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56 Graphical Abstract

57 Clonal hematopoiesis of indeterminate potential (CHIP) and epigenetic age acceleration are two important 

58 aging phenomenon associated with adverse clinical outcomes.  We found that mutations in most CHIP genes 

59 were associated with increased age acceleration in multiple epigenetic clocks.  Individuals with CHIP and age 

60 acceleration had a greatly increased risk of mortalitiy and coronary heart disease compared to individuals with 

61 only CHIP or age acceleration.

62

63 Abstract

64 Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that 

65 most frequently occurs due to mutations in the DNA methylation modifying enzymes DNMT3A or TET2.   We 

66 used DNA methylation array and whole genome sequencing data from four cohorts together comprising 5,522 

67 persons to study the association between CHIP, epigenetic clocks, and health outcomes.  CHIP was strongly 

68 associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on 

69 chronological age, in several clocks, ranging from 1.31 years (GrimAge, p < 8.6x10-7) to 3.08 years (EEAA, p < 

70 3.7x10-18). Mutations in most CHIP genes except DNA-damage response genes were associated with 

71 increases in several measures of age acceleration.  CHIP carriers with mutations in multiple genes had the 

72 largest increases in age acceleration and decreases in estimated telomere length. Finally, we found that ~40% 
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73 of CHIP carriers had acceleration > 0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group 

74 was at high risk of all-cause mortality (hazard ratio 2.90, p < 4.1x10-8) and coronary heart disease (CHD) 

75 (hazard ratio 3.24, p < 9.3x10-6) compared to those who were CHIP-/AgeAccelHG-. In contrast, the other ~60% 

76 of CHIP carriers who were AgeAccelHG- were not at increased risk of these outcomes.  In summary, CHIP is 

77 strongly linked to age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging may 

78 be used to identify a population at high risk for adverse outcomes and who may be a target for clinical 

79 interventions.

80

81 Introduction

82 Aging is inextricably associated with an increase in the number of somatic mutations, and this process is 

83 believed to be central to the development of cancer (Welch et al. 2012; Martincorena & Campbell 2015; Hoang 

84 et al. 2016; Blokzijl et al. 2016; Risques & Kennedy 2018).  Clonal hematopoiesis of indeterminate potential 

85 (CHIP) (Jaiswal et al. 2014)  is defined by the presence of a cancer-associated somatic mutation in the blood 

86 cells of people without a blood cancer or other known clonal disorder.  CHIP originates when hematopoietic 

87 stem cells (HSCs) acquire a random mutation, usually in an epigenetic factor, that results in increased clone 

88 fitness (Jaiswal & Ebert 2019).   CHIP is strongly associated with age, and carriers of these mutations have 

89 increased risk for developing blood cancers, but also coronary heart disease and all-cause mortality (Jaiswal et 

90 al. 2014; Jaiswal et al. 2017). In addition to age, CHIP has been found to occur at a higher prevalence in males 

91 (Jaiswal et al. 2014) and a lower prevalence in people of self-reported Hispanic and East Asian ancestry 

92 compared to Europeans (Jaiswal et al. 2014; Bick et al. 2020). The association of CHIP and heart disease may 

93 result from enhanced inflammatory gene expression in mutant macrophages within atherosclerotic plaques 

94 (Jaiswal et al. 2017; Fuster et al. 2017; Bick AG et al. 2020), demonstrating that at least some of these 

95 mutations cause dysfunction of immune cells and affect phenotypes apart from cancer.  

96 The availability of DNA methylation data from large epidemiological cohorts has advanced our 

97 understanding of epigenetic aging in recent years.  Several “methylation clocks” have been developed 

98 (Horvath 2013; Hannum et al. 2013; Levine et al. 2018; Horvath et al. 2018; Lu, Quach, et al. 2019) which use 

99 methylation state at a subset of CpGs to predict chronological age with high accuracy in healthy individuals.  

100 “Age acceleration” results when  predicted methylation age is greater than chronological age and associates 

101 with increased risk of coronary heart disease (Levine et al. 2018; Lu, Quach, et al. 2019; Perna et al. 2016) 

102 and all-cause mortality (Levine et al. 2018; Lu, Quach, et al. 2019, p.201; Marioni et al. 2015a; Chen et al. 

103 2016; Christiansen et al. 2016; Perna et al. 2016). Similar to prior studies (Horvath & Raj 2018), we defined 

104 age acceleration as the residual of a linear model of a clock estimate regressed against chronological age.  By 

105 definition, this measure is not correlated with chronological age and a positive (or negative) value indicates that 

106 the clock age is higher (or lower) than expected based on chronological age.  The factors underlying epigenetic 

107 age acceleration are incompletely understood. Recent work has noted two distinct categories of epigenetic 
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108 clocks, intrinsic and extrinsic, which are believed to capture different aspects of aging. Intrinsic aging is 

109 independent of cell-type and may be partly driven by the number of times a cell has divided (Lu et al. 2018), 

110 while extrinsic aging, is associated with changes of cell-type composition in blood (Horvath et al. 2016), and 

111 may be influenced by environmental factors (Levine et al. 2018; Lu, Quach, et al. 2019).  The Horvath and 

112 IEAA clocks reflect intrinsic aging, whereas the Hannum, EEAA, PhenoAge, and GrimAge clocks are 

113 measures of extrinsic aging (Table 1). GrimAge and PhenoAge were also trained to be predictors of mortality 

114 (Levine et al. 2018; Lu, Quach, et al. 2019). In addition, several DNA methylation-based predictors of other 

115 aging-related phenotypes have recently been developed to improve mortality prediction, such as surrogate 

116 biomarkers for plasma protein levels (adrenomedullin, beta-2-microglobulin, cystatin C, leptin, plasminogen 

117 activator inhibitor 1, tissue inhibitor matrix metalloproteinase 1) (Lu, Quach, et al. 2019), smoking pack-years 

118 (Lu, Quach, et al. 2019), and telomere length (Lu, Seeboth, et al. 2019). 

119 We hypothesized that CHIP may be an acquired genetic factor associated with epigenetic age 

120 acceleration. Here, we use whole genome sequencing (WGS) and DNA methylation array data from several 

121 cohorts within the Trans-omics for Precision Medicine (TOPMed) program to test the hypothesis that CHIP is 

122 linked to epigenetic age acceleration. We find that CHIP is strongly associated with age acceleration in several 

123 clocks. We further assess whether there are gene-specific associations of CHIP with epigenetic age and 

124 methylation-estimated telomere length. Finally, we test whether the combination of CHIP status and epigenetic 

125 age can be used to identify the group at highest risk for adverse outcomes. 

