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Abstract
Clonal	 hematopoiesis	 of	 indeterminate	 potential	 (CHIP)	 is	 a	 common	 precursor	
state	 for	blood	cancers	 that	most	 frequently	occurs	due	to	mutations	 in	 the	DNA-	
methylation	modifying	enzymes	DNMT3A or TET2.	We	used	DNA-	methylation	array	
and	whole-	genome	sequencing	data	from	four	cohorts	together	comprising	5522	per-
sons	to	study	the	association	between	CHIP,	epigenetic	clocks,	and	health	outcomes.	
CHIP	was	strongly	associated	with	epigenetic	age	acceleration,	defined	as	the	residual	
after	 regressing	 epigenetic	 clock	 age	on	 chronological	 age,	 in	 several	 clocks,	 rang-
ing	from	1.31	years	(GrimAge,	p < 8.6 × 10−7)	to	3.08	years	(EEAA,	p	<	3.7	×	10−18).	
Mutations	in	most	CHIP	genes	except	DNA-	damage	response	genes	were	associated	
with	increases	in	several	measures	of	age	acceleration.	CHIP	carriers	with	mutations	
in multiple genes had the largest increases in age acceleration and decrease in esti-
mated	telomere	length.	Finally,	we	found	that	~40%	of	CHIP	carriers	had	acceleration	
>0	 in	both	Hannum	and	GrimAge	 (referred	to	as	AgeAccelHG+).	This	group	was	at	
high	risk	of	all-	cause	mortality	(hazard	ratio	2.90,	p < 4.1 × 10−8)	and	coronary	heart	
disease	(CHD)	(hazard	ratio	3.24,	p < 9.3 × 10−6)	compared	to	those	who	were	CHIP−/
AgeAccelHG−.	In	contrast,	the	other	~60%	of	CHIP	carriers	who	were	AgeAccelHG−	
were	not	at	increased	risk	of	these	outcomes.	In	summary,	CHIP	is	strongly	linked	to	
age	acceleration	in	multiple	clocks,	and	the	combination	of	CHIP	and	epigenetic	aging	
may	be	used	to	identify	a	population	at	high	risk	for	adverse	outcomes	and	who	may	
be a target for clinical interventions.
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1  |  INTRODUC TION

Aging	 is	 inextricably	 associated	with	 an	 increase	 in	 the	 number	
of somatic mutations, and this process is believed to be central 
to	the	development	of	cancer	 (Blokzijl	et	al.,	2016;	Hoang	et	al.,	
2016;	Martincorena	&	Campbell,	2015;	Risques	&	Kennedy,	2018;	
Welch	et	al.,	2012).	Clonal	hematopoiesis	of	indeterminate	poten-
tial	 (CHIP)	 (Jaiswal	 et	 al.,	 2014)	 is	 defined	 by	 the	 presence	 of	 a	
cancer-	associated	 somatic	mutation	 in	 the	blood	cells	of	people	
without	a	blood	cancer	or	other	known	clonal	disorder.	CHIP	orig-
inates	 when	 hematopoietic	 stem	 cells	 (HSCs)	 acquire	 a	 random	
mutation, usually in an epigenetic factor, that results in increased 
clone	fitness	(Jaiswal	&	Ebert,	2019).	CHIP	is	strongly	associated	

with	age,	and	carriers	of	 these	mutations	have	an	 increased	risk	
for developing blood cancers, but also coronary heart disease 
(CHD)	and	all-	cause	mortality	(Jaiswal	et	al.,	2014,	2017).	In	addi-
tion	to	age,	CHIP	has	been	found	to	occur	at	a	higher	prevalence	
in	males	 (Jaiswal	 et	 al.,	 2014)	 and	 a	 lower	 prevalence	 in	 people	
of	 self-	reported	 Hispanic	 and	 East	 Asian	 ancestry	 compared	 to	
Europeans	(Bick,	Weinstock,	et	al.,	2020;	Jaiswal	et	al.,	2014).	The	
association	of	CHIP	and	heart	disease	may	result	from	enhanced	
inflammatory	gene	expression	in	mutant	macrophages	within	ath-
erosclerotic	plaques	 (Bick,	Pirruccello,	et	al.,	2020;	Fuster	et	al.,	
2017;	 Jaiswal	 et	 al.,	 2017),	 demonstrating	 that	 at	 least	 some	 of	
these mutations cause dysfunction of immune cells and affect 
phenotypes apart from cancer.

mailto:sjaiswal@stanford.edu
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The	availability	of	DNA-	methylation	data	from	 large	epidemio-
logical cohorts has advanced our understanding of epigenetic aging 
in	recent	years.	Several	“methylation	clocks”	have	been	developed	
(Hannum	et	al.,	2013;	Horvath,	2013;	Horvath	et	al.,	2018;	Levine	
et	 al.,	 2018;	Lu,	Quach,	et	 al.,	 2019)	 that	use	methylation	 state	at	
a	 subset	 of	CpGs	 to	 predict	 chronological	 age	with	 high	 accuracy	
in	 healthy	 individuals.	 “Age	 acceleration”	 results	 when	 predicted	
methylation age is greater than chronological age and associates 
with	 increased	 risk	 of	CHD	 (Levine	 et	 al.,	 2018;	 Lu,	Quach,	 et	 al.,	
2019;	Perna	et	al.,	2016)	and	all-	cause	mortality	(Chen	et	al.,	2016;	
Christiansen	et	al.,	2016;	Levine	et	al.,	2018;	Lu,	Quach,	et	al.,	2019,	
p.	201;	Marioni	et	al.,	2015;	Perna	et	al.,	2016).	Similar	to	prior	stud-
ies	(Horvath	&	Raj,	2018),	we	defined	age	acceleration	as	the	residual	
of	a	linear	model	of	a	clock	estimate	regressed	against	chronological	
age.	 By	 definition,	 this	measure	 is	 not	 correlated	with	 chronolog-
ical	 age	 and	 a	positive	 (or	 negative)	 value	 indicates	 that	 the	 clock	
age	is	higher	(or	 lower)	than	expected	based	on	chronological	age.	
The	factors	underlying	epigenetic	age	acceleration	are	incompletely	
understood.	 Recent	 work	 has	 noted	 that	 two	 distinct	 categories	
of	 epigenetic	 clocks,	 intrinsic	 and	 extrinsic,	which	 are	 believed	 to	
capture different aspects of aging. Intrinsic aging is independent 

of cell type and may be partly driven by the number of times a cell 
has	divided	(Lu	et	al.,	2018),	while	extrinsic	aging,	is	associated	with	
changes	of	cell	type	composition	in	blood	(Horvath	et	al.,	2016),	and	
maybe	influenced	by	environmental	factors	(Levine	et	al.,	2018;	Lu,	
Quach,	et	al.,	2019).	The	Horvath	and	IEAA	clocks	reflect	 intrinsic	
aging,	whereas	the	Hannum,	EEAA,	PhenoAge,	and	GrimAge	clocks	
are	measures	of	 extrinsic	 aging	 (Table	1).	GrimAge	and	PhenoAge	
were	also	trained	to	be	predictors	of	mortality	(Levine	et	al.,	2018;	
Lu,	Quach,	et	al.,	2019).	In	addition,	several	DNA	methylation-	based	
predictors	of	other	aging-	related	phenotypes	have	recently	been	de-
veloped	to	improve	mortality	prediction,	such	as	surrogate	biomark-
ers	for	plasma	protein	levels	(adrenomedullin,	beta-	2-	microglobulin,	
cystatin	C,	leptin,	plasminogen	activator	inhibitor	1,	tissue	inhibitor	
matrix	metalloproteinase	1)	(Lu,	Quach,	et	al.,	2019),	smoking	pack	
years	 (Lu,	Quach,	 et	 al.,	 2019),	 and	 telomere	 length	 (Lu,	 Seeboth,	
et	al.,	2019).

