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 5 

 6 

Using Gradient Forest to predict climate response and adaptation 7 

in Cork Oak 8 

 9 

Abstract 10 

 11 

Climate change is impacting locally adapted species such as the keystone tree species cork 12 

oak (Quercus suber L.). Quantifying the importance of environmental variables in explaining 13 

the species distribution can help build resilient populations in restoration projects and design 14 

forest management strategies. Using landscape genomics, we investigated the population 15 

structure and ecological adaptation this tree species across the Mediterranean Basin. We 16 

applied genotyping by sequencing and derived 2,583 single nucleotide polymorphism markers 17 

genotyped from 81 individuals across 17 sites in the studied region. We implemented an 18 

approach based on the nearest neighbor haplotype “coancestry” and uncovered a weak 19 

population structure along an east-west climatic gradient across the Mediterranean region. We 20 

identified genomic regions potentially involved in local adaptation and predicted differences 21 

in the genetic composition across the landscape under current and future climates. Variants 22 

associated with temperature and precipitation variables were detected and we applied a 23 

nonlinear multivariate association method, gradient forest, to project these gene–environment 24 

relationships across space. The model allowed the identification of geographic areas within 25 

the western Mediterranean region most sensitive to climate change: southwestern Iberia and 26 

northern Morocco. Our findings provide a preliminary assessment toward a potential 27 

management strategy for the conservation of cork oak in the Mediterranean Basin. 28 

 29 

 30 

Key words: climate change, local adaptation, landscape genomics, Gradient Forest, 31 

Quercus suber L. 32 
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 33 

 34 

Introduction 35 

 36 

The adverse effects of climate change on European forests will largely depend on the 37 

capacity of trees to tolerate temperature and precipitation changes. In the Mediterranean 38 

Basin, higher temperatures and increased aridity are predicted to have serious consequences 39 

on  species composition (Dukes et al., 2005; Petit et al., 2005) with anticipated latitude and 40 

elevation shifts in response to these changes (Benito et al., 2014). Local adaptation will 41 

determine the fate of these species, providing insight into the magnitude and location of the 42 

potential effects of climate change, knowledge that will help to mitigate these future effects. 43 

Scientists have raised concerns regarding the ability of trees to cope with climate change 44 

(Lindner et al., 2010; Alberto et al., 2013; Sork et al., 2013). Variations are observed in trees 45 

phenotypic (Príncipe et al., 2019) and genetic features across the landscape and their response 46 

will depend on the genetic architecture of traits associated with the response to current climate 47 

conditions. However, the long lifespan of tree species questions their ability to mitigate the 48 

effect of a changing climate (Hughes et al., 2008; Kremer et al., 2014). Finding the most 49 

appropriate way to protect trees is central as their future may directly impact the global 50 

carbon cycle and the rate of climate change due to the importance of forest ecosystem (Sork et 51 

al., 2013).  52 

Forest tree populations are the result of natural demographic and selective processes where 53 

gene flow and natural selection are shaping spatial genetic patterns and driving phenotypic 54 

variations (Sork, 2016).  Using common garden experiments, several studies emphasized the 55 

importance of species phenology in mediating adaptation to climate (Savolainen et al., 2007; 56 

Alberto et al., 2013). They highlighted variations in tree resistance to cold, drought or the 57 

ability of trees to grow under various conditions and aimed to improve forest management 58 

practices (Bower & Aitken, 2008; Aitken & Bemmels, 2016). However, these types of 59 

experiments are long and costly and biologists turned to genetics to gain knowledge about 60 

spatial patterns of adaptation. The development of landscape genomics has shown that gene-61 

environment correlation can mirror phenotypic correlations with environmental gradients 62 

(Coop et al., 2010).   63 

In naturally evolving environments, gene flow occurs more often within populations living 64 

in close distance to each other. Genomic data have been able to elucidate patterns of Isolation 65 
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by Distance (IBD) and to examine spatial relationships across the landscape. With the 66 

advances in high-throughput sequencing, researchers have started to examine patterns of 67 

Isolation by Environment (IBE). The field of  landscape genomics emerged as a framework to 68 

study interactions between adaptive processes in natural populations and environmental 69 

heterogeneity (Schoville et al., 2011; Sork et al., 2013; Neale et al., 2017). Thousands of 70 

genetic markers can be investigated in the light of georeferenced samples to gain insights on 71 

evolutionary processes using approaches referred as Environmental Association Analysis 72 

(EAA) (Rellstab et al., 2015; Ćalić et al., 2016) or genetic–environment association (GEA) 73 

(Lotterhos & Whitlock, 2015). By correlating genomic data and environmental variables, it 74 

became possible to identify environmental and genomic factors driving local adaptation 75 

(Hoban et al., 2016).  76 

EAA approaches allow to better characterize target species and can help toward a better 77 

management of seeds for revegetation purposes. Forest restoration has traditionally been 78 

restricted to the use of local seeds (Broadhurst et al., 2008). However, reduced seed sourcing 79 

can lead to a limited gene pool which may result in inbreeding depression for future 80 

generations especially when ecosystems are under stress or when population size is shrinking. 81 

Using integrative population genetic and ecological modelling, it appears now possible to 82 

guide seed choices in a process known as Assisted Gene Flow (Aitken & Whitlock, 2013). 83 

Obtaining seeds from other geographical areas may improve forest management strategies by 84 

increasing genomic and phenotypic diversity (Williams et al., 2014; Supple et al., 2018). 85 

These practices may help current populations mitigate the adverse effects of climate change 86 

