek et al. 
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2002). Soil nutrients generally occur in two forms: inorganic compounds dissolved in soil 

solution including nitrate and ammonium (NO3
-, NH4

+) or attached to minerals and organic 

compounds of living organisms and dead organic matter (Figure 1.2). Microbial communities, 

bacteria and fungi are always transforming nutrients between these two forms, mediated by 

environmental conditions (Balser and Firestone 2005, Högberg et al. 2013). When 

microorganisms consume inorganic compounds to construct cells, enzymes and other organic 

compounds needed to grow, they are said to be “immobilizing” nutrients. When organisms 

excrete inorganic waste compounds they are said to be “mineralizing” nutrients. These excreted 

inorganic waste compounds are essential elements for plant growth and are assimilated by plant 

roots to sustain growth. As a result, any changes in these biological processes will have 

consequences throughout trophic levels below- and above-ground (Wardle 2002).  

Overall, soil is an essential part of terrestrial ecosystems, including forests. To fully 

understand herbivore effects on ecosystem functioning, one must consider effects on soils and 

the feedbacks between above- and belowground organisms and processes. 

Deer impacts on temperate forests: what do we know? 

Populations of large ungulates such as deer, moose, and elk, have increased to various 

degrees in the Midwest and Northeastern regions of the United States since the 19th century. 

Historically, deer abundance was estimated to be 2-4 deer per km2, but since the 20th century, 

deer are the most abundant large mammal in the region with densities reaching >20 deer per km2 

(Alverson et al. 1988). The increase in deer abundance is partly due to milder winters, favorable 

habitat conditions, and winter provisioning. Deer habitat has also greatly improved because of 

game management policies focused on sustaining deer populations across much of the US 

(deCalesta and Stout 1997, Waller and Alverson 1997, Waller et al. 2009). Increasing deer 

populations have been posing an increasing threat to their natural environments by browsing 
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heavily on the vegetation (Hobbs 1996). These large deer densities are capable of radically 

changing patterns of tree regeneration and forest floor plant community structure (Waller et al. 

2009). Management has focused on monitoring the effects of deer browsing on understory plant 

species diversity and abundance (Frerker et al. 2013) and on tree regeneration (White 2012).  

Although research on this topic has been ongoing for some decades now, questions regarding 

effects of deer herbivory on ecosystem processes remain.  

White-tailed deer 

Range 

The white-tailed deer (Odocoileus virginianus) is native to North, Central-, and South 

America, and can be found in 47 states in the US, as well as in Canada and Mexico.  Its range 

spans from southern Yukon and the Northwest Territories, throughout the US, down to Central 

America (“NatureServe Explorer: An Online Encyclopedia of Life.” 2013). The species also has 

been introduced in Serbia, Finland, New Zealand, and the Caribbean Islands (Vercauteren and 

Hygnstrom 2011). In the US, they are most abundant in the Great Lakes region and the 

Northeast, where mostly hardwood and coniferous temperate forests are common. During winter, 

conifer forests mixed with hardwood forests close to lakes and rivers are preferred habitat for 

white-tailed deer (Vercauteren and Hygnstrom 2011).  

Physical description 

The largest white-tailed deer individuals are found in the Northeast, where adult bucks 

weigh about 100 kg. Smaller subspecies are found near the equator, and at low elevations, where 

adult bucks weigh about 36 kg (Smith 1991). An average sized doe weighs about 60-75% of 

what adult bucks weigh (Feldhamer et al. 2003). Body size varies among regions, and is 

dependent on soil fertility (Turner 2004). Deer have particularly high body mass in areas with 
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intense agriculture, such as in the Midwest, where deer have access to and forage on fertilized 

lands containing high nutrient crops.  

Reproduction 

In northern regions white-tailed deer breed in November, and the breeding season lasts 

about a month. Breeding seasons in more southern regions might not start until January, and near 

the equator deer breed year round (Turner 2004). Pregnancy lasts between 187 and 213 days, and 

fawning periods in the North are restricted to only a few months in the summer. Does typically 

move to specific fawning areas during pregnancy and remain there for 8 to 10 weeks (Feldhamer 

et al. 2003). Most white-tailed deer reach sexual maturity after one year and the average litter 

size is 2, but adults can have as many as 5 fawns per litter. Female reproductive success and 

fawn survival is highly dependent on nutritional status, with low nutrition resulting in lower 

fawn birth mass, longer pregnancies, and increased fawn mortality (Verme 1965, 1969).  

Diet 

White-tailed deer are browsing herbivores that consume a wide variety of plant species 

and plant parts, including stems, leaves, flowers, and seeds (Fulbright and Ortega-Santos 2013). 

Although deer may sample a large diversity of plant species, most of their diet consists of only a 

few key plant species. While diverse habitats throughout the white-tailed deer range may harbor 

many different plant species, deer diets typically consist of only 10% of the diversity in their 

habitat (Chamrad and Box 1968). This indicates that deer may selectively forage on the plant 

community. Average diets consist of 46% browse (green twigs and leaves), 24% forbs (net-

veined, broad-leaved plants with non-woody stems), 11% mast , 8% grass, 4% agricultural crops 

and some other items, but diets vary substantially among regions and seasons (Turner 2004). 
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Implications of deer browsing 

It is clear that large populations of native ungulates are threatening the diversity and 

integrity of the forests that sustain them (Rooney 2001, Côté et al. 2004, Waller et al. 2009). 

Management has focused on sustaining large deer populations because of their social and 

economic value mainly driven by the hunting industry (deCalesta and Stout 1997, Waller and 

Alverson 1997, Waller et al. 2009). In addition to management activities, the absence of large 

predators has contributed to the growth of deer populations (Alverson et al. 1988, Côté et al. 

2004). As a result, large deer populations exist throughout the northeastern US, threatening the 

persistence of palatable plant species, reducing understory plant diversity, and slowing or 

diminishing regeneration of late successional tree species. It is therefore important to study 

interactions between deer and their environments and their effects on the ecosystem function 

(Waller et al. 2009).  

White-tailed deer can influence plant species composition and diversity by selectively 

consuming palatable species and leaving the unpalatable species to increase in dominance in 

plant communities (Côté et al. 2004). This process changes plant community dynamics, which 

consequently alters patterns of forest succession (Waller and Alverson 1997; Rooney 2001; 

Russell et al. 2001; Rooney and Waller 2003; Côté et al. 2004) and could have downstream 

effects on ecosystem processes. However, it remains unclear specifically how deer browsing 

impacts nutrient cycles in temperate forests. A recent decomposition experiment on a forested 

island in Canada shows litter decomposition is slower with deer present (Sitka black-tailed deer, 

Odocoileus hemionus sitkensis), due to more recalcitrant litter (Chollet et al. 2019). Other studies 

have found contradicting effects of deer browsing on nutrient cycles; with slower decomposition 

in browsed Birch (Betula pubescens) in the Scottish Highlands (Harrison and Bardgett 2003), 

and increased decomposition rates in grazed tundra (Olofsson and Oksanen 2002). Clearly, 
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direction of deer browsing effects (acceleration vs. deceleration) on nutrient cycling rates varies. 

But this variation thus far, has not been addressed in the deer browsing literature. In this 

dissertation I address the acceleration vs. deceleration hypotheses by investigating the 

contrasting effects of deer browsing on nutrient cycling in temperate forests and exploring 

potential underlying mechanisms.  

Deer browsing in temperate forests: Dissertation outline 

Deer interact with their environment in many ways, and research thus far has found 

inconsistent effects on soil biogeochemical processes as well as on plant community structure. 

Therefore, the effects of deer browsing on soils are difficult to predict, which is reflected in 

inconsistencies within and across studies. My goal for this dissertation is to explain the variation 

in browsing effects on ecosystem functioning and to explore underlying mechanisms. This 

dissertation includes three research chapters, each exploring the effects of deer browsing on 

different aspects of temperate forest ecosystems across an environmental gradient of soil fertility. 

By incorporating an environmental gradient, I aim to address some of the inconsistent, and 

sometimes confusing, variability in studies of deer impacts on forest ecosystems.  

In Chapter 2, “Deer browsing effects on temperate forest soil nitrogen cycling shift 

from positive to negative across fertility gradients”, I focus on the belowground 

biogeochemical cycles. My objective was to determine whether and how deer browsing 

influences soil C and N cycling rates in temperate forests, and whether effects of browsing 

change across fertility gradients. I predicted that deer browsing impacts on temperate forest soils 

are correlated with soil nutrient availability because soil fertility influences plant responses after 

browsing. This Chapter exists in published form (Popma and Nadelhoffer 2020). 

Chapter 3, “Deer browsing decreases understory plant abundance but has no 

detectable effects on plant community composition”, addresses the visible changes 
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aboveground and shows how deer browsing alters plant community structure and plant 

community composition I predicted that under high soil nutrient availability, deer browsing 

would have significant effects on structural components of plant communities and that plant 

community composition would remain unaffected. My reasoning was that when resource 

availability is high, plants are more likely to have been selected to tolerate browsing damage via 

compensatory growth responses, and communities might not change as a result. In contrast, I 

predicted that under low soil nutrient availability deer browsing would significantly shift plant 

community composition towards better defended plant communities, because in resource-poor 

environments plants are more likely to have been selected to resist herbivory and cannot grow 

fast enough to outgrow deer browsing; selective browsing would shift community composition to 

species with better plant defenses.   

Chapter 4, “Deer browsing effects on plant chemical and nutrient concentrations” 

investigates plant chemical traits in browsed and non-browsed plant communities. In this chapter 

I explore two mechanisms by which plant community chemistry might change: 1) intraspecific 

variation in plant species: how browsing-induced chemical defenses alter plant leaf chemistry, 

and 2) interspecific variation among plant species: how selective browsing alters the quality and 

abundance of leaf litter in the plant community.  I predicted that plant defense compounds would 

increase with deer browsing in low nutrient environments and that plant chemical communities 

would change as a result. In contrast, I predicted that plant defense compounds would remain 

similar under high nutrient environments. The underlying premise here is that environments with 

low resource availability favor plant species with higher levels of defense compounds that lack 

the ability to allocate resources to compensatory growth in response to browsing. Also, I 

predicted that plant leaf N will increase with deer browsing under high nutrient environments, 

but will decrease under low nutrient environments, because resource rich environments select for 
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fast-growing plants with low levels of costly defenses that outcompete plants producing costly 

defense compounds that diminish potentials for compensatory growth. 

Finally, Chapter 5, “Conclusion” briefly summarizes and synthesizes the important 

findings from each research chapter. In this chapter I highlight the insights and support that my 

work provides into how interactions between above- and belowground processes are important 

drivers of ecosystem functioning. I also discuss further questions and considerations.  
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Figures 

 

 

Figure 1.1 Herbivores can have accelerating and decelerating effects on ecosystem nutrient 

cycling. Accelerating effects are often associated with high nutrient environments, and 

decelerating effects in low nutrient environments.  

 

 

 

Figure 1.2 Microorganisms consume inorganic compounds to construct cells, enzymes and other 

organic compounds needed to grow, they are said to be “immobilizing” nutrients. When 

organisms excrete inorganic waste compounds they are said to be “mineralizing” nutrients. 

These excreted inorganic waste compounds are essential elements for plant growth and are 

assimilated by plant roots to sustain growth 
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Abstract 

Herbivores impact soil biogeochemical processes, often increasing nutrient cycling rates 

under high nutrient availability and decreasing nutrient cycling rates under low nutrient 

availability. These patterns are far from universal, and interactions between habitat fertility and 

herbivore effects are under continuing investigation. By sampling inside and outside a network 

of deer exclosures, we determined deer browsing effects on temperate forest soil N and C cycling 

along a gradient of soil and litter C:N ratios across our network of sites. Deer browsing increased 

net N mineralization rates in high nutrient environments and decreased N mineralization rates in 

low nutrient environments, whereas browsing decreased CO2 respiration rates in high nutrient 

environments and increased CO2 respiration rates in low nutrient environments. Differences in 

deer browsing effects on soil processes could be explained by plant responses to herbivory across 

gradients of resource availability. To our knowledge, our study is one of the first to show that 

deer browsing can have significant effects on net N mineralization and C respiration in temperate 

forest soils and that the direction and magnitude of deer browsing effects on soil N and C cycling 

vary across fertility gradients.  

https://doi.org/10.1139/cjfr-2020-0036
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Introduction 

Herbivores are known to have strong effects on ecosystem processes such as primary 

production (Milchunas and Lauenroth 1993), fire regimes (Van Langevelde et al. 2003, Holdo et 

al. 2009), plant community composition (Gornall et al. 2009, Frerker et al. 2014), and ecosystem 

type shifts (Zimov et al. 1995). Although there has been progress in understanding 

biogeochemical responses to grazing in grassland ecosystems (McNaughton et al. 1997), boreal 

forests (Pastor and Cohen 1997), and managed lands (Bardgett et al. 2001), it remains difficult to 

predict how herbivores influence soil biogeochemical processes. Conceptual models often 

predict increased nutrient cycling rates under high nutrient availability and decreased nutrient 

cycling rates under low nutrient availability (Pastor et al. 2006, Cherif and Loreau 2013). 

Nutrient rich environments favor plants with high nutrient contents, and herbivores increase 

nutrient cycling by excreting highly labile N and P products, thus stimulating compensatory plant 

growth in grazed or browsed plants. For example, herbivory in nutrient rich grasslands can result 

in enhanced nutrient concentrations in leaves  (Holland and Detling 1990, Hamilton and Frank 

2001) and similar results have been found in boreal forest ecosystems (Kielland et al. 1997).  In 

contrast, damaged plants can become tougher and increase polyphenol concentrations in 

response to tissue loss due to herbivory (Hunter and Schultz 1993), which consequently 

decreases decomposition and nutrient cycling rates (Findlay et al. 1996).  

These studies highlight the importance of studying effects of herbivores along environmental 

gradients. Studies that address mammalian herbivore effects on soil processes have mostly 

focused on grasslands, while forest ecosystems are less well studied. While grasslands cover a 

substantial area globally, forests are widespread as well and are strongly linked to global carbon, 

nutrient, water, and energy cycles. Studies show mammalian herbivores drive changes in forest 

plant communities and successional pathways, but a research gap remains in predicting their 
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effects on soil biogeochemical processes.  

In order to make better general predictions about mammalian herbivore effects on soil 

biological processes, we investigated C and N dynamics in temperate forest ecosystems in the 

U.S. Midwest. Forested regions of the midwestern and northeastern US have experienced 

increases in white-tailed deer (Odocoileus virginianus an ungulate browser, hereafter referred to 

as “deer”) populations since the 1970s, with densities of up to 20 deer per km2 in some areas 

(Alverson et al. 1988, DNR 2010). Deer browsing has well known effects on forest vegetation, 

such as altering plant community composition and forest successional pathways (Waller and 

Alverson 1997, Rooney 2001, Russell et al. 2001, Rooney and Waller 2003, Côté et al. 2004, 

Turner 2004, Frerker et al. 2014). It is not known, however, how and to what extent deer 

influence forest soil carbon and nutrient cycling. Research thus far indicates three general 

mechanisms through which ungulates, including deer, can affect soil nutrient cycling. The first is 

by changing the quantity of plant inputs to soils. Ungulates affect net primary production, and 

therefore litter production (Pastor et al. 1993, Harrison and Bardgett 2003). The second is by 

shifting plant community composition; thereby affecting the chemical quality of litter inputs to 

soil. Selective and intensive herbivory in plant communities can favor less palatable plant tissues 

and produce more recalcitrant litter which decomposes slowly (Grime et al. 1996, Cornelissen et 

al. 2004), thereby slowing nutrient cycles and soil respiration. The third involves introducing 

excretion products (feces & urine) to soils that can be high in labile N and other nutrients and 

that decompose rapidly (Bump et al. 2009, Murray et al. 2013). However, effects of excretion 

products are not always positive, and can vary across forage quality gradients due to shifts in 

herbivore excretion pathways (Pastor et al. 2006).  

Few studies have identified the effects of mammalian herbivory on forest soil nutrient 

cycling and most predictions are based on theoretical conceptual models (Seagle et al. 1992, 
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Hobbs 1996, Côté et al. 2004, Harrison and Bardgett 2004, Abbas et al. 2012, Murray et al. 

2013). Although direct effects of deer excretion and cadavers are known to alter biogeochemistry 

on smaller spatial scales (Bump et al. 2009), it is unknown to what extent indirect effects such as 

selective browsing alter nutrient cycling rates at larger spatial scales. In this paper we present 

results of our study of deer browsing effects on N and C cycling rates in north temperate 

deciduous forests located in southeastern Michigan, USA. Our objective was to determine 

whether and how deer browsing influences soil C and N cycling rates in temperate forests, and 

whether effects of browsing change across fertility gradients. We predicted that deer browsing 

impacts on temperate forest soils are influenced by soil nutrient availability because soil fertility 

influences plant responses after browsing.  