We	hypothesized	that	CHIP	may	be	an	acquired	genetic	factor	
associated	with	 epigenetic	 age	 acceleration.	Here,	we	 use	whole-	
genome	 sequencing	 (WGS)	 and	DNA-	methylation	 array	data	 from	
several	 cohorts	 within	 the	 Trans-	omics	 for	 Precision	 Medicine	
(TOPMed)	 program	 to	 test	 the	 hypothesis	 that	 CHIP	 is	 linked	 to	

TA B L E  1 Summary	of	epigenetic	clocks	used	in	the	study

Clock Type Tissue Outcome Publication Notes

Horvath Intrinsic Multiple Chronological	
age

Horvath	(2013) Inaccessible	tissues	primarily	from	tissue-	adjacent	
normal	samples	in	The	Cancer	Genome	Atlas	
(see	publication)

IEAA Intrinsic Multiple Chronological	
age

Quach	et	al.	(2017) Uses	same	CpGs	as	Horvath	clock,	but	reweighted	
as	described	in	Quach	et	al.	to	minimize	
influence of cell composition

Hannum Extrinsic Whole	blood Chronological	
age

Hannum	et	al.	(2013) Highly	correlated	with	aging-	related	changes	in	
blood cell composition

EEAA Extrinsic Whole	blood Chronological	
age

Quach	et	al.	(2017) Uses	same	CpGs	as	Hannum	clock,	but	reweighted	
as	described	in	Quach	et	al.	to	maximize	
influence of cell composition

SkinAndBloodClock Intrinsic Whole	blood,	
fibroblasts

Chronological	
age

Horvath	et	al.	(2018) Created	to	address	poor	age	prediction	in	Horvath	
clock	in	skin	and	whole	blood

PhenoAge Extrinsic Whole	blood Time	to	death Levine	et	al.	(2018) PhenoAge	is	measure	of	mortality	risk	derived	
from	National	Health	and	Nutrition	
Examination	Survey	using	the	following	
markers:	albumin,	creatinine,	serum	glucose,	log	
C-	reactive	protein,	lymphocyte	percent,	mean	
red cell volume, red cell distribution width, 
alkaline	phosphatase,	white	blood	cell	count,	
and	age	(see	publication	for	details)

GrimAge Extrinsic Whole	blood Time	to	death Lu,	Quach,	et	al.	(2019) Methylation	is	used	to	predict	eight	surrogate	
biomarkers:	Adrenomedullin	(ADM),	Beta-	
2-	Microglobulin	(B2M),	Cystatin	C,	Growth	
Differentiation	Factor	15	(GDF15),	Leptin,	
Serpin	Family	E	Member	1	(SERPINE/PAI1),	
TIMP	Metalloproteinase	Inhibitor	1	(TIMP1),	
smoking	pack-	years	(PACKYRS).	The	predicted	
values	of	those	biomarkers	are	used	to	predict	
mortality	(see	publication	for	details)

Abbreviations:	EEAA,	extrinsic	epigenetic	age	acceleration;	IEAA,	intrinsic	epigenetic	age	acceleration.
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epigenetic	age	acceleration.	We	find	that	CHIP	is	strongly	associated	
with	age	acceleration	in	several	clocks.	We	further	assess	whether	
there	are	gene-	specific	associations	of	CHIP	with	epigenetic	age	and	
methylation-	estimated	telomere	length.	Finally,	we	test	whether	the	
combination	of	CHIP	status	and	epigenetic	age	can	be	used	to	iden-
tify	the	group	at	highest	risk	for	adverse	outcomes.

2  |  RESULTS

2.1  |  Association between CHIP and epigenetic age 
acceleration in several clocks

We	used	WGS	data	obtained	from	whole	blood	DNA	for	several	large	
cohorts	within	TOPMed,	including	the	Framingham	Heart	Study	(FHS),	
the	Jackson	Heart	Study	(JHS),	the	Women's	Health	Initiative	(WHI),	
and	the	Multi-	Ethnic	Study	of	Atherosclerosis	(MESA),	to	identify	CHIP	
as	previously	described	(Bick,	Pirruccello,	et	al.,	2020;	Bick,	Weinstock,	
et	 al.,	 2020)	 (see	Table	 S1	 for	 a	 demographic	 summary	 of	 cohorts).	
The	populations	assayed	for	methylation	were	an	unbiased	selection	
from	within	FHS	and	JHS,	while	the	WHI	TOPMed	samples	were	over-	
sampled	for	incident	stroke	and	venous	thromboembolism.	The	BA23	
subset	of	WHI	was	a	CHD	case/control	study.	Importantly,	the	blood	
draw used for methylation array analysis was the same as that used for 
WGS	in	FHS,	JHS	and	MESA,	and	in	WHI,	only	persons	for	whom	the	
blood	draw	for	the	WGS	was	within	3	years	of	the	draw	for	methyla-
tion	were	included.	After	adjusting	age	acceleration	residuals	for	sex,	
self-	reported	 ancestry,	 and	 cohort,	 5522	 individuals,	 including	 319	
CHIP	carriers,	from	the	four	cohorts	were	assessed	for	seven	different	
aging	measures:	DNAmAge	(Horvath)	(Horvath,	2013),	DNAmHannum	
(Hannum)	(Hannum	et	al.,	2013),	DNAmPhenoAge	(PhenoAge)	(Levine	
et	al.,	2018),	DNAmSkinClock	(SkinBloodClock)	(Horvath	et	al.,	2018),	
DNAmGrimAge	 (GrimAge)	 (Lu,	 Quach,	 et	 al.,	 2019),	 intrinsic	 epige-
netic	age	acceleration	(IEAA)	(Lu	et	al.,	2018)	and	extrinsic	epigenetic	
age	acceleration	(EEAA)	(Lu	et	al.,	2018),	and	a	methylation-	based	esti-
mate	of	telomere	length	(DNAmTL)	(see	Methods).	The	effects	of	CHIP	
were	assessed	overall	 (any	CHIP	mutation),	as	well	as	at	the	level	of	
specific	classes	of	CHIP	mutations	(see	Methods).

