- 1 Cardiac Safety of Trabectedin Monotherapy or in Combination with Pegylated
- 2 Liposomal Doxorubicin in Patients with Sarcomas and Ovarian Cancer

4 Short Running Title: Cardiac Safety of Trabectedin

5

- 6 Robin L. Jones, MD,¹ Thomas J. Herzog, MD,² Shreyaskumar R. Patel, MD,³ Margaret von
- 7 Mehren, MD, 4 Scott M. Schuetze, MD, PhD, 5 Brian A. Van Tine, MD, PhD, 6 Robert L.
- 8 Coleman, MD,⁷ Roland Knoblauch, MD,⁸ Spyros Triantos, MD,⁸ Peter Hu, PhD,⁸ Waleed
- 9 Shalaby, MD, PhD, 9, 10 Tracy McGowan, MD, 9 Bradley J. Monk, MD, 10 and George D.
- 10 Demetri, MD¹¹

11

- ¹Sarcoma Unit, Royal Marsden Hospital/ Institute of Cancer Research, London, United
- 13 Kingdom
- ²University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, United
- 15 States
- ³Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer
- 17 Center, Houston, Texas, United States
- ⁴Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
- ⁵Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United
- 20 States
- 21 ⁶Washington University in St. Louis, St. Louis, Missouri, United States
- ⁷US Oncology Research, The Woodlands, Texas, United States
- ⁸Janssen Research & Development, LLC, Raritan, New Jersey, United States
- ⁹Medical Group Oncology, Janssen Scientific Affairs, LLC, Horsham, Pennsylvania, United
- 25 States
- ¹⁰Current affiliation: Clinical Affairs, Novocure, 1500 Broadway, 17th Floor, New York, NY
- 27 10036, United States
- 28 ¹¹Arizona Oncology (US Oncology Network), University of Arizona College of Medicine,
- and Creighton University School of Medicine at St. Joseph's Hospital and Medical Center,
- 30 Phoenix, Arizona, United States
- 31 ¹²Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI),
- Harvard Medical School and Ludwig Center at Harvard, Boston, Massachusetts, United This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as doi: 10.1002/CAM4.3903

33	States
34	
35	Correspondence:
36	Robin L. Jones, MD
37	Sarcoma Unit, Royal Marsden Hospital, Fulham Road
38	London, SW3 6JJ, United Kingdom
39	Email: Robin.Jones@rmh.nhs.uk
40	
41	FUNDING SUPPORT
42	Funding support was provided by Janssen Research & Development, LLC. The funder was
43	involved in design and conduct of the study; collection, management, analysis, and
44	interpretation of the data; preparation, review, and approval of the manuscript; and decision
45	to submit the manuscript for publication. Dr. Demetri acknowledges partial support for this
46	work from the Dr. Miriam and Sheldon Adelson Medical Research Foundation and the Pan
47	Mass Challenge.
48	
49	ETHICAL CONSIDERATION
50	The studies were conducted in accordance with the ethical principles for human
51	experimentation as defined in the Declaration of Helsinki and are registered on
52	ClinicalTrials.gov (NCT01343277; NCT00113607; NCT01846611). Study protocols and
53	amendments were approved by the Institutional Review Board at each site. All patients
54	provided written informed consent prior to participation in the study.
55	
56	CONFLICTS OF INTEREST DISCLOSURE
57	Robin L. Jones: Honoraria and consulting fees from Adaptimmune, Blueprint, Clinigen,
58	Eisai, Epizyme, Daichii-Sankyo, Deciphera, Immunedesign, Johnson & Johnson, Lilly,
59	Merck, Pharmamar, Pfizer, Tracon, UpToDate
60	Thomas J. Herzog: Scientific Advisory Boards for AZ, Caris, Clovis, Genentech, GSK,
61	Johnson & Johnson, Merck
62	Shreyaskumar R. Patel: Clinical trial funding from Janssen, personal fees from PharmaMan
63	(travel for advisory board), and personal fees from M.J. Hennessey/OncLive (presentation at
64	an educational meeting) and has acted as a paid consultant for Bayer, Daiichi Sankyo, Eli
65	Lilly, Epizyme, Immune Design, Janssen, and Novartis Oncology; has received grants from
66	Blueprint Medicines; and has received personal fees from CytRx and EMD Serono

