

Figure S1. CHIP prevalence increases with age. Plot of percentage of persons with CHIP as a function of age divided in 5 year bins.

Figure S3. CHIP is associated with decreased methylation-estimated age-adjusted telomere length (DNAmLTLAdjAge). a Forest plot showing confidence intervals and p-values of effects of all CHIP mutations or specific classes of CHIP mutations on DNAmLTLAdjAge. b Box plots of DNAmLTLAdjAge as a function of number of CHIP mutations. c Forest plot showing confidence intervals and p-values of correlation of variant allele fraction (VAF) with DNAmLTLAdjAge.

Figure S4. Methylation CpG sites used in clocks are hypomethylated in CHIP carriers. a,b Volcano plots from differential methylation analysis of persons with (a) *DNMT3A* and (b) *TET2* mutations vs. controls. The x-axis is the log fold change and the y-axis is the -log₁₀ p-value for each CpG. **c** Scatter plot showing the correlation of average M-values at CpGs shown in volcano plots in persons with *DNMT3A* and *TET2* mutations.

Figure S5. The risk of mortality and coronary heart disease (CHD) increases with CHIP in persons with age acceleration, and with age acceleration in persons with CHIP, and is not affected by rs2228145 genotype or CRP levels. **a,b** Forest plots showing hazard ratios, confidence intervals and p-values for mortality (**a**) and development of CHD (**b**). The top section shows the effect of CHIP in persons with age acceleration, and the bottom section shows the effect of age acceleration in persons with CHIP. **c,d** Forest plots showing hazard ratios, confidence intervals, confidence intervals and p-values as a function of CHIP status, age acceleration and rs2228145 genotype for mortality (**c**) and development of CHD (**d**). Persons with at least 1 alternate allele of rs2228145 were designated IL6Mut, and those with no alternate alleles were designated IL6WT. **e,f** Forest plots showing hazard ratios, confidence intervals and p-values as a function and CRP levels for mortality (**e**) and development of CHD (**f**). Persons with greater than 2 mg/L of CRP were designated CRPhi, and those with 2mg/L or less of CRP were designated CRPlo.

Figure S6. rs2228145 reduces the increased risk in composite mortality/CHD cumulative risk in persons with TET2 CHIP mutations and epigenetic age acceleration. Forest plot showing hazard ratios, confidence intervals and p-values for Cox proportional hazard models of the composite measure of mortality/CHD risk in persons from FHS, JHS, and WHI AS315. Model includes chronological age, race, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, systolic blood pressure, type 2 diabetes status and smoking status as covariates. IL6Mut = 1 or 2 copies of alternate allele for rs2228145, IL6WT = 0 copies of alternate allele for rs2228145.

			Subjects		Mediar	n age	Used in analysis			
Cohort	Self-reported ancestry	Total	Female	Male	Female	Male	Age Acceleration	Mortality	CHD	
WHI AS315	Black/AA	225	225	0	64	N/A				
WHI AS315	Hispanic	56	56	0	64	N/A	Yes	Yes	Yes	
WHI AS315	White	697	697	0	66	N/A				
WHI BA23	Black/AA	96	96	0	64	N/A				
WHI BA23	Hispanic	27	27	0	67	N/A	Yes	No ¹	Yes ²	
WHI BA23	White	378	378	0	69	N/A				
FHS	Black/AA	2	2	0	74	N/A				
FHS	Hispanic	6	2	4	70	78	Vec	νος	νος	
FHS	Multiple	8	5	3	66	63	163	163	163	
FHS	White	1365	743	622	67	68				
JHS	Black/AA	1727	1083	644	58	56	Yes	Yes	Yes	
MESA	Asian	71	33	38	62	58				
MESA	Black/AA	182	105	77	61	60	Voc	No ³	No ³	
MESA	Hispanic	287	159	128	58	56	165	INU	INU	
MESA	White	395	198	197	62	59				

Table S1. Demographics of cohorts used in study. WHI = Women's Health Initiative, FHS = Framingham Heart Study, JHS = Jackson Heart Study, MESA = Multiethnic Study of Atherosclerosis, AA = African American, CHD = coronary heart disease. ¹WHI BA23 was excluded from the mortality analysis because it was a case-control study for CHD. ²WHI BA23 was analyzed for CHD risk separately from the other cohorts becuase it was a case-control study for CHD. ³MESA subjects were excluded from mortality and CHD analysis because they were selected for survival over 10 years, which biased subject selection.