Consistent	with	previous	results,	carriers	of	CHIP	were	signifi-
cantly	older	than	non-	carriers	(+7.23	±	0.61	years,	p < 1.13 × 10−31, 
Figures	 S1	 and	 S2),	 and	 the	 prevalence	 of	CHIP	 reached	 >20%	 in	
those	over	80	years	(Figure	S1).	We	then	tested	whether	age	accel-
eration	residuals	from	several	clocks	bore	any	association	to	CHIP	
(Figure	1).	Similar	to	the	results	of	Robertson	et	al.	(2019),	CHIP	was	
most	 strongly	 associated	with	 intrinsic	 age	 acceleration	 (Horvath:	
3.01 years, p < 3.0 × 10−25;	IEAA:	2.92	years,	p < 9.3 × 10−26).	Due	
to	 our	 larger	 sample	 size,	 we	 also	 observed	 strong	 associations	
between	 CHIP	 and	 extrinsic	 age	 acceleration	 (Hannum	 clock:	
2.71	years,	p < 1.8 × 10−23;	EEAA:	3.08	years,	p	<	3.7	×	10−18),	as	well	
as	PhenoAge	(2.21	years,	p < 1.0 × 10−8),	SkinBloodClock	(1.58	years,	
p < 2.5 × 10−13),	and	GrimAge	(1.31	years,	p < 8.6 × 10−7).	We	also	
found that the number of driver mutations was associated with a 

stepwise	increase	in	age	acceleration	for	several	clocks,	and	this	re-
lationship	was	strongest	for	Hannum	and	EEAA	(Table	S2).

We	also	found	modest	associations	between	CHIP	and	several	
epigenetic	 surrogate	markers	 of	 plasma	 proteins	 as	well	 as	 blood	
counts	(Table	S3A,B),	and	between	clock	estimates	and	variant	allele	
fraction	 (VAF),	which	 is	an	approximation	of	clone	size	 (Table	S4).	
Methylation	data	can	also	be	used	to	estimate	a	surrogate	marker	of	
leukocyte	telomere	length	(LTL),	DNAmTL	(Lu,	Seeboth,	et	al.,	2019).	
CHIP	was	associated	with	reduced	predicted	age-	adjusted	DNAmTL	
in	CHIP	overall	(−0.06,	p < 1.2 × 10−8),	as	well	as	several	mutation	
classes	(Figure	S3A).	An	increasing	number	of	mutations	was	asso-
ciated	with	a	decrease	in	predicted	DNAmTL	(2	mut.	vs.	1:	−0.174,	
p < 8.0 × 10−7;	>2	mut.	vs.	2:	−0.404,	p < 1.1 × 10−5,	Figure	S3B,C).

2.2  |  Gene- specific associations of CHIP with 
epigenetic age acceleration

Clonal	 hematopoiesis	 of	 indeterminate	 potential	 most	 commonly	
occurs	due	to	mutations	in	genes	coding	for	the	DNA	methylation-	
altering	enzymes	DNMT3A and TET2, but can also arise due to muta-
tions in ASXL1, JAK2,	 splicing	 factors,	 and	DNA-	damage	 response	
(DDR)	genes.	Accordingly,	we	examined	 the	associations	of	muta-
tions	 in	 specific	CHIP	genes	with	 age	 acceleration	 (Table	2).	 In	 all	
clocks,	the	direction	of	association	for	DNMT3A and TET2 mutations 
was the same, although those with TET2 mutations had significantly 
greater age acceleration than those with DNMT3A mutations for 
Hannum	(2.10	years,	p	<	0.0012)	and	EEAA	(2.32	years,	p	<	0.0063),	
but	 not	 other	 clocks.	We	 also	 performed	 differential	 methylation	
analysis	to	assess	whether	mutations	in	the	DNA-	methylation	modi-
fying	enzymes	DNMT3A and TET2	had	divergent	effects	at	the	clock	
CpGs.	Mutations	 in	both	genes	primarily	resulted	 in	hypomethyla-
tion	although	a	small	number	of	CpGs	showed	hypermethylation	in	
TET2	 (Figure	S4A,B).	We	also	observed	at	the	clock	CpGs	that	the	

F I G U R E  1 CHIP	is	associated	with	increased	age	acceleration.	
Forest	plot	of	the	effect	sizes	and	confidence	intervals	for	the	effect	
of	CHIP	on	age	acceleration	estimate	from	seven	methylation	clocks
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M-	values	(a	log-	transformed	measure	of	the	percent	methylation	at	
each	site)	in	persons	with	DNMT3A and TET2 mutations were highly 
correlated	(Figure	S4C),	indicating	that	the	methylation	state	of	per-
sons with the two mutations is largely similar, despite their opposing 
enzymatic	effects.

Persons with mutations in multiple genes had the largest in-
creases	in	age	acceleration	across	all	clocks	except	PhenoAge,	con-
sistent with our observation that age acceleration increases with the 
number	 of	mutations.	 Conversely,	 no	 increase	 in	 age	 acceleration	
was	observed	in	persons	with	mutations	in	DDR	genes	(TP53, PPM1D, 
BRCC3),	which	is	consistent	with	the	lack	of	association	with	age	ac-
celeration observed for the same mutations in cancer tissue samples 
(Horvath,	2013).	Although	we	had	only	eight	individuals	with	JAK2 
mutations	 in	our	cohort,	these	mutations	showed	an	exceptionally	
strong	association	for	a	single	mutation	in	several	clocks,	the	most	
extreme	example	being	PhenoAge	(10.01	years,	p	<	9.7	×	10−6).	The	
PhenoAge	clock	was	trained	to	predict	a	composite	measure	of	mor-
tality	 risk	 which	 includes	 several	 hematological	 variables	 such	 as	
white blood cell count, white blood cell differential, and several red 
blood cell parameters which may be abnormal in myeloproliferative 
neoplasm, a hematological malignancy which is strongly associated 
with JAK2	mutations.	 CHIP	 overall	was	 nominally	 associated	with	
estimated	 pack	 years	 of	 smoking	 (DNAmPACKYRS),	 but	 only	mu-
tations in ASXL1 were significantly associated with this measure in 
a	gene-	specific	analysis	(7.54	pack	years,	p	<	0.002),	a	finding	that	
is	in	accordance	with	a	recent	report	(Bolton	et	al.,	2020)	(Table	S3).

2.3  |  Association of CHIP and epigenetic age 
acceleration with clinical outcomes

Several	previous	studies	have	linked	both	CHIP	(Jaiswal	et	al.,	2014,	
2017)	and	age	acceleration	in	some	clocks	(Levine	et	al.,	2018;	Lu,	
Quach,	et	al.,	2019)	to	 increased	risk	of	adverse	clinical	outcomes,	
in	 particular	 all-	cause	mortality	 and	CHD.	We	 asked	whether	 the	
combination	of	CHIP	and	age	acceleration	could	further	stratify	car-
riers	of	CHIP	into	high-	risk	and	low-	risk	groups	for	these	outcomes	
using	Cox	proportional	 hazards	models	 adjusted	 for	 chronological	
age	at	blood	draw,	low-	density	lipoprotein	cholesterol,	high-	density	
lipoprotein cholesterol, triglycerides, systolic blood pressure, type 2 
diabetes	status,	smoking	status,	and	self-	reported	ancestry	in	4088	
persons	 from	 JHS,	 FHS,	 and	WHI	 (Figure	2B,C).	 In	 FHS,	 JHS,	 and	
WHI	EMPC,	which	are	unselected	for	CHD,	there	were	720	deaths	
(74	in	CHIP	carriers)	out	of	3624	participants	(213	CHIP	carriers)	and	
212	cases	of	incident	CHD	(22	in	CHIP	carriers)	out	of	3331	partici-
pants	(192	CHIP	carriers)	after	excluding	those	with	CHD	prevalent	
to	time	of	blood	draw.	In	WHI	BA23,	which	was	a	case-	control	study	
for	CHD,	there	were	168	cases	of	incident	CHD	(18	in	CHIP	carriers)	
in	458	total	participants	(42	CHIP	carriers).