126

127 Results

128 Association between CHIP and epigenetic age acceleration in several clocks

129 We used WGS data obtained from whole blood DNA for several large cohorts within TOPMed, including the 

130 Framingham Heart Study (FHS), the Jackson Heart Study (JHS), the Women’s Health Initiative (WHI), and the 

131 Multi-Ethnic Study of Atherosclerosis (MESA), to identify CHIP as previously described (Bick et al. 2020) (see 

132 Table S1 for a demographic summary of cohorts).  The populations assayed for methylation were an unbiased 

133 selection from within FHS and JHS, while the WHI TOPMed samples were over-sampled for incident stroke 

134 and venous thromboembolism. The BA23 subset of WHI was a coronary heart disease case/control study.  

135 Importantly, the blood draw used for methylation array analysis was the same as that used for WGS in FHS, 

136 JHS and MESA, and in WHI, only persons for whom the blood draw for the WGS was within three years of the 

137 draw for methylation were included.  After adjusting age acceleration residuals for sex, self-reported ancestry, 

138 and cohort, 5,522 individuals, including 319 CHIP carriers, from the four cohorts were assessed for seven 

139 different aging measures: DNAmAge (Horvath) (Horvath 2013), DNAmHannum (Hannum) (Hannum et al. 

140 2013), DNAmPhenoAge (PhenoAge) (Levine et al. 2018), DNAmSkinClock (SkinBloodClock) (Horvath et al. 

141 2018), DNAmGrimAge (GrimAge) (Lu, Quach, et al. 2019), intrinsic epigenetic age acceleration (IEAA) (Lu et 

142 al. 2018) and extrinsic epigenetic age acceleration (EEAA) (Lu et al. 2018), and a methylation-based estimate 
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143 of telomere length (DNAmTL) (see Methods).  The effects of CHIP were assessed overall (any CHIP mutation), 

144 as well as at the level of specific classes of CHIP mutations (see Methods). 

145 Consistent with previous results, carriers of CHIP were significantly older than non-carriers (+7.23 ± 

146 0.61 years, p < 1.13x10-31, Figure S1 and S2), and the prevalence of CHIP reached >20% in those over 80 

147 years (Figure S1). We then tested whether age acceleration residuals from several clocks bore any association 

148 to CHIP (Figure 1). Similar to the results of Robertson et al. (Robertson et al. 2019), CHIP was most strongly 

149 associated with intrinsic age acceleration (Horvath: 3.01 years, p < 3.0x10-25; IEAA: 2.92 years, p < 9.3x10-26). 

150 Due to our larger sample size, we also observed strong associations between CHIP and extrinsic age 

151 acceleration (Hannum clock: 2.71 years, p < 1.8x10-23; EEAA: 3.08 years, p < 3.7x10-18), as well as PhenoAge 

152 (2.21 years, p < 1.0x10-8), SkinBloodClock (1.58 years, p < 2.5x10-13) and GrimAge (1.31 years, p < 8.6x10-7).  

153 We also found that the number of driver mutations was associated with a step-wise increase in age 

154 acceleration for several clocks, and this relationship was strongest for Hannum and EEAA (Table S2). 

155 We also found modest associations between CHIP and several epigenetic surrogate markers of plasma 

156 proteins as well as blood counts (Table S3A-S3B), and between clock estimates and variant allele fraction 

157 (VAF), which is an approximation of clone size (Table S4). Methylation data can also be used to estimate a 

158 surrogate marker of leukocyte telomere length, DNAmTL (Lu, Seeboth, et al. 2019). CHIP was associated with 

159 reduced predicted age-adjusted DNAmTL in CHIP overall (-0.06, p < 1.2x10-8), as well as several mutation 

160 classes (Figure S3A).  An increasing number of mutations was associated with a decrease in predicted 

161 DNAmTL (2 mut. vs. 1: -0.174, p < 8.0x10-7; >2 mut. vs. 2: -0.404, p < 1.1x10-5, Figure S3B-C). 

162 Gene-specific associations of CHIP with epigenetic age acceleration

163 CHIP most commonly occurs due to mutations in genes coding for the DNA methylation-altering 

164 enzymes DNMT3A and TET2, but can also arise due to mutations in ASXL1, JAK2, splicing factors, and DNA-

165 damage response (DDR) genes.  Accordingly, we examined the associations of mutations in specific CHIP 

166 genes with age acceleration (Table 2).    In all clocks, the direction of association for DNMT3A and TET2 

167 mutations was the same, although those with TET2 mutations had significantly greater age acceleration than 

168 those with DNMT3A mutations for Hannum (2.10 years, p < 0.0012) and EEAA (2.32 years, p < 0.0063), but 

169 not other clocks.  We also performed differential methylation analysis to assess whether mutations in the DNA-

170 methylation modifying enzymes DNMT3A and TET2 had divergent effects at the clock CpGs.  Mutations in 

171 both genes primarily resulted in hypomethylation although a small number of CpGs showed hypermethylation 

172 in TET2 (Figure S4A-B). We also observed at the clock CpGs that the M-values (a log transformed measure of 

173 the percent methylation at each site) in persons with DNMT3A and TET2 mutations were highly correlated 

174 (Figure S4C), indicating that the methylation state of persons with the two mutations are largely similar, despite 

175 their opposing enzymatic effects.   

176 Persons with mutations in multiple genes had the largest increases in age acceleration across all clocks 

177 except PhenoAge, consistent with our observation that age acceleration increases with number of mutations.  
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178 Conversely, no increase in age acceleration was observed in persons with mutations in DDR genes (TP53, 

179 PPM1D, BRCC3), which is consistent with the lack of association with age acceleration observed for the same 

180 mutations in cancer tissue samples (Horvath 2013).  Although we had only 8 individuals with JAK2 mutations in 

181 our cohort, these mutations showed an exceptionally strong association for a single mutation in several clocks, 

182 the most extreme example being PhenoAge (10.01 years, p < 9.7x10-6).  The PhenoAge clock was trained to 

183 predict a composite measure of mortality risk which includes several hematological variables such as white 

184 blood cell count, white blood cell differential and several red blood cell parameters which may be abnormal in 

185 myeloproliferative neoplasm, a hematological malignancy which is strongly associated with JAK2 mutations.  

