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In medical research, the Brier score (BS) and the area under the receiver operat-
ing characteristic (ROC) curves (AUC) are two common metrics used to evaluate
prediction models of a binary outcome, such as using biomarkers to predict the
risk of developing a disease in the future. The assessment of an existing pre-
diction models using data with missing covariate values is challenging. In this
article, we propose inverse probability weighted (IPW) and augmented inverse
probability weighted (AIPW) estimates of AUC and BS to handle the missing
data. An alternative approach uses multiple imputation (MI), which requires a
model for the distribution of the missing variable. We evaluated the performance
of IPW and AIPW in comparison with MI in simulation studies under missing
completely at random, missing at random, and missing not at random scenar-
ios. When there are missing observations in the data, MI and IPW can be used to
obtain unbiased estimates of BS and AUC if the imputation model for the miss-
ing variable or the model for the missingness is correctly specified. MI is more
efficient than IPW. Our simulation results suggest that AIPW can be more effi-
cient than IPW, and also achieves double robustness from miss-specification of
either the missingness model or the imputation model. The outcome variable
should be included in the model for the missing variable under all scenarios,
while it only needs to be included in missingness model if the missingness
depends on the outcome. We illustrate these methods using an example from
prostate cancer.

K E Y W O R D S

area under the ROC curve, augmented inverse probability weighting, Brier score, inverse
probability weighting, multiple imputation

1 INTRODUCTION

In clinical research, patient information such as clinical features, diagnostic tests, and biomarkers are often used to help
with diagnosis or to provide prognosis of a future outcome for a patient with disease. When the outcome of interest is
binary, a typical prediction model will numerically combine the covariates, for example, using a linear combination, to
estimate the predicted probability of the binary outcome. The evaluation of an existing prediction model in a different
populations is of considerable interest. If a model is to be transportable to other populations, it needs to be validated,
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which is usually thought of as meaning that it has similar and good performance in other populations. The performance
of existing prediction models can be assessed using a variety of metrics, such as the Brier score (BS) to indicate accuracy
of the probabilistic predictions, and area under the receiver operating characteristic (ROC) curve (or the concordance
statistic) for discriminative ability.1 Very often, a covariate may be partially missing, that is, the values will be missing for
some patients. The assessment of prediction models in data with missing covariate values is a challenge. The context we
are considering is that the existing model or models were developed on other datasets, which we call the external data,
and are already completely specified. We do not have access to the data used to develop these models. Rather, our goal is
to assess the performance of the existing model in an available dataset, which we call the internal data, that has missing
values for some covariates and we want to get valid and efficient estimates of the BS and the area under the curve (AUC).

In general there are two types of methods for estimation in the presence of missing data, one is based on multiple
imputation (MI) and the other is based on inverse probability weighting (IPW). For MI, a model for the distribution of
the missing variable, or variables, needs to be specified. For IPW method, a model for the probability of missingness
needs to be specified, which is also called the weight model. For MI, M completed datasets are created and M model
performance measures can be estimated from each of the completed dataset and then averaged.2 Alternatively, an overall
measure of model performance can be estimated directly from a simple completed dataset that includes the average of
the M predictions for each missing value. As previously recommended,3 the former is preferred. The analysis of only the
observations with complete data is frequently biased, and in a cleverly titled article Janssen et al4 showed that to impute is
generally better than to ignore. Alternatively IPW is a commonly used approach to correct their bias.5 IPW is also used to
adjust for unequal sampling fractions in sample surveys and causal inference.6,7 Augmented inverse probability weighting
(AIPW) has been proposed as an extension of IPW. It is a double-robust method that is robust to the misspecification of
either a model for the missingness mechanism or a model for the distribution of the variables with missing values (but
not both).8 Willamson et al7 present AIPW estimators that account for both confounding in causal inference and missing
data. AIPW generally results in improved efficiency compared with IPW, although this is not guaranteed to be the case.

When analyzing data with missing values an important consideration is the missingness mechanism, and the mech-
anism will impact the properties and merits of different methods. Missing complete at random (MCAR) is when the
probability of any variable being missing for a subject does not depend on the value of any of the variables. Generally all
methods will work under MCAR. Analysis of the complete cases (CCs) will be unbiased, but are frequently quite ineffi-
cient compared with other methods, depending on the amount of missingness. Missing at random (MAR) is when the
probability of being missing can depend on other covariates, but only those that are observed. In general MI, IPW, and
AIPW are valid under MAR, if models are appropriately specified. CC analysis is frequently biased under MAR. Miss-
ing not at random (MNAR) is when the probability of missing depends on the value of variables that are fully observed,
including the unobserved value of the variable itself. Generally all methods are biased under MNAR.

A basic question for all the above MI, IPW, and AIPW methods is whether the observed data for the outcome vari-
able should be included in the required imputation models or weight models. This is also related to how the covariate
is missing, whether the missingness is completely at random, or depend on other covariates and/or the outcome, or the
covariate itself. The argument in favor of including the outcome variable in these models is from the theoretical devel-
opments associated with missing data and MI. In general, it is well known that for inference about a quantity of interest
it is necessary to include the outcome variable as one of the variables in the imputation model when developing a new
prediction model. Omitting the outcome variable can lead to biased estimates.9 In general notation, if Q is the quantity of
interest, and D= (Dobs, Dmis) is the data where Dobs and Dmis denote the observed and missing data, then from a Bayesian
perspective, inference about Q is based on its posterior distribution P(Q|Dobs). This posterior distribution can be written
as P(Q|Dobs) = ∫ P(Q|Dobs,Dmis)P(Dmis|Dobs)pDmis, and this applies whether Q is a simple parameter in a model or a more
complex function, that is, such as the BS or the AUC. This formula is the recipe for MI and motivates imputation of the
missing data using P(Dmis|Dobs), followed by inference for Q using the complete data (Dobs, Dmis), and repeating these
steps many times and averaging them. Since in our setting the outcome variable is part of Dobs, it is clear that the out-
come variable should be used as part of the imputation scheme. In practice, the general recommendation for MI is that
the imputation model should include every variable that predicts the incomplete variable, and sometimes the imputation
model can contain more variables than will be used in the final analysis.10

The intuitive argument against including the outcome variable in the models used for imputation is the belief that
there is some circularity. Since we are trying to evaluate how good a model is at predicting outcome, the thinking is that
we don’t want to use the outcome to help impute the missing covariates, because then we will make the model look better
than it really is. However, Moons et al argued that imputation of missing values using all other information will not create
information. It only makes use of the strength of associations between predictors and outcomes present in the CCs, to
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enable valid analyses.9 The additional intuitive argument against using the outcome variable is that the intended use of
these models is in the situation where we want to make a prediction for a single patient and we only have covariates
available and the outcome is not known. It is certainly a challenge of how to make a prediction for a single patient if some
of the covariates are missing, but this is a different situation than ours of evaluating an existing prediction model using a
new dataset.

In this article, we propose IPW and AIPW estimates of AUC and BS to handle the missing data and evaluate their
prediction performance in comparison with MI by simulation. We focus on including the outcome or not in the weight
models or imputation models. The missing mechanisms could be MCAR, MAR, and MNAR. We consider a variety of
existing prediction models including ones that are both consistent with and not consistent with the internal data distri-
bution, and ones that depend on a subset of the covariates. An example from prostate cancer is used as an illustration of
the proposed methods.

