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ABSTRACT 

 

INTRODUCTION: Machine learning models were used to discover novel disease trajectories 

for autosomal dominant Alzheimer’s disease. 

 

METHODS: Longitudinal structural MRI, amyloid PET, and fluorodeoxyglucose PET were 

acquired in 131 mutation carriers and 74 non-carriers from the Dominantly Inherited 

Alzheimer Network; the groups were matched for age, education, sex, and apolipoprotein 4 

(APOE 4). A deep neural network was trained to predict disease progression for each 

modality. Relief algorithms identified the strongest predictors of mutation status. 

 

RESULTS: The Relief algorithm identified the caudate, cingulate, and precuneus as the 

strongest predictors among all modalities. The model yielded accurate results for predicting 

future Pittsburgh Compound-B (R
2
=0.95), fluorodeoxyglucose (R

2
=0.93), and atrophy 

(R
2
=0.95) in mutation carriers compared to non-carriers. 

 

DISCUSSION: Results suggest a sigmoidal trajectory for amyloid, a biphasic response for 

metabolism, and a gradual decrease in volume, with disease progression primarily in 

subcortical, middle frontal, and posterior parietal regions. 

 

Keywords: Autosomal dominant Alzheimer disease (ADAD), Machine learning, Pittsburgh 

compound B (PiB), Fluorodeoxyglucose (FDG), Magnetic resonance imaging (MRI) 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is the most common form of dementia, accounting for 60%–70% 

of the 50 million dementia cases worldwide [1]. AD leads to slow cognitive decline, 

behavioral and psychiatric disorders, and impairments in functional status. Pathological 

features of AD include the accumulation of amyloid-beta (A) plaques, neurofibrillary tau 

tangles, and neuronal/synaptic losses that correspond with atrophy and decreased glucose 

metabolism [2]. The most common form of AD occurs in older age and is known as late-

onset Alzheimer’s disease (LOAD). Autosomal dominant Alzheimer’s disease (ADAD) 

accounts for less than 1% of all AD cases and is caused by pathogenic mutations in amyloid 

precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes that lead to 

early increases in Aβ deposition in the brain, which, in turn, is hypothesized to initiate a 

cascade that causes cognitive decline [3,4]. The age of onset of cognitive impairment in 

ADAD mutation carriers (MC) is earlier than LOAD and remains fairly consistent within a 

family, allowing for calculation of the estimated age of symptom onset (EAO) [5]. 

  

Multiple neuroimaging methods have been used to evaluate in vivo changes in the brain due 

to AD.
 
[

11
C]Pittsburgh Compound-B (PiB) has high affinity for Aβ plaques, with 

distributions similar to those seen at autopsy [6]. PiB PET has been employed in ADAD to 

identify amyloid deposition, with amyloid deposition identified more than 20 years prior to 

EAO in MC [7–10].  

 

Abbreviations. Aβ: Amyloid beta, ADAD: autosomal dominant Alzheimer disease, ANN: artificial neural 

networks, DIAN: Dominantly Inherited Alzheimer Network, DIAN-TU: Dominantly Inherited Alzheimer 

Network Trials Unit, EAO: expected age of symptom onset, EYO: estimated years to symptomatic onset, FDG: 

[
18

F]Fluorodeoxyglucose, MC: mutation carrier, ML: machine learning, NC: non-carrier, PiB: [
11

C]Pittsburgh 

Compound-B, RMSE: root mean squared error, ROIs: regions of interest, SUVRs: standardized uptake value 

ratios 
 



 

 

This article is protected by copyright. All rights reserved. 

Studies have also shown increases in PiB retention in MC are associated with a worsening 

cognitive performance, a decrease in glucose metabolism, and a decrease in hippocampal 

volume [7,11]. 

 

 
[
18

F]Fluorodeoxyglucose (FDG) uptake reflects glucose metabolism and has shown promise 

in discriminating symptomatic MCs from cognitively normal, mutation-negative non-carriers 

(NC) [6,9,10]. In ADAD, studies have shown FDG uptake in MCs is decreased in the 

precuneus and is inversely correlated with PiB binding. Marked decreases in glucose 

metabolism occur approximately 5–10 years before EAO in MCs [10,12]. 