(Prober et al., 2015).  87 

The first approaches used to model species adaptation to its environment were based on 88 

species distribution models (SDM) which rely mostly on species (or subspecies) presence 89 

data. These models were not fit to account for the intraspecific variation due to local 90 

adaptation (Fitzpatrick & Keller, 2015). In their paper, Fitzpatrick and Keller (2015) 91 

demonstrated how to apply community-level modelling approaches to map turnover of allele 92 

frequencies along environmental gradients. They used Gradient Forest (GF) (Ellis et al., 93 

2012), a regression tree-based method and Generalized Dissimilarity Modelling (GDM) 94 

(Ferrier et al., 2007), a distance-based modelling approach. These methods have promising 95 

applications as they can quantify the role of spatial and environmental variables in structuring 96 

genetic variations which allow to describe non-linear changes along environmental gradients, 97 

and thus overcome the limitation of traditional genotype-environment associations. Several 98 

studies successfully applied these methods on tree species (Gugger et al., 2018; Martins et al., 99 
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2018; Supple et al., 2018; Ingvarsson & Bernhardsson, 2020), being able to describe 100 

association between genetic structure and environmental variables. For instance, Gugger et 101 

al., (2018) generated a dataset of over 11,000 single nucleotide polymorphisms (SNPs) from 102 

311 Acacia koa trees in Hawaii. They predicted using future climatic scenarios that changes 103 

in rainfall patterns may result in “genetic offset” (sensu Fitzpatrick & Keller, 2015) where 104 

trees may no longer be genetically adapted to fit their environment. These methods appear as 105 

a useful tool to guide reforestation strategies through the selection of tree populations better 106 

equipped to face climate change.  107 

In the present study, we aimed at investigating the potential adaptive response of cork oak 108 

(Quercus suber L.) to climate change. The species is present throughout the western 109 

Mediterranean region, where it holds high economic importance and a vast ecological 110 

significance in sustaining terrestrial biodiversity and other regulating ecosystem services 111 

(Benito Garzón et al., 2008). The current distribution of cork oak ranges from the Atlantic 112 

coasts of North Africa and the Iberian Peninsula to the southern regions of Italy (Fig. 1). The 113 

evolutionary origin of the cork oak is thought to have been occurred in the western 114 

Mediterranean region, where the species was able to persist throughout climate oscillations of 115 

the Quaternary period (2.6 Ma) (Magri et al., 2007). In the Iberian Peninsula and Morocco, 116 

palynological evidence hints at a long-term persistence of cork oak dating from the last glacial 117 

period (Magri et al., 2007). Several study cases have attempted to model the species 118 

distribution across various timelines using Ecological Niche Modelling (ENM) (Vessella et 119 

al., 2015, 2017; Correia et al., 2018). However, these models assume the uniformity of 120 

climate response below the species level and do not account for the multidimensionality of 121 

genomic variation.  122 

Here, we seek to understand the ecological drivers of adaptation in cork oak by reanalyzing 123 

a previously published dataset which revealed lack of significant population structure  124 

(Pina‐Martins et al., 2019). We expanded previous investigations (Costa et al., 2011; Modesto 125 

et al., 2014; Pina‐Martins et al., 2019) by implementing a population structure analysis based 126 

on the nearest neighbor haplotype “coancestry” and by combining population genomics and 127 

gene-environment associations to further study the local adaptation of these tree keystone 128 

species. Moreover we implemented an innovative  nonlinear multivariate approach, gradient 129 

forest, to identify areas at risk of climate maladaptation and predict genetic changes required 130 

to keep pace with a changing environment. This identification of the spatial regions where 131 

gene–environment relationships will be most disrupted, the ‘genetic offset’, is of critical 132 

importance for a knowledge based adaptive management of this economic important species. 133 
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 134 

 135 

 136 

 137 

 138 

Methods 139 

 140 

Sampling and Genomic data processing 141 

The individual samples used in the study were previously collected and genotyped by us 142 

using  95 unrelated cork oak individuals from 17 locations across the species distribution 143 

(Table S1) (Pina‐Martins et al., 2019). Briefly, DNA was extracted from grounded leaves 144 

using “innuPREP Plant DNA” kit (Analytik Jena AG) and the DNA samples were outsourced 145 

to the “Genomic Diversity Facility” at the University of Cornell for “Genotyping by 146 

sequencing” (GBS) (Elshire et al., 2011). DNA was digested using the EcoT22I restriction 147 

enzyme and sequencing was performed on an Illumina HiSeq 2000 platform. Raw reads data 148 

in FASTQ format were processed using STACKS 2.41 (Catchen et al., 2013). Samples with 149 

40% of missing data were removed. The “populations” parameters were adjusted to retained 150 

one SNP per “stack”, with a minimum percentage of individuals in and across populations of 151 

0.8 required for a locus to be processed (populations –r 0.8 –R 0.8 –min-maf 0.01 --152 

write_single_snp). Previous work has shown the lack of population structure in cork oak and 153 

since our populations contained few individuals (five individuals in average), various 154 

minimum allele frequencies were tested (0.0, 0.01 and 0.03) to observe how they affect 155 

summary statistics intending to retain some private alleles in each population.  156 

 157 

 158 

Population Structure and Summary Statistics 159 

 160 

For a pilot approach, we ran the Stacks pipeline with the same parameters but varying the 161 

MAF between 0.00, 0.01 and 0.03 (Table S3). Based on this test, a minor allele frequency 162 