2 METHODS

We consider the setting in which we have available an internal dataset of size N, consisting of binary outcome Y and
p-dimensional vector of covariates X . Let Ri = 1 if there are no missing X values for subject i, else Ri = 0 if there are missing
values, and Ri’s are conditionally independent. Assume there is an existing external model, that requires as input the
variables X or a subset of the variables, and produces as output an estimate of the probability that Y = 1, denoted by
p̂(Y = 1|X). We use notation I to denote distributions associated with the available or internal data, and E to denote the
distributions associated with the external data that was used to build the existing model. Let FI(X) and FI(Y |X) denote
the true probability distribution functions for the internal data. Thus, FI(X) is the density of X if X is continuous and
FI(Y = y|X = x)=PI(Y = y|X = x). Let FE(X) and FE(Y |X) denote the true distributions for the external data. We would
expect some of the X ’s to be correlated with each other.

The existing model p̂(Y = 1|X) is an approximation to FE(Y = 1|X), and it is usually a monotonic function of a weighted
combination of covariates, denoted as g(𝛽X). The estimates of 𝛽 could be good estimates if, for example, the external
dataset is large and good methods were used, or they could be poor estimates if the external dataset is small or poor
methods were used. From the internal dataset with sample size N that are sampled from FI(X) and FI(Y |X), we can
calculate the BS and AUC. The BS is given by

BS = 1
N

N∑
i=1

(Yi − p̂i)2, (1)

where p̂i = P(Y = 1|Xi) is obtained from the existing model.
The AUC, which is equivalent to the Concordance-index (C-index) for a binary outcome, is estimated using

AUC/C-index =
∑N

i=1
∑N

j=1 I(𝛽Xi > 𝛽Xj)I(Yi > Yj)∑N
i=1

∑N
j=1 I(Yi > Yj)

. (2)

An alternative way to estimate the AUC is to first estimate the ROC curve and then calculate the area under it. Let n1
denote the number of cases, n0 denote the number of controls, and n1 +n0 =N. Let X1 denote the covariates in cases and
X0 denote the covariates in controls. The ROC curve depicts relative trade-offs between true positive rate (TPR) and false
positive rate (FPR),

TPR(c) = Pr(𝛽X1 ≥ c) = 1
n1

n1∑
i=1

I(𝛽Xi ≥ c),

FPR(c) = Pr(𝛽X0 ≥ c) = 1
n0

N∑
j=n1+1

I(𝛽Xj ≥ c),

ROC(c) = TPR(FPR−1(c)),

AUC = ∫
1

0
ROC(c)dc. (3)
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The integration of ROC to calculate the AUC is performed numerically. The quantities called BS and AUC given above
are estimates of population quantities, which we call TrueBrierI(p̂) and TrueAUCI(p̂). Given the distribution FI(X) and
FI(Y |X), for any existing formula p̂ that provides a probability that Y = 1 given X, the true BS is defined as

TrueBrierI(p̂) =
1∑

Y=0∫X
(Y − p̂)2FI(Y |X)FI(X)dX . (4)

For covariates in cases X1 and controls X0, denote their distributions as FI(X1)=FI(X |Y = 1) and FI(X0)=FI(X |Y = 0),
respectively. Then the true AUC is

TrueAUCI(p̂) = Pr(𝛽X1 > 𝛽X0) = ∫X1
∫X0

I(𝛽X1 > 𝛽X0)FI(X1)FI(X0)dX1dX0. (5)

Equations (4) and (5) give the true values of BS and AUC for a fixed 𝛽. The goal is to get good estimates of these
population quantities TrueAUCI(p̂) and TrueBrierI(p̂), using the available data in the internal dataset of size N. A good
estimate is one that has small bias, low variability and is robust to misspecification of any models that are used in the
estimation procedure.

Also note from Equation (4) that the true value depends on both FI(Y |X) and FI(X), and similarly for Equation (5).
This makes it clear that even if the existing prediction model for Y given X is correct for the internal distribution, it will
not usually lead to the same AUC and BS because these depend on the X distribution as well. In practice it would seem
likely that the internal and external distributions of the X ’s do differ.

In real data analysis with large sample size, missing data are a common occurrence. Suppose our dataset has missing
values for some covariates of X , and the missingness may be MCAR, MAR, or MNAR. The practical question we are
trying to address is how to get a good estimate of TrueAUCI(p̂) and TrueBrierI(p̂) from the available dataset with missing
covariates. The best conceivable estimates are the ones that would have been obtained using Equations (1) to (3) if there
had been no missing data.

2.1 CC analysis

Using only CCs (ie, Ri = 1) the simplest estimates are

BSCC =
∑N

i=1 (Yi − p̂i)2Ri∑N
i=1 Ri

, (6)

C-indexCC =
∑N

i=1
∑N

j=1 I(𝛽Xi > 𝛽Xj)I(Yi > Yj)RiRj∑N
i=1

∑N
j=1 I(Yi > Yj)RiRj

. (7)

For AUC,

TPRCC(c) =
∑n1

i=1 I(𝛽Xi ≥ c)Ri∑n1
i=1 Ri

,

FPRCC(c) =

∑n0
j=1 I(𝛽Xj ≥ c)Rj∑n0

j=1 Rj
. (8)

However, these estimates may be biased in MAR and MNAR settings and may lack efficiency in MCAR situations.

2.2 Multiple imputation

When there is partially missing in X , we can do MI to impute the missing values based on the available data, then average
the predicted BS and AUC from the multiple imputed datasets using Rubin’s rule. The first step is to impute the missing
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values by drawing a value of Xmis from a model either for F(Xmis|Xobs, Y ) or for F(Xmis|Xobs), and then apply the external
model on the imputed complete data to get the predictions of Y and calculate BS and AUC. The models used for imputation
are typically linear regression for continuous Xmis, logistic regression for binary Xmis, polytomous regression for unordered
categorical Xmis, and proportional odds model for ordered categorical Xmis, although more complicated models could
be used. After repeating the first step for M times (we use M = 5), the average of the estimates of BS and AUC from
the multiple imputed datasets gives the final single point estimate. When there is more than one covariate with missing
values, a chained equation approach is used to impute the missing values sequentially.10 The program mice() in R is
used to implement the MIs and the different models mentioned above can be built with different options.

2.3 Inverse probability weighting

IPW weights the CCs in the calculation of the quantity of interest. The weight (W i) is the inverse probability of the
observation being complete (Ri = 1) under different assumptions, so either W i = 1/Pr(Ri = 1|Xi, Y i) or W i = 1/Pr(Ri = 1|Xi).
We use logistic regression to build the model of either Pr(Ri = 1|Xi, Y i) or Pr(Ri = 1|Xi) conditional on the fully observed
covariates and outcome to get the estimates of the weight. Then

BSIPW =
∑N

i=1 (Yi − p̂i)2RiWi∑N
i=1 RiWi

, (9)

C-indexIPW =
∑N

i=1
∑N

j=1 I(𝛽Xi > 𝛽Xj)I(Yi > Yj)RiWiRjWj∑N
i=1

∑N
j=1 I(Yi > Yj)RiWiRjWj

. (10)

For AUC,

TPRIPW(c) =
∑n1

i=1 I(𝛽Xi ≥ c)RiWi∑n1
i=1 RiWi

,

FPRIPW(c) =

∑n0
j=1 I(𝛽Xj ≥ c)RjWj∑n0

j=1 RjWj
. (11)

With the TPRIPW and FPRIPW, ROCIPW, and AUCIPW can be calculated following (3).