 

Structural MRI provides a method to evaluate regional volumetric changes in 

neurodegeneration that occur with disease progression [13]. MRI can reveal regional brain 

atrophy, which is a characteristic feature of neurodegeneration due to synaptic losses [14]. 

ADAD is characterized by progressive atrophy that manifests as changes initially in the 

temporal lobes and subcortical regions with eventual spread to other regions. Observed 

changes in atrophy are related to the spread of neurofibrillary tangles in AD [14].  

 

Machine learning (ML) is a branch of artificial intelligence that can learn to extract patterns 

from existing data to predict future events [15]. Advances in ML offer promise for a number 

of applications, including medical imaging and predictive analytics [15,16]. Compared to 

traditional statistics that provide primarily group-level results, ML algorithms can predict 

clinical outcomes at the individual level and could enable personalized treatments that 

provide targeted care for patients [17]. Although a number of studies have applied ML to 

neuroimaging measures to study LOAD [18–22], few studies to date have applied these 

techniques to ADAD. Because time until conversion to symptomatic impairment can be 



 

 

This article is protected by copyright. All rights reserved. 

estimated with EAO, ADAD provides a unique opportunity for ML to model the progression 

of the disease and provide decision support to evaluate therapies currently being investigated 

in the Dominantly Inherited Alzheimer Network (DIAN) Trials Unit (DIAN-TU). 

 

In this longitudinal study, we used artificial neural networks (ANNs) to evaluate progression 

to cognitive impairment using multimodal neuroimaging biomarkers. Specifically, within a 

cohort of MCs (n = 131) and NCs (n = 74), we used ANNs to investigate: (1) changes in Aβ 

deposition (using PiB), (2) changes in glucose metabolism (using FDG), and (3) brain 

atrophy (using structural MRI) as a function of aging in relation to EAO. Further, we utilized 

feature selection to identify regions that were the strongest discriminators of mutation status 

for each modality. We then performed Monte Carlo simulations to identify cutoffs for the 

identified regions. This data-driven approach provides an opportunity to discover novel 

mechanisms and disease trajectories specific for ADAD.  

 

2. METHODS 

2.1 Participants 

One hundred thirty-one MCs with mutations in PSEN1, PSEN2, or APP and 74 healthy, 

mutation-negative NCs were recruited from sites participating in the DIAN study. 

Participants from the 12th data freeze with genetic, clinical, and longitudinal neuroimaging 

data that passed quality control procedures were included. The Washington University 

Institutional Review Board provided supervisory review and human subjects’ approval. 

Participants provided written, informed consent or assent with proxy consent. All study 

procedures were approved by the Washington University Human Research Protection Office 

and the institutional review boards of the participating sites.  
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2.2 Clinical Classification 

The CDR
®
 Dementia Staging Instrument was used to assess dementia status at each clinical 

assessment [23]. A participant’s EAO was calculated at each visit on the basis of the 

participant’s current age relative to the family mutation–specific expected age at onset of 

dementia symptoms [5]. Parental age at first progressive cognitive decline was used if the 

mutation-specific EAO was unknown. EAO was calculated identically for both MCs and 

NCs. All clinical evaluators were blinded to the mutation status of participants. The 

presence/absence and type of mutation were determined using polymerase chain reaction 

amplification followed by Sanger sequencing [7]. 

 

2.3 MRI Acquisition and Processing 

MRI was performed using the Alzheimer’s Disease Neuroimaging Initiative protocol (ADNI) 

[24]. Sites used a 3T scanner that passed regular quality control assessments. The ADNI 

Imaging Core screened images for compliance. T1 weighted images at 1.1 x 1.1 x 1.2 mm 

voxel resolution were acquired for participants. FreeSurfer 5.3 [25,26] was used to perform 

volumetric segmentation, cortical surface reconstruction, and to define cortical and 

subcortical regions of interest (ROIs). Segmentations were inspected and edited as needed by 

members of the DIAN Imaging Core. A regression approach was used to correct subcortical 

volumes for intracranial volumes. Volumetric measures were averaged across hemispheres. 

