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1. Coordinate Descent Algorithm

We implement an efficient algorithm to yield the optimal solution that minimizes the L1-

norm penalized loss function in equation (3) of the main text under a fixed positive definite

matrix W = BBT + Ψ. Since minimizing this penalized loss function with respect to Θ is

equivalent to a convex optimization problem, the objective function decreases over iterations,

and the algorithmic convergence is warranted (Tseng and Yun, 2009). We first reformulate

the optimization, so that the penalized loss function reduces to a regular LASSO regression

problem with ξij = 1 and cij = 1 in the penalized loss function. Then, we apply the following

active-shooting algorithm to find the sparse solution of Θ efficiently.

Given Y T
P×N = (yT

1 , . . . ,y
T
N) and Ỹ , YW−1/2 with W = BBT + Ψ, it is easy to see

that the quadratic loss function 1
2N

∑N
n=1(yn − Θyn)T (BBT + Ψ)−1(yn − Θyn) equals to

1
2N
‖ Y − Xβ ‖2, where β = (θ21, . . . , θP1, . . . , θPP−1)T , Y = (Ỹ T

2 , . . . , Ỹ
T
P )T , and X =

(X(2,1), . . . ,X(P,P−1)) is an N(P − 1) by P (P−1)
2

matrix with

X(i, j) = ( 0
1st block

, . . . , Ỹ T
j

(i−1)th block

, . . . , 0
(P−1)th block

)T .

Thus, the L1-norm minimization in equation (3) of the main text is equivalent to the following

optimization:

min
Θ

1

2N
‖ Y − Xβ ‖2 +λ

P (P−1)
2∑

h=1

ξh|chβh|, (1)

with ξh being the h-th element of vector ξ = (ξ21, . . . , ξPP−1)T and ch being the h-th element

of vector c = (c21, . . . , cPP−1)T . The dimensions of Y and β are N(P − 1) and P (P − 1)/2,

respectively, which are larger than N and P . This could involve significant computational

burden. Note that X is a block matrix with many zero blocks, and utilizing its structural

features in computation can help run the LASSO optimization algorithm more efficiently.

Thus, to improve the computational efficiency, we implement the active-shooting method

(Friedman et al., 2007, 2010; Peng et al., 2009) in the coordinate descent algorithm. It can

be shown that the resulting computational complexity of solving (1) reduces to as low as
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the order of min(O(NP 2), O(P 3)), which is equivalent to performing P individual LASSO

regressions in the neighborhood selection method (Shojaie and Michailidis, 2010).

Unlike the neighborhood selection method (Shojaie and Michailidis, 2010) which imposes

sparsity on individual neighborhoods during optimization, in our method the sparsity of β

is treated in a global fashion via the regularized objective function (1). Thus, our approach

utilizes the data more efficiently, and seems more natural to deal with networks with clustered

hubs that are typically formed around master regulators. Indeed, detecting master regulators

and their surrounding network structures is of great interest in the reconstruction of gene

regulatory networks. In addition, given certain established knowledge of directed edges, the

proposed regularization method in (1) has the flexibility of incorporating such information.

That is, we can determine whether or not to penalize a pair of nodes by including suitable

entries in the weighting term c. Also with the utilization of the term ξ, we can assign different

adaptive weights to different pairs of nodes according to their importance.

The active-shooting algorithm proceeds as follows: at each updating step, we first define

an “active” set of currently nonzero coefficients and update the coefficients within the active

set until convergence is achieved before moving on to update other parameters. This is

computationally appealing because the active set usually remains small under the sparse

model assumption. Defining a current active set H = {h : chβh 6= 0}, we update βh0∈H by

the following operation in (2) with all other βh6=h0 fixed until convergence is achieved in H.

β̂h0 =


(Y −

∑
h6=h0

βhXh)TXh0/‖Xh0‖2
2, if ch0 = 0,

S
(

(Y −
∑
h6=h0

βhXh)TXh0 , Nλξh0

)
/‖Xh0‖2

2, if ch0 = 1,

(2)

where S(a, b) = sgn(a)(|a| − b)+ is the soft-thresholding operator.
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2. Some additional simulation results

Table 1 lists some additional results of both simulation experiments I and II in the paper,

where we further compare the proposed SFEM with PC-algorithm (given bonferroni cor-

rected α) and the score-based method (sparsebn). Table 1 suggests that the proposed SFEM

method with the number of latent factors K selected via eigenvalue ratio criterion shows a

satisfactory performance with the highest sensitivity and MCC as well as the lowest false

discovery (FP + FN).

