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Abstract

Introduction:Machine learning models were used to discover novel disease trajecto-

ries for autosomal dominant Alzheimer’s disease.

Methods: Longitudinal structural magnetic resonance imaging, amyloid positron emis-

sion tomography (PET), and fluorodeoxyglucose PET were acquired in 131 mutation

carriers and 74 non-carriers from the Dominantly Inherited Alzheimer Network; the

groups were matched for age, education, sex, and apolipoprotein ε4 (APOE ε4). A deep

neural network was trained to predict disease progression for each modality. Relief

algorithms identified the strongest predictors of mutation status.

Results: The Relief algorithm identified the caudate, cingulate, and precuneus as the

strongest predictors among all modalities. The model yielded accurate results for pre-

dicting future Pittsburgh compound B (R2
= 0.95), fluorodeoxyglucose (R2

= 0.93), and

atrophy (R2
= 0.95) in mutation carriers compared to non-carriers.

Discussion: Results suggest a sigmoidal trajectory for amyloid, a biphasic response for

metabolism, and a gradual decrease in volume, with disease progression primarily in

subcortical, middle frontal, and posterior parietal regions.

KEYWORDS

autosomal dominant Alzheimer’s disease (ADAD), fluorodeoxyglucose (FDG), machine learning,
magnetic resonance imaging (MRI), Pittsburgh compound B (PiB)

1 INTRODUCTION

Alzheimer’s disease (AD) is the most common form of demen-

tia, accounting for 60% to 70% of the 50 million dementia cases

worldwide.1 AD leads to slow cognitive decline, behavioral and psy-

chiatric disorders, and impairments in functional status. Pathological

features of AD include the accumulation of amyloid beta (Aβ) plaques,
neurofibrillary tau tangles, and neuronal/synaptic losses that corre-

spond with atrophy and decreased glucose metabolism.2 The most

common form of AD occurs in older age and is known as late-onset

Alzheimer’s disease (LOAD). Autosomal dominant Alzheimer’s disease

(ADAD) accounts for <1% of all AD cases and is caused by pathogenic

mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1), or

presenilin 2 (PSEN2) genes that lead to early increases in Aβ deposition
in the brain, which, in turn, is hypothesized to initiate a cascade that

causes cognitive decline.3,4 The age of onset of cognitive impairment in

ADAD mutation carriers (MC) is earlier than LOAD and remains fairly

consistent within a family, allowing for calculation of the estimated age

of symptom onset (EAO).5

Multiple neuroimaging methods have been used to evaluate in vivo

changes in the brain due to AD. [11C]Pittsburgh compound B (PiB) has

high affinity for Aβ plaques, with distributions similar to those seen at

autopsy.6 PiB positron emission tomography (PET) has been used in

ADAD to identify amyloid deposition, with amyloid deposition identi-

fied>20 years prior to EAO inMC.7–10

Studies have also shown increases in PiB retention in MC are asso-

ciated with a worsening cognitive performance, a decrease in glucose

metabolism, and a decrease in hippocampal volume.7,11

[18F]Fluorodeoxyglucose (FDG) uptake reflects glucosemetabolism

and has shown promise in discriminating symptomatic MCs from cog-

nitively normal, mutation-negative non-carriers (NC).6,9,10 In ADAD,

studies have shown FDG uptake in MCs is decreased in the precuneus

mailto:luckett.patrick@wustl.edu
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RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using traditional (eg, PubMed) sources and meet-

ing abstracts and presentations. Relevant citations are

includedwhere appropriate.

2. Interpretation: Our findings suggest that within autoso-

mal dominantAlzheimer’s disease (AD)mutation carriers,

amyloid accumulation showsa sigmoidal progression, glu-

cose metabolism shows a biphasic response, and there is

a gradual decrease in brain volume, with disease progres-

sion primarily in subcortical, middle frontal, and posterior

parietal regions. These results are consistent with clinical

findings.