FreeSurfer-defined cortical and subcortical ROIs (44 total) were used for regional processing 

of PET data. The FreeSurfer-defined ROIs were derived from the Deskian/Killiany atlas [27] 

for segmentation. These are standard regions used for volumetric analyses. 
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2.4 PET Acquisition and Processing 

Amyloid PET was performed using a bolus injection of PiB. Data from the 40–70-minute 

post-injection timeframe were converted to regional standardized uptake value ratios 

(SUVRs) relative to the cerebellar gray matter using FreeSurfer-derived ROIs (PET Unified 

Pipeline) [28]. Glucose metabolism imaging was performed with a single bolus injection of 

FDG. A 30-minute dynamic acquisition beginning 30 minutes post-injection was acquired. 

The last 20 minutes of each FDG scan were converted to SUVRs using the cerebellar gray 

matter as a reference region. All PET data were partial volume corrected using a regional 

spread function technique [29,30]. PET images were aligned to the T1 image processed using 

FreeSurfer. PET scanner–specific filters were applied to account for differences in spatial 

resolution and to achieve a common resolution (8 mm) [31]. The DIAN imaging core 

performed quality control checks on the PET Unified Pipeline processing. 

 

2.5 Machine Learning and Statistical Analyses 

ML analyses were performed in MATLAB R2018b. Deep feedforward ANNs were trained 

for each of the neuroimaging modalities. Feedforward ANNs map an input to an output by 

composing sets of smaller functions laid out as a directed acyclic graph [32]. The feasibility 

of these networks is based on the Universal Approximation Theorem, which states a neural 

network with a single hidden layer contains a finite set of artificial neurons that approximate 

continuous functions on subsets of R
n
 [33].  

 

Our ANNs contained 4 hidden layers with 10 artificial neurons in each layer. The network 

architecture was decided based on design methodologies [34,35],  incremental pruning, and  

cross-validation. Further details on model design and validation can be found in 
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supplementary material (Methods- Machine Learning Model Design). An ANN was trained 

to output all ROIs for each modality. Input to the models included age, sex, APOE 4 status, 

mutation status, the amount of time in the future to predict, and the given imaging variables 

(MRI or SUVR) for 44 FreeSurfer ROIs. A complete list of the ROIs can be found in 

Supplementary Table 1. The output of each model corresponded to the ROI values at a time 

point in the future. Rates of change were calculated by subtracting scans at time point N by 

the scan at time point N-1. Rates were then divided by the number of months between the 

scans to obtain a normalized rate of change. The mean time between scans was 2.6 years 

(±1.4). If a participant had more than 2 scanning sessions, all possible combinations were 

evaluated. Using the first time point, data were projected into the future by iteratively adding 

the normalized rate of change, and these data were used for training. For each point, the rate 

of change was used to project the data ± 3 years from the current age. Data were projected 

into the future and the past to avoid biasing the model to later phases of the disease. We 

chose this window based on previous work [10], which showed the biomarkers’ rate of 

change is not constant along the disease continuum.  

 

Predictive features of mutation status were ranked according to importance using a Relief 

algorithm [36]. Relief algorithms detect conditional dependencies between attributes using a 

nearest neighbor approach, with features ranked by estimating how well their values 

distinguish between proximal comparisons. Further, cutoff points for PiB, FDG, and brain 

volumetrics were identified based on the likelihood of the values generated by Monte Carlo 

model simulations. The simulations generated an equal number (by mutation status) of 

random sample points from the multivariate distribution defined by the mean and covariance 

matrix of the data given a specific mutation status, age, and EAO range [37]. 

 



 

 

This article is protected by copyright. All rights reserved. 