- 67 **Margaret von Mehren**: Support to Fox Chase Cancer Center for conduct of SAR-3007;
- 68 member of the scientific steering committee for the study; honoraria from Janssen in the past
- 69 for scientific advisory board participation. Research funding from Novartis; paid consulting
- 70 for Blueprint, Deciphera, Exelexis
- 71 Scott M. Schuetze: Honoraria and travel support from Janssen for participation in scientific
- advisory boards; research funding to institution for support of clinical trials of trabectedin in
- 73 sarcoma
- 74 **Brian A. Van Tine**: Basic Science Grant Funding from Pfizer, Tracon, and Merck;
- 75 consulting fees from Epizyme, Lilly, CytRX, Janssen, Immune Design, Daiichi Sankyo,
- 76 Bayer, Plexxicon, and Adaptimmune; speaking fees from Caris, Janssen, and Lilly; travel
- support from Lilly, GSK, and Adaptimmune
- 78 Robert Coleman: Grants from NIH (2P50 CA109298; P30CA016672), Gateway
- 79 Foundation, and V Foundation during the conduct of the study and grants and personal fees
- 80 (research support, consulting) from AstraZeneca, Clovis, Genmab, Roche/Genentech,
- Janssen; grants (research support) from Merck; and personal fees (consulting) from Tesaro,
- 82 Medivation, Gamamab, Agenus, Regeneron, and OncoQuest outside the submitted work
- 83 Roland Knoblauch: Employee of Janssen Oncology
- 84 Spyros Triantos: Currently employed by Janssen Research and Development
- 85 **Peter Hu**: Employee of Janssen Research and Development
- Waleed Shalaby: Employee of Janssen Scientific Affairs, LLC; stock in Johnson and
- 37 Johnson, of which Janssen is a wholly owned subsidiary
- 88 Tracy McGowan: Employee of Janssen Scientific Affairs, LLC; stock in Johnson and
- 89 Johnson, of which Janssen is a wholly-owned subsidiary
- 90 **Bradley Monk:** Personal fees (honorarium/consultant) from Abbvie, Advaxis, Agenus,
- 91 Amgen, Aravive, Asymmetric Therapeutics, Boston Biomedical, Chemo Care, ChemoID,
- 92 Circulogene, Conjupro, Easai, Geistlich, Genmab/Seattle Genetics, GOG Foundation,
- 93 ImmunoGen, Immunomedics, Incyte, Laekna Health Care, Mateon (formally Oxigene),
- 94 Merck, Mersana, Myriad, Nucana, Oncomed, Oncoquest, Oncosec, Perthera, Pfizer, Precision
- Oncology, Puma, Renegeron, Samumed, Takeda, VBL, and Vigeo; personal fees
- 96 (honorarium/consultant/speaker) from AstraZeneca, Clovis, Janssen/Johnson & Johnson,
- 97 Roche/Genentech, and Tesaro/GSK
- 98 George D. Demetri: Grants, personal fees, and non-financial support from PharmaMar—
- 99 including travel to a research meeting—and from Janssen; grants from AbbVie,
- 100 Adaptimmune, Bayer, Daiichi-Sankyo, Epizyme, GlaxoSmithKline, Ignyta, Loxo Oncology,

101	Novartis, Pfizer, and Roche; personal fees from AbbVie, Adaptimmune, Bayer, Blueprint
102	Medicines, Daiichi-Sankyo, Caris Life Sciences, Champions Oncology, EMD-Serono,
103	Epizyme, G1 Therapeutics, Ignyta, Loxo Oncology, Mirati Therpeutics, Merrimack
104	Pharmaceuticals, M.J. Hennessey/OncLive, Novartis, Pfizer, Polaris Pharmaceuticals, Roche,
105	Sanofi, WIRB Copernicus Group, Translate BIO, ZioPharm, RELAY Therapeutics; non-
106	financial support from AbbVie, Daiichi-Sankyo, Epizyme, Novartis, and Roche; travel to
107	present at an educational meeting for M.J. Hennessey/OncLive, Novartis, and Pfizer; travel to
108	an advisory board meeting for Bayer, Caris Life Sciences, Daiichi-Sankyo, EMD-Serono,
109	Loxo Oncology, Roche, and WIRB Copernicus Group; travel to FDA meeting for Epizyme;
110	travel to research meeting for Adaptimmune; service as a member of the Board of Directors
111	with support for travel to board meetings for Blueprint Medicines, Merrimack
112	Pharmaceuticals and Translate BIO; equity for Blueprint Medicines and G1 Therapeutics;
113	equity options for Bessor Pharmaceuticals, Caris Life Sciences, Champions Oncology, Erasca
114	Pharmaceuticals, G1 Therapeutics, Translate BIO, and RELAY Therapeutics; a patent, issued
115	and licensed to PharmaMar, for trabectedin use for cancer (patent from PharmaMar; no funds
116	from this and no license to Dana Farber Cancer Center or to Dr. Demetri); and patent, issued
117	and licensed to Novartis from Dana-Farber Cancer Institute (DFCI), for imatinib use in
118	gastrointestinal stromal tumor, and royalties from DFCI for that patent.
119	
120	AUTHOR CONTRIBUTIONS
121	Robin L. Jones, Shreyaskumar Patel, Spyros Triantos, Bradley Monk and George Demetri:
122	conceptualization, study design, acquisition/collection of data, analysis/interpretation of data,
123	drafted/revised manuscript content; Thomas J Herzog, Robert Coleman and Waleed Shalaby:
124	conceptualization, study design, analysis/interpretation of data, drafted/revised manuscript
125	content; Tracy McGowan: conceptualization, study design, drafted/revised manuscript
126	content; Margaret von Mehren, Scott Schuetze and Brian Van Tine: acquisition/collection of
127	data, analysis/interpretation of data, drafted/revised manuscript content; Roland Knoblauch:
128	acquisition/collection of data, drafted/revised manuscript content; Peter Hu:
129	analysis/interpretation of data, drafted/revised manuscript content. All authors approved the
130	final article and agreed to be accountable for all aspects of the work.
131	
132	DATA SHARING STATEMENT
133	The data sharing policy of the study sponsor, Janssen Pharmaceutical Companies of Johnson

& Johnson, is available at https://www.janssen.com/clinical-trials/transparency. As noted on

136	Access (YODA) Project site at http://yoda.yale.edu .
137	
138	ACKNOWLEDGMENTS
139	Gianna Paone, MS, MPH, Lauren Brown, PhD, and John A Smith, PhD, Janssen Scientific
140	Affairs, LLC, provided medical writing support. The authors also thank George Wang, MS,
141	Janssen Research & Development, LLC, for providing statistical insight, as well as Robert G
142	Maki, MD, PhD, Monter Cancer Center, Northwell Health, and Cold Spring Harbor
143	Laboratory, for his input and contributions.

this site, requests for access to the study data can be submitted through Yale Open Data

1	
2	DR. ROBIN JONES (Orcid ID : 0000-0003-4173-3844)
3	DR. SHREYASKUMAR R. PATEL (Orcid ID : 0000-0002-0026-2348)
4	DR. MARGARET VON MEHREN (Orcid ID : 0000-0001-6158-890X)
5	DR. BRIAN A. VAN TINE (Orcid ID : 0000-0003-4572-6668)
6	DR. ROBERT L COLEMAN (Orcid ID : 0000-0001-9343-8754)
7	
8	
9	Article type : Research Article
10	
11	
12	Cardiac Safety of Trabectedin Monotherapy or in Combination with Pegylated
13	Liposomal Doxorubicin in Patients with Sarcomas and Ovarian Cancer
14	
15	Short Running Title: Cardiac Safety of Trabectedin
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