<0.01 was used for subsequent analyses. For the analysis of population structure and 163 

summary statistics we use two datasets: (a) the adaptive-SNP dataset and (b) the “neutral” 164 

dataset. The latter exclude SNPs that were identified as significant climate-associated SNPs 165 
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by the Environmental Association Analysis (see below), to assess the effect of putative “non 166 

neutral” SNPs on the overall pattern of populations differentiation and structure.  The 167 

Bulgarian population is known to be introduced, probably from Iberia, consequently those 168 

samples were included in the population structure analysis but excluded from the Mantel test 169 

and any further analyses.  170 

To explore gene flow and pattern of isolation by distance on the genetic structure of cork 171 

oak, we calculated pairwise FST in R 3.3.0 (R Core Team, 2016) using the “hierfstat” package  172 

(Goudet, 2005). Mean nucleotide diversity (π) and expected heterozygosity (H) were 173 

estimated for each population using STACKS.   174 

To analyze the population structure, we used fineRADStructure v.0.3.1 (Malinsky et al., 175 

2018).FineRADstructure is a model-based Bayesian clustering approach that groups together 176 

individuals with high levels of shared coancestry. The high resolution population structure 177 

inference is based on this coancestry matrix, which is used to cluster individuals according to 178 

the similarity of their RAD haplotypes. This improved capacity is the result of combination of 179 

the new RADpainter with fineSTRUCUTRE. The former is simple method of finding the 180 

closest relatives for each allele and summed up into the coancestry matrix. Each individual is 181 

considered to either being a donor or a recipient of DNA fragments. The coancestry matrix 182 

then records the inferred recombination events between each donor and recipient prior to 183 

coalescing with another genome. RADpainter was designed to take full advantage of RAD 184 

data sets (see Malinsky et al. 2018 for further details on the calculations of the coancestry 185 

matrix). The latter is a Markov chain Monte Carlo (MCMC) clustering algorithm. The 186 

optimal population structure is obtained by exploring the space of population configurations 187 

and a proposed population configuration is accepted with a probability derived from the ratio 188 

of the likelihood with the previous configuration, a likelihood that in turn depends on the 189 

terms of the scaled coancestry matrix. Based on the final output, we can infer the number of 190 

clusters, quantify ancestry sources in each group, and also explore relationships between 191 

groups (Lawson et al., 2012; Malinsky et al., 2018).Additionally, population structure was 192 

visualized on a principal component analysis (PCA) with the “adegenet” package (Jombart, 193 

2008). 194 

Mantel tests assess the association between genetic and geographic distance and detect 195 

spatial autocorrelation (Mantel, 1967). Genetic variation was calculated as the Bray-Curtis 196 

distances between loci. The geographic distances consisted of the Euclidean distances 197 

between sampling localities. Mantel tests were performed using the vegan package (Goslee & 198 

Urban, 2007) in R with 10,000 permutations.  199 
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 200 

Genetic–Environment Association and Outlier Detection 201 

 202 

Outlier detection was performed in BAYESCAN v2.1 (Foll & Gaggiotti, 2008)  using 203 

100,000 iterations with a burning of 50,000 steps, and a thinning interval size of 10. The latter 204 

has been recognized as the most effective population differentiation method (De Mita et al., 205 

2013; Lotterhos & Whitlock, 2014).  To minimize the chance of false positives due to 206 

multiple testing, we applied a False Discovery Rate (FDR) criterion of 0.05 (Benjamini & 207 

Hochberg, 1995). Q-values were calculated in R 3.3.0  (R Core Team, 2016)  using the 208 

“qvalue” package (Storey et al., 2015). Since cork oak might exhibit a weak pattern of 209 

isolation by distance, this FST outlier analysis provides credible candidate SNPs resulting from 210 

spatially divergent selection pressures.  211 

Redundancy analysis (RDA) was performed in R using the package “vegan” (Oksanen et 212 

al., 2013). RDA is an ordination method which examines the variations of how a set of 213 

variables is explained by another set. In this study, RDA is used to investigate how much of 214 

the genetic variation is attributable to either climate or spatial distances, versus how much can 215 

be explained by their joint effect. Gene ontology (GO) terms were investigated and 216 

summarized using Blast2GO (Conesa & Götz, 2008) to identify genes harboring  putatively 217 

selected SNPs that might play a role in adaptation. 218 

Additionally, we detected local adaptation by testing for associations between SNPs allelic 219 

frequencies changes and climatic gradients. We tested the nineteen Bioclimatic (BIO) 220 

WordClim variables V2.0 (Fick & Hijmans, 2017) at 30 arc‐seconds (~1 km) resolution using 221 

a Latent Factor Mixed Model implemented in LFMM 1.3 (Frichot et al., 2013). Information 222 

for each sample was extracted in R (v 3.1.1) using the “raster” (Hijmans & van Etten, 2012) 223 

and “dismo” (Hijmans et al., 2012) packages. LFMM is a Bayesian approach used to detect 224 

selection in landscape genomics. Briefly, the method investigates the influence of population 225 

structure on allele frequencies by introducing unobserved variables as latent factors (K) 226 

(Stucki et al., 2017) to detect signatures of local adaptation while accounting for population 227 

structure. K-values ranging from one to eight, and three independent repetitions for each K, 228 

were run using the Bayesian clustering method described in the LFMM manual. The method 229 

resulted in choosing a K = 2 (Fig. S1). We performed three independent LFMM runs using 230 