186 CHIP overall was nominally associated with estimated pack-years of smoking (DNAmPACKYRS), but only 

187 mutations in ASXL1 were significantly associated with this measure in a gene-specific analysis (7.54 pack-

188 years, p < 0.002), a finding that is in accordance with a recent report (Bolton et al. 2020) (Table S3).    

189 Association of CHIP and epigenetic age acceleration with clinical outcomes

190 Several previous studies have linked both CHIP (Jaiswal et al. 2014; Jaiswal et al. 2017) and age 

191 acceleration in some clocks (Levine et al. 2018; Lu, Quach, et al. 2019) to increased risk of adverse clinical 

192 outcomes, in particular all-cause mortality and coronary heart disease (CHD).  We asked whether the 

193 combination of CHIP and age acceleration could further stratify carriers of CHIP into high-risk and low-risk 

194 groups for these outcomes using Cox proportional hazards models adjusted for chronological age at blood 

195 draw, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, systolic blood 

196 pressure, type 2 diabetes status, smoking status, and self-reported ancestry in 4,088 persons from JHS, FHS, 

197 and WHI (Figure 2B-C).  In FHS, JHS, and WHI EMPC, which are unselected for CHD, there were 720 deaths 

198 (74 in CHIP carriers) out of 3,624 participants (213 CHIP carriers) and 212 cases of incident CHD (22 in CHIP 

199 carriers) out of 3,331 participants (192 CHIP carriers) after excluding those with CHD prevalent to time of blood 

200 draw.  In WHI BA23, which was a case-control study for CHD, there were 168 cases of incident CHD (18 in 

201 CHIP carriers) in 458 total participants (42 CHIP carriers).  

202 We defined a person to have ‘age acceleration’ (AgeAccel) for a clock if their values for an age 

203 acceleration residual exceeded zero after adjustment for age at blood draw, sex, self-reported ancestry, and 

204 study cohort. We then tested the interaction between this dichotomous variable and CHIP status in predicting 

205 mortality in each of the seven clocks using Cox models.  As shown in Table S5, we found that the most 

206 significant interactions were for the Hannum and GrimAge clocks, although neither reached Bonferroni-

207 corrected statistical significance.    Though both the Hannum and GrimAge clocks were predictive of time to 

208 death or CHD in previous studies (Lu, Quach, et al. 2019; Perna et al. 2016; Marioni et al. 2015b), they were 

209 trained on different outcomes (age for Hannum versus time to death for GrimAge), and are not strongly 

210 correlated in our dataset (bicor = 0.242, R2 = 0.058, Figure 2A). Therefore, we reasoned that a combined 

211 measure incorporating age acceleration in both Hannum and GrimAge would better stratify high and low risk 

212 groups because each clock provides orthogonal information.  By this combined measure (henceforth referred 
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213 to as AgeAccelHG), 102/255 (40%) of CHIP carriers were AgeAccelHG+ (age acceleration residual > 0 for 

214 both Hannum and GrimAge), compared to 922/3833 (24%) persons without CHIP.  Considered individually in 

215 separate models, CHIP and AgeAccelHG were each associated with a modest increase in risk of all-cause 

216 mortality (CHIP: HR 1.27, p < 0.077; AgeAccelHG: HR 1.84, p < 4.0x10-14), consistent with previous findings. 

217 When we modeled the interaction of CHIP with AgeAccelHG for all-cause mortality, we found a significant 

218 interaction effect (CHIP main effect: coefficient = -0.25, p < 0.20; AgeAccelHG main effect: coefficient = 0.51, p 

219 < 3.08x10-9; interaction: coefficient = 0.80, p < 3.74x10-3), which remained significant after Bonferroni 

220 correction for eight tests.  

221 To validate this finding, we sought replication in an independent cohort, the BA23 subset of WHI, which 

222 was not used in the above mortality analysis (Horvath et al. 2016). When we modeled the interaction of CHIP 

223 with AgeAccelHG for CHD in BA23, the interaction term was again significant (CHIP main effect: coefficient = -

224 0.24, p < 0.60; AgeAccelHG main effect: coefficient = 0.24, p < 0.35; interaction: coefficient = 1.72, p < 0.01).

225 Having demonstrated a significant statistical interaction between CHIP and AgeAccelHG for clinical 

226 outcomes, we combined these two variables into a single, 4-factor variable for further modeling.  For CHD, we 

227 included incident events in FHS, JHS, and WHI EMPC together with WHI BA23 as a meta-analysis. Persons 

228 who were CHIP+/AgeAccelHG+ had much greater risk of all-cause mortality (HR 2.90, p < 4.1x10-8) and CHD 

229 (HR 3.24, p < 9.3x10-6) compared to those who were CHIP-/AgeAccelHG-.   Those who were CHIP-

230 /AgeAccelHG+ had a more modest increase in risk of all-cause mortality (HR 1.66, p < 3.1x10-9), and CHD (HR 

231 1.39, p < 0.012) compared to those who were CHIP-/AgeAccelHG-.  In contrast, those who were 

232 CHIP+/AgeAccelHG- did not have elevated risk of either all-cause mortality (HR 0.78, p < 0.20) or CHD (HR 

233 1.03, p < 0.93) compared to those who were CHIP-/AgeAccelHG- (Figure 2B-C).  We also fitted contrasts to 

234 estimate the hazard ratios for all-cause mortality and CHD for CHIP only in persons with AgeAccelHG+ and 

235 AgeAccelHG+ only in persons with CHIP, in both cases finding the associations to be significant (Figure S5).

236 We also asked if there were gene-level differences in risk of these outcomes. We had insufficient 

237 sample size to assess either mortality or CHD individually, so we combined the two into a composite outcome. 

238 Being AgeAccelHG+ increased the risk of the composite outcome for those with TET2 mutations relative to 

239 those who were CHIP-/AgeAccelHG- (TET2 mutated+/AgeAccelHG+: HR = 3.88, p < 1.6x10-6; TET2 

240 mutated+/AgeAccelHG-: HR = 1.14, p < 0.66; p for interaction < 0.065) to a greater degree than those with 

241 DNMT3A mutations (DNMT3A mutated+/AgeAccelHG+: HR = 1.99, p < 0.028; DNMT3A 

242 mutated+/AgeAccelHG-: HR = 0.68, p < 0.079; p for interaction < 0.11) or other non-DDR mutations (other 

243 mutation+/AgeAccelHG+: HR = 2.88, p < 1.1x10-5; other mutation+/AgeAccelHG-: HR = 1.00, p < 1; p for 

244 interaction < 0.19). 

