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Abstract
Directed acyclic mixed graphs (DAMGs) provide a useful representation of net-
work topology with both directed and undirected edges subject to the restriction
of no directed cycles in the graph. This graphical framework may arise in many
biomedical studies, for example, when a directed acyclic graph (DAG) of interest
is contaminated with undirected edges induced by some unobserved confound-
ing factors (eg, unmeasured environmental factors). Directed edges in a DAG
are widely used to evaluate causal relationships among variables in a network,
but detecting them is challenging when the underlying causality is obscured by
some shared latent factors. The objective of this paper is to develop an effec-
tive structural equation model (SEM) method to extract reliable causal relation-
ships from a DAMG. The proposed approach, termed structural factor equation
model (SFEM), uses the SEM to capture the network topology of the DAG while
accounting for the undirected edges in the graph with a factor analysis model.
The latent factors in the SFEM enable the identification and removal of undi-
rected edges, leading to a simpler and more interpretable causal network. The
proposed method is evaluated and compared to existing methods through exten-
sive simulation studies, and illustrated through the construction of gene regula-
tory networks related to breast cancer.
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1 INTRODUCTION

Reconstructing gene regulatory networks (GRN) using
gene expression data furthers our understanding of gene
function and cellular dynamics in biological systems
by elucidating regulatory mechanisms. Graphical models
are a popular tool to analyze and visualize conditional
independence among variables of interest. A graphical
model includes nodes representing random variables and
edges encoding relationships between the enclosing nodes.
Graphical models are classified into two classes depending
on whether edges are directional: directed graphical mod-

els and undirected graphical models. A directed graphi-
cal model, also known as a Bayesian network, is a graphi-
cal model whose dependence structure is represented by a
directed acyclic graph (DAG). For example, a directed edge
between two genes may represent a molecular chain reac-
tion of one gene regulating the other. The utility of DAGs
for inferring causality has received much attention in the
reconstruction of GRNs (Friedman et al., 2000; Pe’er et al.,
2001; Hartemink et al., 2002; Segal et al., 2003).
When a DAG is used for causal network inference,

some of the directed edges are often masked by undirected
edges induced by unmeasured confounding variables.
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The resulting graph may become a mixed graph with
both directed and undirected edges, or even an undi-
rected graph (Anandkumar et al., 2013). Thus, it seems
inevitable to invoke a more general graph than a DAG to
analyze the underlying network topology, in which undi-
rected edges are allowed. This motivates us to focus on
an analysis of causal relationships in a directed acyclic
mixed graph (DAMG). DAMG is sometimes called an
acyclic directed mixed graph (DMG), and also known
as a semi-Markov model. It contains both directed and
undirected edges, subject to the restriction of no directed
cycles in the graph. In a DAMG, the set of directed edges
represents the causal relationships between nodes and
constitutes the DAG of interest. It can, however, be con-
taminated by undirected edges introduced by some unob-
served factors. In practice, the latent factors may include,
for example, biomarkers that are not included in exper-
imental chips, environmental variables, and underlying
populations among experimental samples. Unfortunately,
such shared masking factors are often not directly mea-
sured in experiments despite their potential influence on
measurements. In the literature, methods for removing
these masking factors have not been systematically inves-
tigated. Here, we propose a new method that identifies
and removes nuisance undirected edges in the recon-
struction of causal relationships to obtain an interpretable
causal network.
Learning the dependence structure of a DAG from data

presents a significant challenge because the number of
candidate DAGs can grow super-exponentially along with
the number of nodes (Robinson, 1973). There are three
types of approaches to learning DAG structures: search-
and-score approaches, constraint-based approaches, and
hybrid approaches. A search-and-score approach attempts
to learn a DAG structure by optimizing some criteria, such
as the Bayesian information criterion (BIC) or validation
set likelihood, using either a search algorithm (Lam and
Bacchus, 1994; Heckerman et al., 1995) or Bayesian pos-
terior distribution (Friedman and Koller, 2003; Ellis and
Wong, 2008; Zhou, 2011). A constraint-based approach
tries to prune a set of possible edges identified by condi-
tional independence hypothesis tests, including the well-
known Peter-Clark (PC) algorithm (Spirtes et al., 2000),
or by removing conditional dependencies that fall below a
threshold (Cheng et al., 2002). A constraint-based method
is developed to prune a set of edges with a focus of
improving computational efficiency (Li and Yang, 2004;
Tsamardinos et al., 2006).
A vast majority of recent work has focused on the