-						h						
a		2 mutatio	ons vs. 1	>2 mutatio	ons vs. 2	D		2 mutatio	ons vs. 1	>2 mutations vs. 2		
	Class	est. (SE)	p-value	est. (SE)	p-value		Class	est. (SE)	p-value	est. (SE)	p-value	
	Horvath	2.66 (0.87)	0.002	5.33 (2.27)	0.019		DNAmADM	0.03 (0.01)	0.007	0.00 (0.03)	0.917	
	IEAA	2.23 (0.83)	0.007	4.31 (2.17)	0.047		DNAmB2M	0.02 (0.02)	0.170	0.11 (0.05)	0.020	
	Hannum	4.37 (0.81) 6.8 x 10 ⁻⁸		9.48 (2.11)	7.0 x 10 ⁻⁶		DNAmCystatinC	0.05 (0.01)	1.4 x 10 ⁻⁵	0.07 (0.03)	0.023	
	EEAA	5.08 (1.06)	1.6 x 10 ⁻⁶	13.30 (2.76)	3.30 (2.76) 1.4 x 10 ⁻⁶		DNAmGDF15	0.06 (0.04)	0.169	0.19 (0.10)	0.064	
	SkinBloodClock	2.64 (0.65)	4.3 x 10 ⁻⁵	1.32 (1.68)	0.432		DNAmLeptin	-0.01 (0.08)	0.886	-0.18 (0.20)	0.384	
	PhenoAge	2.42 (1.16)	0.037	0.84 (3.04)	0.782		DNAmPACKYRS	1.95 (2.01)	0.332	5.97 (5.25)	0.255	
	GrimAge	2.49 (0.80) 0.002		4.69 (2.09) 0.025			DNAmPAI1	PAI1 0.01 (0.04) 0.8		0.10 (0.11)	0.328	
							DNAmTIMP1	0.02 (0.01)	7.6 x 10 ⁻⁴	0.01 (0.02)	0.353	

С

	2 mutatio	ns vs. 1	>2 mutations vs. 2					
Class	est. (SE)	p-value	est. (SE)	p-value				
Plasmablast	0.04 (0.04)	0.295	0.01 (0.11)	0.919				
Exhausted CD8+ T-cell	-0.03 (0.71)	0.964	6.17 (1.84)	8.1 x 10 ⁻⁴				
Naive CD8+ T-cell	-12.9 (8.5)	0.130	-54.7 (22.3)	0.014				
Naive CD4+ T-cell	-31.6 (21.8)	0.148	-2.5 (56.9)	0.966				
Natural killer cell	0.00 (0.01)	0.700	0.05 (0.02)	0.020				
Monocyte	0.02 (0.01)	0.002	0.07 (0.01)	6.8 x 10 ⁻⁷				
Granulocyte	0.02 (0.02)	0.437	-0.12 (0.06)	0.031				

Table S2. Increasing number of CHIP mutations effects age acceleration and other methylation measures. Tables with effect sizes, standard errors and p-values of the comparison of persons with 2 CHIP mutations vs 1, and >2 mutations vs. 2 in (**a**) age acceleration in methylation clocks, (**b**) DNAmGrimAge biomarkers, and (**c**) predicted cell type abundance.