3. Future directions: Future work will focus on (a) under-

standing the role of increased glucose metabolism

observed in the early stages of the disease; (b) relating

the current results with other functional neuroimaging

methods, such as cerebral blood flow and resting state

functional magnetic resonance imaging; and (c) relating

the current results with blood and cerebrospinal fluid

biomarkers of AD.

and is inversely correlated with PiB binding. Marked decreases in glu-

cose metabolism occur approximately 5 to 10 years before EAO in

MCs.10,12

Structural magnetic resonance imaging (MRI) provides a method to

evaluate regional volumetric changes in neurodegeneration that occur

with disease progression.13 MRI can reveal regional brain atrophy,

which is a characteristic feature of neurodegeneration due to synap-

tic losses.14 ADAD is characterized by progressive atrophy that mani-

fests as changes initially in the temporal lobes and subcortical regions

with eventual spread to other regions. Observed changes in atrophy

are related to the spread of neurofibrillary tangles in AD.14

Machine learning (ML) is a branch of artificial intelligence that can

learn to extract patterns from existing data to predict future events.15

Advances in ML offer promise for a number of applications, including

medical imaging and predictive analytics.15,16 Compared to traditional

statistics that provide primarily group-level results, ML algorithms

can predict clinical outcomes at the individual level and could enable

personalized treatments that provide targeted care for patients.17

Although a number of studies have applied ML to neuroimaging mea-

sures to study LOAD,18–22 few studies to date have applied these tech-

niques toADAD.Because timeuntil conversion to symptomatic impair-

ment can be estimatedwith EAO,ADADprovides a unique opportunity

for ML to model the progression of the disease and provide decision

support to evaluate therapies currently being investigated in theDom-

inantly Inherited Alzheimer Network Trials Unit (DIAN-TU).

In this longitudinal study, we used artificial neural networks (ANNs)

to evaluate progression to cognitive impairment usingmultimodal neu-

roimaging biomarkers. Specifically, within a cohort of MCs (n = 131)

and NCs (n = 74), we used ANNs to investigate: (1) changes in Aβ
deposition (using PiB), (2) changes in glucose metabolism (using FDG),

and (3) brain atrophy (using structural MRI) as a function of aging in

relation to EAO. Further, we used feature selection to identify regions

that were the strongest discriminators of mutation status for each

modality. We then performedMonte Carlo simulations to identify cut-

offs for the identified regions. This data-driven approach provides an

opportunity to discover novel mechanisms and disease trajectories

specific for ADAD.

2 METHODS

2.1 Participants

One hundred thirty-one MCs with mutations in PSEN1, PSEN2, or APP

and 74 healthy, mutation-negative NCs were recruited from sites par-

ticipating in the DIAN study. Participants from the 12th data freeze

with genetic, clinical, and longitudinal neuroimaging data that passed

quality control procedures were included. The Washington University

Institutional Review Board provided supervisory review and human

subjects’ approval. Participants provided written, informed consent,

or assent with proxy consent. All study procedures were approved by

theWashingtonUniversity Human Research ProtectionOffice and the

institutional review boards of the participating sites.

2.2 Clinical classification

The Clinical Dementia Rating (CDR®) Dementia Staging Instrument

was used to assess dementia status at each clinical assessment.23 A

participant’s EAO was calculated at each visit on the basis of the par-

ticipant’s current age relative to the familymutation–specific expected

age at onset of dementia symptoms.5 Parental age at first progressive

cognitive decline was used if the mutation-specific EAOwas unknown.

EAOwas calculated identically for bothMCs and NCs. All clinical eval-

uators were blinded to the mutation status of participants. The pres-

ence/absence and type ofmutationwere determined using polymerase

chain reaction amplification followed by Sanger sequencing.7

2.3 MRI acquisition and processing

MRI was performed using the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) protocol.24 Sites used a 3T scanner that passed regular

quality control assessments. The ADNI Imaging Core screened images

for compliance. T1 weighted images at 1.1 × 1.1 × 1.2 mm voxel res-

olution were acquired for participants. FreeSurfer 5.325,26 was used

to perform volumetric segmentation, cortical surface reconstruction,

and to define cortical and subcortical regions of interest (ROIs). Seg-

mentations were inspected and edited as needed by members of the

DIAN Imaging Core. A regression approach was used to correct sub-

cortical volumes for intracranial volumes. Volumetric measures were

averaged across hemispheres. FreeSurfer-defined cortical and subcor-

tical ROIs (44 total) were used for regional processing of PET data.

The FreeSurfer-defined ROIs were derived from the Desikan/Killiany
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atlas27 for segmentation. These are standard regions used for volumet-

ric analyses.