Methods 

Study sites 

We selected nine study sites in Oakland, Macomb, and Wayne counties in the greater 

Detroit Metro area of Michigan, USA. Temperate forests in the US Midwest and Northeast such 

as those we selected have experienced increases in deer populations since the 1970s, with 

densities reaching up to 20 deer per km2 in some areas (Alverson et al. 1988, DNR 2010). The 

study areas lie within three Huron Clinton Metroparks: Kensington (42°32'28.1"N 

83°38'16.2"W), Stony Creek (42°42'36.2"N 83°04'16.8"W), and Oakwoods (42°06'57.8"N 

83°21'28.1"W) (Figure 2.1). We sampled within and outside of nine 10m x 10m experimental 

deer exclosures constructed in 1999, three in each of the three Metroparks. These 20-yr-old 

exclosures are in dry-mesic and mesic forest types. Dry-mesic forests are oak or oak-hickory 

forest types in southern Lower Michigan and typically grow on sandy loam or loamy soils. Mesic 

forests in southern Michigan are typically dominated by American beech and sugar maple, 
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growing on loamy upland soils. The exclosures are 2.5m tall and exclude ungulates (deer) while 

allowing small herbivores to move in and out. Mean annual temperature in southeastern 

Michigan is 9°C, mean annual rainfall is 81cm, mean annual snowfall is 130cm (U.S. Climate 

Data), and mean annual litterfall is 3422 kg dry mass ha-1 y-1 (See Table 2.1). The main 

ungulates are white-tailed deer (Odocoileus virginianus), with densities of 8, 8, and 16 deer per 

square kilometer at the Stony Creek, Oakwoods and Kensington parks, respectively. Deer 

populations are estimated and actively managed by Huron Clinton Metroparks (Ryan Colliton, 

personal communication 2018). Helicopter fly-over estimates for Oakwoods were more difficult 

to obtain due to proximity to the Detroit Metropolitan Airport airspace and could potentially be 

over- or under-estimating deer population densities. 

Soil sampling 

We established a 10 x 10m plot outside each exclosure with matching slope and aspect 

and collected one composite soil sample inside and outside of each deer exclosure (n=9) in June 

2017. Each composite sample consisted of five 2.5cm diameter soil cores sampled to a depth of 

10cm. Cores were collected randomly from within each fenced and nearby unfenced plot. 

Composite soil samples were stored in a cooler in the field until refrigerated upon return to our 

laboratory at the University of Michigan in Ann Arbor. Soil samples were sieved using a 2-mm 

sieve and roots were removed manually. Composite soil samples were used for determining 

moisture, pH, %C, %N, C:N, and rates of N mineralization, nitrification, and CO2 respiration. 

Soil pH was determined using an Accumet® pH meter, on 15g fresh, sieved soil duplicate 

subsamples diluted to a 1:2 ratio of soil to deionized water. C:N, %C, %N soil were determined 

using a CN Analyzer (University of Michigan Biological Station Analytical Lab, Pellston, MI, 

USA). 
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Soil processes 

Fresh soils were stored at 4°C and prepared within 5 days of collection for an 8-week 

laboratory incubation experiment to determine the effects of large herbivores on rates of net N 

mineralization, net nitrification, and microbial respiration. Samples were brought to field 

capacity prior to laboratory incubations, and we dried a subsample of each composite for 48h at 

80°C to determine moisture content. We incubated 5 composite soil sample replicates (10g fresh 

soil each) at 20°C in 500 ml Thermo Scientific® clear glass jars equipped with septa for 

headspace gas sampling(Robertson et al. 1999). Microbial respiration was estimated by sampling 

CO2 accumulation every other week in the headspace during an 8wk incubation. CO2 

concentrations were measured using a Thermo Fisher Trace GC 2000 with HS2000 autosampler. 

After each CO2 sampling event, incubation jars were aerated and soils within each jar were 

brought back up to field capacity. CO2 respiration rate (µmol C m-2 sec-1) calculations were based 

on the sum of CO2 respired over 8 weeks. Net N mineralization rate (g N g soil-1 d-1) and % 

nitrification were calculated by extracting initial and final NH4
+ and NO3

- from soil using a 1N 

KCl solution (Robertson et al. 1999). We measured NH4
+ and NO3

- using a Smartchem Westco 

Scientific Instruments Inc. analyzer, then used solution volumes, ion concentrations, and soil dry 

mass equivalents to calculate masses of NH4
+-N and NO3

--N in each sample prior to and 

following incubation. C and N cycling rates were scaled to a per area basis using the surface area 

of our soil cores and bulk density data. All rates are expressed per m-2, from the soil surface to 10 

cm depth. 

Leaf litter 

Leaf litter fall was collected inside each exclosure (n=9) between October and December 

2018. Collection baskets were 66cm x 46cm, modified from commercial laundry baskets by 

drilling drainage holes in the bottoms. We placed five leaf litter baskets inside each exclosure in 
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October and collected leaf litter in December. Leaf litter was dried for 48h at 80°C to estimate 

biomass productivity. Leaf litter input C:N was analyzed for each individual species. Leaves 

were ground for 2 minutes to a fine powder for C:N, %C, and %N analyses. Site C:N ratios were 

calculated by first multiplying the mass of each represented species by the %C and %N in the 

litter of that species, resulting in grams of C and N in each species’ litter for that site. Site level 

C:N ratios were then calculated by adding up mass of C and N of all the species at each site, and 

dividing total grams C by total grams N.  

Data analysis 

Data analyses were conducted using R Studio (version 3.5.1) and significance was 

accepted at α=0.05. We used linear mixed effects model analyses from the lme4 R-package to 

test whether deer browsing, our treatment variable, altered rates of N mineralization (n=80) and 

CO2 respiration (n=80). We also included soil and litter C:N ratios (measures of fertility) in our 

models as predictors because fertility strongly affects nitrogen and carbon dynamics and varied 

among our parks and sites. We considered two-way interactions between deer browsing 

treatment and fertility. Park (n=3) and site (n=8) were used as random nested effects because we 

expected rates to be influenced by geographic location. We excluded data from the Lake Loop 

site in Stony Creek because the leaf litter C:N average was more than 2 standard deviations 

outside the distribution of other plots, likely due to the presence of large amounts of Tilia 

americana (American basswood) leaf litter at this site. Because there was no correlation between 

C:N ratios in soil and litter we chose to compare their individual effects on the magnitude and 

direction of deer browsing effects on net rates of N mineralization and CO2 respiration in two 

separate models. N mineralization and CO2 respiration rates were calculated based on 

incubations of soil samples collected from outside and inside of deer exclosures at each site. 
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Results 

The nine exclosure locations represented gradients in litter and soil C:N ratios (Table 

2.1).   Litter C:N ratios ranged from 59.2 at the Spring Hill (SH) plot to 62.4 at the West Branch 

(WB) plot. Soil C:N ratios ranged from 11.5 to 18.5, at Wild Wing (WW) and Rail Road (RR) 

respectively (Table 2.1). Soil C:N ratios were not correlated with litter C:N ratios 

(Supplementary figure 2.1) across sites, therefore soil C:N and litter C:N ratios at our study sites 

were treated as independent factors. Litterfall measurements ranged from 273 g m-2 yr-1 at WW 

to 392 g m-2 yr-1 at Big Tree (BT) (Table 2.1). Rough deer density estimates showed that our 

study sites represented a range from medium (8 deer per km2) to high (16 deer per km2) 

population densities (Table 2.1). Deer densities are generally considered high at levels > 10-15, 

medium at 7-12, low at <7 deer per km2 (Russell et al. 2001).  

N mineralization and CO2 respiration rates across fertility gradients 

Overall net N mineralization rates were positively correlated with both litter and soil C:N 

(Supplementary figures. 2.2, 2.3), and this correlation was true for both browsed and non-

browsed plots as well (Supplementary figures 2.5, 2.6, 2.7). Although we did not detect a 

significant trend between N mineralization rates in browsed plots and litter C:N ratios 

(Supplementary figure 2.4). Overall CO2 respiration rates were not significantly correlated with 

either litter or soil C:N ratios (Supplementary figure 2.8, 2.9), and no significant trends were 

detected when browsed and non-browsed plots were analyzed separately either. (Supplementary 

figures 2.10, 2.11, 2.12, 2.13). N mineralization rates and CO2 respiration rates both showed 

significant grouping based on exclosure location (site) and some grouping was detected based on 

park location (Tables 2,3,4,5). 
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Browsing effects on N mineralization and CO2 respiration rates across a fertility gradient 

Rates of N mineralization and CO2 respiration differed among sites, and the effect of 

deer browsing varied from positive, to neutral, to negative (Figures 2.2, 2.3). As predicted, 

variation in deer browsing effects on N mineralization and CO2 respiration was significantly 

correlated with fertility gradients, however we found no effects on nitrification. Mixed effects 

models show that soil and litter C:N ratios influence the strength and direction of deer browsing 

effects on N mineralization (p<0.0001, Tables 2,3), and litter C:N ratios influence the strength 

and direction of deer browsing effects on CO2 respiration (p<0.01, Table 2.5).  

Net N mineralization rates in incubated soils from non-browsed plots ranged from 0.15 to 

3.33 g N g soil -1 d-1, at BT and WB respectively (Table 2.1) and deer browsing effects on net N 

mineralization differed across soil and litter C:N ratios (Figure 2.4 a,b). Browsing decreased net 

N mineralization rates at sites with high soil and litter C:N ratios and increased rates at sites with 

low soil and litter C:N ratios (Figure 2.4 a,b).  

Soil CO2 respiration in incubations from non-browsed plots ranged from 1.51 to 5.00 

µmol C m-2 sec-1 (Table 2.1) and the effects of deer browsing on CO2 respiration differed 

significantly across litter C:N ratios, but not across soil C:N ratios (Tables 4,5). The direction of 

deer browsing effect on CO2 respiration versus litter C:N was opposite of the effects of browsing 

on N mineralization. Deer decreased CO2 respiration at sites with low litter C:N ratio, and 

increased CO2 respiration at sites with high litter C:N ratios (Figure 2.4). 

Model R2 values were much higher when including the explanatory power of random effects 

(conditional R2) compared to model R2 values including only the explanatory power of fixed 

effects (marginal R2), with values ranging between 0.68-0.95 and 0.02-0.23 respectively (Tables 

2,3,4,5). Our models greatly improved when including nested random effects of park and site. 
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Discussion 

Our results show that deer browsing effects on soil N mineralization switch from positive 

to negative, and that effects on soil respiration switch from negative to positive across gradients 

of increasing litter and soil C:N ratios. Results are consistent with the acceleration vs. 

deceleration framework, in which resource availability determines the direction of indirect 

herbivore effects on ecosystem processes (Côté et al. 2004, Schmitz et al. 2015). Deer browsing 

research in temperate forests has historically focused on changes in plant communities and forest 

succession. To our knowledge, our study is one of the first to show that deer browsing effects on 

soil nutrient cycling in temperate forests are significant and variable across habitat fertility 

gradients. 

Deer browsing increased N mineralization in high nutrient conditions and decreased N 

mineralization in low nutrient conditions in our forest sites (Figure 2.4 a,b). This shift in 

browsing effects across fertility gradients could be explained by multiple, not mutually 

exclusive, mechanisms. Firstly, shifts in the chemical landscape of plant communities due to 

browsing can lead to changes in soil biogeochemical cycling. When resource availability is low, 

plants are likely to invest in becoming more resistant when browsed on, resulting in tougher 

leaves that have higher defense and more recalcitrant secondary compound concentrations in the 

understory (Bardgett and Wardle 2003). This defense against herbivory also likely confers 

resistance against microbial breakdown, thereby down-regulating soil nutrient cycling (Findlay 

et al. 1996). The opposite effects are found in high nutrient environments, where plants can 

tolerate browsing by investing in compensatory growth, thereby stimulating microbial 

community N turnover with inputs of high quality litter (Bardgett and Wardle 2003).  
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Secondly, the shift in browsing effects could be explained by a shift in plant communities 

towards species that are inherently better at deterring herbivores (in low nutrient systems) or 

tolerating herbivores (in high nutrient systems) (Ritchie et al. 1998, Bardgett and Wardle 2003, 

Wardle David A. et al. 2004).  

Finally, browser excretion decomposability can shift across gradients of foliar nutrient 

quality (Pastor et al. 2006). Using conceptual models, Pastor et al. showed that when browsers 

are starved for N due to low %N in diet, N retention is high, and excretory products mostly 

consist of recalcitrant fecal material. Whereas when diet %N is high, browsers excrete N-rich 

urine that is readily available to plants. Their model suggests this shift in excretory pathway 

happens around 1.5% N in forage. When forage is higher than 1.5% N, N rich urea can promote 

microbial activity in soil. When forage is lower than 1.5% N browser excretion is N- poor and is 

slow to mineralize and become available for plant uptake. Although we did not directly measure 

%N of foliage, our observed tipping point in deer effects on soil biogeochemical cycling is at 

log10 C:N 1.783 (Figure 2.4a,c). Assuming C is approximately 50% of dried litter mass, and 50% 

of N is reabsorbed before litter senesces, a log10 C:N 1.783 translates roughly to 1.6%N of green 

leaves, which is close to the modeled 1.5% N. To test these mechanisms, more studies are 

needed that investigate plant community responses, browser excretory pathways, and soil 

nutrient cycling across fertility gradients in temperate forests.  

Effects of deer browsing on soil CO2 respiration were opposite those on net N 

mineralization. Deer browsing decreased CO2 respiration in high nutrient environments and 

increased CO2 respiration in low nutrient environments (Figure 2.4d). The contrasting patterns of 

deer browsing effects on CO2 respiration and net N mineralization rates could be explained by 

microbial community responses to amendments in N inputs. As mentioned before, at high 
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nutrient sites, plants can tolerate browsing by increasing productivity. This increased 

productivity likely leads to more N-rich plant detritus (low C:N) entering the soil decomposition 

cycle, which can reduce microbial C respiration (Frey et al. 2014). Frey et. al. show that chronic 

N additions consistently suppressed C respiration and enzyme activity in N addition plots in a 

temperate forest. Their responses in the microbial community were highest in the organic 

horizon of the hardwood forest soil, which correlates to our study where we sampled organic and 

mineral soils. Furthermore, molecular analyses of the soil communities at the Harvard forest sites 

in Frey et. al.’s study showed that N additions also resulted in a shift in bacterial and fungal 

communities (Turlapati et al. 2013). The opposite seems to be true at low nutrient sites, where N 

is less available. At low nutrient sites plants often respond to browsing by increasing resistance. 

Increased resistance leads to more recalcitrant, N poor plant material (high C:N) entering the soil 

decomposition cycle, increasing microbial CO2 respiration in order to access N.  

Changes in aboveground plant community structure and chemical composition caused by 

deer browsing likely affect the belowground phytochemistry environment as well (Hunter 2008). 

Aboveground herbivory can signal roots to produce chemical defense compounds and can alter 

root nutrient concentration (Seastedt et al. 1988, Baldwin et al. 1994). Plants can reallocate 

newly acquired resources away from areas under attack (Tao and Hunter 2013). This functions 

not only to protect resources from being eaten, but also to reduce nutritional value and 

attractiveness to herbivores (Tao and Hunter 2011). Although we did not directly measure root 

properties, differences in reallocation strategies could influence the direction and strength of deer 

browsing effects on soil N and C cycling. Depending on plant nutrient availability, reallocation 

strategies of plants could possibly shift across fertility gradients. For example, moose (Alces 

americanus) browsing affects belowground processes in Alaskan taiga ecosystems, by 
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significantly decreasing root production (Kielland et al. 1997). Deer are likely to suppress fine 

root biomass production as was demonstrated for moose browsing (Kielland et al. 1997), which 

could consequently affect mycorrhizal fungi associations, nematodes and soil insects (Rooney 

and Waller 2003). Moose and deer are similar in that both are ungulates that feed on forest 

ground vegetation. However, given that deer predominantly browse in temperate forest 

ecosystems and moose in more boreal regions, moose and deer browsing should not be 

generalized. Therefore, future research on the effects of deer browsing on forest ecosystems 

should focus more on belowground processes linked to aboveground alterations due to deer. 

Deer density could also have affected the direction of browsing effects on CO2 respiration and 

net N mineralization rates. Because our deer density population estimates were limited and 

broad, we could not address this factor appropriately with our model. Importantly, however, all 

sites had high deer densities, ranging from 8 to 16 deer km-2, and no sites had low deer densities. 

Additionally, population estimates at the Oakwoods park have a larger margin of error due to 

flying restrictions during helicopter surveys. It would be interesting to study the effects of deer 

population density in more detail, specifically to test whether intermediate levels of deer 

browsing can have positive effects on plant diversity and nutrient cycling, but effects diminish as 

deer densities pass a certain threshold. Consistent with the hypothesis historically known as the 

grazing optimization hypothesis, plant productivity can sometimes increase under moderate 

levels of herbivory  (Owen and Wiegert 1976).  Following the grazing optimization hypothesis, 

herbivory can result in premature leaf abscission, stimulating decomposition and nutrient 

cycling. To fully understand the effects of deer density on the direction and strength of browsing 

effects on N mineralization, studies are needed that include sites with more accurate estimates of 

deer population densities and include sites with low deer density populations.  
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In conclusion, our results provide evidence that deer browsing effects on C and N cycling 

in temperate forests are significant and can shift completely in strength and direction depending 

on site fertility. We also show that deer browsing effects on C cycling are opposite to those on N 

cycling, but both show a shift in direction across fertility gradients. These results highlight the 

importance of studying herbivore effects along environmental gradients. Understanding the 

underlying mechanisms of deer on their environment across gradients is an important future 

challenge.  
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Figures 

 

 

 

Figure 2.1 Map of study sites located in southeastern Michigan. Kensington, Stony Creek, and 

Oakwoods, each have three experimental deer exclosures (n=9) 
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Figure 2.2 Net N mineralization (g N g soil -1 day-1 ) with and without deer browsing at each site. 

Filled circles are rates of net N mineralization outside deer exclosures (browsed), and empty 

circles are inside deer exclosures (non-browsed).   
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Figure 2.3 CO2 respiration (µmol C m-2 sec-1) rates with and without deer browsing at each site. 