а		DNAmADM		DNAmB2M		DNAmCystatinC		DNAmGDF15		DNAmLej	otin	DNAmPAC	KYRS	DNAmPA	AI1	DNAmTI	(MP1
	Class	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value
	All	0.016 (0.004)	1.0 x 10 ⁻⁴	0.022 (0.006)	1.9 x 10 ⁻⁴	0.012 (0.004)	0.002	0.031 (0.013)	0.020	-0.068 (0.024)	0.009	1.735 (0.631)	0.009	0.015 (0.013)	0.274	0.005 (0.002)	0.009
	DNMT3A	0.008 (0.006)	0.175	0.004 (0.008)	0.768	-0.005 (0.005)	0.306	-0.007 (0.018)	0.606	-0.028 (0.034)	0.468	1.255 (0.880)	0.189	-0.000 (0.018)	0.962	0.002 (0.003)	0.542
	TET2	0.008 (0.009)	0.379	0.032 (0.012)	0.010	0.024 (0.008)	0.004	0.068 (0.027)	0.016	-0.166 (0.053)	0.002	1.445 (1.380)	0.326	0.021 (0.028)	0.481	0.002 (0.004)	0.723
	Multiple	0.058 (0.013)	2.2 x 10 ⁻⁵	0.073 (0.019)	1.7 x 10 ⁻⁴	0.090 (0.013)	1.2 x 10 ⁻¹²	0.089 (0.043)	0.042	-0.122 (0.083)	0.154	3.345 (2.150)	0.131	0.030 (0.044)	0.510	0.031 (0.006)	9.5 x 10 ⁻⁷
	DDR	0.014 (0.015)	0.385	0.018 (0.022)	0.446	0.002 (0.014)	0.922	0.089 (0.049)	0.074	0.083 (0.095)	0.360	-1.275 (2.450)	0.577	-0.036 (0.050)	0.460	-0.011 (0.007)	0.112
	JAK2	0.050 (0.024)	0.042	0.101 (0.034)	0.004	0.034 (0.022)	0.140	0.119 (0.077)	0.130	0.087 (0.149)	0.542	-0.114 (3.870)	0.957	0.123 (0.079)	0.125	0.031 (0.011)	0.006
	ASXL1/2	0.013 (0.015)	0.431	0.034 (0.022)	0.134	0.013 (0.014)	0.386	0.077 (0.049)	0.121	-0.212 (0.095)	0.028	7.535 (2.450)	0.002	0.000 (0.050)	0.989	0.016 (0.007)	0.026
	Splicing factor	0.023 (0.023)	0.340	0.035 (0.032)	0.291	-0.013 (0.021)	0.515	0.061 (0.073)	0.411	-0.109 (0.141)	0.458	5.825 (3.650)	0.117	0.127 (0.075)	0.091	-0.013 (0.011)	0.211
	Other	0.050 (0.019)	0.009	0.028 (0.027)	0.313	0.019 (0.018)	0.287	-0.035 (0.060)	0.547	-0.032 (0.117)	0.810	-0.071 (3.040)	0.956	0.098 (0.062)	0.118	0.014 (0.009)	0.136

h															
		Plasmabl	ast	Exhausted Cl	D8+ T-cell	Naive CD8+	T-cell	Naive CD4+	T-cell	Natural kill	er cell	Monoc	yte	Granuloc	yte
_	Class	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value	estimate (SE)	p-value
-	All	0.011 (0.013)	0.424	0.693 (0.222)	0.003	-0.64 (2.68)	0.821	19.15 (6.84)	0.008	-0.002 (0.003)	0.489	0.003 (0.002)	0.156	0.013 (0.007)	0.072
	DNMT3A	-0.006 (0.018)	0.696	0.055 (0.309)	0.956	7.87 (3.73)	0.034	24.55 (9.55)	0.014	-0.007 (0.004)	0.066	-0.005 (0.002)	0.030	0.009 (0.010)	0.376
	TET2	-0.013 (0.028)	0.629	-0.102 (0.482)	0.772	-2.31 (5.83)	0.697	-7.96 (14.90)	0.546	0.008 (0.006)	0.167	0.012 (0.004)	0.002	-0.006 (0.015)	0.658
	Multiple	0.099 (0.044)	0.024	2.968 (0.754)	1.1 x 10 ⁻⁴	-24.54 (9.12)	0.007	-17.05 (23.30)	0.437	0.001 (0.009)	0.915	0.028 (0.006)	2.2 x 10 ⁻⁶	0.047 (0.023)	0.046
	DDR	-0.007 (0.050)	0.874	2.618 (0.859)	0.003	-16.93 (10.40)	0.103	22.55 (26.60)	0.418	0.020 (0.010)	0.046	-0.001 (0.007)	0.878	-0.008 (0.027)	0.737
	JAK2	0.187 (0.079)	0.018	2.268 (1.360)	0.100	-14.13 (16.40)	0.391	34.65 (42.00)	0.423	-0.028 (0.016)	0.081	0.013 (0.011)	0.224	0.132 (0.042)	0.002
	ASXL1/2	0.062 (0.050)	0.219	1.688 (0.859)	0.054	-6.48 (10.40)	0.535	63.15 (26.60)	0.019	-0.006 (0.010)	0.579	0.007 (0.007)	0.268	0.016 (0.027)	0.564
	Splicing factor	-0.022 (0.074)	0.765	1.328 (1.280)	0.312	-3.85 (15.50)	0.805	90.75 (39.60)	0.023	-0.002 (0.015)	0.892	-0.007 (0.010)	0.444	0.036 (0.040)	0.373
	Other	0.026 (0.062)	0.676	1.958 (1.070)	0.071	-4.11 (12.90)	0.752	28.35 (32.90)	0.407	-0.007 (0.012)	0.582	-0.001 (0.008)	0.878	0.024 (0.033)	0.480