10,000 iterations and burn-in of 5,000 using the LEA package in R. The |z|-scores were 231 

averaged to strengthen the genetic-environment association and a FDR of 5% was used to 232 
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uncover significant SNPs (Frichot & François, 2015). Adjusted p-values (q) were estimated 233 

using a genomic inflation factor (λ) procedure (Devlin & Roeder, 1999). A visual 234 

examination of histograms of adjusted p-values was performed to assess the confounding 235 

effect of the population structure as recommended in the LFMM manual (Fig. S2).  236 

 237 

Gradient forest analysis 238 

We modelled current and future patterns of genetic variation using a gradient forest (GF) 239 

approach. GF analysis was implemented using “gradientForest” (Breiman, 2001) in R. The 240 

method is a nonparametric, machine-learning regression tree approach which allows mapping 241 

patterns of turnover in biological composition using nonlinear functions of an environmental 242 

gradient. We conducted an initial GF analysis on the nineteen Bioclimatic (BIO) WordClim 243 

variables to assess the relative importance of each predicator variable using weighted R2 244 

values (split importance - Ellis et al., (2012)) (Fig. S3). Split importance measures the amount 245 

of variation explained, appearing high along the gradient where allelic frequency change is 246 

large. After the initial model, we removed eleven variables (BIO1, BIO2, BIO3, BIO4, BIO5, 247 

BIO10 , BIO11, BIO15, BIO16, BIO17 and BIO18) due to high correlation (Pearson’s 248 

correlation coefficient |r| > 0.8) and lower explanatory power than the other remaining 249 

variables (Table S2). The GF turnover function describes the magnitude of turnover in genetic 250 

distance along the gradient while considering all the other variables constant (Fitzpatrick & 251 

Keller, 2015). As a result, in our final modeling approach, we tested for environmental 252 

correlation using eight variables, four temperature variables (BIO6, minimum temperature of 253 

coldest month; BIO7, temperature annual range; BIO8, mean temperature in the wettest 254 

quarter; BIO9, mean temperature in the driest quarter) and four precipitation variables 255 

(BIO12, annual precipitation; BIO13, precipitation of the wettest month, BIO14, precipitation 256 

of the driest month; BIO19 precipitation of the coldest quarter). These variables were tested 257 

for signature of local adaptation. Spatial variables were defined using principal coordinates of 258 

neighborhood matrices (PCNMs) or Moran’s eigenvector maps (MEM) based on the 259 

geographic coordinates (Dray et al., 2006) using the pcnm function in “vegan”. We modeled 260 

climatic and spatial drivers of genomic variation using GF methods on two distinct SNP sets: 261 

(a) the neutral-SNP dataset and (b) the significant climate-associated SNPs. To visualize the 262 

GF results, the transformed environmental variables were reduced into multivariate synthetic 263 

variables using principal component analysis (PCA) and the first three principal components 264 

(PCs) were assigned to a red-green-blue color palette. A Procrustes superimposition (Gower, 265 
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1971) on the PCAs was applied to compare mapped genetic composition for the neutral-SNP  266 

and the adaptive SNP datasets as described in Martins et al. (2018). The Procrustes rotation 267 

compared the PCAs generated in the two models and estimated the differences between them. 268 

The Procrustes residuals represent the absolute distance in genetic composition between SNPs 269 

datasets at each location.  270 

Finally, we used GF to estimate the genetic offset under future climate. To estimate 271 

vulnerability under climate change, Bioclim variables for future climate were obtained for the 272 

year 2070 under the RCP emission scenario 8.5 using the general circulation model (GCM): 273 

Community Climate System Model version 4 (CCSM4) (Gent et al., 2011). The results from 274 

the GF analyses were used to predict genetic change (“genetic offset”). The genetic offset is a 275 

predictive measure to identify the spatial regions where gene-environment relationships will 276 

be the most disrupted between current and future climates (Fitzpatrick & Keller, 2015). For 277 

each grid cell, euclidian distances between current and future genetic composition were 278 

calculated and serves as the metric for genetic offset (Ellis et al., 2012). The future 279 

predictions inform on how much genetic composition across the landscape needs to change so 280 

that current gene–environment relationships are maintained.  281 

 282 

 283 

 284 

 285 

 286 

Results 287 

Genetic diversity and Population Structure  288 

The total dataset comprised 81 samples as 15 samples were removed due to missing data 289 

and 2,583 SNPs were uncovered, with 80% representation in both samples and populations. 290 

Depth of coverage for each SNPs averaged 30.8 (SD=13.37). The second dataset ended up 291 

with 2,318 “neutral” SNPs after removing the 265 climate-associated SNPs by the 292 

Environmental Association Analysis (Table S3). 293 

The average genetic differentiation across loci and populations was FST = 0.044 (neutral 294 

dataset FST = 0.044). The nucleotide diversity (π) averaged 0.180 and was similar across the 295 

17 populations ranging from 0.160 to 0.206, while the average gene diversity was HE = 0.160, 296 

SD = 0.0037 (Table S4). Pairwise FST ranged from -0.0023 between Tuscany and Algeria to 297 
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0.0977 between the southwest and southeast of France (Table S5). Despite the low overall 298 

population differentiation, the fineRADstructure analysis revealed signs of population 299 

structure and three defined groups of populations were identified for both the full dataset and 300 

the “neutral” (Fig. 2 and S4, Table 1). Tree distribution followed an east-west gradient. Group 301 

1 contained 29 western samples (93.5%, FST = 0.0212, neutral dataset) with only two samples 302 

coming from the East (Var21 and Pug5) (FST = 0.0379 neutral dataset). Group 2 contained 303 

samples from Corsica (n=3) and the Landes region in France (n=4) as well as two introduced 304 