Filled circles are rates of net N mineralization outside deer exclosures (browsed), and empty 

circles are inside deer exclosures (non-browsed).   
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Figure 2.4 The effect of deer browsing on (a,b) net N mineralization ( g N g soil -1 day-1, 

browsed minus non-browsed) and (c,d) CO2 respiration (µmol C m-2 sec-1, browsed minus non-

browsed) across a (a,c) litter C:N gradient, (b,d) soil C:N gradient. The dotted line indicates no 

difference between browsed and control. Values above y=0 indicate that rates increased with 

browsing, while values below y=0 indicate that rates decreased. N Mineralization increased with 

deer browsing at sites with low soil and litter C:N, and decreased with deer browsing at sites 

with high soil C:N(a,b). C respiration decreased with deer browsing at sites with low litter C:N 

and increased with deer browsing at sites with high litter C:N (c). 
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Tables 

Table 2.1 Study sites and plots (n=8), with average litterfall (kg ha-1 yr-1), C:N ratio in litter and 

soil, deer population density (deer km-2), N mineralization rates (g N g-1 d-1) in non-browsed 

control plots, and CO2 respiration (µmol C m-2 s-1) rates in non-browsed control plots. Mean rates 

of N mineralization and CO2 respiration are shown with standard error range. We excluded the 

Lake Loop plot in the Stony Creek site from statistical analyses due to exceptionally low leaf 

litter C:N and litterfall values in this plot. 

Site Plot 

Litterfall  

(g m-2 yr-1) 

C:N 

Litter 

C:N 

Soil 

Deer  km-2 

Net N 

mineralization 

non-browsed 

g N g-1 d-1 

CO2 

respiration 

non-browsed 

µmol C m-2 s-1 

Stony Creek Return Trail 

(RT) 

387 ± 

17.88 

61.6 14.9 8.1 3.17 ± 0.11 3.30 ± 0.21 

Stony Creek Lake Loop 

(LL) 

241 ± 

11.27 

34.1 14.5 8.1 2.30 ± 0.17 5.00 ± 0.22 

Stony Creek West Branch 

(WB) 

364 ± 

22.33 

62.4 15.6 8.1 3.33 ± 0.09 3.17 ± 0.38 

Oakwoods Railroad 

(RR) 

310 ± 

19.71 

61.9 18.5 8.7 2.72 ± 0.10 1.69 ± 0.14 

Oakwoods Long Bark 

(LB) 

361 ± 

11.98 

59.5 13.9 8.7 1.57 ± 0.11 1.51 ± 0.04 

Oakwoods Big Tree 

(BT) 

392 ± 

26.78  

59.9 13.5 8.7 0.15 ± 0.07 2.02 ± 0.12 

Kensington Wild Wing 

(WW) 

273 ± 

27.90 

62.4 11.5 16.0 0.60 ± 0.13 3.40 ± 0.16 

Kensington Spring Hill 

(SH) 

385 ± 

28.56 

59.2 13.8 16.0 0.29 ± 0.16 1.78 ± 0.10 

Kensington Tamarack 

(TR) 

367 ± 

20.86 

60.9 13.4 16.0 0.36 ± 0.05 2.66 ± 0.09 
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Table 2.2 Mixed effect results for deer browsing effects and soil C:N on N mineralization (g N 

g-1 d-1). Marginal R squared values are those associated with the fixed effects, the conditional 

ones are those of the fixed effects plus the random effects. 

 N Mineralization    

Fixed Effect Estimate Std. Error df t-value Pr(>|t|) 

(Intercept) 1.61 0.52 2 3.08 0.09 

Browsing -0.06 0.07 79 -0.90 0.37 

C:N Soil 5.70 1.65 6 3.45 0.01 

Browsing * Soil C:N -2.57 0.59 79 -4.33 <0.0001 

Random Effect     Pr(>Chisq) 

(1|Exclosure:Park)     <0.0001 

(1|Park)     0.04 

Marginal R2 0.23     

Conditional R2 0.92     

 

Table 2.3 Mixed effect results for deer browsing effects and litter C:N on N mineralization (g N 

g-1 d-1). Marginal R squared values are those associated with the fixed effects, the conditional 

ones are those of the fixed effects plus the random effects. 

 

 N Mineralization   

Fixed Effect Estimate Std. Error df t-value Pr(>|t|) 

(Intercept) 1.66 0.72 1.83 2.31 0.16 

Browsing -0.06 0.07 70.00 -0.81 0.42 

C:N Litter 15.61 14.71 4.46 1.06 0.34 

Browsing * Litter C:N -19.41 3.74 70.00 -5.20 <0.0001 

Random Effect     Pr(>Chisq) 

(1|Exclosure:Park)     <0.0001 

(1|Park)     0.14 

Marginal R2 0.02     

Conditional R2 0.95     
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Table 2.4 Mixed effect results for deer browsing effects and soil C:N on CO2 respiration (µmol 

C m-2 s-1). Marginal R squared values are those associated with the fixed effects, the conditional 

ones are those of the fixed effects plus the random effects. 

 CO2 respiration   

Fixed Effect Estimate Std. Error df t-value Pr(>|t|) 

(Intercept) 2.73 0.56 2.07 4.89 0.04 

Browsing -0.24 0.15 79.00 -1.64 0.11 

C:N Soil 1.10 1.50 7.62 0.74 0.48 

Browsing * Soil C:N 0.48 1.20 79.00 0.40 0.69 

Random Effect     Pr(>Chisq) 

(1|Exclosure:Park)     0.02 

(1|Park)     0.01 

Marginal R2 0.03     

Conditional R2 0.68     

 

Table 2.5 Mixed effect results for deer browsing effects and litter C:N on CO2 respiration (µmol 

C m-2 s-1). Marginal R squared values are those associated with the fixed effects, the conditional 

ones are those of the fixed effects plus the random effects. 

 CO2 respiration   

Fixed Effect Estimate Std. Error df t-value Pr(>|t|) 

(Intercept) 2.59 0.66 1.95 3.91 0.06 

Browsing -0.11 0.09 70.00 1.13 0.26 

C:N Litter -21.12 7.47 5.07 -2.83 0.04 

Browsing * Litter C:N 15.56 4.82 70.00 3.23 <0.01 

Random Effect     Pr(>Chisq) 

(1|Exclosure:Park)     <0.0001 

(1|Park)     0.14 

Marginal R2 0.03     

Conditional R2 0.95     
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Supplementary Figures 

 

 

Supplementary Figure 2-1 Soil and litter C:N ratios are not correlated. 

 

Supplementary Figure 2-2 Rates of N mineralization (g N g-1 d-1) correlate positively with litter 

C:N ratios. 

 

 

Supplementary Figure 2-3 Rates of N mineralization (g N g-1 d-1) correlate positively with soil 

C:N ratios. 
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Supplementary Figure 2-4 Rates of N mineralization (g N g-1 d-1) in browsed do not correlate 

with litter C:N ratios.   

 

Supplementary Figure 2-5 Rates of N mineralization (g N g-1 d-1) in non-browsed correlate 

positively with litter C:N ratios. 

 

Supplementary Figure 2-6 Rates of N mineralization (g N g-1 d-1) in browsed plots correlate 

positively with soil C:N ratios. 
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Supplementary Figure 2-7 Rates of N mineralization (g N g-1 d-1) in non-browsed plots 

correlate positively with soil C:N ratios. 

 

Supplementary Figure 2-8 Rates of CO2 respiration (µmol C m-2 sec-1) do not correlate with 

litter C:N ratios. 

 

Supplementary Figure 2-9 Rates of CO2 respiration (µmol C m-2 sec-1) do not correlate with 

soil C:N ratios. 
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Supplementary Figure 2-10 Rates of CO2 respiration (µmol C m-2 sec-1) in browsed plots do 

not correlate with litter C:N ratios. 

 

 

Supplementary Figure 2-11 Rates of CO2 respiration (µmol C m-2 sec-1) in non-browsed plots 

do not correlate with litter C:N ratios. 

 

Supplementary Figure 2-12 Rates of CO2 respiration (µmol C m-2 sec-1) in browsed plots do 

not correlate with soil C:N ratios. 
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Supplementary Figure 2-13 Rates of CO2 respiration (µmol C m-2 sec-1) in non-browsed plots 

do not correlate with soil C:N ratios. 
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Chapter 3 Deer Browsing Decreases Understory Plant Abundance But Has No Detectable 

Effects on Plant Community Composition  

Abstract 

White-tailed deer populations in the northeastern US have increased dramatically in 

recent decades. As a result, understory plant community composition and diversity are shifting, 

but patterns are far from universal, and interactions between plant resource availability and deer 

browsing are under continuing investigation. By sampling inside and outside deer (Odocoileus 

virginianus) exclosures across a network of sites in southeast Michigan (USA), I tested the non-

mutually exclusive hypotheses about how resource availability levels can sometimes favor plant 

species or taxa that can initiate a compensatory growth response to outgrow herbivory, or that are 

inherently better defended against herbivores. I predicted that under high soil nutrient 

availability, deer browsing will have significant effects on plant community structural 

components and that plant community composition will remain unaffected, because in resource-

rich environments plants selected for rapid compensatory growth in response to browsing are 

dominant. My reasoning was that when resource availability is high, selection likely favors 

plants that tolerate browsing damage via growth responses, and communities might not change 

as a result. My results are consistent with this prediction; Deer browsing effects on plant 

communities were significant but did not vary strongly with environmental factors. Specifically, 

browsing significantly decreased several plant community structural measures, including plant 

percent cover, tree seedling cover, and sapling density, but had no detectable effects on plant 

community composition overall. Other important browsing effects on plant community 

composition, however, are reflected in significant changes of nearly 25% of plant species and 3 
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plant functional types with deer browsing. Whether these patterns shift with resource availability 

as indicated by litter and soil C:N ratios and by total litterfall inputs to soil remains inconclusive, 

given the narrow ranges of C:N in soil and litter across my sites. Further research expanding this 

environmental gradient is needed to fully test hypotheses on plant community responses to 

herbivory under differing resource availability. 

Introduction 

Nutrient availability and herbivore activity can have large impacts on plant community 

composition and key ecosystem processes.  Nutrient limitation has important effects on plant 

diversity (Bobbink et al. 2010), productivity and chemistry (LeBauer and Treseder 2008) across 

a range of ecosystem types. For example, nitrogen (N) enrichment is known to alter many 

ecosystem properties and processes including primary production, competition, plant-microbe 

interactions, soil acidification, and herbivory. These ecosystem properties and processes can 

mediate plant community responses to nutrient enrichment, with N functioning as a key nutrient 

affecting plant community characteristics such as species composition and diversity (Farrer and 

Suding 2016). Herbivores can also influence primary producers and habitats in many ways; For 

example, in terrestrial ecosystems, such as the Serengeti in East Africa, where wildebeest grazing 

has been shown to increase aboveground productivity in grasslands (McNaughton 1976, 

Mcnaughton 1985), to Minnesotan oak savannas where deer browsing decreases plant cover and 

biomass (Ritchie et al. 1998), and in aquatic systems such as the Galapagos archipelago where 

giant tortoises engineer freshwater wetland ecosystems (Froyd et al. 2014), to Michigan lakes 

where bluegill sunfish alter successional pathways of zooplankton and phytoplankton (Leibold 

1989).  
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Herbivore effects on plant communities and ecosystem processes can vary widely in 

strength and direction, partly because plant community responses have been found to both 

respond and feed back to nutrient availability.  One hypothesis is that when resource availability 

is high, plants can initiate compensatory growth to recover from herbivore damage quickly and 

thereby increase productivity. In turn, increased productivity often means N-rich compensatory 

tissue growth that decomposes quickly and releases N and other nutrients for plant uptake 

(McNaughton, 1976). Furthermore, N-rich waste products of herbivores can increase 

mineralization rates (McNaughton, 1976). Herbivory stimulating aboveground productivity can 

thus result in increased nutrient availability, creating a positive feedback that increases 

production. 

Another, non-mutually exclusive, hypothesis is that herbivores selectively browse 

palatable and nutrient rich species, and thus increase the dominance of species that are browse-

resistant and low in nutrient content. Leaf litter from these resistant species decomposes more 

slowly than leaf litter from nutrient rich species, thereby reducing nutrient availability to plants 

(Hobbie, 1992; Mattson, 1992, Hobbs, 1996; Ritchie et al., 1998). Reduced nutrient availability 

can in turn select for more nutrient-poor species with low nutrient requirements, resulting in a 

feedback that, up to certain thresholds, reduces productivity and nutrient availability. 

Developing a better understanding of the inconsistencies of plant community responses to 

herbivores requires attention to above- and belowground processes across productivity gradients 

(Bardgett and Wardle 2003). I test here these non-mutually exclusive hypotheses that resource 

availability levels can favor plants that can initiate a compensatory growth response to outgrow 

herbivory and can favor plants that are better defended against herbivores, with a case study of 
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plant community responses to white-tailed deer browsing (Odocoileus virginianus) across 

gradients of environmental fertility in temperate forests.   

Temperate forest plant community structure and function are influenced by many factors, 

including browsing by white-tailed deer, particularly over the past several decades. Large 

populations of deer and other native ungulates in the United States increasingly threaten the 

diversity and integrity of the forests that sustain them (Rooney, 2001; Côté et al., 2004; Waller et 

al., 2009). Management has focused on sustaining large deer populations because of their social 

and economic value (deCalesta & Stout, 1997; Waller & Alverson, 1997; Waller et al., 2009). In 

addition to management activities, the absence of large predators has contributed to the growth 

of deer populations (Alverson et al., 1988; Côté et al., 2004). As a result, large deer populations 

throughout the northeastern US are reducing the abundances of palatable species, decreasing 

understory plant diversity, and slowing or preventing regeneration of dominant tree species 

(Frerker et al. 2014, Bradshaw and Waller 2016). Historically, deer browsing studies focused 

mainly on tree species and less on understory species, even though understory vegetation is 

important for other organisms, succession, and ecosystem processes (Hobbs 1996, Côté et al. 

2004, Sakata and Yamasaki 2015, Landsman and Bowman 2017). It is therefore important to 

better understand the nature and extent of the interactions between deer and the ecosystems in 

which they live (Waller et al., 2009). Because white-tailed deer forage selectively, they can 

influence plant species composition and diversity (Waller & Alverson, 1997; Rooney, 2001; 

Russell et al., 2001; Rooney & Waller, 2003; Côté et al., 2004; Hewitt, 2011). However, the 

effects of deer browsing on plant communities are neither uniform nor predictable. Variations 

exist in strength and direction of browsing on diversity, richness, and community composition 
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(Begley-Miller et al. 2019, Schäfer et al. 2019). It is not known whether plant community 

responses to deer browsing vary in relation to soil nutrient availability.  

In this study, I compare deer browsing effects on understory plant communities across 

soil nutrient availability and litterfall gradients in temperate deciduous forests located in 

southeastern Michigan, USA. I used fenced exclosures along gradients of soil fertility, as 

indicated by soil and litter C:N ratios and total litterfall inputs to soil, to test for direct deer 

browsing effects on vegetation communities and associations between browsing and 

environmental factors. Based on the two non-mutually exclusive hypotheses on how resource 

availability levels might favor plants that can initiate a compensatory growth response to 

outgrow herbivory, and sometimes favor plants that are better defended against herbivores, I 

hypothesized that browsing effects on plant community structure and composition vary with 

nutrient availability, both in magnitude and direction. My foci here are on 1) plant community 

structure as described by species richness, diversity, abundance (percent cover), tree regeneration 

(seedlings and saplings), and biomass, and 2) plant community composition as described by 

visual estimation of the proportion of area covered (or percent cover) by each species within 

sampling areas in browsed and non-browsed experimental plots (protected from deer browse for 

20 years). I predicted that under high soil nutrient availability, deer browsing would have 

significant effects on structural components of plant communities and that plant community 

composition would remain unaffected, because in resource-rich environments plants selected for 

rapid compensatory growth in response to browsing are dominant. My reasoning was that when 

resource availability is high, plants are more likely to have been selected to tolerate browsing 

damage via growth responses, and communities might not change as a result. In contrast, I 

predicted that under low soil nutrient availability deer browsing would significantly shift plant 
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community composition towards better defended plant communities, because in resource-poor 

environments plants are more likely to have been selected to resist herbivory and cannot grow 

fast enough to outgrow deer browsing; selective browsing would shift community composition to 

species with better plant defenses.   

Methods 

Study sites 

I selected nine study sites in Oakland, Macomb, and Wayne counties in the greater 

Detroit Metro area of Michigan, USA (Popma and Nadelhoffer 2020). Temperate forests in the 

US Midwest and Northeast such as those I selected have experienced increases in deer 

populations since the 1970s, with densities reaching up to 20 deer per km2 in some areas 

(Alverson et al. 1988, DNR 2010). The study areas lie within three Huron Clinton Metroparks: 

Kensington (K) (42°32'28.1"N 83°38'16.2"W), Stony Creek (SC) (42°42'36.2"N 83°04'16.8"W), 

and Oakwoods (OW) (42°06'57.8"N 83°21'28.1"W) (Fig. 1). Sites are abbreviated as follows: 

Within Kensington there is Spring Hill (SH), Tamarack (TR), and Wild Wing (WW); within 

Oakwoods there is Big Tree (BT), Long Bark (LB), and Railroad (RR); Within Stony Creek 

there is Lake Loop (LL), Return Trail (RT), and West Branch (WB). In June and July of 2017, I 

sampled within (non-browsed plot) and outside (browsed plot) of nine 10 m x 10 m experimental 

deer exclosures constructed in 1999, three in each of the three Metroparks. These 20-yr-old 

exclosures are in dry-mesic and mesic forest types. Dry-mesic forests are oak or oak-hickory 

forest types in southern Lower Michigan and typically grow on sandy loam or loamy soils. Mesic 

forests in southern Michigan are typically dominated by American beech (Fagus grandifolia) 

and sugar maple (Acer saccharum), growing on loamy upland soils. The exclosures are 2.5m tall 

and exclude ungulates (deer) while allowing small herbivores to move in and out. Mean annual 
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temperature in southeastern Michigan is 9°C, mean annual rainfall is 81cm, mean annual 

snowfall is 130 cm (US Climate Data), and mean annual litterfall is 3422 kg dry mass ha-1 y-1. 

The main ungulates are white-tailed deer (Odocoileus virginianus), with densities of 8, 8, and 16 

deer per square kilometer at the Stony Creek, Oakwoods and Kensington parks, respectively. 