We also trained a linear regression model to compare the results to our ANN. This 

comparative analysis was performed due to recent research suggesting that, in some cases, 

linear models can outperform nonlinear models [38]. When training the regression model, all 

methods previously described for training the ANN were applied. Each biomarker was 

modeled separately, and the models were trained using 5-fold cross-validation. Cross-

validation was performed at the participant level, and all results reported were derived by 

combining the test data results from each of the 5 folds of cross-validation. In addition, the 

input to the regression model was the same as the ANN, but the only output considered was 

the precuneus. We chose the precuneus as it is highly predictive and heavily involved in 

disease progression in ADAD [10], making it optimal for comparison. Further, a multivariate 

linear regression was performed which derived brain regions in the same manner as the ANN. 

The regression model utilized ordinary multivariate normal maximum likelihood estimation 

with the full variance-covariance matrix and constant, linear, and interaction terms. We also 

performed the zero rule algorithm on the data to compare baseline predictability using the 

mean of the output values observed in the training data compared to the testing data. 

 

 

3. RESULTS 

3.1 Demographics of the Cohort 

Detailed demographics are presented in Table 1. Participants were matched for age, sex, and 

education. 
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Table 1. Demographics of participants 

 Mutation carriers 

(MC) 

Mutation-negative non-carriers 

(NC) 

p 

Values 

N 131 74  

Age (years) ± SD 39.2 ± 10.6 39.3 ± 10.2 .95 

Sex (% Male) 40% 35% .72 

Education (years) ± 

SD 

14.3 ± 2.7 15.1 ± 2.6 .06 

APOE 4 (% carriers) 39% 36% .81 

EAO (years) ± SD 46.3 ± 6.8 48.1 ± 5.7 .90 

Abbreviations: SD, standard deviation; APOE 4, apolipoprotein 4; EAO, estimated age of 

symptom onset. 

 

3.2 PiB 

The Relief algorithm identified the nucleus accumbens, caudate, precuneus, anterior 

cingulate, pallidum, putamen, and middle frontal regions as strong predictors of mutation 

status. The ANN was able to predict the future PiB values with an average R
2
 value of 0.95 

and RMSE of 0.2. Figure 1 depicts results for the 4 best-predicted ROIs. The algorithm was 

able to accurately estimate the values in both MCs and NCs, with the NCs having lower 

SUVRs compared to the MCs. Supplementary Figure 1 shows the model predictions for MCs 

based on distance from EAO for PiB. Two relatively distinct clouds were seen for PiB, with 



 

 

This article is protected by copyright. All rights reserved. 

lower SUVRs seen at greater distances from EAO, while MCs closer to EAO had elevated 

PiB SUVRs. 

 

3.3 FDG 

The strongest predictors of mutation status with respect to metabolism were the pericalcarine, 

caudate, precuneus, fusiform, anterior cingulate, insula, and transverse temporal regions. The 

ANN was able to predict future FDG values with an R
2
 value of 0.93 and RMSE of 0.02 in 

both groups. Figure 2 depicts results for the 4 best-predicted ROIs. The algorithm showed a 

trend of MCs having lower future FDG values than NCs. Supplementary Figure 2 shows the 

model predictions for MCs based on distance from EAO for FDG. Two clouds are seen for 

FDG, with higher SUVRs seen at greater distances from EAO, while MCs closer to EAO had 

lower FDG SUVRs. 

 

3.4 Volume 

The strongest predictors of mutation status with respect to brain atrophy were seen in the 

nucleus accumbens, pericalcarine, caudate, precuneus, anterior cingulate, insula, entorhinal 

cortex, pallidum, and transverse temporal regions. The ANN was able to predict changes in 

brain volumes with an average R
2
 value of 0.95. Figure 3 depicts results for the 4 best-

predicted regions. The algorithm showed a general trend of MCs having more brain atrophy 

than NCs. Supplementary Figure 3 shows the model predictions for MCs as a function of 

distance from EAO for brain volumes.  