2.4 Augmented inverse probability weighting

The IPW method only uses the CCs, and ignores the subjects with missing data. One way to improve it is to include
information from subjects with missing data, which is called AIPW. For ease of notation we describe the method in
the situation of only one covariate having missing values. In the Appendix, we describe how to apply it when multiple
covariates have missing values. First we build a model for the covariate with missing values on all the other covariates,
that is, F(Xmis|Xobs, Y ) or F(Xmis|Xobs), to get the predicted mean X∗

mis, which is E(Xmis|Xobs, Y ) or E(Xmis|Xobs). This is a
single imputation of the mean and is different from MI which incorporates random variation. The X∗

mis is created for that
variable for all subjects and is different from MI which only imputes missing values. Then applying the external model to
the dataset with X replaced by X∗ = (X∗

mis,Xobs) gives p̂i
∗. Combining this model with a model for the weight, the proposed

AIPW estimator of the BS is

BSAIPW = 1
N

N∑
i=1

(Yi − p̂i)2RiWi + (Yi − p̂i
∗)2(1 − RiWi). (12)

A subject with complete data has Ri = 1, and contributes (Yi − p̂i)2Wi + (Yi − p̂i
∗)2(1 − Wi). A subject with missing

values has Ri = 0 and contributes (Yi − p̂i
∗)2. Because all the subjects with complete data or missing values are evaluated,

the denominator is N.
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For the C-index,

C-indexAIPW =

∑N
i=1

∑N
j=1 I(Yi > Yj)

{
I(𝛽Xi > 𝛽Xj)RiWiRjWj + I(𝛽X∗

i > 𝛽X∗
j )(1 − RiWiRjWj)

}
∑N

i=1
∑N

j=1 I(Yi > Yj)
. (13)

A pair of cases and controls Xi, Xj that are both complete has Ri = 1, Rj = 1, and contributes I(𝛽Xi > 𝛽Xj)WiWj +
I(𝛽X∗

i > 𝛽X∗
j )(1 − WiWj). Otherwise, a pair of cases and controls that has missing value, that is, Ri = 0 and/or Rj = 0

contributes I(𝛽X∗
i > 𝛽X∗

j ).
For the area under the ROC curve method of calculating the AUC,

TPRAIPW(c) = 1
n1

n1∑
i=1

I(𝛽Xi ≥ c)RiWi + I(𝛽X∗
i ≥ c)(1 − RiWi),

FPRAIPW(c) = 1
n0

n0∑
j=1

I(𝛽Xj ≥ c)RjWj + I(𝛽X∗
j ≥ c)(1 − RjWj). (14)

A subject with complete data has Ri = 1, and contributes I(𝛽Xi ≥ c)Wi + I(𝛽X∗
i ≥ c)(1 − Wi). A subject with missing

value has Ri = 0 and contributes I(𝛽X∗
i ≥ c). With the TPRAIPW and FPRAIPW, ROCAIPW and AUCAIPW can be calculated

following (3).

2.5 Consistency of IPW and AIPW estimators

Considering the C-index using the IPW method. Let

Uij(𝜃, 𝛾1) = 𝜃I(Yi > Yj)RiWiRjWj − I(Yi > Yj)I(𝛽Xi > 𝛽Xj)RiWiRjWj,

where W i depends on the weight model which has parameters 𝛾1. Let UN(𝜃, 𝛾1) = 0.5N−2 ∑N
i=1

∑N
j=1

[
Uij(𝜃, 𝛾1) + Uji(𝜃, 𝛾1)

]
,

then it is straight forward to show that C-indexIPW is the solution of UN(𝜃, 𝛾1) = 0. Let UE = E(UN) =
0.5E

[
Uij(𝜃, 𝛾1) + Uji(𝜃, 𝛾1)

]
. Let 𝛾∗1 be the large sample limit of �̂�1 using the weight model Pr(R = 1|Xobs,Y ; 𝛾1). When

the weight model is correctly specified, that is, Pr(R = 1|Xobs,Y ; 𝛾∗1 ) = Pr(R = 1|Xobs,Y ), and Ri’s are conditionally inde-
pendent, then E(RiW iRjW j)= 1, and it is clear that UE(𝜃, 𝛾∗1 ) = 0. Because UN(𝜃, 𝛾1) converges uniformly to UE(𝜃, 𝛾1),
C-indexIPW is a consistent estimator.

The proof for AIPW estimators is similar. Here, we mimic the proof in Long et al,11 and first demonstrate double
robustness for a slightly different estimator, which we label C-indexAIPW* with

C-indexAIPW∗ =
∑N

i=1
∑N

j=1 I(Yi > Yj)
{

I(𝛽Xi > 𝛽Xj)RiWiRjWj + E[I(𝛽Xi > 𝛽Xj)](1 − RiWiRjWj)
}

∑N
i=1

∑N
j=1 I(Yi > Yj)

Let

Vij(𝜃, 𝛾1, 𝛾2) = 𝜃I(Yi > Yj) − I(Yi > Yj)
{

I(𝛽Xi > 𝛽Xj)RiWiRjWj + E[I(𝛽Xi > 𝛽Xj)](1 − RiWiRjWj)
}

where W i depend on weight model Pr(R = 1|Xobs,Y ; 𝛾1) with parameters 𝛾1 and in E[I(𝛽Xi > 𝛽Xj)] the expectation is with
respect to the distribution of the missing covariates and depends on the model F(Xmis|Xobs,Y ; 𝛾2)which has parameters 𝛾2.
Let VN(𝜃, 𝛾1, 𝛾2) = 0.5N−2 ∑N

i=1
∑N

j=1
[
Vij(𝜃, 𝛾1, 𝛾2) + Vji(𝜃, 𝛾1, 𝛾2)

]
, then it is straightforward to see that C-indexAIPW* is the

value of 𝜃 that solves VN(𝜃, 𝛾1, 𝛾2) = 0. Let VE = E(VN) = 0.5E
[
Vij(𝜃, 𝛾1, 𝛾2) + Vji(𝜃, 𝛾1, 𝛾2)

]
. It is easy to see that VN(𝜃, 𝛾1, 𝛾2)

converges uniformly to VE(𝜃, 𝛾1, 𝛾2), thus the solution to VN(𝜃, 𝛾1, 𝛾2) = 0 converges to the solution of VE(𝜃, 𝛾1, 𝛾2) = 0.
Let 𝛾∗1 be the probability limits of 𝛾1 using the weight model Pr(R = 1|Xobs,Y ; 𝛾1). When the weight model is correctly

specified, that is, Pr(R = 1|Xobs,Y ; 𝛾∗1 ) = Pr(R = 1|Xobs,Y ), and Ri’s are conditionally independent, then E(RiW iRjW j)= 1.
Let 𝛾∗2 be the probability limits of 𝛾2 using the model for the missing covariates F(Xmis|Xobs,Y ; 𝛾2). When the model is
correctly specified, that is, E(Xmis|Xobs,Y ; 𝛾∗2 ) = E(Xmis|Xobs,Y ), then E

{
I(Yi > Yj){E[I(𝛽Xi > 𝛽Xj)] − I(𝛽Xi > 𝛽Xj)}

}
= 0.
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When either working model is correctly specified, it is clear that VE(𝜃, 𝛾1, 𝛾2) = 0, and that the 𝜃 that solves
VE(𝜃, 𝛾1, 𝛾2) = 0 is the true AUC. Because V N converges uniformly to V E, C-indexAIPW* is a consistent estimator.