Bulgarian samples. Significant genetic exchange was observed among the third group in 305 

comparison with the other two. This group was mainly composed of individuals from eastern 306 

sampled populations (97.4%, one outlier: Cat3), namely: Tunisia, Algeria, Tuscany, Sicily, 307 

Kenitra and Apulia which accounted for 70.1% (n=86) of the private alleles uncovered (Table 308 

S4). The Apulia population specifically displayed the highest number of private alleles 309 

(n=30). These results were corroborated by the PCA even though only a weak pattern of 310 

geographic structure could be observed (Fig. S5a and b). The nucleotide diversity, measured 311 

for the full dataset, but with similar results for the “neutral” dataset, seems to be higher among 312 

the eastern group than among its western counterpart (πEAST = 0.188; πWEST =0.173, p < 313 

0.001), with lower population differentiation in the west (West: FST = 0.0212, East: FST = 314 

0.0379, p < 0.001) and with a higher number of private alleles (nEAST = 85; nWEST = 20) in the 315 

eastern group. Outlier detection analysis for the full dataset revealed 11 outliers with a high 316 

FST indicating divergent selection (Fig. 3) and no outlier shows a signal of balancing or 317 

purifying selection (low FST). Gene ontology associated with one of these SNPs (SNP_14085) 318 

identified a gene encoding for a squalene monooxygenase-like protein. 319 

 320 

 321 

Genetic–Environment Association 322 

The environment seemed to play an important role in the current distribution of cork oak. 323 

Redundancy analysis (RDA) found that 72% of cork oak genetic distribution could be 324 

explained purely by climate and 18% by spatial distance. The samples showed signs of 325 

isolation by distance (Mantel r statistic = 0.282, p < 0.01). Landscape genomics analyses 326 

revealed 265 SNPs that were significantly associated with the climatic variables tested. A 327 

total of 249 SNPs was associated with the four temperature variables, whereas only 45 SNPs 328 

were linked to the precipitation variables. Thirty-four SNPs were associated with multiple 329 

environmental variables including SNP_7403 and SNP_35704 which were associated with 330 
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five variables (BIO07, BIO09, BIO12, BIO13, BIO14 and BIO19) (Table S6). Functional 331 

annotation revealed that 11 loci containing an associated SNP matched genes with known 332 

functions, including a gene encoding for a DNA-binding transcriptional regulator DhaR for 333 

SNP_187039, which was associated with three temperature variables (BIO6, BIO7) and two 334 

precipitation variables (BIO13, BIO19) (Table 1). Also, SNP_6044 was correlated with three 335 

precipitation variables (BIO12, BIO13, BIO19), and the harboring loci is an ortholog of a 336 

gene encoding for a mannosylglycerate hydrolase. Additionally, two SNPs included in genes 337 

fragments that are part of two DNA polymerase processivity factors (SNP_143637; 338 

SNP_226326) were found to be associated with the mean temperature of the wettest quarter 339 

(BIO8). 340 

 341 

 342 

 343 

 344 

 345 

Gradient Forest analysis and Genetic offset under future climate 346 

The GF model was run initially on the neutral dataset of 2,583 SNPs and then on the 265 347 

adaptive SNPs dataset found in the LFMM analysis. The GF models that explained better the 348 

variation was the adaptive SNPs model (mean R2 = 14.0%) compared to the neutral-SNPs 349 

model (mean R2 = 12.4%). The spatial location appeared to be the strongest predicators (Fig. 350 

4, Fig. S6). After summing variables importance, all PCNMs variables explained 58% of the 351 

model variation and environmental variables explained 42% in both neutral-SNPs and 352 

adaptive-SNPs models. These results indicate that spatial variables had the strongest influence 353 

on the turnover in allele frequency across the distribution of cork oak. The contribution of 354 

environmental variables differed between the two models in which temperature annual range 355 

(BIO7) and mean temperature of the driest month (BIO9) appeared with highest R2 weighted 356 

importance among climatic variables in the adaptive SNPs model. When inspecting the 357 

cumulative importance for the neutral-SNPs and adaptive SNPs models (Fig. 4), we observed 358 

that in the adaptive model, the turnover of allele frequencies occurs much earlier for the 359 

variables temperature annual range (BIO7) and precipitation of the driest month (BIO14). For 360 

the temperature annual range variable, a major change in allelic frequencies is observed at 361 

21°C and a similar change can be observed for areas where precipitation in the driest month 362 

are below 10 mm.   363 
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The two GF models gave similar results when mapped onto the ecological niche of cork 364 

oak (Fig. S6). Briefly, the genetic importance values resulting from the GF models were 365 

transformed into multivariable synthetic variables using PCA and these predictions converted 366 

to a red-green-blue color scale using the first three axes of the PCA (see Methods). Different 367 

patterns of allele frequencies turnover were observed (Fig. 5a) with potentially unmapped 368 

levels of genetic diversity present in the northeast of the Iberian Peninsula and in the Landes 369 

region of France. The procrustes superimposition was performed to identify regions where 370 

selection could be stronger in order to prioritize areas to be sampled in future studies. The 371 

procrustes residuals measure the absolute distance in genetic composition between the 372 

neutral-SNP and adaptive SNP datasets. Warmer colors on Figure 5b represent the largest 373 

difference in adaptive variation compared to the overall genetic composition. These areas 374 

include the Portuguese and Moroccan coasts, Catalonia and northern Italy.  375 

The “genetic offset” allows inferring how much the genetic composition across the 376 

landscape is required to change in order to preserve the current gene-environment 377 