2.4 PET acquisition and processing

Amyloid PET was performed using a bolus injection of PiB. Data from

40 to 70 minutes post-injection were converted to regional standard-

ized uptake value ratios (SUVRs) relative to the cerebellar gray mat-

ter using FreeSurfer-derived ROIs (PET Unified Pipeline).28 Glucose

metabolism imaging was performed with a single bolus injection of

FDG. A 30-minute dynamic acquisition beginning 30 minutes post-

injectionwas acquired. The last 20minutes of eachFDGscanwere con-

verted to SUVRsusing the cerebellar graymatter as a reference region.

All PET data were partial volume corrected using a regional spread

function technique.29,30 PET images were aligned to the T1 image pro-

cessed using FreeSurfer. PET scanner–specific filters were applied to

account for differences in spatial resolution and to achieve a common

resolution (8mm).31 TheDIAN imaging core performed quality control

checks on the PETUnified Pipeline processing.

2.5 Machine learning and statistical analyses

ML analyses were performed in MATLAB R2018b. Deep feedforward

ANNs were trained for each of the neuroimaging modalities. Feedfor-

ward ANNs map an input to an output by composing sets of smaller

functions laid out as a directed acyclic graph.32 The feasibility of these

networks is based on the universal approximation theorem, which

states a neural network with a single hidden layer contains a finite set

of artificial neurons that approximate continuous functions on subsets

of Rn.33

Our ANNs contained four hidden layers with 10 artificial neurons

in each layer. The network architecture was decided based on design

methodologies,34,35 incremental pruning, and cross-validation. Fur-

ther details on model design and validation can be found in support-

ing information (Methods—Machine Learning Model Design). An ANN

was trained to output all ROIs for each modality. Input to the models

included age, sex, apolipoprotein E (APOE) ε4 status, mutation status,

the amount of time in the future to predict, and the given imaging vari-

ables (MRI or SUVR) for 44FreeSurferROIs. A complete list of theROIs

can be found in Table S1 in supporting information. The output of each

model corresponded to the ROI values at a time point in the future.

Rates of change were calculated by subtracting scans at time point N

by the scan at time point N–1. Rates were then divided by the num-

ber ofmonths between the scans to obtain a normalized rate of change.

Themean time between scans was 2.6 years (±1.4). If a participant had

more than two scanning sessions, all possible combinations were eval-

uated. Using the first time point, datawere projected into the future by

iteratively adding the normalized rate of change, and these data were

used for training. For each point, the rate of changewas used to project

the data ±3 years from the current age. Data were projected into the

future and the past to avoid biasing themodel to later phases of the dis-

ease. We chose this window based on previous work,10 which showed

the biomarkers’ rate of change is not constant along the disease

continuum.

Predictive features of mutation status were ranked according to

importance using a Relief algorithm.36 Relief algorithms detect con-

ditional dependencies between attributes using a nearest neighbor

approach,with features ranked by estimating howwell their values dis-

tinguish between proximal comparisons. Further, cutoff points for PiB,

FDG, and brain volumetrics were identified based on the likelihood of

the values generated by Monte Carlo model simulations. The simula-

tions generated an equal number (by mutation status) of random sam-

ple points from the multivariate distribution defined by the mean and

covariancematrix of the data given a specific mutation status, age, and

EAO range.37

We also trained a linear regression model to compare the results

to our ANN. This comparative analysis was performed due to recent

research suggesting that, in some cases, linear models can outperform

nonlinear models.38 When training the regression model, all meth-

ods previously described for training the ANN were applied. Each

biomarker was modeled separately, and themodels were trained using

five-fold cross-validation. Cross-validation was performed at the par-

ticipant level, and all results reported were derived by combining the

test data results from each of the five folds of cross-validation. In addi-

tion, the input to the regression model was the same as the ANN,

but the only output considered was the precuneus. We chose the pre-

cuneus as it is highly predictive and heavily involved in disease progres-

sion in ADAD,10 making it optimal for comparison. Further, amultivari-

ate linear regression was performed that derived brain regions in the

same manner as the ANN. The regression model used ordinary multi-

variate normal maximum likelihood estimation with the full variance-

covariance matrix and constant, linear, and interaction terms. We also

performed the zero-rule algorithm on the data to compare baseline

predictability using the mean of the output values observed in the

training data compared to the testing data.

3 RESULTS

3.1 Demographics of the cohort

Detailed demographics are presented in Table 1. Participants were

matched for age, sex, and education.