The estimator we describe in Section 2.4, C-indexAIPW is an approximation to C-indexAIPW*, in which instead of
calculating the conditional expectation E[I(𝛽Xi > 𝛽Xj)], we propose to use I(𝛽X∗

i > 𝛽X∗
j ).

The proof of consistency is similar for BS and is shown in the Appendix.

3 SIMULATION STUDIES

In this section, we present results of numerical studies to investigate the performance of the proposed methods under
different settings. We consider three covariates and denote them as X1, X2, X3. We consider situations where the given
external model is based on all of X1, X2, and X3, and situations where it is only based on X1 and X2. The true distribution
for the internal data, FI(Y |X), is defined as

logit(Pr(Y = 1)) = 0.25 + 0.7X1 + 0.6X2 − 0.5X3

The internal data are sampled from the above model. X1, X2, X3 are sampled from N(0, 1) and about 40% to 50% of X1
is missing. The covariates can be independent, or correlated with cor(X1, X3)=−0.5. Four different external models are
evaluated using the “internal” data; (M1) the true model with X1, X2, and X3; (M2) the best model based on just X1 and
X2; (M3) a poor model based on X1, X2, and X3 with wrong coefficients; and (M4) an incorrect intercept model.

The simulation is conducted as follows:

(a) For M1, we use the true coefficients, M1 = (0.25, 0.70, 0.60,−0.50). For M2, we obtain the coefficients for the exter-
nal model by generating a dataset of 100 000 observations from the true model, and fitting a logistic model based
on X1 and X2. For independent covariates, M2 = (0.25, 0.67, 0.58, 0). For cor(X1, X3)=−0.5, M2 = (0.25, 0.91, 0.58, 0).
It is noted that with independent covariates, the estimated coefficients are biased toward the null compared
with the true model.12 With correlated X1, X3 and X3 is omitted, the estimates of the coefficients for X1, X2 are
biased in opposite directions in the reduced model. For M3, we obtain the coefficients by generating an external
dataset with sample size 50. For independent covariates, M3 = (0.26, 0.66, 0.90, 0.39), and for correlated covariates,
M3 = (0.53,−0.40, 0.88,−0.75). With such small sample size, the estimated coefficients are not close to the true
values. For M4, we set different prevalence’s for the external data and internal data, and M4 = (1.00, 0.70, 0.60,−0.50).

(b) Based on the distributions FI(X), FI(Y |X), get the true AUC and BS for each of M1, M2, M3, and M4 using their
coefficients and Equations (4) and (5). We label these as the true target values.

(c) Sample internal data with N = 1000, and evaluate the external models M1, M2, M3, M4 on the internal data. Use
different methods to handle the missing covariates in the internal data to estimate AUC and BS, repeat 1000
times to get the mean and standard deviation, and compare with each other and with the true target value
calculated in (b).

We consider four different missingness mechanisms. For MCAR, the missing of X1 is random with probability 0.4,
that is, Pr(X1 is missing) = 0.4. For MAR(X2, X3), the missing of X1 depends on other covariates X2, X3 with about 45%
missing, Pr(X1 is missing) = expit(−0.5+ 2X2 − 2X3). For MAR(X2, Y ), the missing of X1 depends on both covariate X2
and outcome Y with about 50% missing, Pr(X1 is missing) = expit(−0.5+ 2X2 +Y ). For MNAR, the missing of X1 depends
on the value of X1 with about 45% missing, Pr(X1 is missing) = expit(−0.5+ 3X1).

As listed in Table 1, we compared the validation of external models on the full internal data without missing val-
ues (Full), on CCs only, IPW with the weight model excluding outcome Y (IPW1) or including outcome Y (IPW2),
MI with the imputation model excluding outcome Y (MI1) or including outcome Y (MI2). When calculating AUC by
AIPW, the two methods, which are based on the C-index and the area under the ROC curve, respectively, gave similar
results in terms of bias and efficiency with 40% to 50% missing of X1, thus we show the results for the C-index using
a weight model that excludes the outcome Y (AIPW1, AIPW3) or includes the outcome Y (AIPW2, AIPW4) and using
an imputation model that excludes the outcome Y (AIPW1, AIPW2) or includes the outcome Y (AIPW3, AIPW4). For
the IPW and AIPW methods the weight models are regarded as misspecified in the MAR(X2, Y ) situation if they don’t
include Y , that is, IPW1, AIPW1, and AIPW3, and all IPW and AIPW weight models are misspecified in the MNAR
situation.
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True target True value based on internal data distribution

Full Data without missing

CC Complete cases analysis

IPW1a Weight model uses X

IPW2 Weight model uses X and Y

MI1b Imputation model uses X

MI2 Imputation model uses X and Y

AIPW1a,b Weight model uses X, imputation model uses X

AIPW2b Weight model uses X and Y, imputation model uses X

AIPW3a Weight model uses X, imputation model uses X and Y

AIPW4 Weight model uses X and Y, imputation model uses X and Y

Abbreviation: CC, complete case.
aMethods for which the weight model is misspecified under MAR(X,Y).
bMethods for which the imputation model is misspecified.

T A B L E 1 List of methods for comparison

In this simulation,mice() inRwith linear regression using bootstrap is used to implement MI for the missing contin-
uous covariates. glm() with logistic link was used to build weight models and lm() was used to calculate the predicted
X∗

1 in the AIPW method.

3.1 Simulation results

Figures 1 and 2 show the simulation results of AUC and BS for existing model M1 with independent covariates under
MCAR, MAR(X2, X3), MAR(X2, Y ), and MNAR(X1). The left column shows the bias of the various methods. As expected
the full data analysis does achieve the true target AUC and BS. However, the CC analysis is unbiased only in the MCAR
setting. MI with Y (MI2) is unbiased under MCAR and MAR, but without Y (MI1) the bias is more than 10% for both
AUC and BS. All the IPW and AIPW methods are unbiased under MCAR and MAR(X2, X3), regardless of whether Y is
included or not. Under MAR(X2, Y ) when Y is related to the missingness, the only unbiased IPW method (IPW2) is the
one including Y , which indicates the importance of correct specification of the weight model. For AIPW2 and AIPW4,
when the weight model includes Y , the results are unbiased. Without Y in the weight model, AIPW3 includes Y in the
imputing model, and the results are unbiased too. However, when both weight model and imputing model exclude Y ,
as in AIPW1, the results are biased, especially for AUC. For the double robustness of AIPW, as least one of the weight
model and imputing model need to be correctly specified. Under MNAR for which the missingness depend on X1, all the
methods are biased.