relationships (see Methods). Most of the regions seem to be affected by this changing 378 

environment especially Southwest Portugal and Northern Morocco (Fig. 6). Portugal 379 

hinterland, northern Italy, Corsica or the Var regions appear as areas where the genetic offset 380 

is minimal.  381 

 382 

 383 

Discussion 384 

 385 

 386 

 387 

Genetic diversity and Population Structure  388 

The present study uncovered 2,583 SNPs, identified some levels of local adaptation and 389 

cork oak individuals could be assigned to three groups of populations (Fig. 1). The previous 390 

study used a stringent MAF choice of 0.03 yielding a dataset of 1,996 SNPs and marginally 391 

differences between K1 and K2 (Pina‐Martins et al., 2019). Given the relative low sample 392 

size of each population (~ 4.63), we retained a minimum allele frequency (MAF=0.01) which 393 

allowed to detect a reasonable number of private alleles (mean = 7.1 per population, Table 394 

S3). A MAF value of 0.03 led to only one private allele. However, varying the MAF value did 395 
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not result in changes in population structure or in the choice of an inflation factor when 396 

assessing population structure for LFMM analysis (K = 2). The results from the “neutral” 397 

dataset for FST and Mantel test were similar to the ones of the full dataset.   398 

The summary statistics obtained from the Stacks pipeline differed from previous analyses 399 

performed using the ipyrad pipeline. Variations in summary statistics and results from 400 

independent null expectations (IBD or expected transition-to-transversion ratio TS/TV) among 401 

RAD-seq pipelines have been previously reported (Shafer et al., 2017). In the current 402 

analysis, a pattern of isolation by distance was observed (mantel test = 0.281, P < 0.001) 403 

reinforcing the role of local adaptation in shaping the structure of cork oak.  404 

The overall FST value of 0.0444 appeared similar to the one in previous study (FST = 405 

0.0541) (Pina‐Martins et al., 2019), with high genetic diversity (HE = 0.160) which seems to 406 

indicate some overall degree of differentiation with some historical gene flow.  407 

To further investigate population structure, a fineRADstructure analysis was performed.  408 

The software offers a high resolution based on the nearest-neighbor relationships (first 409 

coalescence) between haplotypes and allows the identification of substructure within 410 

populations (Malinsky et al., 2018). fineRADstructure inferred the presence of three clades 411 

which displayed an east-west pattern. In comparison with other approaches used for 412 

population inference, fineRADstructure offers an improved insight on the Quercus suber L. 413 

population structure. When using STRUCTURE-like approaches, the choice of model 414 

complexity (K = 2 – Fig S1) is based on the rate of decrease in the value the Bayesian 415 

Information Criterion (BIC). This approach explores clustering between sampling locations 416 

but remains limited to the choice of model complexity.  On the other hand, fineRADstructure 417 

implements a model-based Bayesian clustering approach that groups together individuals 418 

using an inferred coancestry matrix based on patterns of haplotype similarity. This new 419 

efficient way of capturing information on population structure, was developed for RADseq 420 

data, a genome-wide dense markers and proven to be robust to missing RAD alleles. These 421 

combinations of characteristics make fineRADstructure particularly suitable for our type of 422 

data and consequently could better explain the resolution obtained when compared with 423 

methods such as STRUCTURE. Similar results to ours, where fineRADstructure provided a 424 

better resolution than the optimal number of clusters based on STRUCTURE-like methods, 425 

and coinciding with suboptimal number of STRUCTURE-like clusters, are starting to appear 426 

in the literature (Dincă et al., 2019; Balao et al., 2020).  The structure pattern evidenced here 427 

had already been identified, to some extent in the original STRUCTURE-like analysis, but 428 

concluded it was an incomplete separation between  eastern and western groups (Pina‐Martins 429 
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et al., 2019). The use of Principal Component Analysis (Fig. S5) was also unable to clearly 430 

partition the described genetic diversity although substantial overlap was observed with 431 

fineRADstructure. In both cases, Quercus suber in the western part of the Mediterranean 432 

(Group 1 – Fig 3) appeared less genetically diverse than its Eastern counterpart (Group 3).  433 

However, fineRADstructure was able to capture some signal of local structure for a third 434 

population in Corsica and the Landes (Group 2). In terms of biological insights, 435 

fineRADstructure offers a major improvement over other methods by providing evidence into 436 

what appears to be a more genetically diverse eastern population. This result highlights that 437 

the western population probably resulted from postglacial recolonization history (Lumaret et 438 

al., 2005; Magri et al., 2007). Previous studies using chloroplast DNA identified five different 439 

haplotypes within the species, two haplotypes in the west and three in the east (Magri et al., 440 

2007). The authors argued that the presence of cork oak  in the Iberian peninsula, consistent 441 

with fossil records, might have an early Cenozoic origin (De Carvalho, 1958; Losa Quintana, 442 