Deer populations are estimated and actively managed by Huron Clinton Metroparks (Ryan 

Colliton, personal communication 2018). Helicopter fly-over estimates for Oakwoods were more 

difficult to obtain due to proximity to the Detroit Metropolitan Airport airspace and could 

potentially be over- or under-estimating deer population densities.  

Plant community structure and composition 

Vegetation surveys were performed inside and outside deer exclosures to test for the 

effects of deer browsing on plant communities. Plots outside deer exclosures were established 

within 10 meters of each exclosure to create a control plot similar in size, slope, aspect, and 

habitat. I randomly selected locations for three 1 m x 1 m frame quadrats within each browsed 

and non-browsed (deer exclosure) plot for replication of ground layer and understory plant 

species measurements. I focused on ground layer vegetation, including woody and non-woody 

species, and understory vegetation because these layers are accessible to browsing deer. Tree 

seedlings and saplings were included in the vegetation surveys; tree stems of 1 m in height or 

higher were considered saplings and those under 1 m were considered seedlings. Tree stems with 

a diameter at breast height of > 9cm were considered adult tree and excluded from vegetation 

surveys.  

Plant species richness was calculated by summing the number of unique species present 

in a quadrat. Total plant percent cover was calculated by summing the percent cover values of all 

plant species in a quadrat. Plant species diversity (inverse Simpson) was calculated using percent 
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cover data for each species, with the vegan package in R (R Core Team 2019). Ground cover 

biomass, including tree seedlings and saplings, was estimated by randomly placing a 20 cm x 50 

cm frame on the ground and clipping all plant biomass inside the frame. I collected ground cover 

biomass from three frames in each plot inside and outside deer exclosures. Plant biomass was 

stored in paper bags until further processing at the University of Michigan laboratory. Plant 

biomass from each frame was oven dried at 60˚C for 48 hours and weighed. 

Percent cover was visually estimated for each species or taxa (or growth form in the case 

of graminoids), and bare ground if there was no vegetation. Percent cover of all species was then 

summed per quadrat, sometimes resulting in values above 100% if vegetation was overlapping.  

Sapling density (shrub layer) was recorded by counting all saplings above 1 m and a 

diameter smaller than 9cm at breast height. Sapling density was recorded at the plot level (100 

m2), inside and outside exclosures. Tree seedling cover was estimated by summing percent cover 

of all tree seedlings in a quadrat. Tree seedling percent cover was included in overall percent 

cover, as well as estimated separately.  

See Data Analyses for methods used to quantify plant community composition. 

Canopy litter inputs to soil 

Canopy leaf litterfall (kg ha-1 yr-1) was estimated using five, 0.31 m2 litter baskets (Popma 

and Nadelhoffer 2020) within each browsed (n = 9) and non-browsed plot (n = 9). Leaves were 

collected once in October and once in December (2018), separated by species, and dried for 48h 

at 80˚C in our University of Michigan laboratory. Collection baskets were 66 cm x 46 cm, 

modified from commercial laundry baskets by drilling drainage holes in the bottoms.  

Canopy leaf litter was sorted by species and dried for 48h at 80°C to analyze leaf C:N for 

each individual species. Leaves were ground for 2 minutes to a fine powder prior to C:N, %C, 
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and %N analyses. Site-level C:N ratios were calculated by first multiplying the mass of each 

represented species by the %C and %N in the litter of that species, resulting in grams of C and N 

in litter of each species at each site. Site level litter C:N ratios were then calculated by summing 

the masses of C and N of all the species at each site, and dividing total grams C by total grams N.  

Soil C:N analyses  

I collected one composite soil sample inside and outside of each deer exclosure (n=9) in 

June 2017. Each composite sample consisted of five 2.5cm diameter soil cores sampled to a 

depth of 10cm. Composite soil samples were used for determining soil C:N. Soil C:N was 

determined using a CN Analyzer (University of Michigan Biological Station Analytical Lab, 

Pellston, MI, USA).  Fresh soils were stored at 4°C and prepared within 5 days of collection for 

an 8-week laboratory incubation experiment to determine the effects of large herbivores on rates 

of net N mineralization, net nitrification, and microbial respiration. For more details see Popma 

& Nadelhoffer 2020. 

Data Analyses 

Data analyses were conducted using R Studio (version 3.5.1) and significance was 

accepted at α<0.05, and marginally significant results accepted at α<0.1. I used linear mixed 

effects model analyses from the lme4 R-package to test whether deer browsing altered  indices of 

plant community structure: plant species richness, diversity (inverse simpson), plant percent 

cover, understory biomass, sapling density, and seedling percent cover. In addition to deer 

browsing as a fixed effect, I also included C:N litter, C:N soil, and litterfall in my models, as 

well as the interactions of each with deer browsing. Park (n=3) and site (n=8) were used as 

random nested effects because I expected rates to be influenced by geographic location. Linear 

mixed effects models were performed on n=8 sites (excluding the “lake loop” site).  
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I analyzed deer browsing effects on all plant species and on broad groups of plant growth 

forms including forbs, graminoids, shrubs, trees, and vines. I used linear mixed effects model 

analyses from the lme4 R-package to test whether deer browsing altered the average percent 

cover of each species and growth form at all sites (n=8). Park (n=3) and site (n=8) were used as 

random nested effects because I expected rates to be influenced by geographic location. 

I analyzed main effects of deer browsing and three environmental factors on plant 

community composition, and the interactions between deer browsing and each environmental 

factor, using PERMANOVA models. The environmental factors included C:N soil, C:N canopy 

litter, and canopy litterfall. PERMANOVA models were executed with the adonis2() function in 

the vegan package in R (R Core Team 2019). The response variable was a community 

dissimilarity index, calculated by subjecting plant species abundance data to a Hellinger 

transformation, followed by the calculation of Euclidian distances (Legendre and Gallagher 

2001). I chose the Hellinger transformation because it is particularly suited for species 

abundance data with many zeros. Sites (n=8, excluding the lake loop site) were accounted for as 

random effects because I was mainly interested in environmental effects. I also ran a model 

focused specifically on site effects, to test for changes in deer effects across sites. 

PERMANOVA analyses were performed on n=8 sites, excluding n=1 site “lake loop”. I 

excluded data from the Lake Loop site in the Stony Creek forest because the leaf litter C:N 

average here was more than 2 standard deviations outside the distribution of other plots, likely 

due to the presence of large amounts of Tilia americana (American basswood) leaf litter at this 

site. 

Data were plotted using non-metric-dimensional scaling (NMDS) scores of plant 

community composition of two deer browsing treatments and along environmental gradients. 
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NMDS scores were calculated using the metaMDS function in the vegan package in R (R Core 

Team 2019). In order to visualize effects of continuous environmental variables on plant 

community composition, I transformed each environmental variable (C:N soil, C:N litter, 

litterfall) from continuous into a three-level factor variable: High, Medium, Low. Sites were 

assigned to High, Medium, or Low bins based on histogram distributions of site level 

environmental averages for each variable: Litterfall, C:N Soil, and C:N Litter. Plotting a 

histogram of site averages for each variable allowed me to bin sites into High, Medium, or Low, 

using natural breaks in distributions (Table 3.1). 

Results 

The nine exclosure locations represented gradients in litter and soil C:N ratios (Chapter 2, 

Table 2.1).   Soil C:N ratios were not correlated with litter C:N ratios across sites, therefore I 

treated soil C:N and litter C:N ratios as independent factors across my study sites. As such, these 

factors represent two independent proxies for soil nitrogen (N) availability, with annual litterfall 

representing a third fertility proxy. Deer density estimates showed that the study sites represented 

a range from medium (8 deer per km2) to high (16 deer per km2) population densities (Chapter 2, 

Table 2.1). All sites within the Kensington Metropark (Wild Wing, Spring Hill, and Tamarack) 

had high deer densities, whereas all sites within the Oakwoods and Stony Creek Metroparks had 

medium deer densities. Deer densities are generally considered high at levels > 10-15, medium at 

7-12, low at <7 deer per km2 (Russell et al. 2001).  

Deer browsing effects on plant community structure 

Effects of deer browsing on plant community structure (measures of percent cover, tree 

seedlings and saplings, diversity, richness, biomass) varied among sites (Figure 3.1), ranging 

from positive to negative and from weak to strong (Table 3.2, Figure 3.1). Overall, linear mixed 
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effects models showed that deer browsing had strong negative effects on overall percent cover of 

plants, tree sapling density, and tree seedling percent cover, as indicated by the large negative 

coefficient estimates (Table 3.2). Tree seedling percent cover was also correlated with 

environmental factors, showing a negative correlation with increased canopy litterfall, and a 

positive correlation with soil and litter C:N (Table 3.2).  As predicted, these deer browsing 

effects on percent understory cover, sapling density, and tree seedling percent cover, covaried 

with litter C:N and deer effects on sapling density covaried with canopy litterfall (Table 3.2). 

Significant interactions between deer and environmental variables indicate that the effects of 

browsing were not uniform across sites. Specifically, browsing effects on percent cover and 

sapling density were positively associated with increasing litter C:N (coefficient estimate 23.2, 

Table 3.2), and effects on seedling cover were negatively associated with litter C:N (coefficient 

estimate -5.8, Table 3.2). Groundcover biomass was not affected by browsing, but showed 

negative associations with soil C:N and litterfall (Coefficient estimates -0.2 and -0.1 

respectively, Table 3.2). 

Variations in plant species richness, sapling density, and tree seedling cover could be 

explained by site locations, which were included as random effects in the models (Table 3.2). 

Contrary to my prediction however, deer browsing had no detectable effects on either plant 

species richness or diversity, and no variations in these two response variables were detected in 

relation to fixed environmental factors or their interactions with deer browsing (Table 3.2).  

Deer browsing effects on plant community composition 

Deer browsing had no detectable effects on overall plant community composition, but 

plant community composition was affected by both litter and soil C:N (Table 3.3, Figure 3.2). 

Overall, the PERMANOVA model explained nearly half the variation (R2=0.40) in plant 
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community composition. The strongest predictor of variation in plant community composition 

was the Residuals, explaining over half the variation (R2=0.6). In contrast to my predictions, deer 

browsing had no detectable effects on plant community composition. However, plant community 

composition was associated with litter (R2=0.09) and soil C:N (R2=0.09), but associations were 

weak with only 18% of variation explained by these two environmental variables together (Table 

3.2). Moreover, no significant interactions between deer browsing and any of the three 

environmental factors were found to influence overall plant community composition. To 

visualize plant community variation with litter and soil C:N, I plotted NMDS scores of plant 

communities (Figure 3.2).  

I also tested the effects of deer browsing on individual plant taxa (either species or 

genera) and plant functional types (PFTs). In total, these included forbs, graminoids, shrubs, 

trees, and vines. Of the 41 different plant taxa and 2 PFTs in the forest understory, 10 were 

significantly affected by deer browsing (Table 3.4). Most of these were negatively impacted by 

deer browsing, except graminoids and two invasive species Eleagnus umbellata (Autumn olive) 

and Celastrus orbiculatus (Oriental bittersweet), which increased with deer browsing (Table 

3.4). Note that results are average percent cover across all plots and therefore include many 

zeroes. Directions and magnitudes of deer browsing effects are variable among individual sites. 

For example, Eleagnus umbellata cover increased 70% with deer browsing on average at SH, but 

was not present at any other site except TR (Table 3.4).  

Deer browsing significantly influenced three groups of plant growth forms: forbs, 

graminoids, and vines (Figure 3.3). Direction and magnitude of deer browsing effects varied 

within groups, depending on the site location, but overall deer browsing negatively influenced 

the percent cover of forbs and vines, and positively influenced cover of graminoids. Forbs on 
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average decreased from 3% to 2%, vine cover from 4% to 2%, and graminoids increased from 

3% to 10%. Deer browsing effects on vines were variable among sites, with vines decreasing as 

much as 10% at the LB site, but not much at all at other sites (WB, RT, and RR, Figure 3.3). 

Browsing effects on graminoid cover were variable among sites as well, with large increases in 

cover at TR and SH with deer browsing (11% and 16% respectively, Figure 3.3), and no changes 

at RT. Tree and shrub abundance varied a lot across sites, and no overall deer browsing effect 

was detected. Browsing increased shrub cover at SH by 11%, but decreased cover at RT and WB 

by 4% (Figure 3.3). The shrub growth form group was heavily influenced by the strong increase 

of autumn olive at Spring Hill. Most other shrub species declined.  

Discussion 

Based on the two non-mutually exclusive hypotheses regarding how resource availability 

levels can sometimes favor plants that can initiate a compensatory growth response to herbivory, 

and sometimes favor plants that are better defended against herbivores, I hypothesized that 

browsing effects on plant community structure, as described by species richness, diversity, 

abundance (percent cover), tree regeneration (sapling density and seedling cover), and biomass, 

and overall composition would vary with environmental conditions, both in magnitude and 

direction. Plant community structure was predicted to remain similar with deer browsing under 

low nutrient availability but change with browsing under high soil nutrient availability. Plant 

community composition, however, was predicted to change with deer browsing under low soil 

nutrient availability but to remain unaffected under high nutrient availability.  

My reasoning was that under high nutrient availability, plants are more likely to tolerate 

browsing damage via growth responses, and communities might not change as a result. In 

resource-poor environments, however, plants cannot grow fast enough to outgrow deer browsing 
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and selective browsing would shift community composition to more species with better plant 

defenses.   

Deer browsing effects on plant community structure 

Results revealed strong negative effects of deer browsing on some components of plant 

community structure, including plant percent cover, tree sapling density, and tree seedling cover. 

Contrary to prediction, browsing effects these components of plant community structure were 

only weakly associated with underlying environmental variables, specifically canopy litter 

chemistry. Although associations were weak, they were in line with my prediction; covariation 

between deer effects and litter chemistry suggests that browsing effects on percent cover and 

sapling density might be less negative at sites with lower nutrient availability (higher C:N litter). 

However, the direction of covariation between deer effects and litter chemistry effects on tree 

seedling cover was opposite, indicating browsing effects might be more negative on tree 

seedlings at sites with lower nutrient availability. The ecological importance of this variation in 

browsing effects with environmental conditions is likely small compared to the strong negative 

browsing effect overall, because associations between browsing and litter C:N were weak.  

Variation in effects on plant percent cover and tree saplings and tree seedlings could 

potentially be explained by variation in deer browsing intensity. This study does not have the 

power to address this factor, however the classic but controversial (Fox 2013) intermediate 

disturbance hypothesis could explain my varying results (Moi et al. 2020). This hypothesis 

suggests that intermediate levels of disturbance (browsing in this case) result in increased 

diversity and/or richness, while low or high levels of browsing do not (Suominen et al. 2003).  

Although he intermediate disturbance hypothesis remains controversial (Fox 2013), empirical 

evidence in support has been found in terrestrial systems, including temperate forests (Moi et al. 
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2020). A recent meta-analysis by Gao et al. (2020) showed that grazing-richness and grazing-

diversity relationships sometimes fit the intermediate disturbance hypothesis, but it depends on 

ecosystem type (Gao and Carmel 2020a, 2020b). Moreover, Gao et al. stress the importance of 

further clarifying interactions between grazing and aridity and vegetation type to improve the 

intermediate disturbance theory (Gao and Carmel 2020a).  

Deer browsing did not have detectable effects on either plant species richness or diversity. 

Plant species richness was instead mostly associated with site location. The lack of browsing 

effects on plant species richness and diversity is in contrast to predictions, and somewhat 

surprising considering the large body of literature that shows strong effects of deer browsing on 

plant species diversity and richness (Rooney, 2001; Côté et al., 2004; Waller et al., 2009, Frerker 

et al. 2014, Bradshaw and Waller 2016). Especially when the abundance, measured as percent 

cover, of nearly a quarter of plant taxa at my sites was significantly impacted by deer browsing. 

Overall, tree seedlings and saplings, and forbs declined with deer browsing, while vines showed 

mixed responses, and graminoids and certain invasive shrubs increased. The strong decrease in 

cover of tree seedlings and saplings, and forbs compared to graminoids could be explained by the 

selective nature of deer browsing. Average diets of white-tailed deer consist mostly of green 

twigs and leaves (46%) and forbs (24%), and much less of graminoids (8%) (Turner 2004). 

Moreover, grasses generally tolerate browsing well and therefore often increase with herbivory 

(McNaughton 1976).  

Specifically, browsing negatively impacted percent cover of several tree seedlings and 

saplings, including A. saccharum, A. rubrum, and P. serotina, as well as forbs and vines, 

including C. lutetiana, Trillium sp., S. tamnoides. In addition to percent cover of tree seedlings, 

sapling density declined dramatically as well with deer browsing. These negative browsing 
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effects on tree seedling and sapling cover reveal a potential mechanism via which deer browsing 

could influence trajectories of forest succession. For example, studies have shown that deer are 

less abundant on tribal lands, and these forests are more diverse and regenerate more 

successfully (Waller and Reo 2018). Indigenous Nations have long managed their lands and 

wildlife in ways that reflect their cultural traditions and values, and because of different deer 

management strategies compared to public and private forestlands, ecological conditions on 

tribal lands differ relative to nontribal lands (Waller and Reo 2018).  

Although most ground- and shrub-layer (including tree sapling) species declined with deer 

browsing, graminoids and a few invasive species increased in percent cover, including Eleagnus 

umbellata and Celastrus orbiculatus. E. umbellata (Autumn olive), is a common invasive shrub 

that has associations with nitrogen fixing bacteria and can increase soil N cycling rates 

(Goldstein et al. 2010).  This relates to the hypothesis on how high resource availability levels 

can favor plants that can initiate a compensatory growth response to outgrow herbivory; 

Nitrogen fixing abilities in Autumn olive could greatly increase resource availability (Goldstein 

et al. 2010) and therefore Autumn olive possibly has greater abilities to outgrow herbivory. Not 

all invasive species were affected positively, for example the invasive shrub Lonicera maackii 

(honeysuckle) showed (non-significant) signs of decrease with deer browsing. L. maackii is 

known to be an important source of food for deer in early spring when other preferred woody 

species are scarce (Wright et al. 2019). Notably, some species disappeared completely with deer 

browsing, including Trillium sp., an important indicator species of past and present deer 

browsing pressure (Koh et al. 2010).  