We	defined	a	person	to	have	“age	acceleration”	 (AgeAccel)	 for	
a	 clock	 if	 their	 values	 for	 an	 age	 acceleration	 residual	 exceeded	
zero	after	adjustment	for	age	at	blood	draw,	sex,	self-	reported	an-
cestry,	and	study	cohort.	We	then	tested	the	 interaction	between	

this	dichotomous	variable	and	CHIP	status	in	predicting	mortality	in	
each	of	the	seven	clocks	using	Cox	models.	As	shown	in	Table	S5,	we	
found that the most significant interactions were for the Hannum 
and	GrimAge	clocks,	although	neither	reached	Bonferroni-	corrected	
statistical	 significance.	 Though	 both	 the	 Hannum	 and	 GrimAge	
clocks	were	predictive	of	time	to	death	or	CHD	in	previous	studies	
(Lu,	Quach,	et	al.,	2019;	Marioni	et	al.,	2015;	Perna	et	al.,	2016),	they	
were	trained	on	different	outcomes	(age	for	Hannum	versus	time	to	
death	for	GrimAge),	and	are	not	strongly	correlated	 in	our	dataset	
(bicor	=	0.242,	R2	=	0.058,	Figure	2A).	Therefore,	we	reasoned	that	
a combined measure incorporating age acceleration in both Hannum 
and	 GrimAge	would	 better	 stratify	 high-		 and	 low-	risk	 groups	 be-
cause	each	clock	provides	orthogonal	information.	By	this	combined	
measure	(henceforth	referred	to	as	AgeAccelHG),	102/255	(40%)	of	
CHIP	carriers	were	AgeAccelHG+	(age	acceleration	residual	>0	for	
both	Hannum	and	GrimAge),	compared	to	922/3833	(24%)	persons	
without	CHIP.	Considered	individually	in	separate	models,	CHIP	and	
AgeAccelHG	were	 each	 associated	with	 a	modest	 increase	 in	 risk	
of	all-	cause	mortality	 (CHIP:	HR	1.27,	p	<	0.077;	AgeAccelHG:	HR	
1.84, p < 4.0 × 10−14),	consistent	with	previous	findings.	When	we	
modeled	 the	 interaction	 of	 CHIP	 with	 AgeAccelHG	 for	 all-	cause	
mortality,	we	 found	a	 significant	 interaction	effect	 (CHIP	main	ef-
fect:	 coefficient	 =	 −0.25,	 p	 <	 0.20;	 AgeAccelHG	main	 effect:	 co-
efficient	 =	 0.51,	 p < 3.08 × 10−9;	 interaction:	 coefficient	 =	 0.80,	
p	<	3.74	×	10−3),	which	remained	significant	after	Bonferroni	correc-
tion for eight tests.

To	 validate	 this	 finding,	 we	 sought	 replication	 in	 an	 indepen-
dent	cohort,	 the	BA23	subset	of	WHI,	which	was	not	used	 in	 the	
above	mortality	analysis	(Horvath	et	al.,	2016).	When	we	modeled	
the	 interaction	 of	 CHIP	with	AgeAccelHG	 for	 CHD	 in	 BA23,	 the	
interaction	 term	 was	 again	 significant	 (CHIP	 main	 effect:	 coeffi-
cient	=	−0.24,	p	<	0.60;	AgeAccelHG	main	effect:	coefficient	=	0.24,	
p	<	0.35;	interaction:	coefficient	=	1.72,	p	<	0.01).

Having demonstrated a significant statistical interaction between 
CHIP	 and	 AgeAccelHG	 for	 clinical	 outcomes,	 we	 combined	 these	
two	variables	 into	a	 single,	4-	factor	variable	 for	 further	modeling.	
For	CHD,	we	included	incident	events	in	FHS,	JHS,	and	WHI	EMPC	
together	 with	 WHI	 BA23	 as	 a	 meta-	analysis.	 Persons	 who	 were	
CHIP+/AgeAccelHG+	had	much	 greater	 risk	 of	 all-	cause	mortality	
(HR	2.90,	p < 4.1 × 10−8)	and	CHD	(HR	3.24,	p < 9.3 × 10−6)	compared	
to	those	who	were	CHIP−/AgeAccelHG−.	Those	who	were	CHIP−/
AgeAccelHG+	had	a	more	modest	increase	in	risk	of	all-	cause	mor-
tality	(HR	1.66,	p < 3.1 × 10−9),	and	CHD	(HR	1.39,	p	<	0.012)	com-
pared	 to	 those	who	were	CHIP−/AgeAccelHG−.	 In	contrast,	 those	
who	were	CHIP+/AgeAccelHG−	did	not	have	elevated	risk	of	either	
all-	cause	mortality	(HR	0.78,	p	<	0.20)	or	CHD	(HR	1.03,	p	<	0.93)	
compared	 to	 those	who	were	CHIP−/AgeAccelHG−	 (Figure	 2B,C).	
We	also	fitted	contrasts	to	estimate	the	hazard	ratios	for	all-	cause	
mortality	and	CHD	for	CHIP	only	in	persons	with	AgeAccelHG+	and	
AgeAccelHG+	only	in	persons	with	CHIP,	in	both	cases	finding	the	
associations	to	be	significant	(Figure	S5).

We	 also	 asked	 if	 there	 were	 gene-	level	 differences	 in	 risk	
of	 these	 outcomes.	 We	 had	 insufficient	 sample	 size	 to	 assess	
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either	 mortality	 or	 CHD	 individually,	 so	 we	 combined	 the	 two	
into	 a	 composite	 outcome.	 Being	 AgeAccelHG+	 increased	 the	
risk	 of	 the	 composite	 outcome	 for	 those	 with	 TET2 mutations 
relative	 to	 those	 who	 were	 CHIP−/AgeAccelHG−	 (TET2 mu-
tated+/AgeAccelHG+:	HR	=	3.88,	p < 1.6 × 10−6; TET2	mutated+/
AgeAccelHG−:	HR	=	1.14,	p < 0.66; p	for	interaction	<	0.065)	to	a	
greater degree than those with DNMT3A	mutations	(DNMT3A mu-
tated+/AgeAccelHG+:	HR	=	1.99,	p < 0.028; DNMT3A	mutated+/
AgeAccelHG−:	 HR	 =	 0.68,	 p	 <	 0.079;	 p	 for	 interaction	 <	 0.11)	
or	 other	 non-	DDR	 mutations	 (other	 mutation+/AgeAccelHG+:	
HR	 =	 2.88,	 p < 1.1 × 10−5;	 other	 mutation+/AgeAccelHG−:	
HR	=	1.00,	p < 1; p	for	interaction	<	0.19).