65	developed for treatment of soft tissue sarcomas (STS) and epithelial ovarian cancer based on
66	its novel cytotoxic activity. These cancers still have limited treatment options, particularly
67	where advanced disease has progressed with other therapies.1
68	
69	Preclinical studies with trabectedin showed no toxicity in cultured rat myocytes in vitro,
70	while single and repeated doses in Cynomolgus monkeys did not induce any relevant cardiac
71	vascular, or respiratory effects. ² Further, a low incidence of cardiac-related treatment-
72	emergent adverse events (cTEAE) was reported in previous analyses from earlier phase 1-2
73	clinical trials and one phase 3 (OVA-301), pharmacovigilance databases, and spontaneously
74	reported cases; tachycardia or palpitations were the most common cTEAEs reported. ² No
75	clinically relevant left ventricular ejection fraction (LVEF) changes occurred in phase 1
76	combination trials while LVEF decreases from baseline were similar [9% of patients
77	(pegylated liposomal doxorubicin [PLD]) and 7% (trabectedin+PLD)] with no relevant
78	symptoms in one phase 3 trial. ²
79	
80	Trabectedin is now approved for STS in 80 countries and for ovarian cancer in combination
81	with PLD in 71 countries. European Union (EU) approval for trabectedin+PLD for relapsed
82	platinum-sensitive ovarian cancer was granted in October 2009. In the United States (US),
83	trabectedin was approved for STS treatment following failure of anthracycline-based
84	chemotherapy in October 2015. Approval in the US was contingent upon undertaking post-
85	marketing requirements to characterize risk of cardiotoxicity and its sequelae with trabecteding
86	to identify risk factors including previous treatments known to be cardiotoxic (e.g.,
87	anthracyclines).
88	
89	As an extension to the cTEAE analysis reported in 2011 ² , we now report the findings of this
90	retrospective pooled analysis of key cTEAEs for all patients enrolled in ten phase 2 trials and
91	one phase 3 trial involving trabectedin monotherapy (T) for STS and other solid tumors and
92	two phase 3 trials in combination with PLD for recurrent ovarian cancer (ROC).
93	
94	METHODS
95	Overall Safety Evaluation Plan and Description of Safety Studies
96	Safety analysis sets incorporated two pooled analyses: Cardiac safety with T was evaluated
97	using data from ten phase 2 and one phase 3 trial (SAR-3007 [NCT01343277]) in STS and
98	other solid tumors at a dose and regimen of 1.5 mg/m ² every 3 weeks (q3wk), 24 h. Cardiac

99	safety with combination trabectedin+PLD was derived from two phase 3 ovarian cancer trials
100	(OVA-301 [NCT00113607] and OVC-3006 [NCT01846611]) where trabected in (1.1 $\mbox{mg/m}^2$
101	q3wk; 3 h) was co-administered with PLD (30 mg/m² q3wk; 90 min). Phase 3 trial designs
102	are described in Table 1. Key inclusion/exclusion criteria for enrollment are presented for
103	each phase 3 trial (eTable 1), cardiac safety evaluations by individual trial (eTable 2), and
104	exposure and cancer diagnoses for pooled data from phase 2 and 3 studies (eTable 3). Study
105	protocols and amendments were reviewed by an Independent Ethics Committee or an
106	Institutional Review Board.
107	
108	Statistical Methodology
109	Definition of Subgroups and General Analysis Methods
110	Continuous variables were summarized using descriptive statistics (i.e., mean, standard
111	deviation [SD], median, and range) and categorical variables by frequency counts and
112	percentages. Time-to-event variable data were summarized by Kaplan-Meier methods for
113	25th, 50th, and 75th percentiles with 95% confidence intervals (CIs). Treatment group
114	comparisons are presented by hazard ratios and 95% CI from Cox proportional hazards
115	models. Anthracycline exposure data are summarized for subjects who received
116	anthracyclines prior to study (i.e., prior anthracycline) and for subjects who received
117	anthracyclines prior to and during the study (i.e., cumulative anthracycline).
118	
119	Cardiac-Related Adverse Events
120	cTEAEs are summarized from time of first administration to 30 days after last dose and
121	graded using Common Terminology Criteria for Adverse Events (CTCAE; version 4.0).
122	Incidences of cTEAEs are defined by eight Medical Dictionary for Regulatory Activities
123	(MedDRA) high-level group terms (HLGTs) and associated preferred terms (PTs) and two
124	Standardized MedDRA Queries (narrow SMQ) (Table 2). HLGTs included cardiac and
125	vascular investigations (excluding enzyme tests), cardiac arrhythmias, cardiac disorder signs
126	and symptoms, coronary artery disorders, endocardial disorders, heart failures, myocardial
127	disorders, and pericardial disorders. TEAEs were coded to MedDRA version 16.0 for OVA-
128	301, SAR-3007, and pooled safety analysis for T. TEAEs in OVA-301 were aligned to
129	MedDRA version 19.0 to match the MedDRA version of OVC-3006 and cTEAEs presented
130	by HLGTs and SMQs and related PTs.
131	
132	Left Ventricular Ejection Fraction