Table S3. CHIP mutations in specific classes of genes affect Grim biomarkers and predicted cell type abundances. Tables with effect sizes, standard errors and p-values of the effects of CHIP mutations in specific classes of genes on (**a**) DNAmGrimAge biomarkers and (**b**) predicted cell type abundance. ADM = Adrenomedullin; B2M = Beta-2-Microglobulin; GDF15 = Growth Differentiation Factor 15; PACKYRS = Smoking pack years; PAI1 = Plasminogen Activation Inhibitor 1; TIMP1 = Tissue Inhibitor of Metalloproteinases 1

а		Horvath		IEAA		Hannum		EEAA		SkinBloodClock		k PhenoAge		GrimAge	
	Class	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value
-	All	0.091	0.109	0.106	0.060	0.198	4.2 x 10 ⁻⁴	0.213	1.4 x 10 ⁻⁴	0.129	0.022	0.100	0.076	0.185	9.7 x 10 ⁻⁴
	Single	0.070	0.233	0.086	0.141	0.136	0.020	0.154	0.009	0.078	0.186	0.071	0.225	0.152	0.009
	Multiple	0.081	0.713	0.056	0.800	0.519	0.011	0.455	0.029	0.372	0.080	0.159	0.468	0.367	0.085
	DNMT3A	0.167	0.035	0.190	0.017	0.110	0.168	0.122	0.126	0.141	0.076	0.212	0.007	0.092	0.247
	TET2	0.085	0.509	0.070	0.586	0.306	0.015	0.205	0.107	0.045	0.727	-0.243	0.055	0.240	0.058
	ASXL1/2	-0.510	0.026	-0.297	0.216	-0.375	0.114	-0.210	0.387	-0.565	0.012	-0.260	0.282	0.227	0.350
	DDR	0.153	0.521	0.147	0.535	0.330	0.155	0.382	0.096	0.312	0.181	0.008	0.973	0.089	0.710
	Other	-0.170	0.370	-0.190	0.316	0.061	0.748	0.120	0.527	-0.015	0.936	-0.044	0.816	0.131	0.491

b		DNAmADM		DNAmB2M		DNAmCystatinC		DNAmGDF15		DNAm	nLeptin	DNAml	PACKYRS	DNA	mPAI1	DNAm	TIMP1
	Class	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value
	All	0.152	0.007	0.210	1.7 x 10 ⁻⁴	0.049	0.386	0.139	0.014	0.027	0.636	0.125	0.027	0.068	0.232	0.096	0.090
	Single	0.127	0.030	0.181	0.002	-0.017	0.777	0.122	0.037	0.048	0.413	0.124	0.035	0.053	0.365	0.074	0.209
	Multiple	0.254	0.242	0.063	0.774	0.374	0.079	0.650	7.9 x 10 ⁻⁴	0.296	0.170	-0.151	0.492	0.408	0.053	0.243	0.263
	DNMT3A	0.192	0.015	0.069	0.387	-0.022	0.783	0.045	0.571	0.054	0.501	0.064	0.420	0.011	0.887	0.022	0.783
	TET2	0.033	0.797	0.254	0.045	-0.024	0.853	0.121	0.344	0.046	0.720	0.238	0.060	0.060	0.641	-0.011	0.929
	ASXL1/2	0.071	0.773	0.367	0.123	-0.010	0.969	0.159	0.515	-0.086	0.727	0.201	0.409	0.081	0.743	0.600	0.007
	DDR	-0.080	0.739	0.200	0.397	-0.238	0.313	0.029	0.905	0.156	0.512	0.034	0.888	0.018	0.941	-0.085	0.722
	Other	0.089	0.639	0.164	0.385	-0.138	0.466	0.256	0.171	0.028	0.882	0.099	0.604	0.247	0.188	0.057	0.763