 

3.5 Simulations 

Using the trained models, amyloid accumulation, changes in metabolism, and brain atrophy 

were simulated for MCs and NCs (Figure 4, top). Consistent with previous work, the models 
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showed that in the MC group, the earliest changes are in amyloid deposition, which follows a 

sigmoidal trajectory and continues to accumulate past EAO. A biphasic response was seen for 

metabolism, with changes occurring earlier than expected, and progressive decline was 

observed in atrophy throughout the course of the disease, with the greatest changes occurring 

just prior to EAO. The NC groups showed little change over time for all modalities. 

 

We fitted a polynomial curve to the normalized rates of change for each of the neuroimaging 

biomarkers (Figure 4, bottom left). Consistent with the models, amyloid showed an inverted 

U shape, with increases occurring early in the disease, and subsequently followed by a 

gradual decline in rate of PiB accumulation. FDG showed a slight increase in the early stages, 

followed by a gradual decrease when the distance from EAO approached 0. Finally, brain 

volumetrics showed a gradual increase in the rate of decline throughout progression to EAO. 

 

Figure 4 (bottom right) shows the normalized models errors based on years to predict (e.g., 

the error for a participant’s PET/MRI values predicted 1 year in the future versus the error for 

predicting 5 years in the future). A 2 degree polynomial curve was fit to the error data, which 

showed a predominantly linear increase with increasing number of years to predict. The fit 

lines were projected into the future for up to 40 years. The plot shows that the model 

maintains a mean absolute error less than 0.1 up to 10 years in the future. The individual 

biomarkers showed similar trends, only at different scales.  

 

Supplementary Figures 4–6 display the results of the Monte Carlo model simulations for each 

of the highly predictive regions for each modality. Larger values on the y-axis represent a 

greater likelihood of producing a given value. For PiB, clear cut-points were observed 

between MCs and NCs with nearly 100% specificity. Cut-points were 1.17 for the nucleus 
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accumbens, 1.3 for the caudate, 1.4 for the precuneus, and 1.2 SUVR for total cortical mean. 

For FDG, the cut-points were less defined for some regions. Cut-points for the anterior 

cingulate, caudate, precuneus, and total cortical mean ranged from 1.4–1.825 SUVR. The 

model simulations indicate MCs had a trend for decreased FDG in each of these ROIs, as 

well as a biphasic response in the caudate and anterior cingulate. For brain volumes, MCs had 

greater atrophy than NCs. Cutoffs were identified for the nucleus accumbens (550 mm
3
), 

caudate (3300 mm
3
), precuneus (8500 mm

3
), and total gray matter (575,000 mm

3
). 

 

3.6 Alternative Analysis Methods 

Supplementary Figure 8 displays the error histograms [probabilities of errors (actual-

predicted)] for the ANN versus the regression model for PiB in the precuneus. Although both 

models performed very well, the performance obtained through regression was lower than 

that obtained through the ANN. The ANN’s error probability distribution was highly 

clustered around 0 (RMSE = 0.17), whereas the regression model showed greater dispersion 

(RMSE = 0.28), indicating a greater likelihood of making a larger error compared to the 

ANN. Similar results were seen using FDG and volumetric data. Whole brain average RMSE 

for the ANN, multivariate linear regression, and zero rule algorithm are provided at the 

bottom of supplementary table 1. As expected, the ANN showed lower RMSE compared to 

multivariate linear regression and the zero rule algorithm for all modalities. 

  

4. DISCUSSION 

Our models yielded high accuracy in predicting amyloid accumulation, changes in 

metabolism, and brain atrophy in ADAD. The Relief algorithm identified both subcortical 

(caudate) and cortical (precuneus and anterior cingulate) ROIs as the strongest predictors of 

mutation status. Figure 5 displays the strongest predictors for each modality. For amyloid 
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PET, which is believed to reflect the earliest changes in ADAD, changes were primarily seen 

within subcortical (pallidum, nucleus accumbens, caudate, putamen, and entorhinal) 

compared to cortical regions (middle frontal, anterior cingulate, and precuneus). For changes 

in metabolism measured by FDG, which reflect changes later in the disease process compared 

to amyloid, more cortical (insula, fusiform, middle frontal, precuneus, anterior cingulate, 

pericalcarine, and transverse temporal) rather than subcortical (caudate) regions were 

involved.  