245 To illustrate absolute risks among those with both CHIP and AgeAccelHG, we determined the 

246 cumulative incidence of all-cause mortality and CHD in persons from FHS, JHS, and WHI EMPC aged 65 or 

247 older at blood draw who did not have prevalent coronary heart disease (Figure 2D-E). Those who were 
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248 CHIP+/AgeAccelHG+ had a cumulative incidence of all-cause mortality of 46.6% by 10 years and a cumulative 

249 incidence of CHD of 22.2% by 10 years. In contrast, the other three groups had substantially lower 10-year 

250 cumulative incidence of all-cause mortality (CHIP+/AgeAccelHG- 17.7%, CHIP-/AgeAccelHG+ 25.8%, CHIP-

251 /AgeAccelHG- 19.2%) and CHD (CHIP+/AgeAccelHG- 7.98%, CHIP-/AgeAccelHG+ 13.0%, CHIP-

252 /AgeAccelHG- 8.66%).

253 Our data permitted us to also ask whether there was an association of CHIP and AgeAccelHG to time 

254 to death in those who had a first CHD event, a subgroup that is often the target of clinical interventions.  We 

255 restricted our analysis to individuals who had a first CHD event after age 70 and, if they died, did so more than 

256 30 days after the CHD event.  We found a significant interaction between CHIP and AgeAccelHG for all-cause 

257 mortality after CHD (p < 0.036).  Persons who were CHIP+/AgeAccelHG+ showed significant increase in risk of 

258 all-cause mortality (HR = 3.16, p < 1.16x10-5), while those who were CHIP+/AgeAccelHG- (HR = 0.462, p < 

259 0.27) or CHIP-/AgeAccelHG+ (HR = 1.40, p < 0.13)  showed no significant increase.  The 5-year cumulative 

260 incidence of death after CHD for those who were CHIP+/AgeAccelHG+ was 58.5%, while for all other groups it 

261 was substantially lower (CHIP+/AgeAccelHG- 18.8%, CHIP-/AgeAccelHG+ 20.0%, CHIP-/AgeAccelHG- 

262 19.8%, Figure 2F).

263 Given the previous findings linking both CHIP (Jaiswal et al. 2017) and extrinsic epigenetic aging 

264 (Levine et al. 2018; Lu, Quach, et al. 2019; Horvath et al. 2016) to inflammation, we asked whether plasma 

265 levels of the inflammation marker high-sensitivity C-reactive protein (hsCRP) showed any evidence of 

266 interaction with CHIP for all-cause mortality or CHD. We found evidence for a main effect of hsCRP on risk for 

267 all-cause mortality, but not for an interaction with CHIP (CHIP main effect: coefficient = 0.22, p < 0.22; 

268 log(hsCRP) main effect: coefficient = 0.09, p < 1.01x10-3; interaction: coefficient = 0.076, p < 0.29). For CHD, 

269 no effect of hsCRP was observed (CHIP main effect: coefficient = 0.23 p < 0.49; log(hsCRP) main effect: 

270 coefficient = 0.01, p < 0.90; interaction: coefficient = -0.3, p < 0.82).  We also stratified our cohort into 8 groups 

271 based upon CHIP status, AgeAccelHG status, and whether hsCRP levels were above 2 mg/L, an established 

272 clinical cutoff.  Individuals with CHIP and AgeAccelHG showed a similar risk of all-cause mortality and CHD 

273 regardless of whether they had high or low hsCRP levels (Figure S5E-F).  These results indicate that hsCRP is 

274 a poor discriminator of risk in CHIP carriers, unlike AgeAccelHG.

275 A coding SNP in IL6R (rs2228145), which results in Asp358Ala, was previously found to attenuate the 

276 increased risk for mortality and CHD associated with CHIP (Bick AG et al. 2020).  Here, the interaction 

277 between CHIP status and alternate allele count at rs2228145 was not significant for either all-cause mortality 

278 (CHIP main effect: coefficient = 0.27, p < 0.158; rs2228145 main effect: coefficient = -0.082 per alternate allele, 

279 p < 0.21; interaction: coefficient = -0.044 per alternate allele, p < 0.82) or CHD (CHIP main effect: coefficient = 

280 0.23, p < 0.36; rs2228145 main effect: coefficient = -0.16 per alternate allele, p < 0.08; interaction: coefficient = 

281 0.25 per alternate allele, p < 0.36).  There were also no significant interactions between rs2228145 genotype 

282 and the combined CHIP/AgeAccelHG variable (Figure S5C-D). These results indicate that IL6R genotype is a 
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283 poor discriminator of risk in CHIP carriers in this dataset, unlike AgeAccelHG.  However, we did find 

284 differences based on which gene was mutated. Those who were TET2-CHIP+/AgeAccelHG+ and with no 

285 alternate alleles of rs2228145 (IL6RWT) had the highest risk for the composite mortality/CHD outcome relative 

286 to the referent group of CHIP-/AgeAccelHG-/IL6RWT (HR = 11.3, p < 2.4x10-21, Figure S6). Those who were 

287 TET2-CHIP+/AgeAccelHG+ but carried 1 or 2 alternate alleles of rs2228145 (IL6RMut) had substantially lower 

288 risk (HR = 1.91 compared to the same referent group, p < 0.066; coefficient for interaction = -1.12 per alternate 

289 allele, p for interaction < 9.6 x 10-7, Figure S6). There was no significant difference in risk based on rs2228145 

290 genotype in those who were TET2-CHIP+/AgeAccelHG-.  We also did not find significant differences in risk of 

291 death/CHD by rs2228145 genotype in DNMT3A-CHIP or CHIP with other non-DDR mutations regardless of 

292 AgeAccelHG status.  

293

294 Discussion

295 The results presented here permit us to draw several conclusions. First, it is clear that CHIP is strongly 

296 associated with epigenetic aging in several clocks. Consistent with the results from Robertson et al. (Robertson 

297 et al. 2019), we find the strongest associations to be with the intrinsic clocks, Horvath and IEAA. This could 

298 reflect a shared genetic architecture, as evidenced by the overlapping GWAS hits between polymorphisms 

299 near TERT and TRIM59 that associate with both CHIP and IEAA (Bick et al. 2020; Zink et al. 2017).  However, 

300 the heritability of CHIP appears to be low (3.6% (Bick et al. 2020)), which limits our ability to test for genetic 

301 correlation between CHIP and age acceleration.   Previous studies have shown that IEAA of cultured 

302 fibroblasts strongly correlates with the number of population doublings (Lu et al. 2018). Therefore, an 

303 alternative hypothesis is that the increase in intrinsic age acceleration seen in CHIP carriers may be due to 

304 either 1) increased proliferation or self-renewal of HSC clones that harbor these mutations or 2) stem cell 

305 exhaustion of wild-type HSCs from over-proliferation, leading to a selective advantage for mutant clones. 