1978). The present work suggests a complicated network of relationships within eastern 443 

locations suggesting that the species might have originated in this region. This hypothesis 444 

appears coherent with previous studies (Bellarosa et al., 2005; Lumaret et al., 2005) which 445 

stipulated that cork oak originated in the eastern part of its current range before expanding 446 

westward in the Mediterranean. Further testing using different species-models and 447 

approximate Bayesian computation (ABC) could contribute to understand historical range 448 

shifts (Bemmels et al., 2016).  449 

In addition to isolation by distance, the study revealed higher levels of nucleotide diversity 450 

among the eastern group of populations with a higher number of private alleles and high 451 

pairwise FST. The average among western populations (FST = 0.0212) was lower than in the 452 

east (FST = 0.0379) indicating a higher gene flow in the west. A third clade (group 2 in Fig. 1 453 

and Fig 2) emerged composed of samples from Corsica and the Landes region which 454 

appeared as the most differentiated of the studied populations (FST = 0.061). However 455 

additional sampling efforts are required to draw any definitive conclusions on the 456 

evolutionary history of the species. Eleven SNPs were detected as outliers, representing a 457 

credible set of candidate loci under divergent selection. However, demographic events might 458 

lead to false-positive especially when using a fractional genome sequencing strategy (De Mita 459 

et al., 2013; Lotterhos & Whitlock, 2014), limiting which inferences can be drawn from this 460 

small number of loci. 461 

By sequencing additional populations using genome-wide markers, we are likely to unveil 462 

unmapped levels of genomic diversity and to uncover additional clades in the eastern part of 463 
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the range as well as providing insights onto the role of anthropogenic activities in the 464 

distribution of this tree species within Spain and Portugal. Cork oak has been widely 465 

cultivated for the production of cork in the Iberian Peninsula and this exploitation might 466 

explain its current distribution (Carrión et al., 2000), and to some extent, its genetic 467 

background in the region. 468 

 469 

Genetic–Environment Association 470 

Redundancy analysis showed that climate played a significant role in the distribution of 471 

cork oak (72%). To investigate this gene-environment relationship, we deployed a Genetic 472 

Environment Association (GEA) method which aimed to characterize empirical patterns of 473 

adaptation (Forester et al., 2016). LFMM provides a way to investigate signatures of local 474 

adaptation by the detection of high degrees of correlation between polymorphism and 475 

environmental variables. This method has proven to be a robust approach (Stucki et al., 2017) 476 

even if demographic factors such as IBD tend to bias the analysis (De Mita et al., 2013; 477 

Hoban et al., 2016). In the present study, the majority of SNPs associated with climatic 478 

variables were correlated with temperature variables and no overlap was observed between 479 

the LFMM approach and the outlier detection method.  480 

Cork oak belongs to evergreen oaks and is strictly adapted to the Mediterranean Basin 481 

which is very selective in terms of temperature and rainfall (Aronson et al., 2009). In SNPs-482 

association studies, the role of temperature over precipitation has been previously highlighted 483 

(Cox et al., 2011; De Kort et al., 2014; Martins et al., 2018) and the present analyses 484 

emphasize the role of temperature in shaping cork oak distribution. Similarly to a previous 485 

study where only 4.4% of the queried sequences could match a region in the genome 486 

(Pina‐Martins et al., 2019), only 11 genes (4.15%) were annotated with a protein prediction 487 

(Table 1). Of these markers, SNP_12029 was associated with two temperature variables 488 

(BIO6, BIO7) and the respective locus match a gene encoding for a quinolinate synthase.  The 489 

latter is known to be involved in the onset of leaf senescence (Schippers et al., 2008). 490 

SNP_6044 was associated with three precipitation variables and the respective gene annotated 491 

encodes for mannosylglycerate (MG) hydrolase. MG accumulates in thermophilic bacteria in 492 

response to salt or thermal stress. In plants, the ability to hydrolyze MG is important for the 493 

plant physiology and hydrolysis (Nobre et al., 2013) and this polymorphism might represent a 494 

signal of local adaptation as a response to drought. However, results from environmental 495 

associations models must be taken carefully as the impact of population structure on the 496 
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findings remains debatable (De Villemereuil et al., 2014; Lotterhos & Whitlock, 2014). 497 

Integrating information on phenotypic variations in future studies might be beneficial to 498 

identify putative candidate genes.  499 

 500 

Gradient Forest analysis and genetic offset under future climate 501 

Geographic variables represented the strongest driver of turnover in allele frequencies over 502 

the landscape (Fig. 4a). The adaptive SNPs GF model revealed that temperature annual range 503 

(BIO7) was the most important variable explaining changeover of allele frequencies across 504 

cork oak distribution (Fig. 4b). The important role of spatial variables might be due to spatial 505 

autocorrelation due to isolation by distance but it can also be suggestive of important 506 

unmeasured environmental predictors (Martins et al., 2018). The cumulative function showed 507 

a steep turnover in allele frequencies occurring in the adaptive SNPs set at 21°C. The turnover 508 

could also be observed for the mean temperature in the driest month (BIO9) indicating an 509 

adaptation to higher temperatures. In the neutral SNPs model, a steep change in allele 510 

frequencies occurred between 20 to 30 mm of rain in the driest month (BIO14), whereas these 511 

changeovers occurred around 5 to 10 mm in the adaptive SNP model. These findings might be 512 

revealing of a genomic adaptation to drought.  513 

Mapped projections of the GF results led to potential unmapped levels of cork oak genetic 514 

diversity present in northern Portugal (Fig. 5) while similarities are expected between the 515 

Landes region and Catalonia. The Procrustes superimposition identified regions where 516 

adaptation is expected to be more intense. The Procrustes residuals (absolute distance in 517 

genetic composition between “full SNP” and “adaptive SNP” datasets for each point location) 518 

were high in Catalonia and in Baetic region meaning that these populations are potentially 519 

adapting to a changing environment.  520 

From future gene-environment projections, northern Morocco, southwest Portugal and 521 

northern Algeria appear as the regions which are expected to experience the largest 522 

disruptions. Local populations will require a significant genetic offset to persist in the region. 523 