To	 illustrate	 absolute	 risks	 among	 those	 with	 both	 CHIP	 and	
AgeAccelHG,	we	determined	the	cumulative	incidence	of	all-	cause	
mortality	 and	 CHD	 in	 persons	 from	 FHS,	 JHS,	 and	 WHI	 EMPC	
aged	65	or	 older	 at	 blood	draw	who	did	not	 have	prevalent	CHD	
(Figure	2D,E).	Those	who	were	CHIP+/AgeAccelHG+	had	a	cumu-
lative	 incidence	of	all-	cause	mortality	of	46.6%	by	10	years	and	a	
cumulative	 incidence	 of	 CHD	 of	 22.2%	 by	 10	 years.	 In	 contrast,	
the	 other	 three	 groups	 had	 substantially	 lower	 10-	year	 cumula-
tive	 incidence	 of	 all-	cause	mortality	 (CHIP+/AgeAccelHG−	 17.7%,	
CHIP−/AgeAccelHG+	25.8%,	CHIP−/AgeAccelHG−	19.2%)	and	CHD	
(CHIP+/AgeAccelHG−	7.98%,	CHIP−/AgeAccelHG+	13.0%,	CHIP−/
AgeAccelHG−	8.66%).

Our	data	permitted	us	to	also	ask	whether	there	was	an	associ-
ation	of	CHIP	and	AgeAccelHG	to	time	to	death	in	those	who	had	a	
first	CHD	event,	a	subgroup	that	is	often	the	target	of	clinical	inter-
ventions.	We	restricted	our	analysis	 to	 individuals	who	had	a	 first	
CHD	event	after	age	70	and,	if	they	died,	did	so	more	than	30	days	
after	 the	CHD	event.	We	 found	 a	 significant	 interaction	between	
CHIP	and	AgeAccelHG	for	all-	cause	mortality	after	CHD	(p	<	0.036).	
Persons	who	were	CHIP+/AgeAccelHG+	showed	significant	increase	
in	risk	of	all-	cause	mortality	(HR	=	3.16,	p < 1.16 × 10−5),	while	those	
who	were	CHIP+/AgeAccelHG−	 (HR	=	0.462,	p	<	0.27)	or	CHIP−/
AgeAccelHG+	(HR	=	1.40,	p	<	0.13)	showed	no	significant	increase.	
The	5-	year	cumulative	incidence	of	death	after	CHD	for	those	who	
were	 CHIP+/AgeAccelHG+	was	 58.5%,	 while	 for	 all	 other	 groups	
it	 was	 substantially	 lower	 (CHIP+/AgeAccelHG−	 18.8%,	 CHIP−/
AgeAccelHG+	20.0%,	CHIP−/AgeAccelHG−	19.8%,	Figure	2F).

Given	 the	 previous	 findings	 linking	 both	 CHIP	 (Jaiswal	 et	 al.,	
2017)	 and	 extrinsic	 epigenetic	 aging	 (Horvath	 et	 al.,	 2016;	 Levine	
et	 al.,	 2018;	 Lu,	 Quach,	 et	 al.,	 2019)	 to	 inflammation,	 we	 asked	
whether	plasma	 levels	of	 the	 inflammation	marker	high-	sensitivity	
C-	reactive	protein	(hs-	CRP)	showed	any	evidence	of	interaction	with	
CHIP	for	all-	cause	mortality	or	CHD.	We	found	evidence	for	a	main	
effect	of	hs-	CRP	on	 risk	 for	all-	cause	mortality,	but	not	 for	an	 in-
teraction	with	CHIP	(CHIP	main	effect:	coefficient	=	0.22,	p < 0.22; 
log	(hs-	CRP)	main	effect:	coefficient	=	0.09,	p < 1.01 × 10−3; inter-
action:	coefficient	=	0.076,	p	<	0.29).	For	CHD,	no	effect	of	hs-	CRP	
was	observed	(CHIP	main	effect:	coefficient	=	0.23	p	<	0.49;	log	(hs-	
CRP)	main	effect:	 coefficient	=	0.01,	p < 0.90; interaction: coeffi-
cient	=	−0.3,	p	<	0.82).	We	also	stratified	our	cohort	into	eight	groups	
based	upon	CHIP	status,	AgeAccelHG	status,	and	whether	hs-	CRP	TA
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levels	were	above	2	mg/L,	an	established	clinical	cutoff.	Individuals	
with	CHIP	and	AgeAccelHG	showed	a	similar	risk	of	all-	cause	mor-
tality	and	CHD	regardless	of	whether	they	had	high	or	low	hs-	CRP	
levels	 (Figure	 S5E,F).	 These	 results	 indicate	 that	 hs-	CRP	 is	 a	 poor	
discriminator	of	risk	in	CHIP	carriers,	unlike	AgeAccelHG.

A	coding	SNP	in	IL6R	(rs2228145),	which	results	in	Asp358Ala,	
was	previously	 found	 to	 attenuate	 the	 increased	 risk	 for	mortal-
ity	and	CHD	associated	with	CHIP	 (Bick,	Pirruccello,	et	al.,	2020;	
Bick,	Weinstock,	et	al.,	2020).	Here,	the	interaction	between	CHIP	
status and alternate allele count at rs2228145 was not significant 
for	either	all-	cause	mortality	(CHIP	main	effect:	coefficient	=	0.27,	
p	<	0.158;	rs2228145	main	effect:	coefficient	=	−0.082	per	alter-
nate allele, p	 <	 0.21;	 interaction:	 coefficient	 =	 −0.044	 per	 alter-
nate allele, p	<	0.82)	or	CHD	(CHIP	main	effect:	coefficient	=	0.23,	
p	<	0.36;	rs2228145	main	effect:	coefficient	=	−0.16	per	alternate	
allele, p	<	0.08;	interaction:	coefficient	=	0.25	per	alternate	allele,	
p	 <	 0.36).	 There	 were	 also	 no	 significant	 interactions	 between	
rs2228145	 genotype	 and	 the	 combined	 CHIP/AgeAccelHG	 vari-
able	 (Figure	 S5C,D).	 These	 results	 indicate	 that	 IL6R genotype is 
a	poor	discriminator	of	risk	in	CHIP	carriers	in	this	dataset,	unlike	
AgeAccelHG.	 However,	 we	 did	 find	 differences	 based	 on	 which	
gene	 was	 mutated.	 Those	 who	 were	 TET2-	CHIP+/AgeAccelHG+	

and	 with	 no	 alternate	 alleles	 of	 rs2228145	 (IL6RWT)	 had	 the	
highest	 risk	 for	 the	 composite	 mortality/CHD	 outcome	 rela-
tive	 to	 the	 referent	 group	 of	 CHIP−/AgeAccelHG−/IL6RWT	 (HR	
=11.3,	p < 2.4 × 10−21,	Figure	S6).	Those	who	were	TET2-	CHIP+/
AgeAccelHG+	 but	 carried	 1	 or	 2	 alternate	 alleles	 of	 rs2228145	
(IL6RMut)	had	substantially	lower	risk	(HR	=	1.91	compared	to	the	
same referent group, p	<	0.066;	coefficient	for	interaction	=	−1.12	
per alternate allele, p for interaction < 9.6 × 10−7,	Figure	S6).	There	
was	no	significant	difference	in	risk	based	on	rs2228145	genotype	
in those who were TET2-	CHIP+/AgeAccelHG−.	We	also	did	not	find	
significant	differences	 in	 risk	of	 death/CHD	by	 rs2228145	geno-
type in DNMT3A-	CHIP	or	CHIP	with	other	non-	DDR	mutations	re-
gardless	of	AgeAccelHG	status.