3.2 PiB

The Relief algorithm identified the nucleus accumbens, caudate, pre-

cuneus, anterior cingulate, pallidum, putamen, and middle frontal

regions as strong predictors of mutation status. The ANN was able to

predict the future PiB values with an average R2 value of 0.95 and root

mean square error (RMSE) of 0.2. Figure 1 depicts results for the four

best-predictedROIs. The algorithmwas able to accurately estimate the

values in both MCs and NCs, with the NCs having lower SUVRs com-

pared to theMCs. Figure S1 in supporting information shows themodel

predictions forMCsbasedondistance fromEAOforPiB. Two relatively
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TABLE 1 Demographics of participants

Mutation carriers (MC)

Mutation-negative

non-carriers (NC) P values

N 131 74

Age (years)± SD 39.2± 10.6 39.3± 10.2 .95

Sex (%male) 40% 35% .72

Education (years)± SD 14.3± 2.7 15.1± 2.6 .06

APOE ε4 (% carriers) 39% 36% .81

EAO (years)± SD 46.3± 6.8 48.1± 5.7 .90

APOE ε4= apolipoprotein ε4; EAO= estimated age of symptom onset; SD= standard deviation.

F IGURE 1 Results of Pittsburgh compound B (PiB) predictions for mutation carriers (MC; blue) and non-carriers (NC; red). Correlation and
root mean squared error (RMSE) of predicted versus actual values. The artificial neural network (ANN) was able to predict future PiB values with
an average R2 of 0.95 and RMSE of 0.2 in bothMCs andNCs. SUVR, standardized uptake value ratio

distinct cloudswere seen forPiB,with lower SUVRs seenat greater dis-

tances from EAO, whileMCs closer to EAO had elevated PiB SUVRs.

3.3 FDG

The strongest predictors of mutation status with respect to

metabolism were the pericalcarine, caudate, precuneus, fusiform,

anterior cingulate, insula, and transverse temporal regions. The ANN

was able to predict future FDG values with an R2 value of 0.93 and

RMSE of 0.02 in both groups. Figure 2 depicts results for the four

best-predicted ROIs. The algorithm showed a trend of MCs having

lower future FDGvalues thanNCs. Figure S2 in supporting information

shows the model predictions for MCs based on distance from EAO for

FDG. Two clouds are seen for FDG, with higher SUVRs seen at greater

distances from EAO, whileMCs closer to EAO had lower FDG SUVRs.

3.4 Volume

The strongest predictors of mutation status with respect to brain

atrophy were seen in the nucleus accumbens, pericalcarine, caudate,
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F IGURE 2 Results of fluorodeoxyglucose (FDG) predictions for mutation carriers (MC; blue) and non-carriers (NC; red) in select regions of
interest. Correlation and root mean squared error (RMSE) of predicted versus actual values. The ANNwas able to predict future FDG values with
an average R2 of 0.93 and RMSE of 0.02 inMCs andNCs, withMCs showing trends of lower predicted FDG values than NCs. SUVR, standardized
uptake value ratio

precuneus, anterior cingulate, insula, entorhinal cortex, pallidum, and

transverse temporal regions. The ANN was able to predict changes in

brain volumeswith an averageR2 value of 0.95. Figure 3 depicts results

for the four best-predicted regions. The algorithm showed a general

trend of MCs having more brain atrophy than NCs. Figure S3 in sup-

porting information shows themodel predictions forMCs as a function

of distance from EAO for brain volumes.

3.5 Simulations

Using the trained models, amyloid accumulation, changes in

metabolism, and brain atrophy were simulated for MCs and NCs

(Figure 4, top). Consistent with previous work, the models showed

that in the MC group, the earliest changes are in amyloid deposition,

which follows a sigmoidal trajectory and continues to accumulate

past EAO. A biphasic response was seen for metabolism, with changes

occurring earlier than expected, and progressive decline was observed

in atrophy throughout the course of the disease, with the greatest

changes occurring just prior to EAO. The NC groups showed little

change over time for all modalities.

We fitted a polynomial curve to the normalized rates of change

for each of the neuroimaging biomarkers (Figure 4, bottom left). Con-

sistent with the models, amyloid showed an inverted U shape, with

increases occurring early in the disease, and subsequently followed

by a gradual decline in rate of PiB accumulation. FDG showed a slight

increase in the early stages, followed by a gradual decrease when the

distance from EAO approached 0. Finally, brain volumetrics showed

a gradual increase in the rate of decline throughout progression

to EAO.