The right column shows the relative SD of the methods comparing with full data estimation. As expected all values
are equal to 1.0 or larger. The variance of IPW is always the largest, since it only weights the CCs. The variance of AIPW
is between IPW and MI, and is much smaller than IPW under MAR.

For the model M2 with omitted covariate X3, under all scenarios, the reduced model M2 has lower AUC and higher BS
compared with true target values for model M1. This is to be expected since omitting an important covariate will generally
lead to an inferior external model. As shown in Figures 3 and 4 the full model results do achieve the target true value
for M2, and they represent the best that could be achieved for M2. The relative performance of the various MI, IPW, and
AIPW methods for the handling the missing data compared with the full model results are quite similar to those shown
in Figures 1 and 2, both for bias and SD.

We also considered using a poor external model M3 with wrong coefficients. The results are shown in Figures 5 and 6.
Again in comparison with full data analysis, the MI2, IPW2, AIPW2, and AIPW4 appear to give no bias, except in the
MNAR case. The variability of the MI2 method is the smallest.

For the scenario when external data and internal data have different prevalence, we consider an existing model with
the intercept = 1 while the other coefficients are the same as the true model. The changed intercept in M4 has no influ-
ence on the AUC compared with the true value, since changing the intercept does not change the discrimination ability.
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F I G U R E 1 Simulation results of mean and relative SD of AUC for existing model M1: correct model. Column left denotes mean AUC.
Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms. AUC, area under the curve
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BS. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms. BS, Brier score
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F I G U R E 3 Simulation results of mean and relative SD of AUC for existing model M2: best model based on just X1, X2. Column left
denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms. AUC, area
under the curve
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F I G U R E 4 Simulation results of mean and relative SD of BS for existing model M2: best model based on just X1, X2. Column left
denotes mean BS. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms. BS, Brier score
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F I G U R E 5 Simulation results of mean and relative SD of AUC for existing model M3: poor model based on X1, X2, X3. Column left
denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms. AUC, area
under the curve
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F I G U R E 6 Simulation results of mean and relative SD of BS for existing model M3: poor model based on X1, X2, X3. Column left
denotes mean BS. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms. BS, Brier score
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F I G U R E 7 Simulation results of mean and relative SD of BS for existing model M4: different intercept model. Column left denotes
mean BS. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms. BS, Brier score

The results are identical to those shown in Figure 1. The values of BS increased compared with situation M1. As shown
in Figure 7 the relative merits of the MI, IPW, and AIPW methods are similar to the other scenarios.

Overall, for the situations presented here, considering both bias and variability the best methods are MI2 and AIPW4.
For correlated covariates, the conclusions are the same (see Appendix). With multiple missing covariates, the findings are
broadly similar, but with some differences depending on the missingness pattern. The simulation results shown in the
Appendix, suggest that here MI2 is the best method. The findings from additional simulations investigating the impact
of sample size and percent missingness are also described in the Appendix.

We note that the model used to impute the missing X in MI2 and create X∗ in AIPW3 and AIPW4 is slightly mis-
specified. Although it does regress X1 on X2, X3 and Y , the assumed linear model is not the same as the true distribution
for X1|X2, X3, Y based on how the data was generated from the true model. Furthermore, as noted in the consistency
proof, we use an approximation to a doubly robust AIPW estimator, specifically we use I(𝛽X∗

i > 𝛽X∗
j ) to approximate

E[I(𝛽Xi > 𝛽Xj)]. These two facts may explain the small bias in the AIPW3 method for the MAR(X2, Y ) case, because in
fact neither the weight model nor the imputing model is correctly specified. However, the misspecified imputing model
does not give any noticeable bias for the MI2 method. It is feasible to consider other approximations of E[I(𝛽Xi > 𝛽Xj)].
Willamson et al7 suggested a Monte Carlo approximation for general AIPW methods with missing covariates. However, in
our settings we found that this lead to more bias and greater variability of the AIPW estimates than using the I(𝛽X∗

i > 𝛽X∗
j )

approximation. We were surprised by this finding and do not have a satisfactory explanation of why it occurred.

4 APPLICATION

In this section, we applied the proposed methods to evaluate the performance of an existing model for the risk of recur-
rence in men with Prostate Cancer. The Cancer of the Prostate Risk Assessment (CAPRA) score was published in 2005 and
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was based on an initial cohort consisting of >1400 men from the University of California, San Francisco.13 A Cox propor-
tional hazards regression model identified age, pretreatment prostate-specific antigen (PSA), Gleason score, percentage
of biopsy cores positive for cancer (PPC), and clinical stage as significant factors associated with biochemical recurrence
(BCR) or secondary treatment. Based on the results of the Cox analysis, points were assigned as in Table 2 to indicate rel-
ative risk. For each patient the points would be added to give an overall CAPRA score. The CAPRA score ranges from 0
to 10, and every 2-point increase in the score represents an approximate doubling of the risk. The distribution of the score
and the 3-year recurrence-free survival (RFS) rate were reported in the publication, and are shown in Table 3. The AUC
can be calculated from the CAPRA score itself, but the BS requires the predicted probabilities from Table 3.

We sought to estimate the performance of CAPRA using a separate dataset from the Mayo Clinic. The 1268 patients
were treated with surgery between 2008 and 2012 and all patients before 2010 and half patients later were missing PPC
values. So in total 90% of the patients were missing PPC. We considered 3-year RFS as a binary outcome. We included in
our analysis all men who were followed more than 3 years or developed progression in 3 years. In total, 314 of the 1268
patients had a recurrence in 3 years. To validate the prediction of CAPRA score, we compared the CAPRA score with the
outcome to get the AUC, and compared the RFS rate for each CAPRA score as in Table 3 with the outcome to get BS.
Because 90% patients have missingness in PPC, we used PSA, Gleason score, T-stage, Age and/or the outcome to build the
weight model for missingness and the imputation model of PPC in the IPW, AIPW, and MI methods. In the data analysis,
mice() in R with logistic regression is used to implement MI for the missing binary PPC. glm() with logistic link was

T A B L E 2 CAPRA score Variable Level Points

PSA 2.0-6 0

6.1-10 1

10.1-20 2

20.1-30 3

>30 4

Gleason score (Primary/Secondary) 1-3/1-3 0

1-3/4-5 1

4-5/1-5 3

T stage T1/T2 0

T3a 1

Percent positive biopsy <34% 0

≥34% 1

Age <50 0

≥50 1

Abbreviations: CAPRA, Cancer of the Prostate Risk Assessment; PSA,
prostate-specific antigen.

T A B L E 3 CAPRA score distribution and predicted
probabilities derived from the CAPRA score

CAPRA score CAPRA score distribution 3-year RFS rate

0-1 27.9% 0.91

2 30.0% 0.89

3 20.6% 0.81

4 10.8% 0.81

5 5.8% 0.69

6 3.0% 0.54

7 or Greater 2.0% 0.24

Abbreviation: CAPRA, Cancer of the Prostate Risk Assessment.
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F I G U R E 8 Varying estimates of mean and 95% confidence interval of AUC and Brier scores for prostate cancer example, based on how
missing data are handled. AUC, area under the curve

used to build weight models and glm() with logistic link was used to calculate the predicted PPC in AIPW. A bootstrap
was used to give 95% confidence intervals for AUC and BS.