 

For changes that occur late in the disease process due to atrophy, both cortical (precuneus, 

anterior cingulate, pericalcarine, transverse temporal) and subcortical (caudate, pallidum, 

nucleus accumbens, entorhinal, thalamus) regions were affected. This suggests that the 

disease may start within subcortical areas and quickly involve additional subcortical and 

cortical regions. Overall, these analyses point to multiple hubs being affected early in the 

disease process, followed by spread to other brain regions (Supplementary Figure 7).  

Supplementary Table 1 lists the RMSE for the individual ROIs for each of the 3 biomarkers, 

as well as the mean overall RMSE of the models compared to the zero rule algorithm and 

multivariate linear regression. 

 

In the amyloid analysis, the model achieved 0.95 R
2 

and 0.2 RMSE (see Figure 1). The model 

showed PiB uptake was greater in MCs compared to NCs for most regions. Our results also 

confirm that the presence of amyloid alone is insufficient for conversion to symptomatic AD. 

The simulated trajectory for mean cortical amyloid accumulation (see Figure 4, top left) 

showed deposition started to occur approximately 15–20 years before EAO. These results are 

consistent with other studies that focused on global and regional amyloid deposition [7,11]. 

Our model indicates a sigmoidal trajectory of accumulation for amyloid, with a slow increase 

20–30 years from EAO, an abrupt increase 0–15 years from EAO, and slowing to an eventual 
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decline after EAO. This is consistent with what has been hypothesized to occur in LOAD 

[39].  

 

As a point of reference, we calculated the normalized rates of change for all mutation-

positive participants (see Figure 4, bottom left). The normalized rate of amyloid deposition 

shows a consistent increase from roughly 10 years prior to EAO followed by slowing in the 

rate of accumulation after EAO. Only after EAO does the rate of accumulation diminish, 

which is consistent with the sigmoidal model trajectory.  

 

With regard to metabolism, our model yielded 0.93 R
2
 and 0.02 RMSE. Although the MCs 

had greater decreases in FDG for most brain regions, the separation between the 2 groups was 

not as well defined compared to PiB. This is likely because the rate and amount of change are 

less extreme compared to amyloid (see Figure 4, top left). Our model indicates metabolism 

did not decrease below a baseline until 10 years before symptom onset and continued to 

decline after EAO. These results are consistent with the normalized rate of change (see 

Figure 4, bottom left). The rate of metabolism did not decline below baseline until 10 years 

prior to EAO, followed by a steady decline.  

 

An uptick in metabolic activity was observed in the early stages of amyloid accumulation and 

did not begin to decrease until amyloid significantly increased. This was observed in the 

simulated trajectory and the normalized rate of change. Similar results were observed within 

the precuneus in a cross-sectional analysis [7]. Rate of change analysis revealed this primarily 

occurs in the basal ganglia. Because the basal ganglia show the least toxic response to 

amyloid deposition [40–42], these transient increases may be prominent because these 

neurons mount a compensatory response preceding significant amyloid accumulation [43–
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47]. However, at a point, the brain is no longer able to buffer changes when amyloid 

deposition becomes significant. 

 

Our model showed total gray matter volume slightly declined during the early stages of 

ADAD, followed by a dramatic decrease 5–10 years prior to EAO. The decrease in volume 

occurred when metabolism was decreased and amyloid had accumulated. Volumetrics 

continued to decline even after EAO. The model was able to predict volumes with an R
2
 of 

0.95.  