Figure 4 (bottom right) shows the normalized model errors based

on years to predict (eg, the error for a participant’s PET/MRI values

predicted 1 year in the future vs the error for predicting 5 years in

the future). A two-degree polynomial curve was fit to the error data,

which showed a predominantly linear increase with increasing num-

ber of years to predict. The fit lines were projected into the future for

up to 40 years. The plot shows that the model maintains a mean abso-

lute error <0.1 up to 10 years in the future. The individual biomarkers

showed similar trends, only at different scales.

Figures S4–S6 in supporting information display the results of

the Monte Carlo model simulations for each of the highly predictive

regions for each modality. Larger values on the y-axis represent a

greater likelihood of producing a given value. For PiB, clear cut-points

were observed between MCs and NCs with nearly 100% specificity.

Cut-points were 1.17 for the nucleus accumbens, 1.3 for the caudate,

1.4 for the precuneus, and 1.2 SUVR for total cortical mean. For FDG,

the cut-points were less defined for some regions. Cut-points for the

anterior cingulate, caudate, precuneus, and total cortical mean ranged
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F IGURE 3 Results of brain volumetric predictions for mutation carriers (MC; blue) and non-carriers (NC; red). Correlation and root mean
squared error (RMSE) of predicted versus actual values. The artificial neural network (ANN) was able to predict changes in brain volumes with an
average R2 value of 0.95 and showed a general trend ofMCs havingmore brain atrophy than NCs

from 1.4 to 1.825 SUVR. The model simulations indicate MCs had a

trend for decreased FDG in each of these ROIs, as well as a biphasic

response in the caudate and anterior cingulate. For brain volumes,MCs

had greater atrophy than NCs. Cutoffs were identified for the nucleus

accumbens (550 mm3), caudate (3300 mm3), precuneus (8500 mm3),

and total graymatter (575,000mm3).

3.6 Alternative analysis methods

Figure S8 in supporting information displays the error histograms

(probabilities of errors [actual–predicted]) for the ANN versus the

regression model for PiB in the precuneus. Although both models per-

formed very well, the performance obtained through regression was

lower than that obtained through the ANN. The ANN’s error probabil-

ity distribution was highly clustered around 0 (RMSE= 0.17), whereas

the regression model showed greater dispersion (RMSE = 0.28),

indicating a greater likelihood of making a larger error compared

to the ANN. Similar results were seen using FDG and volumet-

ric data. Whole brain average RMSE for the ANN, multivariate lin-

ear regression, and zero-rule algorithm are provided at the bottom

of Table S1. As expected, the ANN showed lower RMSE compared

to multivariate linear regression and the zero-rule algorithm for all

modalities.

4 DISCUSSION

Our models yielded high accuracy in predicting amyloid accumulation,

changes in metabolism, and brain atrophy in ADAD. The Relief algo-

rithm identified both subcortical (caudate) and cortical (precuneus and

anterior cingulate) ROIs as the strongest predictors of mutation sta-

tus. Figure 5 displays the strongest predictors for each modality. For

amyloid PET, which is believed to reflect the earliest changes in ADAD,

changes were primarily seen within subcortical (pallidum, nucleus

accumbens, caudate, putamen, and entorhinal) compared to cortical

regions (middle frontal, anterior cingulate, andprecuneus). For changes

inmetabolismmeasured by FDG,which reflect changes later in the dis-

ease process compared to amyloid,more cortical (insula, fusiform,mid-

dle frontal, precuneus, anterior cingulate, pericalcarine, and transverse

temporal) rather than subcortical (caudate) regions were involved.

For changes that occur late in the disease process due to atro-

phy, both cortical (precuneus, anterior cingulate, pericalcarine, trans-

verse temporal) and subcortical (caudate, pallidum, nucleus accum-

bens, entorhinal, thalamus) regions were affected. This suggests that

the diseasemay start within subcortical areas and quickly involve addi-

tional subcortical and cortical regions. Overall, these analyses point to

multiple hubs being affected early in the disease process, followed by

spread to other brain regions (Figure S7 in supporting information).