306 Studies in model systems such as genetically modified mice may help delineate the cause-effect relationship 

307 between mutations in various CHIP-associated genes and intrinsic age acceleration. 

308 Most importantly, our results show that it is possible to stratify CHIP carriers into those at high versus 

309 low risk of adverse clinical outcomes using a composite measure of Hannum and GrimAge (AgeAccelHG). 

310 CHIP or AgeAccelHG status alone is associated with a modestly increased risk of death or CHD, but the 

311 combination of CHIP+ and AgeAccelHG+ is synergistic for these outcomes. Furthermore, CHIP in the absence 

312 of epigenetic aging in these clocks is not associated with adverse outcomes. These results suggest that the 

313 effects of CHIP on health are context dependent, as Hannum and GrimAge are not uniformly increased in all 

314 CHIP carriers, and may be influenced by environmental factors such as CRP, smoking, diet, BMI, insulin 

315 resistance, education level, exercise, socioeconomic status (Quach et al. 2017), traumatic stress (Wolf et al. 

316 2018), insomnia (Carroll et al. 2017), and hunter-gatherer lifestyle (Horvath et al. 2016). Our results may also 

317 explain why the strength of the associations between CHIP and mortality or CHD are somewhat inconsistent 
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318 across studies—while the prevalence of CHIP is fairly uniform across populations, epigenetic aging may not 

319 be. In populations with a high prevalence of risk factors for epigenetic aging, the consequences of CHIP may 

320 be more dire than in populations without such risk factors.  

321 Our risk stratification schema may also be used to select patients for clinical trials of pharmaceutical or 

322 behavioral interventions, as the benefit-to-risk ratio may be particularly favorable in the high-risk CHIP group. 

323 We note that that the 5-year mortality after CHD in those who are CHIP+ and AgeAccelHG+ approaches 60%, 

324 similar to the mortality seen in patients with intermediate-risk MDS (Greenberg et al. 2012).  Furthermore, the 

325 high event rate in this group would enable smaller trials with sufficient power for detecting favorable outcomes 

326 such as reduced all-cause mortality or time to CHD.  One such intervention may be blockade of IL-6 receptor 

327 (Bick AG et al. 2020); our results show that those who are TET2-CHIP+ and AgeAccelHG+ have lower risk of 

328 death or CHD with increasing copies of rs2228145, which has previously been linked to reduced IL-6R 

329 expression levels in myeloid cells (Bick AG et al. 2020). Alternatively, this group may benefit from IL-1B 

330 inflammatory blockade (Ridker et al. 2017), which has also been shown to be relevant to atherosclerosis in 

331 model systems of CHIP (Jaiswal et al. 2017; Fuster et al. 2017). Of note, AgeAccelHG appears to be superior 

332 to hs-CRP and genotype at IL6R for risk discrimination of CHIP carriers, implying that it is capturing additional 

333 information beyond baseline inflammation.

334 In sum, our results show that there is an important relationship between CHIP and epigenetic aging.  

335 CHIP and epigenetic age acceleration can also be used to identify persons at high risk of all-cause mortality 

336 and CHD, further reinforcing the importance of both phenotypes as valuable tools in precision medicine for 

337 aging.

338

339

340 Methods

341 Epidemiological cohorts

342 All participant data were obtained from four independent patient cohorts: the Framingham Heart Study (FHS) 

343 (Feinleib et al. 1975), the Jackson Heart Study (JHS) (Sempos et al. 1999), the Women’s Health Initiative 

344 (WHI) (phs000200.v11.p3), and the Multi-ethnic Study of Atherosclerosis (MESA) (Bild 2002, p.200).  These 

345 cohorts were included in the Trans-Omics for Precision Medicine (TOPMed) consortium which is run by the 

346 National Heart Lung and Blood Institute of the National Institutes of Health.  Access to all data was approved 

347 by TOPMed as well as the individual cohorts.  We included only those persons from these cohorts in which the 

348 age at draw for both whole blood methylation and whole genome sequencing (WGS) were available.  In the 

349 FHS and JHS cohorts, the samples for methylation and WGS were taken from the same blood draw in all 

350 persons.  In MESA, methylation data was only used from the first exam as this was the time at which DNA for 

351 WGS was also collected.  In the WHI cohort, the two samples were often taken from different times.  We only 

352 considered persons for whom the methylation and WGS samples were taken within 3 years of each other. 
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353

354 Methylation array data

355 Whole blood methylation was quantified using the Illumina MethylationEPIC or HumanMethylation450k array.  

356 Normalized methylation data was submitted to the online methylation clock tool 

357 (https://dnamage.genetics.ucla.edu/new) which generates methylation age estimates for seven different clocks: 

358 DNAmAge (Horvath 2013), DNAmHannum (Hannum et al. 2013), DNAmPhenoAge (Levine et al. 2018), 

359 DNAmSkinClock (Horvath et al. 2018), DNAmGrimAge (Lu, Quach, et al. 2019), intrinsic epigenetic age 

360 acceleration (IEAA) (Lu et al. 2018) and extrinsic epigenetic age acceleration (EEAA) (Lu et al. 2018).  Age 

361 acceleration was computed for each measure as the residual of model predicting each persons’ methylation 

362 age from their chronological age at the time of blood draw.  Additionally, the DNAmGrimAge clock generates 

363 seven surrogate biomarkers based upon blood protein expression (MADM/NRBP1, B2M, CST3 (Cystatin C), 

364 GDF15, LEP (Leptin), SERPINE1/PAI1, and TIMP1) as well smoking pack-years. Age-adjusted leukocyte 

365 telomere length (LTL) and unadjusted LTL are also estimated by the clock software (Lu, Seeboth, et al. 2019).  