133	Two parameters were used: LVEF significant decline where available and cardiac-related
134	AEs of special interest (cardiac-related AEs). Cross tabulation of electrocardiogram (ECG)
135	data were included when available. LVEF significant decline was defined as absolute
136	decrease \geq 15%, or <lower <math="" absolute="" and="" decrease="" limit="" normal="" of="">\geq5%. LVEF recovery for</lower>
137	subjects with significant LVEF decline was defined as either return to baseline values or
138	<grade (ctcae="" 2="" 3="" all="" decreased="" ejection="" fraction="" in="" p="" phase="" studies<="" three="" toxicity="" v4.0).=""></grade>
139	(SAR-3007, OVA-301, and OVC-3006), LVEF assessments were performed at baseline and
140	end of treatment. Additionally, OVC-3006 was amended to provide comprehensive cardiac
141	evaluations of patients while on treatment. Collection time points for LVEF in each study are
142	described in eTable 2.
143	
144	RESULTS
145	Overall Exposure
146	Table 3 shows number of patients exposed to study drug by individual trial and by pooled
147	safety analysis sets for T and trabectedin+PLD. 982 patients were exposed to T, and 619
148	patients were treated with trabectedin+PLD.
149	
150	Baseline Characteristics: Trabectedin Monotherapy (T)
151	Demographic Characteristics
152	Patients treated with trabectedin (N=982) had a median (range) age of 54 (12-81) years
153	(eTable 4). Most patients were female (61.6%), white (50.6%), from North America (58.2%)
154	or Western Europe (36.7%), had an Eastern Cooperative Oncology Group performance score
155	of 0 or 1 (99.8%), and a diagnosis of STS (88.0%). Prior anthracycline use was reported for
156	71.3% (Table 4). Prior anthracycline dose was only captured in the phase 3 SAR-3007 study.
157	A cumulative dose of prior anthracycline was reported for 337/378 subjects in the trabecteding
158	treatment group and 162/172 subjects in the dacarbazine group. Median cumulative prior
159	anthracycline dose was 270.00 mg/m ² in the trabectedin group and 240.75 mg/m ² in the
160	dacarbazine group.
161	
162	Cardiovascular Medical History
163	Pooled analyses of T, cardiovascular medical history categorized under the vascular disorder
164	and/or cardiac disorder system organ class (SOC) was reported for 355 (36.2%) of 982
165	trabectedin-treated patients. The most commonly reported cardiovascular medical history for
166	patients treated with trabectedin were hypertension (24.8% [244/982]), followed by deep vein

167	thrombosis (2.9% [28/982]), hot flush (2.2% [22/982]), and coronary artery disease (2.1%
168	[21/982]).
169	
170	Baseline Characteristics: Trabectedin in Combination With PLD
171	<u>Demographic Characteristics</u>
172	In the pooled analysis of trabectedin+PLD, patient demographic characteristics were
173	consistent in the all-female study populations across the trabectedin+PLD (N=619) and PLD
174	monotherapy (N=612) groups, with median (range) ages of 58 (26-83) and 59 (27-91) years,
175	respectively. Most patients were white (84% and 82%, respectively) (eTable 5), and baseline
176	disease characteristics were consistent across both treatment groups (Table 5).
177	
178	Cardiovascular Medical History
179	In pooled analysis of trabectedin+PLD, 45.6% and 51.5% of patients in the trabectedin+PLD
180	and PLD monotherapy groups, respectively, had prior cardiovascular medical history
181	reported for vascular and/or cardiac disorders SOC. These included: hypertension (30.5%
182	[189/619] in the trabectedin+PLD group and 34.6% [212/612] in the PLD monotherapy
183	group), followed by myocardial ischemia (6.0% [37/619] and 6.7% [41/612], respectively),
184	varicose vein (3.9% [24/619] and 3.8% [23/612], respectively), deep vein thrombosis (2.7%
185	[17/619] and 2.5% [15/612], respectively), and hot flush (1.8% [11/619] and 2.9% [18/612],
186	respectively).
187	Cardiac Safety Results
188	Trabectedin Monotherapy (T)
189	In the pooled analysis of T, 110 (11.2%) patients who received ≥1 trabectedin dose
190	experienced a cTEAE (eTable 6). cTEAEs reported for ≥1% of trabectedin-treated patients
191	included tachycardia (3.1%), palpitations (1.5%), LVEF decrease (1.3%), sinus tachycardia
192	(1.0%), and congestive cardiac failure (1.0%). Median time from first dose of study drug to
193	onset of first occurrence of a cTEAE for trabectedin-treated patients was 40 days. For 65% of
194	patients with cTEAE, the event was reported as resolved, with median time to resolution of 8
195	days. Thirty-seven (3.8%) trabectedin-treated patients experienced a Grade 3 or 4 cTEAE
196	(eTable 7). Cardiac-related serious TEAEs (SAEs) were reported in 36 (3.7%) trabectedin-
197	treated patients (eTable 8); those most frequently-reported (≥5 patients) included: congestive
198	cardiac failure (0.8%), pulmonary edema (0.6%), ejection fraction decreased (0.5%), cardiac
199	failure (0.5%), and atrial fibrillation (0.5%). Six (0.6%) trabectedin-treated patients
200	experienced a cTEAE leading to death (eTable 9).