3  |  DISCUSSION

The	 results	 presented	 here	 permit	 us	 to	 draw	 several	 conclu-
sions.	 First,	 it	 is	 clear	 that	CHIP	 is	 strongly	 associated	with	 epi-
genetic	aging	 in	 several	 clocks.	Consistent	with	 the	 results	 from	
Robertson	et	al.	 (2019),	we	find	the	strongest	associations	to	be	
with	 the	 intrinsic	 clocks,	 Horvath	 and	 IEAA.	 This	 could	 reflect	

F I G U R E  2 CHIP	and	epigenetic	age	acceleration	identify	persons	at	high	risk	of	all-	cause	mortality	and	development	of	coronary	heart	
disease	(CHD).	(a)	Scatterplot	of	correlation	between	AgeAccelGrim	and	AgeAccelHannum	in	all	cohorts.	(b,	c)	Forest	plots	showing	hazard	
ratios, confidence intervals, and p-	values	for	Cox	proportional	hazard	models	of	all-	cause	mortality	(b)	and	development	of	CHD	(c)	in	persons	
from	FHS,	JHS,	and	WHI.	All	models	included	chronological	age,	race,	low-	density	lipoprotein	cholesterol,	high-	density	lipoprotein	cholesterol,	
triglycerides,	systolic	blood	pressure,	type	2	diabetes	status	and	smoking	status	as	covariates.	Top	two	sections	show	the	overall	effect	size	
of	CHIP	and	age	acceleration	and	bottom	section	shows	effect	sizes	based	on	dividing	persons	into	four	groups	based	upon	presence	of	CHIP	
and	age	acceleration.	The	results	in	c	are	a	meta-	analysis	of	events	in	FHS,	JHS,	WHI	EMPC	(unselected	for	CHD),	and	WHI	BA23	(case-	control	
study	for	CHD).	(d,	e)	Cumulative	incidence	plots	of	death	(d)	and	CHD	(e)	in	persons	divided	into	groups	by	the	presence	of	CHIP	(CHIP+/
CHIP−)	and	age	acceleration	(AgeAccelHG+/AgeAccelHG−).	The	numbers	in	parentheses	indicate	the	number	of	persons	in	each	group	for	
these	analyses.	Only	persons	over	65	and	free	of	CHD	at	baseline	were	used	in	d	and	e,	while	all	persons	were	used	for	b	and	c.	(f)	Cumulative	
incidence	plot	of	death	in	persons	with	incident	CHD	after	age	70.	Individuals	who	died	less	than	30	days	after	CHD	were	excluded

(a) (b) (c)

(d) (e) (f)
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a shared genetic architecture, as evidenced by the overlapping 
GWAS	hits	between	polymorphisms	near	TERT and TRIM59 that 
associate	with	both	CHIP	and	IEAA	(Bick,	Pirruccello,	et	al.,	2020;	
Bick,	Weinstock,	et	al.,	2020;	Zink	et	al.,	2017).	However,	the	her-
itability	of	CHIP	appears	to	be	 low	(3.6%	Bick,	Pirruccello,	et	al.,	
2020;	 Bick,	Weinstock,	 et	 al.,	 2020),	 which	 limits	 our	 ability	 to	
test	 for	 genetic	 correlation	between	CHIP	and	age	acceleration.	
Previous	 studies	 have	 shown	 that	 IEAA	 of	 cultured	 fibroblasts	
strongly	correlates	with	 the	number	of	population	doublings	 (Lu	
et	 al.,	 2018).	 Therefore,	 an	 alternative	hypothesis	 is	 that	 the	 in-
crease	 in	 intrinsic	age	acceleration	seen	 in	CHIP	carriers	may	be	
due	 to	 either	 (1)	 increased	 proliferation	 or	 self-	renewal	 of	 HSC	
clones	 that	 harbor	 these	 mutations	 or	 (2)	 stem	 cell	 exhaustion	
of	wild-	type	HSCs	 from	over-	proliferation,	 leading	 to	a	selective	
advantage for mutant clones. Studies in model systems such as 
genetically	modified	mice	may	help	delineate	the	cause-	effect	re-
lationship	 between	mutations	 in	 various	CHIP−associated	 genes	
and intrinsic age acceleration.

Most	importantly,	our	results	show	that	it	is	possible	to	strat-
ify	 CHIP	 carriers	 into	 those	 at	 high	 versus	 low	 risk	 of	 adverse	
clinical outcomes using a composite measure of Hannum and 
GrimAge	(AgeAccelHG).	CHIP	or	AgeAccelHG	status	alone	is	as-
sociated	with	a	modestly	increased	risk	of	death	or	CHD,	but	the	
combination	of	CHIP+	and	AgeAccelHG+	is	synergistic	for	these	
outcomes.	Furthermore,	CHIP	in	the	absence	of	epigenetic	aging	
in	 these	clocks	 is	not	associated	with	adverse	outcomes.	These	
results	 suggest	 that	 the	effects	of	CHIP	on	health	are	context-	
dependent,	as	Hannum	and	GrimAge	are	not	uniformly	increased	
in	all	CHIP	carriers,	and	may	be	influenced	by	environmental	fac-
tors	 such	as	CRP,	 smoking,	diet,	BMI,	 insulin	 resistance,	educa-
tion	 level,	 exercise,	 socioeconomic	 status	 (Quach	 et	 al.,	 2017),	
traumatic	stress	(Wolf	et	al.,	2018),	insomnia	(Carroll	et	al.,	2017),	
and	hunter-	gatherer	 lifestyle	 (Horvath	et	al.,	2016).	Our	 results	
may	also	explain	why	 the	strength	of	 the	associations	between	
CHIP	 and	 mortality	 or	 CHD	 are	 somewhat	 inconsistent	 across	
studies—	while	 the	 prevalence	 of	 CHIP	 is	 fairly	 uniform	 across	
populations, epigenetic aging may not be. In populations with a 
high	prevalence	of	 risk	 factors	 for	 epigenetic	 aging,	 the	 conse-
quences	of	CHIP	may	be	direr	than	in	populations	without	such	
risk	factors.