366 Cell composition was also estimated by the clock software using a published model (Houseman et al. 2012).

367

368 Identification of somatic variants

369 Approximately 100,000 whole genomes were sequenced from whole blood DNA to ~30X depth as part of the 

370 TOPMed study (Bick et al. 2020). Somatic mutations associated with clonal hematopoiesis of indeterminate 

371 potential (CHIP) were called from WGS data using the Mutect2 module in GATK from BAM files previously 

372 aligned with BWA.  Candidate CHIP variants were selected based upon a curated list of known variants 

373 recurrently mutated in hematological malignancies as previously described (Jaiswal et al. 2017) (see Table 

374 S6). A full list of variants identified in this study are included in Table S7.

375

376 Association between CHIP and methylation age acceleration

377 CHIP status was associated with age acceleration and the other measures using linear modeling, with a 

378 separate model being fitted for each aging measure.  Because of the relatively small number of comparisons, 

379 p-values for these analyses were reported unadjusted.  We combined the data from all three studies and used 

380 residualization to remove the effects of age, race/ethnicity, sex, and study.  This approach was chosen to 

381 eliminate any possibility of spurious associations between CHIP and the methylation measures that were 

382 driven by collinearity between CHIP and covariates.  The residualized methylation measure was the outcome 

383 in each model, and a likelihood ratio test was performed to test the significance of CHIP as predictor against a 

384 null model containing only the intercept.  When testing the association of CHIP mutations with specific genes, 

385 CHIP status was replaced with a categorical variable indicating whether the individual had a mutation in that 

386 gene, and persons with CHIP mutations in other genes were excluded.  The following specific categories for 

387 single mutations were used: DNMT3A, TET2, DNA damage response (DDR, which includes TP53, PPM1D, 
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388 and BRCC3), JAK2, ASXL1/2 (includes ASXL1 and ASXL2), splicing factor (includes SF3B1, SRSF2, U2AF1, 

389 ZRSR2, and PRPF8), and other for any single gene which did not fit in the previous categories.  Persons with 

390 mutations in more than one gene were classified as multiple regardless of the number of mutations or which 

391 genes were mutated, while persons with multiple mutations in the same gene were classified as singletons.  

392 The analysis of mutation number vs. methylation measures grouped all persons with single mutation into one 

393 group, and split the group with mutations in multiple genes into 2 mutations and greater than 2 mutations, 

394 regardless of which genes were mutated. Correlation between VAF and the residualized methylation measures 

395 was computed using biweight midcorrelation, an outlier resistant alternative to Pearson’s correlation (Horvath 

396 2011).

397

398 Differential methylation of clock CpGs

399 Illumina HumanMethylation450K and MethylationEPIC CpG probe IDs for the clocks and DNAmLTL were 

400 obtained from the supplemental data of the relevant publications.  Methylation beta values for each cohort 

401 were subsetted for CpGs used in all clocks except GrimAge (for which the CpG locations have not been 

402 published), and were converted to M-values.  The M-values were adjusted for the same covariates that were 

403 considered for the methylation clock measures.  The adjusted residuals were tested for differential methylation 

404 and p-values corrected for the number of CpGs tested using limma(Ritchie et al. 2015).  

405

406 Association of CHIP and epigenetic age acceleration with clinical outcomes

407 We tested the associations of CHIP and epigenetic age acceleration with all-cause mortality and incident 

408 coronary heart disease with Cox proportional hazards models using the survival package in R.  Models 

409 included age, sex, race/ethnicity, systolic blood pressure, type 2 diabetes status, plasma LDL-cholesterol 

410 concentration, plasma HDL-cholesterol concentration, plasma triglyceride concentration, and smoking status 

411 as covariates. Some persons in WHI had DNA for the methylation and/or WGS sample obtained several years 

412 after the baseline visit, which potentially could introduce survivorship bias into the analysis. For this reason, we 

413 also excluded anyone in WHI for whom either the methylation or WGS blood draw occurred more than 5 years 

414 after the baseline visit.

415

416 For analysis of all-cause mortality, pooled data from FHS, JHS, and WHI EMPC were used. The selection of 

417 samples used in TOPMed in these cohorts were taken essentially at random from the larger parent cohorts. 

418 WHI BA23 was excluded from this analysis because persons in this cohort were over-sampled for CHD. MESA 

419 was excluded from this analysis because persons in this cohort were selected for surviving at least 10 years 

420 from baseline. We chose to present the results from models in which all three cohorts were pooled, rather than 

421 analyzed separately and then meta-analyzed. The results for the meta-analysis were similar, however 
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422 (CHIP/AgeAccelHG interaction pooled: coefficient = 0.80, p < 3.7x10-3; CHIP/AgeAccelHG interaction in fixed 

423 effects meta-analysis: coefficient = 0.85, p < 2.4x10-3).

424

425 For the analysis of CHD, the WHI BA23 cohort was analyzed separately, and a meta-analysis was used to 

426 combine the results of the BA23 analysis with the other pooled cohorts (JHS, FHS, and WHI EMPC) to get the 

427 final effect size estimates. 45 persons in WHI BA23 were also included in the mortality analysis of WHI EMPC, 

428 but were not included in the CHD analysis of WHI EMPC (i.e., were not double counted). Because BA23 was 

429 oversampled for CHD, we adjusted the sample weights in BA23 using race and incident CHD numbers in the 

430 entire dbGaP-eligible set of WHI to allow for Cox proportional hazards modeling. Robust standard errors were 

431 used to calculate p-values in all models.

432

433 Similar to the associations between CHIP and age acceleration, p-values for these analyses were reported 

434 unadjusted due to the small number of comparisons.  We used the age acceleration residuals from the 

435 analysis associating CHIP with epigenetic age acceleration to determine if persons had high age acceleration 

436 (AgeAccelHG, defined as being greater than 0 for both AgeAccelHannum and AgeAccelGrim) and intersected 

437 this with CHIP status, resulting in four groups: no CHIP with low age acceleration, no CHIP with high age 

438 acceleration, CHIP with low age acceleration, and CHIP with high age acceleration.  When we analyzed the 

439 interaction of individual clocks with CHIP status, we used the same definition for age acceleration but restricted 

440 it to only one clock.

441

442 For the gene-level analyses, persons with any singleton DNMT3A, TET2, or DDR gene (TP53, PPM1D, 

443 BRCC3) mutation were considered to be in those classes. All other non-DNMT3A, TET2 and DDR mutations 

444 were considered “other”.  In those with multiple mutations, the mutated gene with the highest VAF was used to 

445 assign the class. 