Figure 8 shows the analysis results of different methods. The AUC ranged from 0.73 to 0.79, which is similar to
other external validation studies of the CAPRA score for which the C-index for BCR ranged from 0.66 to 0.81.14 On
the other hand, the BS values were around 0.16 except for CC analysis and IPW with the weight model excluding
the outcome variable, which were above 0.4. The CC analysis and IPW methods have much wider confidence inter-
vals, while the MI and AIPW methods have comparable confidence intervals. Little’s test was used and indicated the
missingness is not MCAR (P < .001),15 thus CC analysis is not an optimal choice. The Odds Ratio of PPC not miss-
ing and RFS observed was 24.1, indicating the missingness was strongly related to the outcome. Thus, the methods
in which the weight model includes the outcome should be more reliable. The imputing model of PPC was built
only on the 10% of patients with nonmissing data and was used to impute the other 90% later on, and there could
be a large variation in the model, which could explain the ignorable difference between the two MI methods with
or without outcome. The results for AUC and BS are different, probably because some CAPRA scores have the same
RFS rate.

These results indicate the approaches to handle missing data can result in fairly large variation in model performance
estimates. Based on the theoretical considerations and the simulation results, we believe the results from MI using the
outcome (MI2) and AIPW using the outcome in the weight model and the imputation model (AIPW4) are the best to use,
and they give very similar estimates for both BS and AUC in this example.

5 DISCUSSION

We developed new AIPW estimators for predictive model performance metrics in the setting of missing data. This AIPW
approach is shown to have good properties. We note that an AIPW estimator of the AUC has been previously proposed,11

but for a different setting with auxiliary variables. Adapting this published approach to our setting does not lead to
Equation (13), but rather an estimator with weights in the denominator as in Equation (10). When the weight model
is correctly specified and with assumed independence of cases and controls, the expectation of the denominator in
Equation (10) is equivalent to the denominator in Equation (13).

When there are missing observations in the internal data, MI and IPW can both be used to obtain unbiased estimates
of BS and AUC if the imputation model or weight model is correctly specified. When the missingness doesn’t depend on
Y , IPW doesn’t need to include Y in the weight model, while MI does need to include Y in the imputation model. When
the missingness depends on Y , both IPW and MI need to include Y . The outcome variable should be included in the
imputation model under all scenarios, because it provides information of the missing covariates. For IPW, the outcome
only needs to be included in the weight model if the missingness depends on the outcome in order to get the correctly
specified weight model. The findings in this article clearly support inclusion of the outcome variable Y in models that
handle the missing covariates when evaluating an existing prediction model. Thus overall, even though in some situations



LI et al. 3491

for the IPW and AIPW methods it is not necessary, very little harm arose from including Y and there is the potential for
considerable gain.

Our simulation results suggest that under small to moderate missingness AIPW can be more efficient than IPW, and
also obtain approximate double robustness to misspecification of the weight model or the imputing model. Even when
both models are misspecified, resulting estimates are still less biased than IPW or MI with the wrong weight model or
imputing model. Further simulation shows that in terms of bias, AIPW is also less sensitive to the sample size or extreme
weights comparing to IPW. Under all scenarios, MI has the best efficiency comparing to full data analysis. Under MCAR,
AIPW has the same efficiency as MI, while under MAR, AIPW is less efficient than MI.

One limitation of the IPW and AIPW methods is when there are multiple covariates missing. In this situation there
are different possible ways in which the weight model and the imputation model can be constructed. In the special cases
of blocked missingness or monotone missingness there are natural ways to construct these models, and in the simulation
study we found similar performance to that of the situation with a single missing covariate. When the missingness is
scattered there are more choice of how to implement the imputation model, and our simulation results suggest that AIPW
can in fact be a less desirable method than IPW. It is possible that further research may suggest alternative ways of using
the weights or alternative ways of defining the AIPW estimator, that has improved performance in this and other more
challenging situations. With multiple missing covariates the MI methods are still relatively easy to apply by using the
chained equation approach to impute the missing values sequentially, and the simulation results suggest it is clearly more
efficient.

The derivations in this article revealed that the true values of AUC and BS are population quantities that depend on
both the distribution of the X covariates and the Y |X distribution in the population. So one should not necessarily expect
the AUC and BS to be the same from one population to the next. This is perhaps well known to others, and in fact obvious
for the AUC. If one population has a much narrower range of X values, then it will be harder to discriminate subjects in
that population, so the AUC will be lower, even if the model is an accurate description of the Y |X distribution in both
populations.

The problem we consider in this article is how to estimate the correct AUC and BS for a different population than
the one that was used to develop the prediction model, when (i) we do not have access to the data that was used to
develop the model and (ii) the dataset we have from the different population has some missing covariate values. There
are a broad set of other problems associated with missing covariates and risk prediction models. One is how to develop
a model, for which a much cited reference is Moons et al9 Another set of problems is how to implement an existing risk
prediction model for an individual subject when that subject has some missing covariates, and also will not have the
outcome known. Different situations and possibilities exist here. The model developer may have set up methods to use
in the case of missing data for the individual subject, such as 2k different models, one for each pattern of missingness.
It is our observation that developers of models rarely provide explicit rules for producing predicted probabilities for an
individual subject with missing covariates. So implicit in the intended use of their model is that all the required input
covariates will be available or attainable for the specific subject. If a particular required input covariate is known to be
hard to obtain, then it would seem that the onus is on the developer of the model to provide a rule or a guidance on how
their model should be used for an individual subject. In practice we think that it will frequently be the case that all the
required covariates will be available because they can probably be attained at that point in time by ordering further tests
or taking further measurements. Alternatively for a subject with missing values the user of the model may simply try a
range of values for the missing variables, to give a range of predicted probabilities for the specific subject, analogous to
sensitivity analysis. If the user of the model has access to the training data, then the question becomes how to make use
of these data. Alternatively, the user of the model may have access to their own dataset, with information on both the
covariates and outcomes for people in this dataset, and if the individual subject can be considered as coming from the
same population as this dataset, then the question again is how to make use of these data. These different challenges have
received limited attention in the statistical literature,16,17 but have been expounded upon in a recent publication.18

A challenge related to the one considered in this article is how to evaluate an existing prediction model in a different
population when the data from this population has missing values in some of the X variables, but also in the outcome
Y for some subjects. We did not study this situation, but one option is to simply remove the people with missing values
before calculating AUC and BS. Other options are to apply a MI approach or develop an extension of the IPW and AIPW
methods. We hypothesize that these options would give better estimates of AUC and BS than the option of removing
subjects.

Another situation worthy of study, is how to evaluate an existing prediction model, in a different population, when
that different population does not have measured one of the needed input variables for the prediction model. This would
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seem to be an impossible task, unless extra information is available, either in the form of additional data or knowledge of
the joint distribution of the missing variable with the other variables.
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APPENDIX A. DIFFERENCES BETWEEN OPTIMIZING THE LIKELIHOOD, THE AUC AND
THE BS

BS measures the mean squared difference between the predicted probability and the actual outcome of an event across
all subjects. The lower the BS is for a set of predictions, the better the predictions are calibrated. When we evaluate an
existing model such as a logistic model on the internal dataset, the BS will be minimized when the external model is the
same as internal model, that is, FE(Y |X) = FI(Y |X).