My observations of decreasing tree seedling and sapling density and increasing presence of 

invasive species due to deer browsing are not unique (Bradshaw and Waller 2016). Invasive 
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species tend to do well in areas with deer browsing, and both browsing and invasive species can 

have negative effects on native regeneration and understory growth (Woods 1993, Gorchov and 

Trisel 2003, Ward et al. 2018).  

Deer browsing effects on plant community composition 

In contrast to my predictions, effects of deer browsing on plant community composition were 

not detected at any site, and I did not detect associations between browsing effects and 

environmental variables. Plant community composition was however, strongly associated with 

site location, which explained nearly 70% of variation, and weakly associated with Litter C:N 

and soil C:N, together explaining only 18% of variation. The strong association between 

variation in plant community composition and site location is likely due to environmental factors 

not measured in this study. It should be noted that the ranges of C:N litter and soil were fairly 

narrow, potentially too narrow to conclusively confirm or contrast my predictions. I find it 

surprising that PERMANOVA models did not detect significant effects of deer browsing on 

plant communities (as indicated by the Hellinger transformed data), and I would argue these null 

results should be interpreted with caution given the evidence of significant effects of browsing 

on nearly 25% of plant species, major plant functional types, and overall percent cover, sapling 

density, and tree seedling cover, deer browsing surely has significant impacts on plant 

communities.   

Significant browsing effects on structure but not composition of plant communities might be 

consistent with my predictions if all sites were relatively high in resource availability. I did not 

detect strong shifts in browsing effects on structure, and no effects at all on composition, but if 

resource availability simply did not vary enough at my sites, I would not expect shifts. As such, 

it would be interesting to see if patterns change when expanding the soil and litter C:N range to 
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include sites with higher C:N ratios (less N availability). Notably, nearly 25% of identified plant 

taxa showed increases or decreases with deer browsing, highlighting that although no overall 

browsing effects on community composition were detected, deer browsing does have significant 

effects on plant communities. 

Conclusions 

 Most research on deer browsing effects on plant communities in temperate forests has not 

considered interacting effects if deer browsing with other environmental factors. This study 

compared effects of deer browsing on plant communities across environmental gradients to test 

predictions on how resource availability might be associated with browsing effects on plant 

communities.  Plant community structural measures were predicted to change with deer 

browsing under high resource availability but remain similar under low resource availability. In 

contrast, plant community composition was predicted to remain similar under high resource 

availability but change under low resource availability. Underlying these predictions is the idea 

that in resource-rich environments plants that tolerate browsing damage via growth responses are 

favored, and thus plant community composition might be less affected by browsing. Whereas 

plants in resource-poor environments might lack the potential to outgrow deer browsing, and 

selection might therefore favor species with better plant chemical or other defenses, thereby 

leading to greater shifts in community composition.  

Results reveal that deer effects on plant communities were significant but did not vary with 

environmental factors. Browsing significantly decreased several plant structural measures, 

including plant percent cover, tree seedling cover, and sapling density, but had no detectable 

effects on plant community composition overall. Other important browsing effects on plant 

community composition, however, are reflected in significant changes in percent cover of nearly 
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25% of plant species and 3 plant functional types with deer browsing. My findings are consistent 

with predictions for environments with high nutrient availability but are inconclusive in 

addressing predictions for shifts in browsing effects across a wide enough range of nutrient 

availability.  

Acknowledgements 

This work was supported by grants from Rackham Graduate School and the Department 

of Ecology and Evolutionary Biology at the University of Michigan. I thank Maeghen Goode, 

Jeremy Graham, Jim LeMoine, Bridgette Pollaski, John Den Uyl and Tiffany Wu for field/lab 

assistance. I would also like to thank Huron Clinton Metro Parks for providing access and 

transport in the parks, and Ryan Colliton of Huron Clinton Metro Parks for his support of this 

project. 

 

  



 71 

Figures 

 

Figure 3.1 Plant community structure responses to deer browsing: A) Richness, B) % Cover, C) 

Diversity, D) Biomass, E) Sapling density, F) %seedlings. Responses to deer browsing are not 

uniform across sites. Overall deer significantly decreased percent cover, sapling density, and tree 

seedlings. Parks are abbreviated as follows: Kensington (K), Oakwoods (OW), and Stony Creek 

(SC). Sites are abbreviated as follows: Spring Hill (SH), Tamarack (TR), Wild Wing (WW), Big 

Tree (BT), Long Bark (LB), Railroad (RR), Lake Loop (LL), Return Trail (RT), and West 

Branch (WB). 
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Figure 3.2 Plant community composition NMDS averages with standard error overlaid on 

original NMDS points for C:N litter and C:N soil. Significance is indicated by non-overlapping 

error bars. Continuous data on C:N were binned in three categories: High (black), Medium 

(yellow), and Low (green) for NMDS visualization purposes. 

 

 

Figure 3.3 Percent cover of plants grouped by growth form, with and without deer browsing. 

Linear mixed effect model showed that deer browsing significantly decreases cover of forbs 

(p=0.005 and vines (p=0.05), and significantly increases cover of graminoids (p=0.01). 
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Tables 

 

Table 3.1 Factor level criteria for each continuous environmental variable: N mineralization (g N 

g soil -1 d-1), CO2 respiration (µmol C m-2 sec-1), Litterfall (g m-2 yr-1), C:N Soil, and C:N Litter. 

Factor Level Litterfall 

(g m-2 yr-1) 

C:N Soil C:N Litter 

High >3000 >16 >62 

Medium >=2500, <=3000 >=12, <=16 >=61, <=62 

Low <2500 <12 <61 
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Table 3.2 Linear mixed effects model summary for plant community structure. (****) indicates 

significance <0.0001, (***) indicates significance <0.001, (**) indicates significance <0.05, (*) 

indicates significance <0.1. Plant community structure data has coefficient estimates for 

significant factors. Deer browsing and other environmental factors have significant effects on 

plant community structure, and significant interactions effects between deer and environmental 

variables were found across structural measures. R2 marginal provides variance explained only 

by fixed effects, and R2 conditional provides the variance explained by the entire model, both 

fixed effects and random effects.  

Model Variables Plant Community Structure 

Fixed effects Richness Diversity Understory 

% Cover 

Biomass Sapling 

Density 

Seedling % 

Cover 

Deer   -1318.6 (**)  -824.1(***) -707.3(***) 

C:N litter      340.4(****) 

C:N soil    -0.2(**)  14.5(***) 

Litterfall    -0.1(*)  -7.6(**) 

  

Interactions  

Deer * C:N litter   23.2(**)  10.5(*) -5.8(***) 

Deer * C:N soil       

Deer * Litterfall     3.8(*)  

  

Random effects  

Site:Park (*)    (****) (***) 

Park       

Model fit  

R2 marginal 0.16 0.14 0.26 0.42 0.37 0.69 

R2 conditional 0.45 0.17 0.35 0.44 0.80 0.90 

 

Table 3.3 Model summary for PERMANOVA analyses of plant community composition. (*) 

indicates significance p <0.1. The model R2 is 0.4, explaining 40% of variance in plant 

community composition. P-values below 0.1 are considered ecologically significant.  

Model variables Df SumOfSqs R2 F Pr(>F)  

Deer 1 0.6 0.05 0.9 0.56  

C:N litter 1 1.0 0.09 1.5 0.07 * 

C:N soil 1 1.0 0.09 1.4 0.09 * 

Litterfall 1 0.7 0.07 1.1 0.33  

Deer * C:N litter 1 0.2 0.02 0.4 0.99  

Deer * C:N soil 1 0.3 0.02 0.4 0.99  

Deer * Litterfall 1 0.6 0.05 0.9 0.63  

Residual 10 6.7 0.6    

Total 17 11.1 1    

Total-Residual   0.4    
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Table 3.4 All plant genus/species found at study sites, with significance indicator of deer 

browsing effects (*p<0.1,**p<0.05, ***p<0.001). Significance is indicated in bold, and 

represents an overall deer browsing effect when considering all sites. Most species were present 

at only a few sites, indicated by “present at site”. Minimum and maximum percent cover, the 

average % cover of species at these sites, and associated plant growth forms are listed as well. 

Note that “trees” are only seedlings and saplings, not including overstory.   

# 

Genus species 

+ 

or 

- 

Present at site Min 

and 

Max  

Average 

%cover  

deer  

Average 

%cover 

no deer 

Growth 

form 

1 Acer sachharum** - SH,RT,WW 0-70 13 22 Tree 

2 Acer rubrum*** - WW,RR,BT, LL 0-25 0 7 Tree 

3 Anemone virginiana  LL,WW,RT 0-6 1 1 Forb 

4 Bryophyte    LL 0-14 0 6 Bryophyte 

5 Carya Cordiformis  WW 0-3 1 0 Tree 

6 Celastrus orbiculatus** + SH,LL,WB 0-50 13 1 Vine 

7 Circaea lutetiana** - BT,LB,LL,RR,RT,SH,WW 0-33 2 6 Forb 

8 Cornus Florida  WB 0-30 16 13 Tree 

9 Dioscorea Villosa  TR 0-20 0 7 Vine 

10 Elaeagnus umbellata** + SH,TR 0-85 36 5 Shrub 

11 Equisetum hyemale  WW,SH,LL 0-10 4 0 Forb 

12 Fraxinus americana  WB,TR,WW,LB,RT,LL,BT,RR,SH 0-55 17 13 Tree 

13 Fraxinus pennsylvanica  RT,LB,WW 0-45 16 12 Tree 

14 Fraxinus sp.  SH 0-2 1 0 Tree 

 Fraxinus    0-55 16 12 Tree 

15 Galium aparine  WW 0-30 10 0 Forb 

16 Geranium    BT,LB,RR,RT,TR,WW 0-60 7 12 Forb 

17 Graminoid  *** + LB,LL,RR,SH,TR,WB,WW 0-95 23 7 Graminoid 

18 Hepatica    TR 0-5 0 2 Bryophyte 

19 Hylodesmum glutinosum  TR 0-5 2 0 Forb 

20 Lonicera maackii  RT,LB,WW 0-80 0 10 Shrub 

21 Lonicera tatarica  WB 0-75 0 25 Shrub 

22 Lysimachia nummularia  LL 0-12 3 5 Vine 

23 Nabalus altissimus  TR 0-10 4 1 Forb 

24 Parthenocissus quinquefolia  LB,WW,SH,BT,TR,RT,RR 0-98 10 17 Vine 

25 Phragmites australis  WW 0-50 22 0 Graminoid 

26 Podophyllum peltatum  BT,LB,RR,TR 0-70 16 13 Forb 

27 Prunus serotina** - BT,LB,SH,WB 0-20 1 5 Tree 

28 Prunus virginiana  WB 0-25 0 8 Tree 

29 Prunus sp.   SH 0-2 1 0 Tree 

 Prunus    0-25 1 5 Tree 

30 Quercus alba  BT,LB,LL,RT,TR,WW 0-8 2 2 Tree 

31 Rhamnus cathartica  LB,WW,SH,WB 0-38 0 5 Tree 

32 Ribes cynosbati  LB,LL 0-12 3 1 Shrub 

33 Rosa multiflora  LL 0-45 12 23 Shrub 

34 Rubus occidentalis  WW,TR,LL,RT 0-18 2 2 Shrub 

35 Sagittaria    TR 0-4 2 2 Vine 

36 Smilacina racemosa  WW,BT,LB,LL,RR 0-75 1 8 Forb 

37 Smilax tamnoides* - LL,WB,LB 0-65 1 13 Vine 

38 Tilia americana  WW,TR 0-8 1 2 Tree 

39 Toxicodendron  radicans** - LB,LL,RT,SH,TR,WW 0-40 3 8 Vine 

40 Trillium  *** - BT,LL,RR,RT,WW 0-50 3 15 Forb 

41 Ulmus americana  LL,LB,TR,RT 0-46 5 6 Tree 

42 Zanthoxylum americanum  WW,RR,SH, 0-90 3 15 Tree 

43 Zelkova serrata  WW 0-2 1 0 Tree 
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Chapter 4 Deer Browsing Effects on Plant Chemical and Nutrient Concentrations  

Abstract 

Herbivores influence ecosystem nutrient dynamics in many ways, including altering the 

concentrations of nutrients and secondary defense chemicals in plant tissues, which can impact 

decomposition and nutrient cycling. Although much is known about how white-tailed deer 

(Odocoileus virginianus) alter temperate forest vegetation structure and composition, 

information about how they alter plant chemistry and ultimately forest nutrient dynamics is 

lacking. This detailed analysis of plant chemical composition in temperate forest understory 

plant communities shows that deer browsing alters plant chemistry and that plant species vary in 

their responses to browsing. Within plant species, concentrations of carbon (C), nitrogen (N), 

phenol, terpene, glycoside, and quinone sometimes increased, sometimes decreased, and 

sometimes did not change, in response to deer browsing. As a result, the chemical composition 

of leaf litter entering soils can change in response to increased deer browsing pressure. Together 

with inherent differences among plant species in chemical composition shown here, this work 

highlights the importance of both selective browsing and browsing induced defenses for 

ecosystem nutrient dynamics. Even though both hypothesized mechanisms appear to operate 

simultaneously, shifts in plant community composition due to selective browsing are likely the 

dominant driver of changes in the phytochemical landscape in temperate forests, more so than 

browsing-induced chemical changes within species. Although others have shown that plant 

defense responses change depending on nutrient supply, shifting from tolerance to induced 

resistance, I did not detect interacting effects of browsing and C:N in soil and litter on foliar 



 81 

chemical composition. Overall, among-species differences were more important than 

environmental variables in determining plant chemical responses to browsing.  

Introduction 

 Herbivory can alter patterns and rates of ecosystem nutrient cycling via complex trophic 

interactions (Hunter 2016). A familiar and important trophic interaction is the one between 

herbivores and primary producers. Selective foraging by herbivores, including white-tailed deer 

and other ungulates, changes plant community composition, which ultimately alters the chemical 

composition of plant tissues and the senesced tissues entering soils as leaf (and other) litter 

(Pastor et al. 1993, Olff and Ritchie 1998, Wardle 2002). Plant litter chemistry, and other traits, 

have major influences on decomposition rates across biomes (Cornwell et al. 2008). Changes in 

plant litter chemistry in response to herbivory are widespread and can serve to decrease 

palatability (Boeckler et al. 2011, Schuldt et al. 2014). These plant responses can also have 

consequences for decomposability of leaf litter; plants that are harder to digest by herbivores are 

often also more resistant to microbial decomposition (Grime et al. 1996, Cornelissen et al. 1999). 

For example, when herbivores browse on plants that are easy to digest and avoid plants with 

relatively greater chemical or structural defenses, plant communities can shift composition to 

becoming dominated by plants that produce recalcitrant leaf litter that decomposes more slowly 

and lower soil nutrient availability (Cornelissen et al. 1999, 2004, Cornwell et al. 2008). The 

chemical composition of foliage and leaf litter resulting from senesced leaves, including carbon 

and protein content as well as plant secondary chemistry, has a strong effect on abundance and 

activity of decomposers (Taylor et al. 1989). Defensive secondary chemicals, such as phenols 

and alkaloids, can influence browsing behavior of ungulates. For example, elk preferentially 

browse on aspen with relatively low phenol and glycoside concentrations compared to aspen 
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with higher concentrations (Bailey et al. 2007). Similarly, this can be found on Isle Royale in 

Lake Superior where moose selectively browse on highly palatable (low C:N) deciduous species, 

driving the plant community towards being less palatable (high C:N). In the boreal forest on this 

large island, moose browsing decreases plant diversity and lowers rates of N cycling by 

selectively removing species with high C:N ratios (Pastor et al. 1993, Pastor and Cohen 1997). 

This example shows that selective browsing, which deer are known for as well (Waller et al. 

2009), can alter the quality and abundance of leaf litter entering the soil and thus feed back to 

influence soil nutrient availability. Leaf litter chemistry drives decomposition and mineralization 

rates, and when leaf litter recalcitrance increases decomposition decreases (Cornelissen et al. 

1999, 2004).  As such, slow growing species with more recalcitrant tissues function to lower soil 

nutrient availability and foster conditions that put fast-growing species with higher nutrient 

demands at a competitive disadvantage (Cornelissen et al. 1999). This process is likely similar 

for deer browsing in temperate forest ecosystems, given that deer browse selectively like most 

ungulates and have been shown to alter plant community composition quite dramatically (Waller 

et al. 2009, Frerker et al. 2014). Deer have also been shown to decrease both leaf litter 

decomposition and soil nitrogen mineralization rates (Harrison and Bardgett 2003, 2004, Chollet 

et al. 2019). However, whether or not these processes are driven by alterations in leaf tissue 

chemistry is not well understood. Harrison and Bardgett (2003) suggest that deer decrease 

decomposition through the effects of browsing on litter quality, but no studies have shown 

consistent impacts of deer browsing on C:N ratios in leaf tissues and litter as has been shown for 

moose browsing (McInnes et al. 1992, Harrison and Bardgett 2003).  

In addition to selective foraging, herbivory can also change the phytochemistry of plant 

tissue by inducing chemical defense mechanisms (Baldwin and Schultz 1983, Baldwin et al. 
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2002, Karban and Baldwin 2007, Lindroth and St Clair 2013, Benedek et al. 2019). These 

mechanisms include changes in elemental stoichiometry, production of plant secondary 

metabolites (PSM), and the production of volatiles to attract enemies of insect herbivores 

(Kessler and Baldwin 2002, Rhodes et al. 2017). Damage to living plant tissues can be  reflected 

in plant litter quality and can slow decomposition rates (Findlay et al. 1996).  