446

447 For the analysis of cumulative incidence of death and CHD, the cmprsk package in R was used.

448
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701

702 Figure Legends

703 Table 1. Summary of epigenetic clocks used in study.  IEAA = intrinsic epigenetic age acceleration, EEAA 

704 = extrinsic epigenetic age acceleration.

705 Figure 1. CHIP is associated with increased age acceleration. Forest plot of the effect sizes and 

706 confidence intervals for the effect of CHIP on age acceleration estimate from seven methylation clocks. 

707 Table 2. CHIP mutations in specific classes of genes have largely consistent effects on age 

708 acceleration.  Table with effect sizes, standard errors and p-values for eight different classes of CHIP 

709 mutations. “Multiple” means mutations in multiple genes. “DDR” refers to mutations in the DNA damage 

710 response genes TP53, PPM1D, and BRCC3. “Splicing factor” are mutations in SF3B1, SRSF2, U2AF1, 
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711 ZRSR2, and PRPF8. “Other” refers to mutations in all other genes not listed.

712 Figure 2. CHIP and epigenetic age acceleration identify persons at high risk of all-cause mortality and 

713 development of coronary heart disease (CHD).  a Scatterplot of correlation between AgeAccelGrim and 

714 AgeAccelHannum in all cohorts. b,c Forest plots showing hazard ratios, confidence intervals and p-values for 

715 Cox proportional hazard models of all-cause mortality (b) and development of CHD (c) in persons from FHS, 

716 JHS, and WHI.  All models included chronological age, race, low-density lipoprotein cholesterol, high-density 

717 lipoprotein cholesterol, triglycerides, systolic blood pressure, type 2 diabetes status and smoking status as 

718 covariates. Top two sections show the overall effect size of CHIP and age acceleration and bottom section 

719 shows effect sizes based on dividing persons into four groups based upon presence of CHIP and age 

720 acceleration. The results in c are a meta-analysis of events in FHS, JHS, WHI EMPC (unselected for CHD) 

721 and WHI BA23 (case-control study for CHD). d,e Cumulative incidence plots of death (d) and CHD (e) in 

722 persons divided into groups by presence of CHIP (CHIP+/CHIP-) and age acceleration 

723 (AgeAccelHG+/AgeAccelHG-).  The numbers in parentheses indicate the number of persons in each group for 

724 these analyses. Only persons over 65 and free of CHD at baseline were used in d and e, while all persons 

725 were used for b and c.  f Cumulative incidence plot of death in persons with incident CHD after age 70.  

726 Individuals who died less than 30 days after CHD were excluded.

727 Figure S1. CHIP prevalence increases with age.  Plot of percentage of persons with CHIP as a function of 

728 age divided in 5 year bins.

729 Figure S2. CHIP carriers are older than controls.  Boxplot of age of persons with the different classes of 

730 CHIP mutations.

731 Figure S3. CHIP is associated with decreased methylation-estimated age-adjusted telomere length 

732 (DNAmLTLAdjAge).  a Forest plot showing confidence intervals and p-values of association of all CHIP 

733 mutations or specific classes of CHIP mutations with DNAmLTLAdjAge. b Box plots of DNAmLTLAdjAge as a 

734 function of number of CHIP mutations. c Forest plot showing confidence intervals and p-values of correlation of 

735 variant allele fraction (VAF) with DNAmLTLAdjAge.

736 Figure S4. Methylation CpG sites used in clocks are hypomethylated in CHIP carriers. a,b Volcano plots 

737 from differential methylation analysis of persons with (a) DNMT3A and (b) TET2 mutations vs. controls.  The x-

738 axis is the log fold change and the y-axis is the -log10 p-value for each CpG.  c Scatter plot showing the 

739 correlation of average M-values at CpGs shown in volcano plots in persons with DNMT3A and TET2 

740 mutations.

741 Figure S5. The risk of mortality and coronary heart disease (CHD) increases with CHIP in subjects with 

742 age acceleration, and with age acceleration in subjects with CHIP, and is not affected by rs2228145 

743 genotype or CRP levels.  a,b Forest plots showing hazard ratios, confidence intervals and p-values for 

744 mortality (a) and development of CHD (b).  The top section shows the effect of CHIP in subjects with age 

745 acceleration, and the bottom section shows the effect of age acceleration in persons with CHIP. c,d Forest 
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746 plots showing hazard ratios, confidence intervals and p-values as a function of CHIP status, age acceleration 

747 and IL6R rs2228145 genotype for mortality (c) and development of CHD (d). Persons with at least 1 alternate 

748 allele of rs2228145 were designated IL6RMut, and those with no alternate alleles were designated IL6RWT. e,f 

749 Forest plots showing hazard ratios, confidence intervals and p-values as a function of CHIP status, age 

750 acceleration and CRP levels for mortality (e) and development of CHD (f).  Persons with greater than 2 mg/L of 

751 CRP were designated CRPhi, and those with 2mg/L or less of CRP were designated CRPlo.

752 Figure S6. rs2228145 reduces the increased risk in composite mortality/CHD cumulative risk in 

753 persons with TET2 CHIP mutations and epigenetic age acceleration.  Forest plot showing hazard ratios, 

754 confidence intervals and p-values for Cox proportional hazard models of the composite measure of 

755 mortality/CHD risk in persons from FHS, JHS, and WHI AS315.  Model includes chronological age, race, low-

756 density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, systolic blood pressure, type 2 

757 diabetes status and smoking status as covariates. IL6Mut = 1 or 2 copies of alternate allele for rs2228145, 

758 IL6WT = 0 copies of alternate allele for rs2228145.

759 Table S1. Demographics of cohorts used in study.  WHI = Women's Health Initiative, FHS = Framingham 

760 Heart Study, JHS = Jackson Heart Study, MESA = Multiethnic Study of Atherosclerosis, AA = African 

761 American, CHD = coronary heart disease. 1WHI BA23 was excluded from the mortality analysis because it was 

762 a case-control study for CHD.  2WHI BA23 was analyzed for CHD risk separately from the other cohorts 

763 becuase it was a case-control study for CHD.  3MESA subjects were excluded from mortality and CHD analysis 

764 because they were selected for survival over 10 years, which biased subject selection.