Proof. Assume the FI(Y |X) as expit(𝛼X) and FE(Y |X) as expit(𝛽X).
BS

=
∑

Y ∫x
(Y − p̂)2FI(Y |X)FI(X)dX

=
∑

Y ∫X

(
Y − 1

1 + exp(−𝛽X)

)2( 1
1 + exp(−𝛼X)

)Y( exp(−𝛼X)
1 + exp(−𝛼X)

)(1−Y )

FI(X)dX

= ∫X

[(
exp(−𝛽X)

1 + exp(−𝛽X)

)2 1
1 + exp(−𝛼X)

+
(

1
1 + exp(−𝛽X)

)2 exp(−𝛼X)
1 + exp(−𝛼X)

]
FI(X)dX

= ∫X

exp(−𝛼X) + exp (−𝛽X)2

(1 + exp(−𝛽X))2(1 + exp(−𝛼X))
FI(X)dX .

If for any X , exp(−𝛼X)+exp (−𝛽X)2

(1+exp(−𝛽X))2(1+exp(−𝛼X))
is minimized, then the integral over X will be minimized.

let A = exp(−𝛼X), B = exp(−𝛽X), then the function can be written as

A + B2

(1 + B)2(1 + A)

Take derivative w.r.t B, we get:

2B(1 + B)2(1 + A) − (A + B2)2(1 + B)(1 + A)
(1 + B)4(1 + A)2 = 2(B − A)

(1 + B)3(1 + A)

When B<A, the function will decrease, When B>A, the function will increase. Thus, it will be minimized at B=A, that
is, when FE(Y |X) = FI(Y |X). ▪

AUC, which measures the area under the ROC Curve, indicates how well the predicted probabilities for the cases
are separated from the controls. The question is under logistic models will the AUC be maximized when the external
model is same as the internal model, that is, FE(Y |X) = FI(Y |X)? The answer is it depends. The coefficients in the logistic
regression model are not chosen to maximize the AUC, rather the coefficients are chosen to maximize the likelihood. In
practice, these two sets of coefficients will frequently, but not always, be quite similar. However, if complete discrimina-
tion is possible, the maximum likelihood logistic regression coefficients will estimate the coefficients which separate the
population.19,20

APPENDIX B. CONSISTENCY OF IPW AND AIPW ESTIMATORS FOR BS

Considering the BS using the IPW method. Let

Ui(𝜃, 𝛾1) = 𝜃RiWi − (Yi − p̂i)2RiWi,

where W i depend on weight model with parameters 𝛾1. Let UN(𝜃, 𝛾1) = N−1 ∑N
i=1 Ui(𝜃, 𝛾1), and it is straight forward that

BSIPW is the solution of UN(𝜃, 𝛾1) = 0. Let UE = E(UN) = E(Ui(𝜃, 𝛾1)).
Let 𝛾∗1 be the probability limits of 𝛾1 using the weight model Pr(R = 1|Xobs,Y ; 𝛾1). When the weight model is correctly

specified, Pr(R = 1|Xobs,Y ; 𝛾∗1 ) = Pr(R = 1|Xobs,Y ), then E(RiW i)= 1, and it is clear that UE(𝜃, 𝛾1) = 0. Because UN(𝜃, 𝛾1)
converges uniformly to UE(𝜃, 𝛾1), BSIPW is a consistent estimator.
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The proof is similar for AIPW estimator. We first demonstrate consistency for a slightly modified estimator, which we
call BSAIPW* with

BSAIPW∗ =
1
N

N∑
i=1

(Yi − p̂i)2RiWi + E[(Yi − p̂i)2](1 − RiWi)

Let
Vi(𝜃, 𝛾1, 𝛾2) = 𝜃 −

{
(Yi − p̂i)2RiWi + E[(Yi − p̂i)2](1 − RiWi)

}
,

where W i depend on weight model with parameters 𝛾1 and E[(Yi − p̂i)2] depend on the model for missing covariates
with parameters 𝛾2. Let VN(𝜃, 𝛾1, 𝛾2) = N−1 ∑N

i=1 Vi(𝜃, 𝛾1, 𝛾2), then it is straightforward to see that BSAIPW* is the solution
of VN(𝜃, 𝛾1, 𝛾2) = 0. Let VE = E(VN) = E(Vi(𝜃, 𝛾1, 𝛾2)). It is easy to see that VN(𝜃, 𝛾1, 𝛾2) converges uniformly to VE(𝜃, 𝛾1, 𝛾2),
thus the solution to VN(𝜃, 𝛾1, 𝛾2) = 0 converges to the solution of VE(𝜃, 𝛾1, 𝛾2) = 0.

Let 𝛾∗1 be the probability limits of 𝛾1 using the weight model Pr(R = 1|Xobs,Y ; 𝛾1). When the weight model is cor-
rectly specified, Pr(R = 1|Xobs,Y ; 𝛾∗1 ) = Pr(R = 1|Xobs,Y ), then E(RiW i)= 1. Let 𝛾∗2 be the probability limits of 𝛾2 using the
model for the missing covariates F(Xmis|Xobs,Y ; 𝛾2). When the model is correctly specified, that is, F(Xmis|Xobs,Y ; 𝛾∗2 ) =
F(Xmis|Xobs,Y ), then E{E[(Yi − p̂i)2] − (Yi − p̂i)2} = 0. When either working model is correctly specified, it is clear that
VE(𝜃, 𝛾1, 𝛾2) = 0, and that the 𝜃 that solves VE(𝜃, 𝛾1, 𝛾2) = 0 is the true BS. Because V N converges uniformly to V E, BSAIPW*
is a consistent estimator.

For the actual estimator BSAIPW described in Section 2.4 instead of calculating E[(Yi − p̂i)2] where the expectation is
over the distribution F(Xmis|Xobs,Y ; 𝛾∗2 ), we propose to use (Yi − p̂i

∗)2 as an approximation.

APPENDIX C. ADDITIONAL SIMULATION RESULTS FOR CORRELATED COVARIATES
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F I G U R E C1 Simulation results of mean and relative SD of AUC for existing model M1: cor(X1, X3)=−0.5. Column left denotes mean
AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms. AUC, area under the curve
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APPENDIX D. IMPLEMENTING AIPW AND IPW ESTIMATORS WHEN MORE THAN ONE
VARIABLE HAS MISSING VALUES

We propose the IPW and AIPW estimates of AUC and BS for a single missing covariate in the main text and extend it
here to more than one variable with missingness. We discuss how to build weight models and models for the missing
covariates under different missing patterns.

First, we consider the block missing of covariates. Without loss of generality, consider the model
with outcome Y and covariates X1, X2, X3, and both X2, X3 are missing in some subjects. Let R2 indi-
cate X2 is observed and R3 indicate X3 is observed, then Pr(R= 1)=Pr(R2 = 1, R3 = 1). The weight model
can be built by Pr(R= 1|X1, Y ) or Pr(R= 1|X1), using the fully observed covariates with the outcome
or not. The models to impute X∗

2 and X∗
3 can be built separately, with F(X2|X1, Y ), F(X3|X1, Y ) or

F(X2|X1), F(X3|X1) from the data of subjects with R= 1, and then obtain the predictions of X∗
2 and X∗

3 for all the
subjects.