[Table 1 about here.]

We further extend the above 50 simulations for Simulation II (i.e. P = 200,M = 100, N =

100, Ktrue = 5, PEV = 1 : 4) to 500 simulations. The following plot is the spaghetti plot

for each method. With no doubt, SFEM with full knowledge on node order outperforms

all the other methods, especially the PC algorithm or the score-based method (sparsebn),

which do not utilize node order information and also do not adjust for latent factors. When

comparing SFEM with partial knowledge versus with no knowledge, we find that there is an

improvement on network identification because of utilizing the existing partial knowledge of

node order. When comparing the variation of SFEM across full knowledge, partial knowledge

and no knowledge about node order respectively, we can see that SFEM with full knowledge

has the smallest variation. This is probably due to the model identifiability. Once we do not

know the node order (i.e. partial knowledge and no knowledge), this identifiability issue is

reflected via larger variations.

[Figure 1 about here.]

3. Some Empirical Results on Computational Complexity

Fitting the SFEM involves two separate operations. One is related to a factor analysis of

residuals, which is implemented by the EM algorithm; and the other is the operation of
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coordinate descent algorithm to search for sparse adaptive lasso solution in the estimation

of the weighted adjacency matrix Θ. In our computation, given the number of latent fac-

tors K and the tuning parameter λ, when the weighted adjacency matrix Θ is fixed, the

computational complexity is O(NPK) per iteration in the estimation of the factor loadings

B and uniqueness Ψ = σ2IP . When the covariance matrix W = BTB + Ψ is given, the

computational cost of solving Θ by the sparse adaptive lasso via the popular active shooting

method in the coordinate descent algorithm is min(O(NP 2), O(P 3)). Here N is the sample

size, P is the number of nodes, and K is the number of latent factors. To demonstrate

the actual run-time in model fitting, here we present a simulation experiment focusing on

computation time. Using the Simulation II setup outlined in the paper (P = 200, K = 5,

N = 100, M = 100, PEV = 1 : 4), we report the computation time in various scenarios

in Table 2 in terms of average running time in seconds over 50 simulations to solve SFEM

under the selected tuning parameter λ. All calculations were carried out on a computer with

an Intel Xeon 2.30 GHz processor.

[Table 2 about here.]

With no surprise the computational cost increases along the increase in the number of

latent factors K. This is because the more complicated the factor model is the heavier

computational burden the EM algorithm encounters to estimate loading coefficients. In

practice, instead of trying a wide range of K values, one may narrow down such range

by identifying the top K eigenvalues of sample covariance matrix of Y or apply eigenvalue

ratio (ER) criterion to select the number of latent factors K. At this moment this strategy

is learned from our empirical experience, which needs further theoretical investigation.
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4. Analysis of cell signaling data

This section demonstrates an application of the proposed SFEM method to analyze mul-

tivariate flow cytometry data available in Sachs et al. (2005), which has been previously

analyzed by Shojaie and Michailidis (2010); Fu and Zhou (2013); Friedman et al. (2008);

Aragam and Zhou (2015), among others. This dataset includes 11 phosphorylated proteins

from N = 7466 cells. The consensus network, constructed by experimental annotations, has

20 edges, which is displayed in Figure 2 and is used as the benchmark to assess the accuracy

of an estimated network structure. A direction from node i to node j is interpreted as a

causal influence from protein i to protein j. Following Shojaie and Michailidis (2010), the

node ordering in the DAG is treated as a priori feature among 11 proteins.

[Figure 2 about here.]

Based on the scree plot (not shown) and the eigenvalue ratio (ER) method, we obtain

KER = 4. The optimal tuning parameter is determined by the 5-fold cross-validation method.