765 Table S2. Increasing number of CHIP mutations is associated with increased age acceleration and 

766 other methylation measures.  Tables with effect sizes, standard errors and p-values of the comparison of 

767 persons with 2 CHIP mutations vs 1, and >2 mutations vs. 2 in (a) age acceleration in methylation clocks, (b) 

768 DNAmGrimAge biomarkers, and (c) predicted cell type abundance.

769 Table S3. CHIP mutations in specific classes of genes affect Grim biomarkers and predicted cell type 

770 abundances.  Tables with effect sizes, standard errors and p-values of the association of CHIP mutations in 

771 specific classes of genes with (a) DNAmGrimAge biomarkers and (b) predicted cell type abundance.

772 Table S4. Variant allele fraction is correlated with some methylation measures.  Tables with correlation 

773 coefficients, standard errors and p-values of the correlation of VAF in all CHIP carriers and in specific classes 

774 of genes with (a) age acceleration in methylation clocks, (b) DNAmGrimAge biomarkers, and (c) predicted cell 

775 type abundance.

776 Table S5. The Hannum and Grim clocks interact with CHIP to increase risk of mortality. Table with 

777 hazard ratios, standard errors and p-values of Cox proportional hazard models for the interaction of CHIP and 

778 epigenetic age acceleration with mortality for individual clocks.

779 Table S6. Genes and variants queried for the assessment of CHIP. Shown are gene names and reported 

780 mutations in these genes that were used to classify persons as having clonal hematopoiesis.
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781 Table S7. CHIP mutations identified in this analysis. Each row is one person in the study. CHIP status is 

782 given by “Has CHIP”. Also identified are mutated gene(s) (“Mutated Gene”), mutation type 

783 (“ExonicFunc.refGene”), amino acid change (“NonsynOI”), variant allele fraction (“AF”), reference and alternate 

784 allele (“REF”,”ALT”), and reference and alternate allele counts (“refcount”,”altcount”). 
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Clock Type Tissue Outcome Publication Notes

Horvath Intrinsic Multiple Chronological age Horvath 2013 Inaccessible tissues primarily from tissue-adjacent normal samples in The Cancer
Genome Atlas (see publication).

IEAA Intrinsic Multiple Chronological age Quach et al. 2017 Uses same CpGs as Horvath clock, but reweighted as described in Quach et al. to
minimize influence of cell composition.

Hannum Extrinsic Whole blood Chronological age Hannum 2013 Highly correlated with aging related changes in blood cell composition.
EEAA Extrinsic Whole blood Chronological age Quach et al. 2017 Uses same CpGs as Hannum clock, but reweighted as described in Quach et al. to

maximize influence of cell composition.
SkinAndBloodClock Intrinsic Whole blood, fibroblasts Chronological age Horvath et al. 2018 Created to address poor age prediction in Horvath clock in skin and whole blood.
PhenoAge Extrinsic Whole blood Time to death Levine et al. 2018 PhenoAge is measure of mortality risk derived from National Health and Nutrition

Examination Survey using the following markers: albumin, creatinine, serum glucose,
log C-reactive protein, lymphocyte percent, mean red cell volume, red cell distribution
width, alkaline phosphatase, white blood cell count, and age (see publication for details).

GrimAge Extrinsic Whole blood Time to death Lu et al. 2019 Methylation is used to predict 8 surrogate biomarkers: Adrenomedullin (ADM),
Beta-2-Microglobulin (B2M), Cystatin C, Growth Differentiation Factor 15 (GDF15), Leptin,
Serpin Family E Member 1 (SERPINE/PAI1), TIMP Metalloproteinase Inhibitor 1 (TIMP1),
smoking pack years (PACKYRS). The predicted values of those biomarkers are used to
predict mortality (see publication for details).
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Horvath IEAA Hannum EEAA SkinBloodClock PhenoAge GrimAge
Class est. (SE) p-value est. (SE) p-value est. (SE) p-value est. (SE) p-value est. (SE) p-value est. (SE) p-value est. (SE) p-value

All 3.01 (0.27) 3.0 x 10-25 2.92 (0.26) 9.3 x 10-26 2.71 (0.26) 1.8 x 10-23 3.08 (0.33) 3.7 x 10-18 1.58 (0.20) 2.5 x 10-13 2.21 (0.36) 1.0 x 10-8 1.31 (0.25) 8.6 x 10-7

DNMT3A 2.58 (0.38) 2.2 x 10-10 2.72 (0.36) 2.1 x 10-12 1.76 (0.35) 5.7 x 10-6 1.75 (0.46) 6.8 x 10-4 1.44 (0.28) 1.8 x 10-6 2.16 (0.51) 5.8 x 10-5 0.61 (0.35) 0.123
TET2 2.58 (0.59) 4.8 x 10-5 2.47 (0.57) 4.9 x 10-5 3.86 (0.55) 2.1 x 10-11 4.07 (0.72) 7.2 x 10-8 0.91 (0.44) 0.060 1.31 (0.79) 0.135 0.99 (0.55) 0.093
Multiple 7.43 (0.93) 5.6 x 10-15 6.77 (0.89) 1.1 x 10-13 8.36 (0.86) 3.0 x 10-21 10.97 (1.13) 2.5 x 10-21 5.01 (0.69) 10.0 x 10-13 6.35 (1.24) 5.3 x 10-7 4.85 (0.85) 2.4 x 10-8

DDR 0.21 (1.06) 0.962 -0.21 (1.01) 0.717 0.31 (0.98) 0.871 1.43 (1.29) 0.327 -0.26 (0.79) 0.660 0.63 (1.41) 0.718 -0.27 (0.97) 0.723
JAK2 3.80 (1.67) 0.029 1.37 (1.60) 0.448 5.88 (1.56) 2.3 x 10-4 6.21 (2.04) 0.003 4.31 (1.24) 6.7 x 10-4 10.01 (2.23) 9.7 x 10-6 3.46 (1.54) 0.028
ASXL1/2 2.86 (1.06) 0.011 2.75 (1.01) 0.011 1.46 (0.98) 0.183 1.87 (1.29) 0.188 0.44 (0.79) 0.652 -0.55 (1.41) 0.634 3.11 (0.97) 0.002
Splicing factor 5.02 (1.57) 0.002 4.88 (1.51) 0.002 2.70 (1.47) 0.082 2.41 (1.92) 0.242 2.36 (1.17) 0.052 2.46 (2.11) 0.267 2.37 (1.45) 0.112
Other 4.20 (1.31) 0.002 4.40 (1.26) 7.3 x 10-4 0.98 (1.22) 0.497 1.68 (1.60) 0.345 1.99 (0.97) 0.050 0.73 (1.75) 0.726 1.95 (1.21) 0.120
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