Table S1 lists the RMSE for the individual ROIs for each of the three
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F IGURE 4 Top left, Simulated biomarker evolution for total mean cortical and subcortical Pittsburgh compound B (PiB), total mean cortical
and subcortical fluorodeoxyglucose (FDG), and total graymatter volume (scaled to a common interval) derived from the artificial neural network
(ANN) inmutation carriers (MC). Shaded region indicates model variability, with estimated age of onset (EAO)marked by perpendicular line. Top
right, Simulated biomarker evolution for total mean cortical and subcortical PiB, total mean cortical and subcortical FDG, and total graymatter
volume (scaled to a common interval) derived from the ANN inmutation non-carriers (NC). Bottom left, Normalized biomarker rate of change for
mean PiB, mean FDG, and total graymatter volume (scaled to a common interval) fit to a polynomial curve showing 95% confidence interval.
Bottom right, Mean absolute error of predicted (normalized) biomarker values given the amount of time in the future to predict, fit with a
two-degree polynomial curve projected into the future. Errors increased linearly with an increase in the amount of time in the future to predict.
SUVR, standardized uptake value ratio

biomarkers, as well as the mean overall RMSE of the models compared

to the zero-rule algorithm andmultivariate linear regression.

In the amyloid analysis, the model achieved 0.95 R2 and 0.2 RMSE

(see Figure 1). The model showed PiB uptake was greater in MCs com-

pared to NCs for most regions. Our results also confirm that the pres-

ence of amyloid alone is insufficient for conversion to symptomatic AD.

The simulated trajectory for mean cortical amyloid accumulation (see

Figure4, top left) showeddeposition started tooccur approximately 15

to 20 years before EAO. These results are consistentwith other studies

that focused on global and regional amyloid deposition.7,11 Our model

indicates a sigmoidal trajectory of accumulation for amyloid, with a

slow increase20 to30years fromEAO, anabrupt increase0 to15years

from EAO, and slowing to an eventual decline after EAO. This is consis-

tent with what has been hypothesized to occur in LOAD.39

As a point of reference, we calculated the normalized rates of

change for allmutation-positiveparticipants (seeFigure4, bottom left).

The normalized rate of amyloid deposition shows a consistent increase

from roughly 10 years prior to EAO followed by slowing in the rate of
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F IGURE 5 Strongest predictors of mutation carrier (MC) status
for autosomal dominant Alzheimer’s disease (ADAD) as identified by
Relief algorithms. The strongest predictors across all modalities were
the precuneus, caudate, and anterior cingulate. Changes in amyloid
positron emission tomography (Pittsburgh compound B [PiB], blue
circle) were primarily seenwithin subcortical regions. Changes in
metabolism (fluorodeoxyglucose [FDG], orange circle) showedmore
cortical involvement. Volumetric changes (Volume, green circle)
showed both cortical and subcortical involvement

accumulation after EAO.Only after EAOdoes the rate of accumulation

diminish, which is consistent with the sigmoidal model trajectory.

With regard to metabolism, our model yielded 0.93 R2 and 0.02

RMSE. Although the MCs had greater decrease in FDG for most brain

regions, the separationbetween the twogroupswasnot aswell defined

compared to PiB. This is likely because the rate and amount of change

are less extreme compared to amyloid (see Figure 4, top left). Our

model indicates metabolism did not decrease below a baseline until 10

years before symptomonset and continued todecline after EAO. These

results are consistent with the normalized rate of change (see Figure 4,

bottom left). The rate of metabolism did not decline below baseline

until 10 years prior to EAO, followed by a steady decline.

An uptick in metabolic activity was observed in the early stages of

amyloid accumulation and did not begin to decrease until amyloid sig-

nificantly increased. This was observed in the simulated trajectory and

the normalized rate of change. Similar results were observed within

the precuneus in a cross-sectional analysis.7 Rate of change analy-

sis revealed this primarily occurs in the basal ganglia. Because the

basal ganglia show the least toxic response to amyloid deposition,40–42

these transient increases may be prominent because these neu-

rons mount a compensatory response preceding significant amyloid

accumulation.43–47 However, at some point, the brain is no longer able

to buffer changes when amyloid deposition becomes significant.

Our model showed total gray matter volume slightly declined dur-

ing the early stages of ADAD, followed by a dramatic decrease 5 to

10 years prior to EAO. The decrease in volume occurred when

metabolismwas decreased and amyloid had accumulated. Volumetrics

continued todecline evenafter EAO.Themodelwas able topredict vol-

umes with an R2 of 0.95.