202	<u>Unique Study Features</u>
203	In the phase 3 study comparing trabectedin vs dacarbazine (SAR-3007), cTEAEs were
204	reported for 58 (15.3%) trabectedin patients and 25 (14.5%) dacarbazine patients; however,
205	cardiac failure (5.0% vs 2.3%), cardiomyopathy (3.7% vs 2.3%), and heart failure (2.9% vs
206	0.6%) were higher with trabectedin. Furthermore, median cumulative prior anthracycline
207	dose was greater in the trabectedin group (329.75 mg/m²) compared to the dacarbazine group
208	(180.00 mg/m ²), which should also be taken into consideration. Among patients with a
209	cTEAE, more patients in the trabectedin group (39 [67.2%] of 58) received a prior
210	cumulative anthracycline dose ≥300 mg/m² compared with the dacarbazine group (10
211	[40.0%] of 25). Median time from first dose of study drug to onset of first occurrence of a
212	cTEAE was twice as long in the trabectedin group compared with the dacarbazine group (46
213	days vs 23 days); however, median time to resolution was twice as long in the trabectedin
214	group (8 days vs 4 days). In terms of prior anthracycline exposure among patients with a
215	significant decrease in LVEF from baseline and for whom dose information was reported,
216	prior cumulative anthracycline dose of ≥300 mg/m² was reported in 22/34 (64.7%) in the
217	trabectedin group compared with 7/11 (63.6%) patients in the dacarbazine group.
218	
219	Trabectedin in Combination With PLD
220	cTEAEs were reported for 78 (12.6%) patients in the trabectedin+PLD group and 34 (5.6%)
221	patients in the PLD monotherapy group; most commonly reported cTEAE was LVEF
222	decrease (7.8% vs 4.2%, respectively). Within these SMQ/HLGTs, palpitation was the only
223	cTEAE reported with at least a 2% greater incidence in the trabectedin+PLD group compared
224	with the PLD monotherapy group (3.2% vs 1.0%) (eTable 10).
225	
226	Kaplan-Meier analyses showed increased risk of cTEAEs with trabectedin+PLD compared
227	with PLD monotherapy (Figure 1). Cumulative incident rate curves separated early and
228	remained separated throughout treatment. Median time from first study dose to onset of first
229	occurrence of cTEAE was shorter with trabectedin+PLD (57 days) compared with PLD
230	monotherapy (98 days), while most patients in both groups had similar resolutions of
231	cTEAEs (57.1% and 55.9%) and time to resolution (8 days). However, while Grade 3 or 4
232	cardiac-related events were reported more frequently with trabectedin+PLD vs PLD
233	monotherapy (14 [2.3%] vs 4 [0.7%] patients; eTable 11); no cTEAEs were reported with an
234	incidence of ≥1% in either group. Lastly, cardiac-related SAEs were reported more frequently

235	with trabectedin+PLD (11 [1.8%]) vs PLD monotherapy (3 [0.5%]) (eTable 12). Congestive
236	heart failure was quite low in both the combination (3 [0.5%]) and monotherapy groups (1
237	[0.2%]).
238	
239	Unique Study Features
240	In OVA-301, fewer patients with significant decrease from baseline in LVEF in
241	trabectedin+PLD group had a cardiovascular medical history compared with the PLD
242	monotherapy group (23.8% vs 52.6%). In OVC-3006, median cumulative PLD dose for
243	patients with a cTEAE was lower with trabectedin+PLD treatment compared with PLD
244	monotherapy (180.78 vs 329.67 mg/m²). Median cumulative anthracycline dose of ≥300
245	mg/m² was reported in 11/43 (25.6%) in trabectedin+PLD patients with a cTEAE compared
246	to 17/23 (73.9%) PLD monotherapy patients.
247	
248	In OVC-3006, median time from first dose of drug to onset of first occurrence of a cTEAE
249	was shorter with trabectedin+PLD compared with PLD monotherapy (68 days vs 169 days);
250	however, median time to resolution was longer with PLD monotherapy group compared with
251	trabectedin+PLD (29 days vs 16 days). Median cumulative PLD dose for patients having
252	significant decreases from baseline in LVEF was lower in the trabectedin+PLD group
253	compared with the PLD monotherapy group (149.39 vs 251.25 mg/m²). In addition, median
254	cumulative anthracycline doses of ≥300 mg/m² were associated with a significant decrease
255	from baseline in LVEF; this was reported in $3/19\ (15.8\%)$ trabectedin+PLD and $5/10\ (50.0\%)$
256	PLD monotherapy patients.
257	
258	Multivariate Analyses
259	Trabectedin Monotherapy
260	Trabectedin-treated patients who experienced a cTEAE were generally older (18.4% aged
261	≥65 years vs 9.6% aged <65 years). Results from multivariate analyses of cTEAEs when
262	controlling for potential risk factors are presented in Figure 2. These showed that patients
263	aged ≥65 years and those with cardiovascular medical history had an increased risk of
264	cTEAEs. The effect of cumulative anthracycline dose of ≥300 vs <300 mg/m² and baseline
265	LVEF <lower (lln)="" be="" could="" evaluated="" however,="" in="" limit="" normal="" not="" of="" td="" ten<="" the="" vs="" ≥lln,=""></lower>
266	phase 2 studies due to differences in study designs.
267	
268	Trabectedin in Combination With PLD

209	in the multivariate analyses, when controlling for potential risk factors, results showed that
270	patients receiving trabectedin+PLD were at increased risk for experiencing a cTEAE
271	compared with PLD monotherapy (risk ratio [RR] 2.70; 95% CI: 1.75-4.17; P<0.0001).
272	Furthermore, patients with a history of prior cardiac medication use who received
273	trabectedin+PLD vs. PLD were also at increased risk of experiencing a cTEAEs (RR 1.88;
274	95% CI: 1.16-3.05; P=0.010). Patients with a cumulative anthracycline dose of ≥300 mg/m²
275	who received trabectedin+PLD in the OVC-3006 and OVA-301 trials were at increased risk
276	for significant decrease in LVEF compared with patients who received PLD monotherapy
277	(RR 0.54; 95% CI: 0.30-0.99; P=0.046) (Figure 3).
278	
279	DISCUSSION
280	Trabectedin was developed based on its novel chemical structure and promising preclinical
281	activity in several types of human tumors. The development program focused on STS ³ and
282	ROC ^{4,5} in which trabectedin was active at very low concentrations in both preclinical models
283	and clinical trials. Trabectedin binds to the N2 position of guanine in the minor groove of
284	DNA and bends the helix toward the major groove, a unique property in the class of DNA-
285	binding agents; it triggers a cascade of events affecting several transcription factors, DNA-
286	binding proteins, and DNA-repair pathways (e.g., transcription-coupled NER), resulting in
287	slowed progression through S and G2/M phases and p53-independent apoptosis. Trabectedin
288	also prevents binding of translocation-related oncogenic fusion proteins to DNA promoter
289	regions, thereby interfering with the function of proteins that contribute to the malignant
290	phenotype and tumor progression. ⁶⁻⁹
291	
292	PLD is doxorubicin hydrochloride encapsulated in STEALTH® liposomes for intravenous
293	administration. PLD was granted approvals for advanced ovarian cancer in June 1999 and
294	October 2000 in the US and EU, respectively. As with any anthracycline, PLD can cause
295	myocardial damage, including congestive heart failure, as the total cumulative dose of
296	doxorubicin hydrochloride approaches 550 mg/m ² . In a clinical study of 250 patients with
297	advanced cancer who were treated with PLD, the risk of cardiotoxicity was 11% when the
298	cumulative anthracycline dose was 450 to 550 mg/m ² . ¹⁰
299	
300	This is the most comprehensive analysis of cardiac safety in the setting of trabectedin
301	administration from clinical trial data including more than 1600 patients. Strengths include
302	pooled analyses of one phase 3 trial and ten phase 2 trials of T in STS and two phase 3 trials