 

These findings have clinical importance for the care of people with ADAD in the context of 

amyloid, metabolism, and atrophy. Using feature selection methods, we have identified brain 

regions that are both common amongst modalities as well as unique for each modality (Figure 

5). Specifically, we have shown the precuneus, caudate, and anterior cingulate are strong 

predictors of mutation status among all modalities. These findings are significant for 

multimodal imaging studies and clinical trials whose goal is to assess the overall impact of a 

therapy. Further, the fact that we have identified regions that are unique to each modality 

suggest a complex set of evolving interactions that are not localized to a small set of brain 

regions. Our models also suggest a complex disease progression that goes beyond a linear or 

sigmoidal pattern that has been hypothesized for LOAD (Figure 4). We have identified a 

biphasic response in metabolism, where hypermetabolism is seen very early in the disease 

process. Future studies should investigate this phenomenon, as previous studies have 

primarily focused on hypometabolism that occurs later in the disease process.  

 

We also extend the literature by establishing clinically useful algorithms for modeling the 

progression of ADAD, and show the utility of ML in developing diagnostic and predictive 
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tests. A major deficiency in AD clinical research is the problem of individual predictability 

versus group level differences. ML is ideal for research aimed at discovering patterns in high 

dimensional data that are believed to underlie complex clinical phenotypes that go beyond 

group level results. This is especially relevant for diseases such as ADAD and LOAD, which 

show chronic progression over long periods of time, as well as variability in terms of 

symptoms, risk factors, and progression. Our models were trained on the largest available 

ADAD data set, and are able to accurately forecast disease progression several years into the 

future at any stage of the disease. Inputting a patients unique demographics and imaging 

variables will yield trajectories that are specific to that individual. Further, by simulating our 

trained models, we are able to identify trajectories and cutoff values unique to each brain 

region which best discriminate MCs from NCs. Because our models have been trained on a 

variety of demographics, one can easily generate values that are specific to a given sex, 

APOE 4 status, and education level. Utilization of these models provides the opportunity to 

expedite clinical trials and provide precision medicine tailored to a patient based on his/her 

unique set of demographics, disease subtype, and treatment response. As we have shown, 

while both linear regression and our ANN performed well in predicting disease progression, 

the ANN had a lower error rate. More accurate models could lead to better decision-making 

and improved efficiency of research, and accurate identification of participants whose 

progression patterns differ from model predictions could allow for decision support in 

evaluating the effects of specific therapies in clinical trials. 

 

Limitations and future work for this study are detailed as follows. Data leakage, which refers 

to the use of test data in any part of the training process, is a major concern in the AD field 

[48], and is difficult to address due to the limited number of samples. This is especially 

relevant in the context of ADAD. While we utilize the largest available data set, the fact that 
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ADAD only accounts for a small portion of the total AD cases restricts the number of 

available of samples. Still, choosing the proper set of hyperparameters in the context of deep 

neural networks is a difficult task. However, the performance and flexibility of these models 

crucially depends on how these parameters are set [49]. In our analysis, the number of layers 

and number of artificial neurons in each layer were identified by testing multiple network 

architectures within our data (see supplemental). Measures were taken to ensure that the 

partitioning of the data for 5 fold cross validation in this process did not match the data 

partitions used for the 5 fold cross validation for the final analysis. We also ensured the 

models trained in the network architecture identification process were discarded after the fact, 

and all subsequent models generated in the main analysis had randomly initialized weights. 

However, because the same data set was used to identify the size of the network as well to 

perform the main analysis, we acknowledge that this could be a source of data leakage, which 

could lead to an underestimation of errors. Future work will involve further validation and 

testing of the proposed models. Specifically, conducting blinded out of sample testing on 

newly acquired data from the DIAN study is needed to ensure issues such as data leakage and 

overfitting do not influence the model results. Further, alternative network models will need 

to be considered. As more longitudinal time points are acquired for participants in DIAN, 

time series specific networks, such as long short term memory networks may be more 

appropriate. Lastly, alternative forms of feature selection should be considered to investigate 

the relationships between biomarkers and brain regions. 