Deciduous trees show two main responses to herbivory: 1) premature leaf abscission and 

2) induction of secondary compounds (Chapman 2006). Premature leaf abscission typically leads 

to improved litter quality and an acceleration of decomposition, while the induction of secondary 

compound production can decelerate decomposition. Herbivore-induced changes in leaf litter can 

thus have important consequences for nutrient cycling and productivity when reduced 

decomposition rates decrease nutrient availability to plants. Herbivore effects on ecosystem 

processes can vary from negative, to neutral, to positive. This variation in direction of herbivore 

effects can be explained by variations in the abilities of plant taxa to induce compensatory or 

defensive responses. 

Phenols, which encompass a broad spectrum of plant secondary metabolites in plant leaf 

tissues, have been intensively studied with regard to defense against herbivores (Sunnerheim-

sjoberg 1992, Hunter and Schultz 1993, Warbrick et al. 2020). Phenolic glycosides are well 

studied in aspen and are known to provide effective defense against ungulates (Wooley et al. 

2008, Rhodes et al. 2017). Quinones, which are formed by oxidation of phenols, bind to leaf 

proteins and inhibit digestion of proteins by herbivores (Bhonwong et al. 2009). Terpenes also 

function as plant defense compounds (Gershenzon and Dudareva 2007). For example Scots pine 

needles with high terpene concentrations can negatively impact moose browsing (Danell et al. 

1990), and Norway spruce trees with increased terpenes were colonized less by bark beetles 
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(Erbilgin et al. 2006). Ungulate browsing on balsam fir in eastern Canada, however, did not seem 

to relate to phenol levels in needles (Warbrick et al. 2020). Each of these chemical compounds 

can vary in presence and quantity, and mixtures of all compounds combined vary within and 

among species (Moore et al. 2014). Herbivores can alter the mixture of chemical compounds in 

plant communities, whether these compounds are induced defenses or constitutive. Additionally, 

changes in the amounts and types of defensive compounds in plant tissues, as well as 

compensatory growth responses, can vary across environmental gradients due to differences in 

resource availability (Mattson 1992, Bardgett and Wardle 2003, Moore et al. 2014, Burghardt et 

al. 2018).  

Variation in plant tissue chemistry across time and space has been described as the 

“phytochemical landscape” (Hunter 2016). It is in this phytochemical landscape that trophic 

interactions take place and nutrient cycling patterns and rates can change. In this study I analyze 

variation in foliar chemistry of temperate forest understory plant communities that have been 

experimentally protected from (by experimental exclosures for 20 years) or subjected to deer 

browsing. I explore a temperate forest understory phytochemical landscape, sensu Hunter (2016), 

focusing on plant C and N concentrations and plant secondary compounds distributed across 

browsed and non-browsed landscapes as defined by my experimental and control plots. I 

examine chemical compositions of plant species in browsed and non-browsed plots, to test 

mechanisms of intra- and interspecific differences in plant chemistry. This approach allows for 

comparing two possible mechanisms by which deer browsing can shift plant community 

chemistry: induced chemical responses (changes within species) and selective browsing 

(differences between species).  
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Plants need to balance resource uptake for use in replacement of lost tissues or to 

sequester and protect resources from herbivores (Schultz et al. 2013). Physiological trade-offs 

between growth and defenses exist because resources must be diverted either way; plants must 

either outgrow herbivory fast enough, thereby directing resources away from the production of 

chemical and structural defenses, or vice versa, must allocate resources to chemical and 

structural defenses thereby diverting resources from producing foliage and other tissues (Mattson 

1992). Based on this trade-off between investing in growth vs. production of defense compounds 

in response to herbivory (Mattson 1992), the level of defense will vary with resource availability; 

As resources become more limited, competition favors plants with high levels of defense 

compounds due to constraints in ability to compensate for herbivory with new growth. In 

resource rich habitats, in contrast, competition favors plants capable of compensatory growth, 

increased N, and low levels of defense compounds. 

The objective of this research is to compare deer browsing effects on understory plant 

chemistry across environmental gradients. I used fenced exclosures along a soil fertility gradient 

to test for deer browsing effects on plant C, N, and defense compounds, and associations 

between browsing and environmental factors. I predicted that plant defense compounds would 

increase with deer browsing in low nutrient environments and that plant chemical communities 

would change as a result. In contrast, I predicted that plant defense compounds would remain 

similar under high nutrient environments. The underlying premise here is that environments with 

low resource availability favor plant species with higher levels of defense compounds that lack 

the ability to allocate resources to compensatory growth in response to browsing. Also, I 

predicted that plant leaf N will increase with deer browsing under high nutrient environments, 

but will decrease under low nutrient environments, because resource rich environments select for 
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fast-growing plants with low levels of costly defenses that outcompete plants producing costly 

defense compounds that diminish potentials for compensatory growth. Testing these predictions 

provides insights into two possible mechanisms by which the phytochemical landscape (plant 

community chemistry) might change with deer browsing: 1) intraspecific variation: browsing-

induced production of chemical defenses alter plant leaf chemistry, and 2) interspecific variation 

among plant species: selective browsing alters the quality and abundance of leaf litter in the plant 

community.  

Methods 

Study sites 

I selected nine study sites within three Metroparks distributed across Oakland, Macomb, 

and Wayne counties in the greater Detroit Metro area of Michigan, USA 

(https://www.metroparks.com/about-us/park-maps/). These sites are representative of temperate 

forests in the US Midwest and Northeast in having experienced increases in deer populations 

since the 1970s, with densities reaching up to 20 deer per km2 in some areas (Alverson et al. 

1988, DNR 2010). The three sites in each Metropark are abbreviated as follows:  Spring Hill 

(SH), Tamarack (TR), and Wild Wing (WW) are within the Kensington Metropark (K); Big Tree 

(BT), Long Bark (LB), and Railroad (RR) are within the Oakwoods Metropark (OW) ; Lake 

Loop (LL), Return Trail (RT), and West Branch (WB) are within the Stony Creek Metropark 

(SC). In June and July of 2017, I sampled within (non-browsed plot) and outside (browsed plot) 

of nine 10 m x 10 m experimental deer exclosures constructed in 1999, three in each of the three 

Metroparks as described above. These 20-yr-old exclosures are in dry-mesic and mesic forest 

types. Dry-mesic forests are oak or oak-hickory forest types in southern Lower Michigan and 

typically grow on sandy loam or loamy soils. Mesic forests in southern Michigan are typically 

https://www.metroparks.com/about-us/park-maps/
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dominated by American beech and sugar maple, growing on loamy upland soils. The exclosures 

are 2.5m tall and exclude ungulates (deer) while allowing small herbivores to move in and out. 

Mean annual temperature in southeastern Michigan is 9°C, mean annual rainfall is 81cm, mean 

annual snowfall is 130cm (U.S. Climate Data), and mean annual litterfall is 3422 kg dry mass ha-

1 y-1. White-tailed deer (Odocoileus virginianus) is the sole ungulate browser in this region, with 

densities of 8 and 16 deer per square kilometer at the Stony Creek and Oakwoods and 16 deer 

per square kilometer at Kensington parks. Deer populations are estimated and actively managed 

by Huron Clinton Metroparks (Ryan Colliton, personal communication 2018).  

Vegetation surveys 

Vegetation surveys were performed inside and outside deer exclosures to test for the 

effects of deer browsing on plant communities (Chapter 3). Control plots were established 

outside and nearby each exclosure to ensure similar slope, aspect, and habitat. Within each 

control (browsed) and exclosure (non-browsed for 20 years) plot I randomly placed three 1m x 

1m frame quadrat locations within each plot. All plant species in the ground layer and understory 

were identified within each quadrat. I focused on ground layer vegetation, including woody and 

non-woody species, and understory vegetation because these layers are accessible to browsing 

deer. Tree seedlings and saplings were included in the vegetation surveys; tree stems of 1 m in 

height or higher were considered saplings and those under 1 m were considered seedlings. Tree 

stems with a diameter at breast height of > 9cm were considered adult tree and excluded from 

vegetation surveys.  

 Percent cover was visually estimated for each species or taxa (or growth form in the case 

of graminoids), and bare ground if there was no vegetation. Percent cover of all species was then 

summed per quadrat, sometimes resulting in values above 100% if vegetation was overlapping. 
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Fresh leaves of the three most dominant species in each plot (browsed, and non-browsed), were 

collected in June and July 2017 with gloved hands and were flash frozen in liquid N. Because not 

all species were equally dominant or present in browsed and non-browsed plots, I sometimes 

collected different species inside and outside exclosures within the same forest stand. Therefore, 

some but not all species have paired samples from browsed and non-browsed plots. This 

approach was employed to maximize chemical information at the plot level given the limited 

budget to process samples. Frozen leaves were stored in a cooler on dry ice in the field and at -80 

˚C in the laboratory. Leaves were lyophilized prior to grinding in a ball mill for further chemical 

analyses. Plant species richness was calculated by summing the number of species present in a 

quadrat. Total plant percent cover was calculated by summing the percent cover of all plant 

species within a quadrat. Plant species diversity (inverse Simpson) was calculated using the 

vegan package in R. Plot level richness, cover, and diversity were calculated by averaging the 

three quadrats.  

Leaves 

Canopy leaf litterfall (kg ha-1 yr-1) was estimated using five, 0.31 m2 litter baskets (Popma 

and Nadelhoffer 2020) within each browsed (n = 9) and non-browsed plot (n = 9). Leaves were 

collected once in October and once in December (2018), separated by species, and dried for 48h 

at 80˚C in our University of Michigan laboratory. Collection baskets were 66 cm x 46 cm, 

modified from commercial laundry baskets by drilling drainage holes in the bottoms.  

Canopy leaf litter was sorted by species and dried for 48h at 80°C to analyze leaf C:N for 

each individual species. Leaves were ground for 2 minutes to a fine powder prior to C:N, %C, 

and %N analyses. Site-level C:N ratios were calculated by first multiplying the mass of each 

represented species by the %C and %N in the litter of that species, resulting in grams of C and N 
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in litter of each species at each site. Site level litter C:N ratios were then calculated by summing 

the masses of C and N of all the species at each site, and dividing total grams C by total grams N.  

Environmental variables  

I collected one composite soil sample inside and outside of each deer exclosure (n = 9) in 

June 2017. Each composite sample consisted of five 2.5 cm diameter soil cores sampled to a 

depth of 10 cm. Composite soil samples were used for determining soil C:N using a CN 

Analyzer (University of Michigan Biological Station Analytical Lab, Pellston, MI, USA).   

Fresh soils were stored at 4°C and prepared within 5 days of collection for C:N analyses. 

Chemical analyses 

Lyophilized, homogenized understory leaf tissue samples (ca. 20 mg) were extracted 3x 

in 300 µL HPLC-grade methanol (Fisher OPTIMA), in an ultrasonic bath (cycle time 15 mins). 

Ice was added to the bath to ensure that samples remained chilled throughout extraction, and the 

laboratory lighting was subdued any time the samples were not stored in an opaque container. 

Between extractions, the samples were centrifuged at 16,000 x g, and the supernatant was 

collected and brought to 1.0 mL with HPLC-grade methanol. Sample extracts were stored at -80 

oC prior to further processing as described below. 

A 100 µL aliquot of each supernatant solution was transferred to a certified-clean amber 

GC vial and was evaporated to dryness under vacuum at 30 oC. To the vial, 900 uL of fresh 

HPLC-grade acetonitrile (Fisher OPTIMA) and 100 µL of 95% N-Trimethylsilyl-N-methyl 

trifluoroacetamide (MSTFA; ACROS Organics) were added. The vials were vortexed until the 

extract was re-dissolved and the MSFTA was incorporated into the acetonitrile. Vials were then 

capped and the contents were refluxed at 65 oC for one hour. Preliminary testing showed that 

MSTFA produced substantially more derivatized phenols than N,O-
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Bis(trimethylsilyl)trifluoroacetamide (BSTFA) reagents both with- and without trimethylsilyl 

chloride catalyst (Sigma Aldrich) in these samples. No appreciable differences in derivatized 

products or abundances were found when refluxing 1, 2, 4, or 10 hours and products were found 

to be stable for >48 h at room temperature.  

Samples were analyzed for semi-volatile components using a Thermo Scientific Trace 

1310 GC and ISQ LT mass spectrometer. Data acquisition and analyses were performed using 

Thermo Scientific/Dionex Chromeleon (v.7.2; Dionex Corporation Sunnyvale, CA). 1 µL 

aliquots were injected, with a 1:10 split, into a constant flow of helium gas set to 1.5 mL min-1 

onto a 45 m x 0.25 mm x 0.25 µm TG-5 MS column (Thermo Scientific). GC parameters were: 

inlet temperature 300 oC; initial temperature 100 oC, held for 1 minute then ramped at 4 oC to 270 

oC then held at 270  oC for 16 minutes. The MS transfer line was held at 300 oC and the ion 

source at 320 oC. MS scanning began at 5 minutes runtime, just after the solvent front and excess 

MSTFA finished eluting; scanning was from m/z 50-500 for 0.2 s/scan. Peaks were integrated 

manually, baseline spectral correction performed for each individual peak using the average of 

21 spectra from within the peak (14 at FWHM and 7 from the apex) and 9 spectra from the 

nearest detected baseline. Spectra were queried using the NIST 2014 EI GC/MS spectral 

database. Periodic re-injection of samples throughout the run showed no appreciable degradation 

of sample constituents and the MS tune stability was assured by means of infusing calibration 

gas directly into the ion source every 24 hours.  

A second, 10 µL aliquot was diluted to 2 mL total volume in ultrapure water and was 

analyzed for total phenolic content using the Folin-Ciocalteau method optimized for use on a 

segmented flow analyzer (Seal Analytical AA3 automated colorimeter; Seal Analytical Meqoun, 

WI). Briefly, the manifold employed was identical to that commonly utilized for ortho-phosphate 
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analysis (Seal Analytical Application #G-175-96). Samples were infused into the manifold at 1.6 

mL/min with a Sample:Wash ratio of 1:3. The 0.2N Folin-Ciocalteau reagent (Sigma Aldrich) 

with 1% by volume Dowfax 2A1 (Dow Chemical Company, Midland, MI) was infused 

immediately after segmentation air at 0.1 mL/min. A delay coil (10-turn) enabled mixing of the 

reagent and sample, thereafter saturated sodium carbonate solution was infused at 0.1 mL/min. 

Following the infusion of sodium carbonate, samples entered another 10-turn mixing coil and 

were subsequently incubated at 37 oC for 10 minutes before encountering a 10-turn delay loop 

(to return samples to room temperature), and then colorimetric analysis at 660 nm. Gallic acid 

was used as the calibration solution, and yielded a linear regression (r2 > 0.995) over the range of 

2-200 mg/L. To correct for chlorophyll absorbance at this same wavelength, samples were also 

run with ultrapure water in place of Folin-Ciocalteau reagent, and the resulting absorbances 

subtracted from the raw absorbances run with reagent in place.    

Data analyses 

Effects of browsing, environmental factors, and plant species identity on chemical 

richness, chemical diversity, %C, %N, C:N, total phenols, and other chemical constituents as 

described below were analyzed using linear mixed effects models (lmer function in R, R Core 

Team 2019). I ran two separate models for each response variable: 1) effects of browsing and 

environmental gradients, and their interactions were analyzed using linear mixed effects models. 

This model tested predictions on deer browsing effects on plant chemistry. 2) Effects of 

browsing, species identity, and their interactions were analyzed using linear mixed effects 

models. This second model tested predictions on intra- and interspecific variation in chemical 

responses to deer browsing. Due to lack of power and paired samples the models were split into 

two, instead of combining all factors into one. Site locations were included as random effects to 
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account for variation among sites. Within species differences in all response variables were 

analyzed by running a linear model (lm function in R) for each species for which I had samples 

from both browsed and non-browsed plots. Data from American elm (Ulmus americana) were 

log transformed to equalized variance before running the linear model.  

Mass spectrometer analyses yielded 674 individual compounds across 181 samples. I 

removed 496 rare compounds that were present in less than 5% of samples. The remaining 178 

compounds contained many compounds that were very similar to one another, oftentimes only 

being a slightly different derivative. Due to this overlap in compounds, I aggregated the 178 

compounds into 18 groups: acid, alcohol, amino alcohol, amino acid, catechin, gluconolactone, 

glyceride, glycoside, ketone, lipid, metabolite, nitrile, nucleic acid, quinone, siloxane, sterol, 

sugar, and terpene. Grouping of compounds was done using tentative identifications from the 

NIST database. Although not all groups of compounds are active against herbivory, all 

compounds were included in chemical community analyses to test for browsing effects on 

overall plant chemical communities.  