303	of trabectedin in combination with PLD for ROC. Limitations include patient heterogeneity
304	and varying dosing, scheduling, and infusion times for T (1.5 mg/m² q3wk; 24 h) compared
305	with PLD combination therapy (trabectedin 1.1 mg/m² q3wk; 3 h). The authors recognize that
306	cardiac adverse events with diverse etiologies makes it difficult to ascribe the outcomes to
307	trabectedin alone or identify specific causal mechanisms. Cardiotoxicity may be mediated by
308	multiple mechanisms including damage from prior cardiotoxic therapies (anthracyclines),
309	preexisting cardiovascular comorbidities, and the alkylating MOA among others. Lastly, the
310	retrospective nature of data collection and other events, such as sepsis (that could contribute
311	to cardiac events) are additional limitations.
312	In the phase 3 SAR-3007 study ³ , no difference in overall incidence rate of any-grade cTEAEs
313	was observed between trabectedin- and dacarbazine-treated patients. Multivariate analysis of
314	safety data (data not shown) indicated that cumulative anthracycline dose of $\geq 300 \text{ mg/m}^2$ and
315	baseline LVEF < LLN were risk factors for development of cTEAEs in STS. In pooled
316	analyses, only age ≥65 years and cardiovascular medical history were associated with an
317	increased risk of cTEAEs. This difference could be attributed to variability in patient
318	populations, pretreatment history, and consistent baseline LVEF testing in the ten phase 2
319	studies compared with SAR-3007. In summation, cardiac safety signals observed with T may
320	be, in part, due to history of prior or concurrent therapy with an anthracycline, known for
321	potential short- and long-term cardiotoxicity, and longer median duration of treatment for
322	patients receiving trabectedin.
323	
324	In OVA-301 and OVC-3006, patients in the trabectedin+PLD groups experienced cTEAEs at
325	a higher incidence, regardless of toxicity grade, compared with PLD monotherapy patients. In
326	OVA-301, multivariate analyses indicated increased risk of cTEAEs among patients in the
327	trabectedin+PLD group compared with PLD monotherapy (data not shown). In OVC-3006,
328	however, a cumulative anthracycline dose of ≥300 mg/m² and prior cardiac medication use
329	were also identified as independently associated with increased risk of cTEAEs (data not
330	shown). Differences between the two studies may be attributed to enrollment criteria for each
331	study. Inclusion criteria for OVC-3006 differed from OVA-301 in that patients were allowed
332	to have received two prior lines vs one line of chemotherapy for ROC, and prior PLD
333	combination therapy was also allowed.
334	
335	Ultimately, these data suggest that some patients receiving T after prior therapy with
336	anthracyclines are at risk for cTEAEs, which may be serious in a small number. The overall

considered when ser trabectedin therapy of treatment with a personal address when cTEAL address when cTEAL address when cTEAL address when cTEAL

risk of fatal events is relatively low but appears to be higher for patients with existing myocardial dysfunction (abnormal LVEF) or prior cardiovascular medical history. In the setting of STS, the available data support recommendations to assess LVEF by echocardiogram or multigated acquisition radionuclide scan before initiation of trabectedin and at two- to three-month intervals thereafter until trabectedin is discontinued, particularly for patients with prior cardiovascular disease. Additionally, when using trabectedin in combination with PLD for ROC, cumulative anthracycline dose ≥300 mg/m² and prior cardiac medication may increase the risk of cTEAEs if prior lines of therapy involved PLD.

In conclusion, as with any systemic cytotoxic therapy, benefit versus risk should be carefully considered when instituting treatment with trabectedin in patients with few other treatment options and with risk factors for developing cTEAEs. In consultation with a cardiologist or cardio-oncology service, baseline cardiovascular risk should be comprehensively assessed before commencing treatments with cardiotoxic potential as noted above. Cardiotoxicity risk can be minimized by using primary prevention strategies; signs and symptoms of myocardial toxicity including decreases in LVEF should be assessed routinely as described above. Dose reductions or temporary or permanent discontinuation of trabectedin should be considered when serious cTEAEs occur. Once the decision is made that benefits of trabectedin therapy outweigh risk, patients (and caregivers) should be supported throughout treatment with a personalized surveillance program to minimize cTEAE risk and promptly address when cTEAEs do occur.