These findings have clinical importance for the care of people with

ADAD in the context of amyloid, metabolism, and atrophy. Using fea-

ture selection methods, we have identified brain regions that are

both common among modalities as well as unique for each modality

(Figure 5). Specifically, we have shown the precuneus, caudate, and

anterior cingulate are strong predictors of mutation status among all

modalities. These findings are significant for multimodal imaging stud-

ies and clinical trialswhose goal is to assess the overall impact of a ther-

apy. Further, the fact that we have identified regions that are unique to

each modality suggests a complex set of evolving interactions that are

not localized to a small set of brain regions. Our models also suggest

a complex disease progression that goes beyond a linear or sigmoidal

pattern that has been hypothesized for LOAD (Figure 4).Wehave iden-

tified a biphasic response in metabolism, in which hypermetabolism is

seen very early in the disease process. Future studies should investi-

gate this phenomenon, as previous studies have primarily focused on

hypometabolism that occurs later in the disease process.

We also extend the literature by establishing clinically useful algo-

rithms for modeling the progression of ADAD, and show the utility of

ML in developing diagnostic and predictive tests. A major deficiency

in AD clinical research is the problem of individual predictability ver-

sus group-level differences. ML is ideal for research aimed at discov-

ering patterns in high-dimensional data that are believed to underlie

complex clinical phenotypes that go beyond group-level results. This

is especially relevant for diseases such as ADAD and LOAD, which

show chronic progression over long periods of time, as well as vari-

ability in terms of symptoms, risk factors, and progression. Ourmodels

were trained on the largest available ADAD data set, and are able to

accurately forecast disease progression several years into the future

at any stage of the disease. Inputting a patient’s unique demograph-

ics and imaging variables will yield trajectories that are specific to

that individual. Further, by simulating our trained models, we are able

to identify trajectories and cutoff values unique to each brain region

that best discriminate MCs from NCs. Because our models have been

trained on a variety of demographics, one can easily generate values

that are specific to a given sex, APOE ε4 status, and education level.

Use of thesemodels provides the opportunity to expedite clinical trials

and provide precision medicine tailored to a patient based on his/her

unique set of demographics, disease subtype, and treatment response.

As we have shown, while both linear regression and our ANN per-

formed well in predicting disease progression, the ANN had a lower

error rate. More accurate models could lead to better decision mak-

ing and improved efficiency of research, and accurate identification of

participants whose progression patterns differ frommodel predictions

could allow for decision support in evaluating the effects of specific

therapies in clinical trials.

Limitations and future work for this study are detailed as follows.

Data leakage, which refers to the use of test data in any part of the

training process, is a major concern in the AD field,48 and is difficult
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to address due to the limited number of samples. This is especially rel-

evant in the context of ADAD. While we use the largest available data

set, the fact thatADADonly accounts for a small portionof the totalAD

cases restricts the number of available of samples. Still, choosing the

proper set of hyperparameters in the context of deep neural networks

is a difficult task. However, the performance and flexibility of these

models crucially depends on how these parameters are set.49 In our

analysis, the number of layers and number of artificial neurons in each

layer were identified by testing multiple network architectures within

our data (see supporting information). Measures were taken to ensure

that the partitioning of the data for five-fold cross-validation in this

process did not match the data partitions used for the five-fold cross-

validation for the final analysis. We also ensured the models trained in

the network architecture identification process were discarded after

the fact, and all subsequent models generated in the main analysis had

randomly initialized weights. However, because the same data set was

used to identify the size of the network as well to perform the main

analysis, we acknowledge that this could be a source of data leakage,

which could lead to an underestimation of errors. Future work will

involve further validation and testing of the proposed models. Specifi-

cally, conducting blinded out-of-sample testing on newly acquired data

from the DIAN study is needed to ensure issues such as data leakage

and overfitting do not influence the model results. Further, alternative

network models will need to be considered. As more longitudinal time

points are acquired for participants in DIAN, time series–specific net-

works, such as long short-term memory network may be more appro-

priate. Last, alternative forms of feature selection should be consid-

ered to investigate the relationships between biomarkers and brain

regions.

5 CONCLUSION

To provide targeted treatment to persons with ADAD, novel meth-

ods are needed to model disease trajectories. We have shown ANNs

can accurately forecast amyloid accumulation, changes in glucose

metabolism, and brain atrophy. Using feature extraction methods, we

identified the strongest predictors of mutation status over 44 brain

regions. Our results show a sigmoidal progression of amyloid accu-

mulation, a biphasic response to glucose metabolism, and a gradual

increase in brain atrophy in MCs compared to NCs. Our models indi-

cate disease progression is primarily in subcortical regions, followed

by cortical involvement within anterior and posterior portions of the

brain.
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