Next we look at a scattered pattern of missingness in the covariates. Use the same notation above with X1
fully observed and X2, X3 are missing in some subjects. The weight model can be built by Pr(R= 1|X1, Y ) which
indicate the CCs without any missing, but may not capture the missingness for each covariate. Alternatively we
can assume that the missingness of X2 and X3 are independent, then Pr(R= 1)=Pr(R2 = 1)Pr(R3 = 1). The weight
models for R2 and R3 can be built separately by Pr(R2 = 1|X1, Y ), Pr(R3 = 1|X1, Y ) or Pr(R2 = 1|X1), Pr(R3 = 1|X1),
using the fully observed covariates with the outcome or not. The models to impute X∗

2 and X∗
3 can be built sep-

arately as in block missingness. In numerical studies we found the best results when the model to impute X2
was built from the observations with R2 = 1 and the model to impute X3 was built from the observations with
R3 = 1.

For the monotone missingness, X1 is fully observed and both X2, X3 are missing in some subjects. For those
with X2 observed, X3 is missing in some subjects too, with the probability of missing X3 can depend on the
value of X2 under the MAR scenario. Now Pr(R= 1)=Pr(R3 = 1|R2 = 1)Pr(R2 = 1) and we can build the model for
R2 using all the subjects and the model for R3 using the subjects with X2 observed. The models to impute X∗

2
and X∗

3 can be built separately as in block missing using the fully observed covariate X1 with the outcome or not.
Alternatively, the model to impute X∗

2 can be built with F(X2|X1, Y ) or F(X2|X1) from subjects with R2 = 1 and
get the predictions of X∗

2 for all the subjects. Then the model to impute X∗
3 can be built with F(X3|X1, X2, Y ) or
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F(X2|X1, X2) from subjects with R3 = 1 and get the predictions of X∗
3 using X∗

2 as the predictor covariate for all the
subjects.

APPENDIX E. SIMULATION RESULTS WHEN MORE THAN ONE VARIABLE HAS MISSING
VALUES

We consider the same model with true coefficients as for M1 and the covariates are independent. For block miss-
ing, similar to the single covariate missing, we consider MCAR: block missing of X2, X3 with probability of 0.4; MAR
(X1): block missing of X2, X3 depends on the value of fully observed covariate X1; MAR (X1, Y ): block missing of
X2, X3 depends on the value of X1, Y ; MNAR: block missing of X2, X3 depends on the value of X2, X3. The fraction of
observations that are fully observed in these four situations are 60%, 60%, 50%, and 60%. Figure E1 shows the simu-
lation results with 1000 replications for AUC, and the results are similar to Figure 1 for the single covariate missing
situation.

For scattered missingness, we assume the missing of X2 and X3 are conditionally independent. For MCAR: missing
of X2 has probability of 0.4 and missing of X3 has probability of 0.2; MAR (X1): missing of X2 depends on the value
of fully observed covariate X1 and missing of X3 depends on X1 too with a different probability; MAR (X1, Y ): missing
of X2 and X3 depends on the value of X1, Y with different probabilities; MNAR: missing of X2 depends on the value
of X2 and missing of X3 depends on the value of X3. The fraction of observations that are fully observed in these four
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F I G U R E E1 Simulation results of mean and relative SD of AUC for existing model with block missingness of two covariates. Column
left denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms. AUC,
area under the curve
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F I G U R E E2 Simulation results of mean and relative SD of AUC for existing model with scattered missingness of two covariates.
Column left denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms.
AUC, area under the curve

situations are 48%, 40%, 30%, and 33%. As shown in Figure E2, under MCAR, MAR(X) and MAR(X,Y), the IPW and
AIPW methods can get unbiased estimates when the models for Pr(R2 = 1), Pr(R3 = 1) or the model to calculate X∗

2 ,X∗
3

are correctly specified. But the variance are much higher in comparison to MI methods, especially for AIPW under
MAR(X,Y).

For monotone missing, we assume the subjects with missing in X2 have missing in X3 and some subjects with X2
observed have missing in X3 too. For MCAR: missing of X2 has probability of 0.4 and for those with X2 observed, missing
of X3 has probability of 0.5; MAR (X1): missing of X2 depends on the value of fully observed covariate X1, and for those
with X2 observed, missing of X3 depends on X1 and X2; MAR (X1, Y ): missing of X2 depends on the value of X1 and Y , and
for those with X2 observed, missing of X3 depends on X1, X2 and Y ; MNAR: missing of X2 depends on the value of X2, and
for those with X2 observed, missing of X3 depends on the value of X3. The fraction of observations that are fully observed
in these four situations are 30%, 40%, 50%, and 30%. We compared different choices for the models to obtain X∗

3 , either it
includes X2 or independent of X2, and we saw no difference of the simulation results. In further simulations we saw that
using X∗

2 to predict X∗
3 does not help when X2, X3 are correlated. As shown in Figure E3, under MCAR, MAR(X), and

MAR(X,Y), the IPW and AIPW methods can get unbiased estimates when the weight model of Pr(R2 = 1), Pr(R3 = 1|R2 = 1)
or the model to calculate X∗

2 ,X∗
3 are correctly specified. The AIPW methods are more efficient than IPW

methods.
In conclusion, the extension of the IPW and AIPW methods to multiple covariates missing is feasible and have good

performance under block missing and monotone missing.
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F I G U R E E3 Simulation results of mean and relative SD of AUC for existing model with monotone missingness of two covariates.
Column left denotes mean AUC. Column right denotes SD relative to full data analysis. The four rows are different missingness mechanisms.
AUC, area under the curve

APPENDIX F. FINDINGS FROM SIMULATIONS WHERE SAMPLE SIZE AND AMOUNT OF
MISSINGNESS IS VARIED

In further work, we investigated the impact of sample size and percent missingness on the performance of the methods,
and also considered an alternative AIPW estimator. With smaller sample size, we observed that IPW2 is slightly biased
under MAR and that the SD of IPW methods are smaller and similar to AIPW methods. On the other hand, with bigger
sample size, the SD of IPW is a lot larger than that of AIPW. We found that small sample size has most impact on the
IPW and AIPW performance in situations where there are some extreme weights. Truncating the very high weights does
reduce the variability of the IPW and AIPW methods, but also increase their bias.

In the simulations presented in Figures 1 to 7, the missingness rate of X1 is about 40% to 50%. With less missingness
of X1, the differences between the methods are smaller under all missing mechanisms. With 80% missing of X1 the per-
formance of the IPW and AIPW methods do deteriorate. For the M1 setting IPW2 is biased for both AUC and BS under
MAR. For AUC, AIPW3 is more biased than AIPW1 under MAR(X2, Y ), and SD of AIPW1 and AIPW2 is larger than IPW.
The worse performance is strongly affected by the distribution of the weights, and deteriorates substantially when there
are extreme weights.

For the results presented in the article we found very little difference between the alternative ways of calculating the
AUC, that is either using the C-index or by calculating the area under the estimated ROC curve via Equation (14). With
80% missingness rate for X1 we did find differences between the methods. The ROC version AUCAIPW results in more
biased AUC than the C-index version AUCAIPW under MAR, and furthermore AIPW2 and AIPW4 showed some bias.