However, the Gradient Forest analysis revealed that trees are expected to find a favorable 524 

region in the hinterland of the Iberian Peninsula. These findings corroborate the forecasts 525 

obtained from ecological niche modelling performed on the cork Oak (Vessella et al., 2017). 526 

In this study, for an ENM under the hardest scenario (CSSM4 RCP 8.5), the model predicted 527 

only 30-50% of suitability of its current ecological niche and 16% at the end of the century. It 528 

is worth noting that the actual evolutionary response of these populations to climate change 529 
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will be more complex than these projections as adaptation is the result of multiple 530 

evolutionary processes such as migration, mutation, recombination and the species effective 531 

population size (Fitzpatrick & Keller, 2015).   532 

 533 

Management implications 534 

The study demonstrates a weak population structure of cork oak populations along an east-535 

west gradient. Environmental association analyses revealed that temperature was more 536 

frequently associated with polymorphisms than precipitation. Temperature annual range 537 

appeared as the strongest environmental variable shaping genetic variation within cork oak 538 

ecological niche.  Moreover, the study revealed vulnerable areas of the species distribution 539 

that are at risk of climate change (Fig. 6). Our results are in accordance to the ones reported in 540 

a previous study based on ENM analyses which revealed, that temperature and precipitation 541 

variables are important in the distribution of cork oak (Vessella et al., 2017).  However, 542 

making use of genetic data, the GF analysis was able to identify the drivers of genomic 543 

variation within the species. This  nonlinear, multivariate environmental association method 544 

may help guide seed selection by identifying the suitable provenance of seeds which would 545 

respond more adequately to future climates (Gugger et al., 2018). 546 

In conclusion, the present study provides compelling evidence that a large area of the 547 

species distribution in the Mediterranean Basin will experience drastic changes which will 548 

require strong adaptation from the local populations. Gradient Forest along with other 549 

approaches appear as a useful tool to develop forest management strategies at a faster pace 550 

and cheaper costs than traditional approaches (Fitzpatrick & Keller, 2015; Rellstab et al., 551 

2016; Bernatchez et al., 2019). Our results reveal the potential of landscape genomics to 552 

identify regions which could benefit from Assisted Gene Flow (Aitken & Whitlock, 2013) 553 

such as Southwest Portugal, Baetic region and Northern Morocco but additional data is 554 

required as Assisted Gene Flow must be performed with caution (Aitken & Bemmels, 2016). 555 

The study allowed to identify areas within Quercus suber’s distribution which are most 556 

sensitive to climate change. Additional sampling along two parallel transects from northern 557 

Spain to Southern Portugal and Morocco is projected to further explore the genetic diversity 558 

of cork oak and its adaptation to future climate.  559 

 560 

 561 

 562 
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Tables 789 

Table 1 - Onthology of the SNPs associated with climatic variables 790 

Locus Environmental 

variables 

Description 

SNP_187039 Bio06, Bio07, Bio13, 

Bio19 

DNA-binding transcriptional regulator 

DhaR 

SNP_6044 Bio12, Bio13, Bio19 Mannosylglycerate hydrolase 

SNP_12029 Bio06, Bio07 quinolinate synthase, chloroplastic 
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SNP_133831 Bio09 ribose-phosphate diphosphokinase 

SNP_32261 Bio09 kinesin-like protein KIN-14L 

SNP_3604 Bio09 DNA mismatch repair protein MSH3 

isoform X1 

SNP_11143 Bio07 Alanine tRNA ligase 

SNP_11666 Bio08 ATP-dependent DNA helicase PcrA 

SNP_226326 Bio08 DNA polymerase processivity factor 

SNP_143637 Bio08 DNA polymerase processivity factor 

SNP_245202 Bio08 Plipastatin synthase subunit A 

 791 

 792 

Figures 793 

 794 

Figure 1 - Ecological niche, dark green, of Q. suber with each sampling location colored 795 

according to the associated and group of populations (blue, black and red)  796 

 797 

 798 

 799 

Figure 2 – FineRADstructure analyses of the cork oak population structure. On the x-axis, 800 

each sample is considered as a recipient, and on the y-axis, the sample is considered a donor 801 

of genomic regions. The western (1) and eastern (3) group of populations are clearly 802 

separated with limited sharing of genomic regions between the two groups of populations. 803 
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The second population (2) containing samples from Corsica and the Landes region is closely 804 

related to the western group. The highest amount of shared genome regions between samples 805 

appears in purple and the lowest in yellow. 806 

 807 

 808 

 809 

 810 

Figure 3 – Results for the outlier Fst test based on 17 sampled populations of cork oak  811 
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 813 

Figure 4 – (a) R2-weighted importance of environmental and spatial variables for the 814 

adaptive SNPs model. (b) Cumulative importance of allelic change along four environmental 815 

gradients for the adaptive and neutral SNPs model.  816 
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 821 

 822 

 823 

 824 

 825 

 826 

 827 

Figure 5 – Maps of predicted turnover in allele frequencies. a) Current landscape patterns 828 

of allelic composition predicted under the gradient forest for the adaptive SNPs dataset. A 829 

red-green-blue color scale was generated using the first three axes of the principal 830 

components of the gradient forest prediction. Regions with similar colors are expected to have 831 

similar genetic composition. b) the difference between full SNP and adaptive SNPs datasets 832 

based on Procrustes residuals. 833 
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Figure 6 – Predictive genetic offset (full SNPs dataset) under climate change for 2070. 836 

Euclidian distances between current and future climate were calculated for each model and 837 

regions with larger euclidian distances are expected to have a larger genetic offset. 838 
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