Effects of browsing, environmental factors, and plant species identity on four specific 

groups of chemical compounds were analyzed using linear mixed effects models (lmer function 

in R). I chose four groups of compounds that are involved in plant defenses against herbivores: 

1) phenols, 2) terpenes, 3) glycosides, and 4) quinones. Phenols were measured separately and 

were calibrated to reflect actual concentrations (µg mg-1). As I was not able to calibrate the other 

chemical compounds, these data were analyzed using areas under curves as proxies for relative 

amounts instead of actual amounts. As such, data on terpenes, glycosides, and quinones are 

shown as relative comparisons and not as actual concentrations. Species differences in phenol 

concentrations were analyzed using log transformed phenol data.  
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I analyzed main effects of deer browsing and five environmental factors on chemical 

composition, as well as interactions between deer browsing and each environmental factor, using 

a PERMANOVA model. PERMANOVA models were executed with the adonis2() function in 

the vegan package in R (R Core Team 2019). Chemical compounds were grouped into 19 

classes: acid, alcohol, amine, amino alcohol, amino acid, catechin, gluconolactone, glyceride, 

glycoside, ketone, lipid, metabolite, nitrile, nucleic acid, quinone, siloxane, sterol, sugar, and 

terpene.  The response variable was my chemical community dissimilarity index. To create the 

dissimilarity index, I transformed chemical compound abundance data using a Hellinger 

transformation, followed by the calculation of Euclidian distances. I chose the Hellinger 

transformation because it is particularly suited for abundance data with many zeros (Legendre 

and Gallagher 2001). Effects of sites (n=8, excluding the lake loop site) were accounted for as 

random effects because I was mainly interested in environmental effects. PERMANOVA 

analyses were performed on n=8 sites, excluding one site referred to as “Lake Loop”. Data from 

this site in the Stony Creek forest were excluded because leaf litter C:N average here was more 

than 2 standard deviations outside the distribution of other plots, likely due to the presence of 

large amounts of Tilia americana (American basswood) leaf litter at this site but at none of the 

other sites. Additionally, similar PERMANOVA analyses were performed separately to test for 

within and among species differences. Within species differences were tested with separate 

models for each species collected from browsed and non-browsed plots to test differences in 

chemical community composition due to deer browsing. 

Chemical composition data were plotted using non-metric-dimensional scaling (NMDS) 

scores of the chemical compositions of the two deer browsing treatments (browsed and not 

browsed) and along environmental gradients. NMDS scores were calculated using the metaMDS 
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function in the vegan package in R. In order to visualize effects of continuous environmental 

variables on chemical composition, I transformed data from continuous environmental variables 

into three discrete factor variables: High, Medium, Low. Sites were assigned to High, Medium, 

or Low bins based on histogram distributions of site-level environmental averages for the 

following variables: C:N Soil, C:N Litter, and Litterfall. Plotting histograms of site averages for 

each variable allowed me to bin sites into High, Medium, or Low, using natural breaks in 

distributions (Chapter 3, Table 1). 

Site-level phenolic content was calculated by weighting phenolic concentration using the 

average percent cover of individual species. Phenolic data were analyzed for the three most 

dominant species in each plot. I multiplied the phenol concentration of each leaf sample by the 

average percent cover in a plot for the corresponding species. I then summed the averages of this 

product for each species in the plot to estimate the plot level phenolic content. A linear model 

(lm in R) was used to test for browsing and site effects on site phenol content. GC Mass Spec 

data were not subjected to a site-level analyses, because I was not able to calibrate other 

compounds and weight them accordingly.  

Results 

Deer browsing effects on foliar nitrogen and C:N 

 Deer browsing and the three other environmental factors had no overall effect on either 

%N or C:N in understory plant leaf tissues (Figure 4.1, Table 4.1), but species showed 

significant variations in their C:N responses (p=0.01, Table 4.1). Foliar %N varied significantly 

among species (p<0.001), from a low of 1.6% in red maple (A. rubrum) without deer browsing to 

a high of 4.3% in autumn olive (E. umbellata) with browsing (Figure 4.1). Browsing decreased 

foliar %N in American elm (U. americana) (p=0.01) and increased %N in autumn olive foliage 
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(p=0.05) (Figure 4.1). C:N ratios varied significantly among species (p<0.0001, Table 4.1), from 

a low of 11.1 in autumn olive to a high of 30.0 in red maple. C:N ratios increased with browsing 

in American elm and Virginia creeper (P. quinquefolia) (p=0.001 and p=0.03 respectively) but 

decreased in autumn olive (p=0.03). Furthermore, deer browsing effects on C:N ratios 

significantly varied significantly among species (p=0.01, Table 4.2).  

Deer browsing effects on plant defense compounds 

 Although overall plant leaf total phenolic content (µg mg-1) was not affected by deer 

browsing, my analysis showed a weak, but significant, interaction between deer browsing and 

canopy litterfall (Table 4.1). Browsing effects were more positive with increasing canopy 

litterfall (Table 4.1, coefficient estimate 9.5e-04). Total phenol concentrations also differed 

among plant species (p<0.001, Figure 4.2) ranging from 0.5 µg mg-1 in non-browsed American 

elm foliage to 2.9 µg mg-1 in both browsed American elm and sugar maple (A. saccharum). 

Browsing effects within species varied (p=0.004); autumn olive, sugar maple, and American elm 

increased in total phenols with deer browsing, while Virginia creeper decreased (Figure 4.2). To 

weigh the total amount of phenol each species contributes to the ecosystem, I plotted total phenol 

against percent cover for each species (Figure 4.3). Species with high phenolic content and low 

percent cover contribute lower amounts of phenol to the phytochemical landscape than do 

species that are high in phenolic content and percent cover. Similarly, species with low phenol 

concentrations, but with relatively high percent cover values contribute more phenols to the 

chemical landscape than do species that are low in phenol concentration and with low percent 

cover values. Species that plot on the top right corner of this graph, in this case sugar maple, are 

the most important at the landscape scale, followed by species in the top left or bottom right.  
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 I analyzed relative amounts of chemical defense compounds, including terpene, glycoside 

and quinone, based on the areas under GC mass spectrometer curves (See Methods). As 

expected, plant species differed in chemical defense compounds, and in their responses to 

browsing (Table 4.1). Foliar terpene was the only group of defense compounds affected by deer 

browsing, surprisingly showing an overall decrease, but with variations in response among 

species (Table 4.1, Figure 4.4). Ash (Fraxinus sp.) had the highest terpene levels, while autumn 

olive, Virginia creeper, poison ivy (T. radicans), geranium, and may apple (P. peltatum) all 

showed relatively low terpene levels (Figure 4.4). Canopy litterfall C:N was negatively 

associated with terpene, and positively associated with glycoside, but these associations were 

weak (Table 4.1). Overall, deer browsing, and environmental factors did not influence foliar 

glycoside content. However, glycoside content did vary significantly among plant species 

(p<0.0001, Figure 4.5) and plant species showed variation in glycoside responses to deer 

browsing (p<0.0001, Figure 4.5). Glycoside levels were relatively high in May apple, ash, and 

Virginia creeper (Figure 4.5). Quinones were not abundant and were only detectable in red 

maple, American elm, geranium, poison ivy, and sugar maple, with levels being highest in red 

maple (Figure 4.6). 

Plant chemical richness and diversity 

 Linear mixed effects models showed significant variations in chemical compound 

richness and diversity based on sites, plant species, and deer browsing (Table 4.1, Figure 4.7). 

Overall chemical richness decreased under deer browsing, but this response was not uniform 

across sites (Figure 4.7). Furthermore, variation in chemical richness was strongly associated 

with site location regardless of deer browsing treatment, as shown by highly significant random 

effects (Table 4.1). Chemical compound richness at LB (53) and RR (53) was higher than at SH 
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(38). Similarly, diversity of chemical compounds varied between sites (p<0.0001, Figure 4.7), 

but surprisingly no browsing effects were detected. There was an apparent trend of increasing 

chemical diversity with deer browsing, but the overall effect of deer browsing was not 

statistically significant (Figure 4.7). Chemical diversity was highest at LL (13), and the 

remaining 8 sites did not differ. Interactions between deer browsing and overstory litterfall were 

significant; specifically, browsing effects on richness showed positive associations (trending less 

negative) with increased litterfall (p=0.02, Table 4.1).   

Species differed in chemical richness (p=0.003) as calculated using the 178 most 

common individual chemical compounds identified in foliage at these sites; May apple and ash 

showed the highest foliar chemical richness in their leaves (59 and 58 respectively), and were 

significantly different from American elm (38), graminoids (37), and autumn olive (35). 

Chemical richness in sugar maple (41), poison ivy (40), and trillium (40) was also lower than in 

American elm and graminoids (Figure 4.8). Within species differences were found in the 

chemical richness of only one genus, ash (Fraxinus sp.), which increased from 53 to 64 

individual chemical compounds with deer browsing (p=0.005). Variation in chemical compound 

diversity between species was significant (p<0.0001), and browsing effects differed between 

species (p=0.0003). Ash (Fraxinus sp.) showed the highest Inverse Simpson of value 13.4, 

followed by enchanter’s nightshade (Circaea lutetiana) at 12.0. The other ten species (May 

apple, American elm, graminoids, poison ivy, autumn olive, trillium, red maple, sugar maple 

geranium, Virginia creeper) were significantly lower, ranging between 3.5 and 8.5. Deer 

browsing only affected chemical compound diversity in autumn olive, increasing it from 4.6 to 

7.9 (p=0.003, Figure 4.8).  
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Plant chemical composition 

 Plant chemical composition was affected by deer browsing, soil C:N, and litter C:N 

(Table 4.1, Figure 4.9). Overall, the PERMANOVA model explained a small portion of chemical 

composition (Table 4.1, R2=0.1). The strongest predictor in the model was deer browsing 

(R2=0.03). In contrast to predictions, PERMANOVA analyses did not detect any variation in 

deer browsing effects with other environmental factors. To visualize the effects on chemical 

composition, I plotted NMDS scores of chemical communities (Table 4.1, Figure 4.9). The stress 

value of NMDS was acceptable at 0.2.  

 Plant chemical community composition also varied based on plant species identity 

(Figure 4.10). Moreover, the direction and strength of browsing effects on plant chemical 

communities differed among species as well (Figure 4.11). PERMANOVA analyses showed that 

American elm, ash, autumn olive, sugar maple, and Virginia creeper all had different within-

species chemical communities when comparing browsed to non-browsed leaves (Figure 4.11).  

Site level chemistry  

 Species differed in phenolic concentration, and deer browsing had effects on phenolic 

concentrations in some but not all species. Similarly, the presence of some, but not all, species 

within plant communities was affected by deer browsing (Chapter 3, Table 3.4). To estimate site 

level phenolic content, I took into account the phenolic content and the average percent cover of 

each species, in browsed and non-browsed plots.  Deer browsing did not affect site level 

phenolic content (p=0.16), but among site differences in phenolic content were significant 

(p=0.003, Figure 4.12). SH and LB, had relatively higher phenol content than RT, WW, and LL 

(Figure 4.12). No differences were found among sites or browsing treatments when comparing 

site-level %N or C:N.  
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Discussion 

The goal of this study was to provide new insights into two possible mechanisms by 

which the phytochemical landscape (plant community chemistry) might change with deer 

browsing: 1) intraspecific variation: browsing-induced production of chemical defenses alter 

plant leaf chemistry, and 2) interspecific variation among plant species: selective browsing alters 

the quality and abundance of leaf litter in the plant community.  

I detected evidence for both mechanisms: Plant chemical composition varied strongly 

with species identity and plant species varied with respect to how their chemical compositions 

changed in response to deer browsing. Overstory litter C:N was the only environmental factor 

among those examined that had a significant direct effect on changes in chemical composition, 

but interactive effects between deer browsing and both litter C:N and litterfall were detected 

(Table 4.1). Of the defensive compounds analyzed here, phenol and terpene were affected by 

deer browsing; terpene decreased with browsing but this affect covaried with litter C:N, and 

browsing effects on phenol covaried positively with litterfall. Chemical richness decreased with 

browsing, but variation in richness was most strongly influenced by site location and plant 

species identity. Overall, differences in plant chemistry varied most strongly among plant 

species, and less so with deer browsing and other environmental factors.   

Plant nitrogen and C:N  

I predicted that plant leaf N would increase with deer browsing under high nutrient 

environments, but would decrease under low nutrient environments, because resource rich 

environments select for fast-growing plants with low levels of costly defenses that outcompete 

plants producing costly defense compounds that diminish potentials for compensatory growth. 

Contrary to these predictions, variations in plant N and C:N varied most strongly with species 
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identity, and showed no general or overall detectable responses to either deer browsing or 

environmental factors. Some individual species did vary in response to deer browsing. Changes 

in foliar N and C:N were most striking in autumn olive (E. umbellata) an exotic invasive species, 

in which foliar N concentration increased in response to browsing, and American elm (Ulmus 

americana) which decreased in foliar percent N. Browsing also increased percent cover of 

autumn olive, suggesting that deer herbivory leads to a competitive advantage in this species, 

potentially linked to N concentrations. The mechanism for this advantage is unclear based on this 

study, and it could be a direct or indirect result of deer browsing. Either way, the phytochemical 

landscape, sensu Hunter (2016), is likely affected by the combined increase in percent cover and 

N of autumn olive.  

Foliar C:N is another measure of plant tissue quality, affecting both herbivores and 

decomposers. The idiosyncratic nature of C:N responses at the ecosystem level to deer browsing 

that I observed in this study have also been reported by others (Harrison and Bardgett 2003, 

Bardgett and Wardle 2010). My results show this inconsistency is likely caused by differences 

among species in response to browsing, more so than by induced changes in plant tissue quality. 

Relative abundances of plant species at a site affect how ecosystem C:N is affected by deer 

browsing. Herbivore-induced changes in plant tissues have been shown to persist in senesced 

litter (Findlay et al. 1996, Chapman 2006). As litter C:N is an important driver of litter 

decomposition (Cornwell et al. 2008), therefore, significant browsing effects on plant community 

C:N will likely have consequences on decomposition rates and nutrient cycling in soils.    

Plant defense compounds 

I predicted that plant defense compounds would increase with deer browsing in low 

nutrient environments and that plant chemical communities would change as a result. In contrast, 
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I predicted that plant defense compounds would remain similar under high nutrient 

environments. The underlying premise here is that environments with low resource availability 

favor plant species with higher levels of defense compounds that lack the ability to allocate 

resources to compensatory growth in response to browsing. Variation in plant defensive 

compounds was most strongly correlated with plant species identify, and chemical responses to 

browsing varied among plant species. Contrary to my predictions, effects of browsing were not 

found to correlate strongly with environmental factors.  Variations within and among species 

suggests temperate forest understory plants can produce defensive compounds in different 

amounts both constitutively and in response to browsing. Phenol concentrations in American 

elm, sugar maple (seedlings), and autumn olive all increased with deer browsing, while 

concentrations in Virginia creeper decreased. Increased phenolic concentration did not however, 

always relate to increased performance (percent cover). Among the species in this study for 

which deer browsing increased foliar phenolic contents, only autumn olive increased in 

abundance with deer. These intra- and inter-specific differences in plant secondary metabolites 

can have wide effects on ecosystem functioning, including soil biota (Coq et al. 2018), litter 

decomposition (Austin and Ballaré 2010), soil N mineralization and C respiration (Kanerva and 

Smolander 2008), and microbial communities (Schweitzer et al. 2007).  

Plant genetic frameworks can be important in understanding intraspecific variation in 

plant defenses, and the consequences for soil functioning (Classen et al. 2007, Burghardt et al. 

2018, Coq et al. 2018). I detected intraspecific variation in chemical defenses against browsing 

in a few understory species, but not all. Most species had no detectable response in phenol levels 

to browsing. The lack of induced plant defenses however, does not mean a plant is not equipped 

to respond to browsing. This could instead indicated a tolerance rather than a resistance strategy, 
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or interspecific variation rather than intraspecific variation (Warbrick et al. 2020). Interspecific 

variation in plant chemistry also contributes significantly to a change in local chemical landscape 

due to shifts in relative abundance after selective foraging by herbivores (Pastor and Naiman 

1992). Interspecific variation in responses to herbivory can often be explained by associated 

metabolic costs and other trade-offs (Moore et al. 2014). Constitutive production of plant defense 

compounds is costly, therefore inducible defenses might be more common in plants that are not 

under continuous herbivory (Mithofer and Boland 2012).  

Species vary in phenol concentrations, but relative abundances of species vary across 

sites, and species abundances change with browsing. Site-level phenolic content, one piece of the 

phytochemical landscape, can be assessed by looking at shifts in phenol concentrations and shifts 

in plant species abundances due to deer browsing. Selective foraging shifts plant community 

composition, and thereby changes the chemical landscape and ultimately affect nutrient cycling 

(Pastor and Naiman 1992, Wardle 2002). Furthermore, my work showed some species respond 

to browsing by increasing and some by decreasing phenol concentrations. By combining 

phenolic concentrations and abundance data from long-term non-browsed and browsed plots, I 

did not detect differences in site-level phenol content. Similarly, foliar percent N and C:N 

remained unchanged at the site-level. From this preliminary comparison I cannot conclude that 

deer browsing affects plant chemical landscapes, however, variation in phytochemical 

landscapes among sites was significant. This variation among sites could add to the difficulty in 

finding consistent general patterns in deer browsing effects. Further research should carefully 

consider species abundance data and chemistry data to make site-level comparisons.   
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Plant chemical richness and diversity 

Individual plants and plant communities with greater defensive chemical diversity are 

thought to be better defended against herbivore attacks (Moore et al. 2014). I found significant 

variation in chemical diversity and richness both among species and with deer browsing. 

Chemical diversity in Autumn olive (E. umbellata) increased, as did chemical richness in Ash 

species (Fraxinus sp.). Autumn olive increased not just in chemical diversity, but also N 

concentration, in response to browsing and is a strong competitor that increases significantly in 

abundance in the presence of deer browsing (Table 4.3). Other species with relatively high 

chemical diversity included ash and enchanter’s nightshade. While autumn olive simultaneously 

showed increased percent cover and chemical diversity, enchanter’s nightshade decreased in 

percent cover with high chemical diversity. The ecological implication is therefore not uniform, 

more diverse defensive chemicals sometimes, but not always, equated to better defense against 

herbivores or came at the expense of growth and reproduction. Deer browsing decreased 

chemical compound richness, but species varied and not all species responded similarly. Autumn 

olive and graminoids, both strong competitors in the presence of deer, had low chemical 

compound richness. At the site level, plant communities varied in chemical richness and 

diversity, but I detected no effects of deer browsing. Similar to leaf N, among-species differences 

in richness and diversity of defense chemicals were more significant than within-species 

responses to browsing.    