REFERENCES

362

- 1. Larsen AK, Galmarini CM, D'Incalci M. Unique features of trabectedin mechanism of
- action. Cancer Chemother Pharmacol 2016;77:663-71.
- Lebedinsky C, Gómez J, Park YC, et al. Trabectedin has a low cardiac risk profile: a
- 366 comprehensive cardiac safety analysis. Cancer Chemother Pharmacol 2011;68:1223-31.
- 367 3. Demetri GD, von Mehren M, Jones RL, et al. Efficacy and Safety of Trabectedin or
- 368 Dacarbazine for Metastatic Liposarcoma or Leiomyosarcoma After Failure of Conventional
- 369 Chemotherapy: Results of a Phase III Randomized Multicenter Clinical Trial. J Clin Oncol
- 370 2016;34:786-93.
- 371 4. Monk BJ, Herzog TJ, Kaye SB, et al. Trabectedin plus pegylated liposomal
- Doxorubicin in recurrent ovarian cancer. J Clin Oncol 2010;28:3107-14.
- 373 5. Monk BJ, Herzog TJ, Wang G, et al. A phase 3 randomized, open-label, multicenter
- 374 trial for safety and efficacy of combined trabectedin and pegylated liposomal doxorubicin
- therapy for recurrent ovarian cancer. Gynecol Oncol 2020;156:535-44.
- 376 6. Di Giandomenico S, Frapolli R, Bello E, et al. Mode of action of trabectedin in
- myxoid liposarcomas. Oncogene 2014;33:5201-10.
- 378 7. Grohar PJ, Segars LE, Yeung C, et al. Dual targeting of EWS-FLI1 activity and the
- associated DNA damage response with trabectedin and SN38 synergistically inhibits Ewing
- sarcoma cell growth. Clin Cancer Res 2014;20:1190-203.
- 381 8. Jin S, Gorfajn B, Faircloth G, Scotto KW. Ecteinascidin 743, a transcription-targeted
- chemotherapeutic that inhibits MDR1 activation. Proc Natl Acad Sci U S A 2000;97:6775-9.
- 383 9. Minuzzo M, Marchini S, Broggini M, Faircloth G, D'Incalci M, Mantovani R.
- Interference of transcriptional activation by the antineoplastic drug ecteinascidin-743. Proc
- 385 Natl Acad Sci U S A 2000;97:6780-4.
- 386 10. Doxil [prescribing information]. Horsham, PA: Janssen Products, LP; 2010. Available
- from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/050718s055lbl.pdf
- Pareek N, Cevallos J, Moliner P, et al. Activity and outcomes of a cardio-oncology
- service in the United Kingdom-a five-year experience. Eur J Heart Fail 2018;20:1721-31.
- Habibian M, Lyon AR. Monitoring the heart during cancer therapy. Eur Heart J Suppl
- 391 2019;21:M44-M49.

TABLE 1. Overview of Study Designs for Phase 3 Trials

Protocol	Study Description	Treatment Groups	Patients in Safety	
			Analysis Set, n	
Phase 3 Soft Tiss	Phase 3 Soft Tissue Sarcoma Study – Single Agent Therapy			
SAR-3007	A multicenter, open-label, randomized, active-controlled, parallel-	Trabectedin Arm: 1.5 mg/m ² as a 24 h	378	
(NCT01343277)	group phase 3 study comparing the safety and efficacy of trabectedin	IV infusion q3wk.		
	vs dacarbazine among adults with unresectable, locally advanced or	Dacarbazine Arm: 1 g/m ² as a 20- to	172	
	metastatic L-sarcoma, previously treated with at least an anthracycline	120-minute IV infusion q3wk.		
	and ifosfamide containing regimen or an anthracycline containing			
	regimen and 1 additional cytotoxic chemotherapy regimen. A normal			
	LVEF at baseline was not required for enrollment.			
Phase 3 Ovarian	Cancer Studies – Combination Therapy	1	1	
OVA-301	A multicenter, open-label, randomized study to assess the safety and	Trabectedin+PLD Arm: PLD, 30 mg/m ²	333	
(NCT00113607)	efficacy of trabectedin+PLD vs PLD in patients with ROC treated with	as a 90-minute infusion immediately		
	only 1 platinum-based chemotherapy regimen. Patients with a normal	followed by a 3 h trabectedin IV		
	LVEF at baseline were eligible to enroll in the study.	infusion 1.1 mg/m ² q3wk.		
		PLD Arm: PLD, 50 mg/m ² as a 90-	330	
		minute infusion q4wk.		
OVC-3006	A multicenter, open-label, randomized study to assess the efficacy and	Treatment Arm A: PLD 30 mg/m ² as a	286	
(NCT01846611)	safety of trabectedin+PLD as a third line chemotherapy in patients	90-minute infusion immediately		
	with platinum-sensitive ROC who received 2 previous lines of	followed by a 3 h trabectedin infusion		

Protocol	Study Description	Treatment Groups	Patients in Safety
			Analysis Set, n
	platinum-based chemotherapy. Patients with a normal LVEF at baseline were eligible to enroll in the study.	1.1 mg/m ² q3wk.	
		Treatment Arm B: PLD, 50 mg/m ² as a 90-minute infusion q4wk.	282

IV, intravenous; L-sarcoma, leiomyosarcoma or liposarcoma; LVEF, left ventricular ejection fraction; PLD, pegylated liposomal doxorubicin; q3wk, once every 3 weeks; q4wk, once every 4 weeks; ROC, recurrent ovarian cancer.

Author

Table 2. MedDRA HLGT and Standardized MedDRA Queries (narrow SMQ)

		cTEAEs
HLGT		Cardiac and vascular investigations (excluding enzyme tests)
-		Cardiac arrhythmias
		Cardiac disorder signs and symptoms
(O	Coronary artery disorders
	()	Endocardial disorders
		Heart failure
		Myocardial disorders
		Pericardial disorders
SMQ	CU	Cardiac failure
-	>	Cardiomyopathy
TEAEs cording related treatment amorgant adverse awants: HI CT high level group term; ModDPA Medical Dictionary for Pogulatory Activities:		

cTEAEs, cardiac-related treatment-emergent adverse events; HLGT, high-level group term; MedDRA, Medical Dictionary for Regulatory Activities; SMQ, standardized MedDRA query.