 

4.1. Conclusion 

To provide targeted treatment to persons with ADAD, novel methods are needed to model 

disease trajectories. We have shown ANNs can accurately forecast amyloid accumulation, 

changes in glucose metabolism, and brain atrophy. Using feature extraction methods, we 
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identified the strongest predictors of mutation status over 44 brain regions. Our results show a 

sigmoidal progression of amyloid accumulation, a biphasic response to glucose metabolism, 

and a gradual increase in brain atrophy in MCs compared to NCs. Our models indicate 

disease progression is primarily in subcortical regions, followed by cortical involvement 

within anterior and posterior portions of the brain. 
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7. FIGURE LEGENDS 

 

Figure 1. Results of Pittsburgh Compound-B (PiB) predictions for mutation carriers (MC) 

(blue) and non-carriers (NC) (red). Correlation and RMSE of predicted versus actual values. 

The ANN was able to predict future PiB values with an average R
2
 of 0.95 and RMSE of 0.2 

in both MCs and NCs. 
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Figure 2. Results of fluorodeoxyglucose (FDG) predictions for mutation carriers (MC) (blue) 

and non-carriers (NC) (red) in select ROIs. Correlation and root mean squared error (RMSE) 

of predicted versus actual values. The ANN was able to predict future FDG values with an 

average R
2
 of 0.93 and RMSE of 0.02 in MCs and NCs, with MCs showing trends of lower 

predicted FDG values than NCs. 
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Figure 3. Results of brain volumetric predictions for mutation carriers (MC) (blue) and non-

carriers (NC) (red). Correlation and root mean squared error (RMSE) of predicted versus 

actual values. The ANN was able to predict changes in brain volumes with an average R
2
 

value of 0.95 and showed a general trend of MCs having more brain atrophy than NCs. 

 

  



 

 

This article is protected by copyright. All rights reserved. 

 

Figure 4. (Top left) Simulated biomarker evolution for total mean cortical and subcortical 

Pittsburgh Compound-B (PiB), total mean cortical and subcortical fluorodeoxyglucose 

(FDG), and total gray matter volume (scaled to a common interval) derived from the artificial 

neural network (ANN) in mutation carriers (MC). Shaded region indicates model variability, 

with EAO marked by perpendicular line. (Top right) Simulated biomarker evolution for total 

mean cortical and subcortical PiB, total mean cortical and subcortical FDG, and total gray 

matter volume (scaled to a common interval) derived from the ANN in mutation non-carriers 

(NC). (Bottom left) Normalized biomarker rate of change for mean PiB, mean FDG, and total 

gray matter volume (scaled to a common interval) fit to a polynomial curve showing 95% 

confidence interval. (Bottom right) Mean absolute error of predicted (normalized) biomarker 

values given the amount of time in the future to predict, fit with a 2-degree polynomial curve 

projected into the future. Errors increased linearly with an increase in the amount of time in 

the future to predict. 
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Figure 5. Strongest predictors of mutation carrier (MC) status for autosomal dominant 

Alzheimer’s disease (ADAD) as identified by Relief algorithms. The strongest predictors 

across all modalities were the precuneus, caudate, and anterior cingulate. Changes in amyloid 

PET (PiB, blue circle) were primarily seen within subcortical regions. Changes in metabolism 

(FDG, orange circle) showed more cortical involvement. Volumetric changes (Volume, green 

circle) showed both cortical and subcortical involvement. 
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ResearchInContext 

Systematic review: The authors reviewed the literature using traditional (e.g., PubMed) 

sources and meeting abstracts and presentations. Relevant citations are included where 

appropriate. 

Interpretation: Our findings suggest that within autosomal dominant Alzheimer’s disease 

mutation carriers, amyloid accumulation shows a sigmoidal progression, glucose metabolism 

shows a biphasic response, and there is a gradual decrease in brain volume, with disease 

progression primarily in subcortical, middle frontal, and posterior parietal regions. These 

results are consistent with clinical findings. 

Future directions: Future work will focus on (a) understanding the role of increased glucose 

metabolism observed in the early stages of the disease; (b) relating the current results with 

other functional neuroimaging methods, such as cerebral blood flow and resting state fMRI; 

and (c) relating the current results with blood and CSF biomarkers of AD. 

 