We explore the SFEM under different numbers of latent factors K = 0, 2, 4, 6, where

K = 0 corresponds to the analysis given by Shojaie and Michailidis (2010) and K = 4 is

the estimated number of latent factors. Figure 3 shows the plot of the number of correctly

detected edges versus the total number of detected edges across different number of latent

factors. Comparing the results obtained under K = 0, 2, 4, 6, we find that the SFEM with

the estimated KER = 4 performs slightly better than the other cases. To compare the SFEM

(K = 0) with the SFEM(K = 4) in the case where both methods detect 25 edges, 10 edges

detected by the latter are in the consensus network as opposed to 7 edges detected by the

former in the consensus network. So, adjusting the latent factors can improve the sensitivity

by 3/25 = 12%.

[Figure 3 about here.]

We display the estimated DAGs in Figure 4. Major differences between these two DAGs lie
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in the domain of false discoveries. For example, among the total of 25 directed edges, the

SFEM with KER = 4 reports 15 false positives in comparison to 18 false positives from the

SFEM with K = 0. Hence, the SFEM with KER = 4 gives a more reliable analysis, with

fewer false positives and more true positive signals in comparison to the SFEM with K = 0.

[Figure 4 about here.]

Nevertheless, several known edges are not detected by both SFEMs with K = 0 and

KER = 4. One possible reason is that the proposed SFEM is developed for a linear Bayesian

network, which may not be able to detect nonlinear causal relationships.

[Table 3 about here.]

In addition, we also compare the proposed SFEM with other popular methods, such as

the PC-algorithm and the score-based method, when 25 edges are detected. To make a

fair comparison, we further simply ignore the edge direction in the comparison for the PC

algorithm and the score-based method. In other words, no matter i→ j or j → i is detected

by the PC-algorithm or the score-based method, we will count it as a positive finding.

[Table 4 about here.]

Obviously, the SFEM with KER = 4 performs equivalently well as PC-algorithm and the

score-based method under this large sample scenario (i.e., N = 7466 >> P = 11) and

outperforms other methods in terms of higher sensitivity and MCC.

5. Additional analysis results of METABRIC gene expression data

A. We first analyze the reordered METABRIC gene expression data via our proposed SFEM

method where K ranges from 0 to 5. Figure 5 shows that with an increase in the number of

latent factors, the detected number of edges decreases.

[Figure 5 about here.]
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When fully ignoring latent factors (K = 0), a total of 211 edges are detected via our

method. However, most of these detected edges are deemed false positive and are not

biologically meaningful. See Figure 6 (a). In addition, the eigenvalue ratio method suggests

that the number of latent factors is K = 2 and we detect a total of 170 edges accordingly. See

Figure 6 (b). In addition to the SFEM method, we analyze this METABRIC gene expression

data via another two popular methods: PC-algorithm and score-based method. For the PC-

algorithm (given Bonferroni corrected α = 7.53e − 06), we totally detect 133 edges. See

Figure 6 (c). For the score-based method, we totally detect 215 edges, as shown in Figure 6

(d). To sum up, Figure 7 shows 38 common edges among 42 genes collectively detected by

the different methods.

[Figure 6 about here.]

[Figure 7 about here.]

B. We apply our SFEM method on 50 bootstrap samples, where the final gene regulatory

network is drawn by the majority voting strategy; that is, a final edge is reported when it is

detected at least 50% chance out of 50 bootstrap samples. The frequency of the number of

latent factors K determined by the eigenvalue ratio method among 50 bootstrap samples is

summarized in Table 5.

[Table 5 about here.]

In the finally voted network, we detect 125 causal relationships among 71 genes, which is

illustrated in Figure 8.

[Figure 8 about here.]

In addition, we apply the PC-algorithm and the sparsebn method on 50 bootstrap samples.

In the final causal network, in which a detection is called if it occurs in more than 25 bootstrap

samples, the PC-algorithm has detected 111 causal relationships among 74 genes, whereas
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the score-based method has detected 153 causal relationships among 79 genes. The detailed

final GRNs are illustrated in Figure 9.

[Figure 9 about here.]

To summary, we detect 60 common edges among 56 genes, as shown in Figure 10 which

represents a shared finding across the SFEM, the score-based method and the PC algorithm.

[Figure 10 about here.]

6. Computing Code

Our computing code used in the simulation studies is available online under the package name

“SFEM” at webpage: http://www.umich.edu/~songlab/software.html. In this sample

coding package, we have provide the following items to test our computing code:

1. Y_1.txt is the example dataset. This dataset is generated under the settings of Simulation

I, where N = 25, P = 50 with the total true edges M = 25, K = 2, PEV = 1 : 3.