Our	risk	stratification	schema	may	also	be	used	to	select	patients	
for clinical trials of pharmaceutical or behavioral interventions, as 
the	benefit-	to-	risk	 ratio	may	be	particularly	 favorable	 in	 the	high-	
risk	CHIP	group.	We	note	that	that	the	5-	year	mortality	after	CHD	
in	 those	who	are	CHIP+	and	AgeAccelHG+	approaches	60%,	 sim-
ilar	 to	 the	 mortality	 seen	 in	 patients	 with	 intermediate-	risk	MDS	
(Greenberg	 et	 al.,	 2012).	 Furthermore,	 the	 high	 event	 rate	 in	 this	
group would enable smaller trials with sufficient power for detecting 
favorable	outcomes	such	as	reduced	all-	cause	mortality	or	time	to	
CHD.	One	such	intervention	may	be	blockade	of	IL-	6	receptor	(Bick,	
Pirruccello,	 et	 al.,	2020;	Bick,	Weinstock,	et	 al.,	2020);	our	 results	
show that those who are TET2-	CHIP+	and	AgeAccelHG+	have	lower	
risk	of	death	or	CHD	with	increasing	copies	of	rs2228145,	which	has	

previously	been	linked	to	reduced	IL-	6R	expression	levels	in	myeloid	
cells	 (Bick,	 Pirruccello,	 et	 al.,	 2020;	Bick,	Weinstock,	 et	 al.,	 2020).	
Alternatively,	this	group	may	benefit	from	IL-	1B	inflammatory	block-
ade	(Ridker	et	al.,	2017),	which	has	also	been	shown	to	be	relevant	
to	 atherosclerosis	 in	 model	 systems	 of	 CHIP	 (Fuster	 et	 al.,	 2017;	
Jaiswal	et	al.,	2017).	Of	note,	AgeAccelHG	appears	to	be	superior	to	
hs-	CRP	and	genotype	at	IL6R	for	risk	discrimination	of	CHIP	carriers,	
implying that it is capturing additional information beyond baseline 
inflammation.

In sum, our results show that there is an important relation-
ship	 between	 CHIP	 and	 epigenetic	 aging.	 CHIP	 and	 epigenetic	
age	acceleration	can	also	be	used	to	identify	persons	at	high	risk	
of	 all-	cause	 mortality	 and	 CHD,	 further	 reinforcing	 the	 impor-
tance of both phenotypes as valuable tools in precision medicine 
for aging.

4  |  METHODS

4.1  |  Epidemiological cohorts

All	participant	data	were	obtained	from	four	independent	patient	co-
horts:	the	FHS	(Feinleib	et	al.,	1975),	the	JHS	(Sempos	et	al.,	1999),	the	
WHI	(phs000200.v11.p3),	and	the	MESA	(Bild,	2002,	p.	200).	These	
cohorts	were	included	in	the	TOPMed	consortium	which	is	run	by	the	
National	Heart	Lung	and	Blood	Institute	of	the	National	Institutes	of	
Health.	Access	to	all	data	was	approved	by	TOPMed	as	well	as	the	in-
dividual	cohorts.	We	included	only	those	persons	from	these	cohorts	
in	which	the	age	at	draw	for	both	whole	blood	methylation	and	WGS	
were	available.	In	the	FHS	and	JHS	cohorts,	the	samples	for	methyla-
tion	and	WGS	were	taken	from	the	same	blood	draw	in	all	persons.	In	
MESA,	methylation	data	were	only	used	 from	the	 first	exam	as	 this	
was	the	time	at	which	DNA	for	WGS	was	also	collected.	In	the	WHI	
cohort,	 the	 two	samples	were	often	taken	from	different	 times.	We	
only	considered	persons	for	whom	the	methylation	and	WGS	samples	
were	taken	within	3	years	of	each	other.

4.2  |  Methylation array data

Whole	 blood	 methylation	 was	 quantified	 using	 the	 Illumina	
MethylationEPIC	 or	 HumanMethylation450k	 array.	 Normalized	
methylation data were submitted to the online methylation 
clock	 tool	 (https://dnama	ge.genet	ics.ucla.edu/new)	 which	 gen-
erates	 methylation	 age	 estimates	 for	 seven	 different	 clocks:	
DNAmAge	(Horvath,	2013),	DNAmHannum	(Hannum	et	al.,	2013),	
DNAmPhenoAge	 (Levine	 et	 al.,	 2018),	 DNAmSkinClock	 (Horvath	
et	 al.,	 2018),	 DNAmGrimAge	 (Lu,	 Quach,	 et	 al.,	 2019),	 intrinsic	
epigenetic	 age	 acceleration	 (IEAA)	 (Lu	 et	 al.,	 2018),	 and	 extrinsic	
epigenetic	age	acceleration	(EEAA)	(Lu	et	al.,	2018).	Age	accelera-
tion was computed for each measure as the residual of model pre-
dicting	each	persons'	methylation	age	from	their	chronological	age	
at	 the	time	of	blood	draw.	Additionally,	 the	DNAmGrimAge	clock	

https://dnamage.genetics.ucla.edu/new
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generates	 seven	 surrogate	 biomarkers	 based	 upon	 blood	 protein	
expression	 (MADM/NRBP1,	 B2	 M,	 CST3	 (Cystatin	 C),	 GDF15,	
LEP	 (Leptin),	 SERPINE1/PAI1,	 and	 TIMP1)	 as	 well	 smoking	 pack	
years.	 Age-	adjusted	 LTL	 and	 unadjusted	 LTL	 are	 also	 estimated	
by	the	clock	software	(Lu,	Seeboth,	et	al.,	2019).	Cell	composition	
was	also	estimated	by	the	clock	software	using	a	published	model	
(Houseman	et	al.,	2012).

4.3  |  Identification of somatic variants

Approximately	 100,000	 whole	 genomes	 were	 sequenced	 from	
whole	 blood	DNA	 to	 ~30×	 depth	 as	 part	 of	 the	 TOPMed	 study	
(Bick,	 Pirruccello,	 et	 al.,	 2020;	 Bick,	 Weinstock,	 et	 al.,	 2020).	
Somatic	mutations	 associated	with	CHIP	were	 called	 from	WGS	
data	 using	 the	Mutect2	module	 in	 GATK	 from	 BAM	 files	 previ-
ously	aligned	with	BWA.	Candidate	CHIP	variants	were	selected	
based	upon	a	curated	list	of	known	variants	recurrently	mutated	in	
hematological	malignancies	as	previously	described	(Jaiswal	et	al.,	
2017)	(see	Table	S6).	A	full	list	of	variants	identified	in	this	study	
are	included	in	Table	S7.