С		Plasmablast		Exhausted CD8+		Naive CD8+		Naive CD4+		Natural killer		Monocyte		Granulocyte	
				١٠	-cell	1-	cell	I-Cell							
_	Class	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value	bicor	p-value
-	All	0.069	0.223	0.154	0.006	-0.111	0.050	-0.014	0.800	-0.002	0.974	0.074	0.190	0.090	0.110
	Single	0.052	0.380	0.145	0.013	-0.081	0.169	-0.007	0.903	-0.009	0.885	0.007	0.911	0.084	0.152
	Multiple	0.010	0.964	0.159	0.468	-0.119	0.588	-0.031	0.887	0.087	0.694	0.322	0.135	-0.015	0.946
	DNMT3A	0.031	0.694	0.102	0.199	-0.049	0.539	0.017	0.828	-0.041	0.605	-0.019	0.811	0.082	0.305
	TET2	-0.041	0.748	0.018	0.887	0.037	0.776	-0.302	0.016	0.254	0.045	0.106	0.409	-0.151	0.239
	ASXL1/2	-0.008	0.973	0.341	0.154	-0.137	0.577	0.450	0.053	-0.389	0.100	-0.127	0.605	0.463	0.046
	DDR	0.112	0.639	0.226	0.338	-0.343	0.138	0.152	0.523	-0.100	0.675	0.138	0.561	0.019	0.937
	Other	0.323	0.082	0.055	0.772	-0.069	0.717	0.062	0.744	-0.138	0.466	0.088	0.642	0.405	0.026

Table S4. Variant allele fraction is correlated with some methylation measures. Tables with correlation coefficients, standard errors and p-values of the effects of correlation of VAF in all CHIP persons and in specific classes of genes on (**a**) age acceleration in methylation clocks, (**b**) DNAmGrimAge biomarkers, and (**c**) predicted cell type abundance.

	Horvath		IEAA		Hannum		EEAA		SkinBloodClock		Pheno	Age	GrimAge	
Group	HR (SE)	p-value	HR (SE)	p-value	HR (SE)	p-value	HR (SE)	p-value	HR (SE)	p-value	HR (SE)	p-value	HR (SE)	p-value
CHIP+	0.195 (0.20)	0.335	0.373 (0.19)	0.050	-0.202 (0.23)	0.385	0.094 (0.22)	0.664	0.258 (0.21)	0.212	0.289 (0.20)	0.141	-0.154 (0.24)	0.525
AgeAccel+	0.199 (0.08)	0.012	0.150 (0.08)	0.059	0.275 (0.08)	5.3 x 10 ⁻⁴	0.230 (0.08)	0.004	0.162 (0.08)	0.043	0.416 (0.08)	2.5 x 10 ⁻⁷	0.583 (0.08)	9.8 x 10 ⁻¹³
CHIP+/AgeAccel+	0.010 (0.26)	0.968	-0.252 (0.26)	0.325	0.566 (0.28)	0.046	0.171 (0.27)	0.527	-0.066 (0.26)	0.802	-0.146 (0.26)	0.572	0.472 (0.29)	0.103

Table S5. The Hannum and Grim clocks interact with CHIP to increase risk of mortality. Table with hazard ratios, standard errors and p-values of Cox proportional hazard models for the interaction of CHIP and epigenetic age acceleration with mortality for individual clocks.