2. Theta_simple.txt is the true weighted adjacency matrix for Simulation I. This is a lower

triangular matrix with total M=25 nonzero elements.

3. main_K_2.R is the main calculation function. It will calls other functions: EM.R, OLS.R,

Theta initialization.R, and Parameter estimation.R. This runs the SFEM method on the

dataset Y_1.txt under K = 2 for a given tuning parameter γ = 2. We also compare the

estimated network adjacency matrix with the true network adjacency matrix, where the

result is summarized as follows:

total_detect TP FP FN Sen Spec MCC FPR

26 25 1 0 1 0.999596 0.9803826 0.0004040404
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Figure 1: Spaghetti plot based on Simulation II with P = 200,M = 100, K = 5, N =
100, PEV = 1 : 4 as well as the estimated KER = 5 (100%). The x-axis is the total number
of detected edges, and the y-axis is the number of correctly identified edges averaged over
500 replicates.
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Figure 2: A benchmark DAG based on the consensus signaling network of 11 proteins.
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Figure 3: Results from the analysis of cell signaling data by the proposed SFEM with
K = 0, 2, 4, 6 with KER = 4. The x-axis is the total number of detected edges, and the y-axis
is the number of correctly identified edges.
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Figure 4: Estimated causal interactions among 11 proteins of the signaling pathway. Black
squares represent TP, pink squares represent FN, and grey squares represent FP. The right
panel (b) also displays the loading matrix of 4 common latent factors z1, . . . , z4, where white
represents a loading coefficient smaller than 0.1.
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Figure 5: The number of detected edges under different K.
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Figure 6: Estimated gene regulatory network using different methods.
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Figure 7: 38 causal relationships among 42 genes across different methods: SFEMK=0,
SFEMK=2, PC algorithm and SPARSEBN.
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Figure 8: Estimated causal interactions among 71 driver genes of breast cancer.
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Figure 9: Final estimated gene regulatory network among 50 bootstrap samples via PC
algorithm and SPARSEBN method
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Figure 10: 60 causal relationships among 56 genes over 50 bootstrap samples across different
methods: SFEM, PC algorithm and SPARSEBN.
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Table 1: Additional results to compare SFEM with PC-algorithm and score-based method (sparsebn) over 50
simulations: small and large DAG simulation designs, respectively.

PEV Ktrue Method Total (TP+FP) TP FP FN Sen MCC KER(%)

Simulation I
1:3 2 SFEMER 29.44 24.76 4.68 0.24 0.99 0.92 2 (100%)

PC-algorithm 15.64 10.68 4.96 14.32 0.43 0.53
SPARSEBN 260.54 9.88 250.66 15.12 0.40 0.10

Simulation II
1:4 5 SFEMER 104.04 98.12 5.92 1.88 0.98 0.96 5 (100%)

PC-algorithm 109.36 9.40 99.96 90.60 0.09 0.09
SPARSEBN 347.30 11.60 335.70 88.40 0.12 0.06
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Table 2: An average running time over 50 simulations in seconds to solve SFEM under the
selected tuning parameters.

Method K=0 K=5 K=10

SFEM 179.93 (44.45) 440.65 (91.77) 1186.69 (290.74)
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Table 3: Comparison between SFEM with K = 0 and KER = 4 under the selected optimal
tuning parameter.

Method Total TP FP FN Method Total TP FP FN

K=0 42 15 27 5 K=4 25 10 15 10
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Table 4: Comparison among the PC algorithm, the score-based method, SFEM with K = 0
and K = 4 when 25 edges are detected.

Method Total (TP+FP) TP FP FN Sen MCC

PC-algorithm with direction 25 10 15 10 0.50 0.32
PC-algorithm ignoring direction 24 10 14 10 0.50 0.34

SPARSEBN with direction 25 5 20 15 0.25 0.05
SPARSEBN ignoring direction 25 9 16 11 0.45 0.27

SFEMK=0 25 7 18 13 0.35 0.16
SFEMK=4 25 10 15 10 0.5 0.32
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Table 5: The frequency of K determined by the eigenvalue ratio method among 50 bootstrap
samples.

K=1 K=2 K=3 K=4 K=5

Count (%) 5(10%) 25 (50%) 0 (0%) 17 (34%) 3 (6%)