4.4  |  Association between CHIP and methylation 
age acceleration

Clonal	hematopoiesis	of	indeterminate	potential	status	was	associ-
ated with age acceleration and the other measures using linear mod-
eling, with a separate model being fitted for each aging measure. 
Because	of	the	relatively	small	number	of	comparisons,	p-	values	for	
these	 analyses	were	 reported	 unadjusted.	We	 combined	 the	 data	
from	all	three	studies	and	used	residualization	to	remove	the	effects	
of	age,	race/ethnicity,	sex,	and	study.	This	approach	was	chosen	to	
eliminate	any	possibility	of	spurious	associations	between	CHIP	and	
the methylation measures that were driven by collinearity between 
CHIP	and	covariates.	The	residualized	methylation	measure	was	the	
outcome	 in	each	model,	and	a	 likelihood	ratio	test	was	performed	
to	 test	 the	 significance	 of	 CHIP	 as	 predictor	 against	 a	 null	model	
containing	only	the	intercept.	When	testing	the	association	of	CHIP	
mutations	with	specific	genes,	CHIP	status	was	replaced	with	a	cat-
egorical variable indicating whether the individual had a mutation 
in	that	gene,	and	persons	with	CHIP	mutations	in	other	genes	were	
excluded.	 The	 following	 specific	 categories	 for	 single	 mutations	
were used: DNMT3A, TET2,	DNA-	damage	response	(DDR,	which	in-
cludes TP53, PPM1D, and BRCC3),	 JAK2, ASXL1/2	 (includes	ASXL1 
and ASXL2),	 splicing	 factor	 (includes	SF3B1, SRSF2, U2AF1, ZRSR2, 
and PRPF8),	 and	other	 for	any	single	gene	which	did	not	 fit	 in	 the	
previous categories. Persons with mutations in more than one gene 
were classified as multiple regardless of the number of mutations or 
which genes were mutated, while persons with multiple mutations 
in	the	same	gene	were	classified	as	singletons.	The	analysis	of	muta-
tion number versus methylation measures grouped all persons with 
single mutation into one group, and split the group with mutations in 

multiple genes into two mutations and greater than two mutations, 
regardless	of	which	genes	were	mutated.	Correlation	between	VAF	
and	the	residualized	methylation	measures	was	computed	using	bi-
weight	midcorrelation,	an	outlier	 resistant	alternative	 to	Pearson's	
correlation	(Horvath,	2011).

4.5  |  Differential methylation of clock CpGs

Illumina	HumanMethylation450K	and	MethylationEPIC	CpG	probe	
IDs	 for	 the	clocks	and	DNAmLTL	were	obtained	 from	 the	 supple-
mental	 data	 of	 the	 relevant	 publications.	Methylation	 beta	 values	
for	each	cohort	were	subsetted	for	CpGs	used	in	all	clocks	except	
GrimAge	 (for	 which	 the	 CpG	 locations	 have	 not	 been	 published)	
and were converted to M-	values.	The	M-	values	were	adjusted	 for	
the	same	covariates	that	were	considered	for	the	methylation	clock	
measures.	The	adjusted	residuals	were	tested	for	differential	meth-
ylation and p-	values	were	corrected	for	the	number	of	CpGs	tested	
using	limma(Ritchie	et	al.,	2015).

4.6  |  Association of CHIP and epigenetic age 
acceleration with clinical outcomes

We	tested	the	associations	of	CHIP	and	epigenetic	age	acceleration	
with	 all-	cause	mortality	 and	 incident	 CHD	with	 Cox	 proportional	
hazards	models	using	the	survival	package	in	R.	Models	included	age,	
sex,	race/ethnicity,	systolic	blood	pressure,	type	2	diabetes	status,	
plasma	LDL-	cholesterol	concentration,	plasma	HDL-	cholesterol	con-
centration,	plasma	triglyceride	concentration,	and	smoking	status	as	
covariates.	Some	persons	in	WHI	had	DNA	for	the	methylation	and/
or	WGS	sample	obtained	several	years	after	the	baseline	visit,	which	
potentially	 could	 introduce	 survivorship	bias	 into	 the	analysis.	For	
this	reason,	we	also	excluded	anyone	 in	WHI	for	whom	either	the	
methylation	or	WGS	blood	draw	occurred	more	than	5	years	after	
the baseline visit.

For	 analysis	 of	 all-	cause	 mortality,	 pooled	 data	 from	 FHS,	
JHS,	and	WHI	EMPC	were	used.	The	selection	of	samples	used	 in	
TOPMed	in	these	cohorts	were	taken	essentially	at	random	from	the	
larger	parent	 cohorts.	WHI	BA23	was	excluded	 from	 this	 analysis	
because	persons	in	this	cohort	were	over-	sampled	for	CHD.	MESA	
was	excluded	from	this	analysis	because	persons	in	this	cohort	were	
selected	for	surviving	at	least	10	years	from	baseline.	We	chose	to	
present the results from models in which all three cohorts were 
pooled,	 rather	 than	 analyzed	 separately	 and	 then	 meta-	analyzed.	
The	 results	 for	 the	 meta-	analysis	 were	 similar,	 however	 (CHIP/
AgeAccelHG	interaction	pooled:	coefficient	=	0.80,	p	<	3.7	×	10−3; 
CHIP/AgeAccelHG	interaction	in	fixed-	effects	meta-	analysis:	coef-
ficient	=	0.85,	p < 2.4 × 10−3).

For	 the	 analysis	 of	 CHD,	 the	WHI	BA23	 cohort	was	 analyzed	
separately,	and	a	meta-	analysis	was	used	to	combine	the	results	of	
the	 BA23	 analysis	 with	 the	 other	 pooled	 cohorts	 (JHS,	 FHS,	 and	
WHI	EMPC)	to	get	the	final	effect	size	estimates.	45	persons	in	WHI	
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BA23	were	also	included	in	the	mortality	analysis	of	WHI	EMPC	but	
were	not	included	in	the	CHD	analysis	of	WHI	EMPC	(i.e.,	were	not	
double-	counted).	 Because	 BA23	 was	 over-	sampled	 for	 CHD,	 we	
adjusted	the	sample	weights	in	BA23	using	race	and	incident	CHD	
numbers	 in	 the	entire	dbGaP-	eligible	 set	of	WHI	 to	allow	 for	Cox	
proportional	hazards	modeling.	Robust	standard	errors	were	used	to	
calculate p-	values	in	all	models.

Similar	 to	 the	 associations	 between	 CHIP	 and	 age	 accelera-
tion, p-	values	 for	 these	 analyses	were	 reported	 unadjusted	 due	
to	 the	 small	 number	 of	 comparisons.	 We	 used	 the	 age	 accel-
eration	 residuals	 from	 the	 analysis	 associating	 CHIP	 with	 epi-
genetic age acceleration to determine if persons had high age 
acceleration	 (AgeAccelHG,	 defined	 as	 being	 greater	 than	 0	 for	
both	 AgeAccelHannum	 and	 AgeAccelGrim)	 and	 intersected	 this	
with	CHIP	status,	resulting	in	four	groups:	no	CHIP	with	low	age	
acceleration,	no	CHIP	with	high	age	acceleration,	CHIP	with	 low	
age	acceleration,	and	CHIP	with	high	age	acceleration.	When	we	
analyzed	the	interaction	of	individual	clocks	with	CHIP	status,	we	
used the same definition for age acceleration but restricted it to 
only	one	clock.

For	the	gene-	level	analyses,	persons	with	any	singleton	DNMT3A, 
TET2,	or	DDR	gene	(TP53, PPM1D, BRCC3)	mutation	were	considered	
to	be	in	those	classes.	All	other	non-	DNMT3A, TET2, and DDR mu-
tations	were	considered	 “other.”	 In	 those	with	multiple	mutations,	
the	mutated	gene	with	the	highest	VAF	was	used	to	assign	the	class.

For	the	analysis	of	cumulative	incidence	of	death	and	CHD,	the	
cmprsk	package	in	R	was	used.
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