Plant chemical composition  

Chemical composition in understory plant leaves correlated most strongly with plant 

species identity, and varied to a lesser extent with deer browsing and soil and litter C:N. 

Additionally, individual species also responded differently to deer browsing; both the direction 

and magnitude of browsing effects on chemical communities varied among species. 
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Environments are variable, in space and time, and this variation likely drives differences in 

chemical composition within and among plant species (Moore et al. 2014). Although underlying 

environmental gradients can be important drivers of plant chemistry and defense strategies 

within and among species (Findlay et al. 1996, Bardgett and Wardle 2003, LeBauer and Treseder 

2008, Burghardt 2016), I did not detect strong correlations between chemical composition and 

environmental factors. Plasticity of individual species responses to herbivory can result in 

differential induction of defense compounds across environmental gradients (Burghardt et al. 

2018). While most research has focused on insect herbivory, within-species variation in defense 

compounds has been shown Scotts pine, where individuals with higher terpene concentrations 

were browsed less by moose (Danell et al. 1990).  

Plant defense strategy can change depending on nutrient supply, shifting from tolerance 

to induced resistance (Burghardt 2016). However, I did not detect interacting effects between 

environmental gradients and deer browsing on plant chemical compounds. Chemical 

composition was affected by both deer browsing and environmental factors, but no interactions 

were detected. Overall, among-species differences were more important than environmental 

variables in determining plant chemical responses to browsing.  

 Could the impacts of deer browsing on plant chemistry described here lead to changes in 

soil nutrient cycling as detected by Popma and Nadelhoffer (2020)? Herbivore-induced changes 

in plant tissues have been shown to persist in senesced litter (Findlay et al. 1996, Chapman 

2006), but this is not always the case (Frost and Hunter 2008). Work on insect herbivores has 

shown that induction of chemical defenses can take place both at the site of attack or can occur 

systemically (Kessler and Baldwin 2002). Furthermore, plants can reallocate resources away 

from the site of attack to store N in roots and stems while increasing C in leaves (Frost and 
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Hunter 2008). Ungulates forage differently than insects, but variability in the mode of herbivore 

defenses is important to consider, nonetheless. Identifying whether the effects of deer browsing 

on temperate forest understory plant tissues persist in senesced litter is important to truly link 

browsing effects on plants to browsing effects on ecosystem processes such as decomposition 

and nutrient cycling. A recent decomposition experiment on a forested island off the west coast 

of Canada showed that litter decomposition is slower with deer browsing (Sitka black-tailed 

deer, Odocoileus hemionus sitkensis), and the authors suggested this is due to lower litter quality 

(Chollet et al. 2019). Chollet et al. attribute the decrease in litter quality they observed to 

documented shifts in plant communities, but whether induced defenses within species at their site 

contributed to changes in litter quality is unclear. Other ungulate browsing studies have found 

contradicting results, with slower decomposition in browsed Birch (Betula pubescens) in the 

Scottish Highlands (Harrison and Bardgett 2003) and increased decomposition rates in grazed 

tundra (Olofsson and Oksanen 2002). In addition to aboveground chemical changes in plant 

tissues, roots belowground can also respond chemically to herbivory (Hamilton and Frank 2001). 

Root responses to deer browsing are therefore an important topic to explore in future research 

efforts.  

Conclusion 

 This work shows that deer can change plant community chemistry by selective foraging, 

due to variation among species in plant chemistry, and by stimulating browsing-induced 

chemical responses in some species. Selective browsing by deer is known to dramatically alter 

plant communities and forest successional pathways (Waller and Alverson 1997, Rooney 2001, 

Russell et al. 2001, Rooney and Waller 2003, Côté et al. 2004, Frerker et al. 2014). Effects of 

deer browsing and species identity on leaf chemistry responses were both significant, but species 
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identity was significant across all measured responses while browsing was not. Therefore, 

although both hypothesized mechanisms appear to operate simultaneously, shifts in plant 

community composition due to selective browsing likely serve as the dominant driver of changes 

in the phytochemical landscape in temperate forests, more so than browsing-induced chemical 

changes within species. Although others have shown that plant defense responses change 

depending on nutrient supply, shifting from tolerance to induced resistance, I did not detect 

interacting effects of browsing and C:N ratios in litter and soil on foliar chemical composition. 

Although site-level chemistry did not show significant changes in phenol content, other 

(senesced) litter quality measures should be considered in this comparison, as well as a more 

accurate weighting based on biomass estimates. My conclusions should therefore be interpreted 

with caution until more complete measures are made.  
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Figures 

 

Figure 4.1 %N in plant leaf tissues with and without deer browsing in the twelve most common 

plant species across all sites. Significance level α=0.05, overall effect of browsing on %N was 

analyzed using a mixed effect model, with sites as random effects. No overall effect was found. 

Browsing effects on individual species were analyzed using a linear model (anova), significance 

was found in two species and is indicated with a *: U. americana decreased %N with browsing 

(p<0.01) and E. umbellata increased %N with browsing (p<0.05). %N also varied between 

species, species with different letters were significantly different.  
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Figure 4.2 Total phenol (µg mg-1) in plant leaves with and without deer browsing, in the twelve 

most common species. Significance level α=0.05, overall effect of browsing on phenol was 

analyzed using a mixed effect model, with sites as random effects. No overall effect of browsing 

was found, but species differed. Browsing effects within individual species were analyzed using 

a linear model, significance was found in four species: A. saccharum, E. umbellata, P. 

quinquefolia, and U. americana.  
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Figure 4.3 Total phenol and percent cover per species. Twelve taxa were found overall, five taxa 

were found only in non-browsed plots, one taxon only in browsed plots, and six taxa in both non-

browsed and browsed plots. Phenol concentration varied among species, and not all species 

respond similarly to deer browsing. 
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Figure 4.4 Relative terpene amount and percent cover per species. Twelve taxa were found 

overall, five taxa were only found in non-browsed plots, one taxon only in browsed plots, and six 

taxa in both non-browsed and browsed plots. Relative terpene amount varies among species, and 

not all species respond similarly to deer browsing. 
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Figure 4.5 Relative glycoside amount and percent cover per species. Twelve taxa were found 

overall, five taxa were only found in non-browsed plots, one taxon only in browsed plots, and six 

taxa in both non-browsed and browsed plots. Relative glycoside amount varies among species, 

and not all species respond similarly to deer browsing.  
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Figure 4.6 Relative quinone amount and percent cover per species. Twelve taxa were found 

overall, five taxa were only found in non-browsed plots, one taxon only in browsed plots, and six 

taxa in both non-browsed and browsed plots. Relative quinone amount varies among species, and 

not all species respond similarly to deer browsing.    
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Figure 4.7 Chemical compound richness and diversity with and without deer browsing, across 9 

study sites. Chemical richness varied at the site level (p<0.0001), and browsing effects varied 

(p=0.04); Chemical compound richness at LB (53) and RR (53), was higher than at SH (38). 

Diversity of chemical compounds varied between sites (p<0.0001), but browsing had no effect. 
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Figure 4.8 Chemical compound richness and diversity with and without deer browsing in 12 

different plant species that were found inside and outside exclosures. Asterix (*) indicates 

significant browsing effect. Richness significantly increased with browsing in Fraxinus sp. 

(p=0.005). P. peltatum and Fraxinus had highest foliar chemical richness in their leaves (59 and 

58 respectively), and were significantly different from U. americana (38), graminoids (37), and 

E. umbellata (35). diversity increased with browsing in E. umbellata (p=0.003). Fraxinus and C. 

lutetiana had higher diversity (13.4 and 12.0) than the other 10 species. 
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Figure 4.9 Chemical community composition NMDS averages with standard error overlaid on 

original NMDS points for deer browsing treatment, C:N soil and C:N litter. Deer browsing 

treatment is “Non-browsed” and “Browsed. Continuous values for C:N were grouped into three 

levels: low (green), medium (yellow) and high (black).  
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Figure 4.10 Average NMDS points for community composition of chemical compounds with 

standard error bars. PERMANOVA models show differences among twelve most common plant 

species (p=0.001). 
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Figure 4.11 Average NMDS points for community composition of chemical compounds with 

standard error bars. Deer browsing effects on plant chemical communities differ among species 

(p=0.001).  
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Figure 4.12 Total phenol load per site. Total phenol load represents a weighted sum of phenolic 

concentration per species based on percent cover at each site. A linear model did not detect 

significant browsing effects, but sites varied significantly (p=0.003). SH and LB were 

significantly higher in total phenolic levels than the other 6 sites.   
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Tables 

Table 4.1 Linear mixed effects model summary for plant tissue chemical content and 

composition. (****) indicates significance <0.0001, (***) indicates significance <0.001, (**) 

indicates significance <0.05, (*) indicates significance <0.1. Phenol and Richness results have 

coefficient estimates for significant factors, indicate strength and direction of effect. Quinone has 

a “+” to indicate direction of effect. Linear mixed models were used to analyze %N, C:N, 

richness, diversity, Phenol, terpene, glycoside, and quinone contents were analyzed using linear 

models.  

Mixed effects model 

(LMER) %N C:N Phenol Terpene Glycoside Quinone 

Chemical  

Richness 

Chemical 

Diversity 

Deer    -**   -9.6*  

CN.litter    -* +*    

CN.soil         

Litterfall         

         

Interactions         

Deer*CN.litter    +*     

Deer*CN.soil         

Deer*Litterfall   +9.5e-04*    +3.0***  

Total          

         

Random effects         

(1|site:park)       ***  ****  **** 

         

Linear model (LM)                 

Deer  *          ***  * 

Species  ****  ****  ****  ****  ****  ****  ****  **** 

Deer * species    ***  ****  *  ****    **  **** 

Random effects                 

(1|site:park)              
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Table 4.2 Model summary for PERMANOVA analyses of chemical community composition. 

Significance level p<0.1 is indicated with *, p<0.01***. The model R2 is 0.1. explaining 10% of 

variance in chemical community composition. P-values below 0.1 are considered ecologically 

significant. 

Model variables Df SumOfSqs R2 F Pr(>F)  

Deer 1 0.9 0.03 5.9 0.003 *** 

C:N litter 1 0.3 0.01 2.2 0.086 * 

C:N soil 1 0.8 0.03 5.3 0.003 *** 

Litterfall 1 0.3 0.01 1.8 0.125  

Deer * C:N litter 1 0.1 0.01 0.6 0.582  

Deer * C:N soil 1 0.1 0.01 0.4 0.771  

Deer * Litterfall 1 0.3 0.01 1.7 0.136  

Residual 169 26.2 0.90    

Total 176 29.0 1    

Total-Residual   0.10    
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Table 4.3 Plant species leaf %C and C:N, and the effect of deer on each species. Species marked 

with a “*” were significantly affected by browsing (p<0.05). Deer browsing decreased %C 

overall (p=0.006), but effects varied between species. %C increased in U. americana (p=0.05), 

and decreased in E. umbellata (p=0.01). C:N increased in U. americana (p=0.001) and P. 

quinquefolia (p=0.03), and decreased in E. umbellata (p=0.03). 

 

Plant species 

%C C:N 

Deer No Deer Deer No Deer 

 

Acer rubrum NA 47.9 NA 30.1 

Acer saccharum 47.2 47.1 25.0 26.4 

Circaea lutetiana NA 41.3 NA 16.7 

*Elaeagnus umbellata 47.4 48.1 11.1 12.5 

Fraxinus sp. 45.9 46.0 20.5 19.9 

Geranium sp. NA 45.2 NA 16.1 

Graminoid 44.6 NA 21.0 NA 

Podophyllum peltatum 45.6 45.6 24.0 21.5 

*Parthenocissus quinquefolia 43.2 43.1 24.2 19.7 

Toxicodendron radicans NA 44.7 NA 20.0 

Trillium NA 43.0 NA 15.2 

*Ulmus americana 45.8 44.7 27.0 20.8 

 

Table 4.4 Plant species leaf %N and the effect of deer on each species’ percent cover. %N 

values marked with a “*” were retrieved from the TRY plant database (Kattge and Knoll 2019).  

Plant species 

%cover affected by deer 

Deer 

effect 

%N 

Acer saccharum - 1.8 

Acer rubrum - 1.6 

Celastrus orbiculatus + 2.7* 

Circaea lutetiana - 2.5 

Elaeagnus umbellata + 3.9 

Graminoid + 1.4* 

Prunus serotina - 2.3* 

Smilax tamnoides - NA 

Toxicodendron radicans - 2.3 

Trillium - 2.9 
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Chapter 5 Conclusion 

 

In this dissertation, I evaluated the effects of deer browsing on temperate forests across 

environmental gradients. Although plant community responses to herbivores are well 

understood, direction and magnitude of effects on ecosystem processes and properties remain 

difficult to predict (Milchunas and Lauenroth 1993, Bardgett and Wardle 2003, Buchkowski et 

al. 2019). My goal was to elucidate some of the inconsistencies found in how herbivores affect 

ecosystem processes. To do so I used experimental deer exclosures in Southeastern Michigan, 

spanning co-occurring gradients of productivity and fertility. I first investigated effects of deer 

browsing on soil carbon (C) and nitrogen (N) cycling (Chapter 2, (Popma and Nadelhoffer 

2020)). The strength and direction of browsing effects on N and C cycling shifted from positive 

to negative across a fertility gradient. Deer browsing increased net N mineralization rates in high 

nutrient environments and decreased N mineralization rates in low nutrient environments, 

whereas browsing decreased soil respiration rates in high nutrient environments and increased 

respiration rates in low nutrient environments. The contrasting patterns of deer browsing effects 

on respiration and net N mineralization rates might be explained by microbial community 

responses to changes in N inputs. At high nutrient sites, plants might tolerate browsing by 

increasing productivity. This increased productivity could lead to more N-rich plant detritus 

entering the soil decomposition cycle, which could reduce microbial C respiration (Frey et al. 

2014). The importance of environmental gradients in mediating browsing effects on soil C and N 

cycling I found fits with existing acceleration and deceleration frameworks in which resource 
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availability determines the direction of indirect herbivore effects on ecosystem processes  

(Bardgett and Wardle 2003, Côté et al. 2004, Schmitz et al. 2015).  

I then explored potential underlying mechanisms of deer browsing effects on ecosystem 

nutrient cycling. To do so, I investigated variations in the effects of browsing on plant 

communities (Chapter 3) and plant chemistry (Chapter 4) across an environmental gradient. Deer 

effects on plant communities were significant but did not vary with environmental factors. 

Browsing significantly decreased several plant structural measures, including plant percent 

cover, tree seedling cover, and sapling density, but had no detectable effects on plant community 

composition overall. Other important browsing effects on plant community composition, 

however, were reflected in significant changes in percent cover of nearly 25% of plant species 

and 3 plant functional types with deer browsing.  

Effects of both deer browsing and species identity on leaf chemistry responses were 

significant, but species identity was significant across all measured responses while browsing 

was not. Therefore, although both hypothesized mechanisms appear to operate simultaneously, 

shifts in plant community composition due to selective browsing are likely the dominant driver 

of changes in the phytochemical landscape in temperate forests, more so than browsing-induced 

chemical changes within species. Although others have shown that plant defense responses 

change depending on nutrient supply, shifting from tolerance to induced resistance, I did not 

detect interacting effects of browsing and C:N ratios in litter and soil on foliar chemical 

composition.  

Differential effects of browsing on plant community composition could explain the 

variation in nutrient cycling responses to browsing. This dissertation addresses the 
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inconsistencies of herbivore effects on ecosystem processes, adding insights from temperate 

forest ecosystems to the existing frameworks on trophic interactions.  

Further questions and considerations 

Based on recent studies, context-dependent effects on nutrient cycling could also be 

explained by abiotic factors such as soil moisture, soil texture, and temperature (Dodge et al. 

2020, Sitters et al. 2020). Grassland soil C and N pools increased with herbivory at warmer 

temperatures, and diminished at colder temperatures (Sitters et al. 2020). Soil properties 

themselves can also be altered by ungulate browsing, and mediate browsing effects on nutrient 

cycling (Dodge et al. 2020). 

However, browsing effects on plant litter quality that alter nitrogen dynamics in litter do 

not always influence plant growth (Buchkowski et al. 2019). To determine how browsing effects 

on plant litter dynamics will affect plant growth, it is important to consider the balance between 

mineralization and immobilization during microbial decomposition (Cherif and Loreau 2013), 

and the carbon/nutrient limitation of decomposers (Zou et al. 2016). Browsing effects on litter N 

dynamics can be buffered by existing soil organic N pools (Zou et al. 2016). For there to be 

strong feedbacks between browsers, nutrient cycling, and plant growth, mediated via litter 

decomposition, browsing pressure needs to be consistent from year-to-year.  Furthermore, 

browsing can have significant effects on microbial communities with potential consequences for 

soil C and N cycling and storage (Cline et al. 2017, Burke et al. 2019). Interestingly, research on 

enzyme activity has shown that soil microbial communities can recover within short periods after 

deer exclusion (Woods et al. 2019).  

From a conservation and management perspective it is important to explore effects of 

varying deer densities. Complete removal of deer is not realistic in most cases, and more 
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research with different deer densities is necessary to determine whether recovery is possible at 

reduced deer densities. To determine whether and to what extent reducing deer densities can 

facilitate soil recovery will need further investigation. The timescales at which deer browsing 

affects soil processes can vary and therefore recovery times might vary as well. Direct effects of 

waste products and trampling likely occur on shorter timescales than indirect effects of browsing 

induced vegetation shifts.  

Understanding factors that contribute to changes in forest C and N cycling continues to be 

critically important, especially considering predicted scenarios of climate change. Overall, my 

dissertation work provides support and insights into how interactions between above- and 

belowground processes are important drivers of ecosystem functioning. Notably, my work 

highlights the importance environmental factors in causing variability in feedbacks between 

above- and belowground processes. 
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