Author M

Table 3. Number of Patients Exposed to Study Treatment and Safety Analysis Sets

Study	No. Patients in Safety Analysis Set	
Monotherapy	Trabectedin	Dacarbazine
SAR-3007	378	172
10 phase 2 Studies	604	-
Pooled Data (SAR-3007+phase 2 Studies)	982	-
Combination Therapy	Trabectedin+PLD	PLD
OVA-301	333	330
OVC-3006	286	282
Pooled Data (OVA-301+OVC-3006)	619	612

PLD, pegylated liposomal doxorubicin.

Author

Table 4. Disease Characteristics for Patients Treated with Trabectedin 1.5 mg/m² q3wk; 24 h (Trabectedin - Pooled Phase 2 and 3 Studies)

Number (%)	Patients Treated With Trabectedin 1.5 mg/m² q3wk; 24 h (N=982)
Cancer Type	
STS, L-type	661 (67.3)
STS, Non-L-type	203 (20.7)
Ovarian	54 (5.5)
Breast	26 (2.6)
Renal	21 (2.1)
Melanoma	12 (1.2)
Prostate	5 (0.5)
Prior anthracycline treatment	700 (71.3)

Data are presented as No. (%).

L-type, leiomyosarcoma or liposarcoma; STS, soft tissue sarcomas; q3wk, once every 3 weeks.

Table 5. Disease Characteristics at Baseline for Treated Patients (Pooled Studies ET743-OVC-3006 and ET743-OVA-301 Studies)

Number (%)	Trabectedin+PLD (N=619)	PLD (N=612)
Histology		
Papillary/Serous	412 (66.6)	420 (68.6)
Other	97 (15.7)	92 (15.0)
Endometrioid	38 (6.1)	37 (6.0)
Clear Cell Carcinoma	24 (3.9)	21 (3.4)
Peritoneal Carcinoma	21 (3.4)	17 (2.8)
Fallopian Tube Carcinoma	10 (1.6)	15 (2.5)
Mixed Epithelial Tumor	7 (1.1)	5 (0.8)
Mucinous (exclusion)	5 (0.8)	3 (0.5)
Transitional Carcinoma (Brenner)	5 (0.8)	2 (0.3)
Prior anthracycline treatment	38 (6.1)	36 (5.9)
Time from initial diagnosis to		
randomization, median (range), months	24.25 (6.6, 169.3)	25.17 (2.5, 230.4)

Data are presented as No. (%) unless otherwise specified.

PLD, pegylated liposomal doxorubicin.

FIGURE LEGENDS

Figure 1. Cumulative Incidence of Cardiac-Related Adverse Events Over Treatment Duration for Treated Patients (Pooled Studies ET743-OVC-3006 and ET743-OVA-301)

PLD, pegylated liposomal doxorubicin.

Figure 2. Multivariate Analysis on Incidence of Cardiac-Related TEAEs (Logistic Regression) for Treated Patients (Trabectedin – Pooled Phase 2 and 3 Studies)

Dependent variable: incidence of cardiac-related TEAEs.

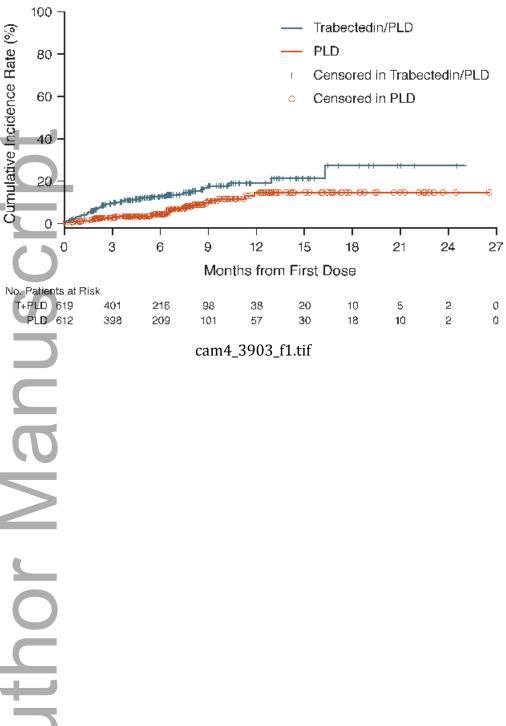
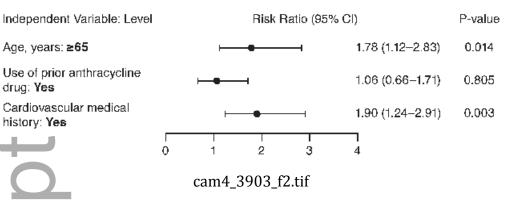
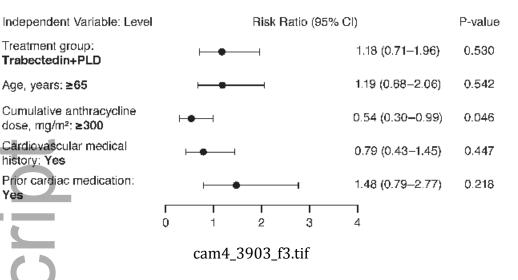

This article is protected by copyright. All rights reserved

Figure 3. Multivariate Analysis on Incidence of Significant LVEF Decrease (Logistic Regression) for Treated Patients (Pooled Studies OVC-3006 and OVA-301)


Dependent variable: incidence of significant LVEF decrease.


CI, confidence interval; LVEF, left ventricular ejection fraction; PLD, pegylated liposomal doxorubicin.

Author Manus

Age, years: ≥65