reconstruction of a sparse DAG through a penalized like-
lihood approach. In the special case where a topologi-
cal ordering of the nodes is given, learning the structure
of a DAG is equivalent to sparse estimation of the mod-

ified Cholesky decomposition of a concentration matrix
(ie, the inverse of the corresponding covariance matrix),
which is computationally feasible; see, for example, Li
and Yang (2005), Huang et al. (2006), Levina et al. (2008),
and Shojaie and Michailidis (2010), among others. The
information on node ordering is usually determined by a
natural ordering of temporal observations, previous exper-
iments, and a priori knowledge (Shojaie and Michailidis,
2010). For example, when learning GRNs for microarray
data, a priori knowledge of the node ordering could be
obtained from the existing annotation software such as
Cytoscape (Lopes et al., 2010). If there is no established
known node ordering, some penalized score-based meth-
ods (eg, Fu and Zhou, 2013; Aragam and Zhou, 2015)
may be first applied to estimate DAG structures, which
is done without a priori knowledge of node ordering, fol-
lowed by extracting the node ordering from the estimated
DAG.
To fill in the technical gap where no systematic work is

available to assess sparse causal relationships in DAMGs,
we develop a regularization estimation method to extract
and evaluate a sparse causal network in the form of a DAG.
We develop a new method based on the structural fac-
tor equation model (SFEM) introduced in detail in Sec-
tion 2 with conditions for model identifiability. Section 3
concerns the penalized estimation of DAGs based on an
EM-coordinate-descent (EM-CD) algorithm for numerical
implementation. Operating characteristics of the proposed
method are examined on both simulated and real data in
Sections 4 and 5. We conclude with a discussion in Sec-
tion 6 in which we discuss the estimation of DAGs with
unknown node ordering.

2 STRUCTURAL FACTOR EQUATION
MODEL

2.1 Model

Given a 𝑃-dimensional random vector 𝐲 = (𝑦1, … , 𝑦𝑃)𝑇
with known variable ordering, we use a DAG  = (𝑉, 𝐸)

to describe causal relations, where 𝑉 is the set of vertices
(or variables or nodes) and 𝐸 is the collection of edges.
That is, each variable 𝑦𝑖 corresponds to one node in the
DAG, and a directed edge between two nodes indicates
a causal relationship between them. Without loss of gen-
erality, we assume that 𝐲 has been sorted according to
its known ordering, which means a causal relationship is
only possible from variable 𝑦𝑗 to variable 𝑦𝑖 , denoted by
𝑦𝑗 → 𝑦𝑖 , for 𝑗 < 𝑖. The set of parental nodes of 𝑦𝑖 is denoted
by 𝑝𝑎(𝑖) = {𝑗 ∶ 𝑗 < 𝑖, 𝑦𝑗 → 𝑦𝑖}. Specifically, for any 𝑘 < 𝑖,
if 𝑘 ∉ 𝑝𝑎(𝑖), then 𝑦𝑖 is independent of 𝑦𝑘 conditioning on
{𝑦𝑗}𝑗∈𝑝𝑎(𝑖).



ZHOU et al. 575

To model causality among the components of 𝐲,
we invoke a structural equation model (SEM): 𝑦𝑖 =∑
𝑗∈𝑝𝑎(𝑖)

𝜃𝑖𝑗𝑦𝑗 + 𝜖𝑖, 𝑖 = 1, … , 𝑃, where 𝜖𝑖 ’s are normal ran-
dom errors with mean 0 and independent of 𝑦𝑖 ’s parental
nodes. Regression parameter 𝜃𝑖𝑗 is a coefficient repre-
senting the association of 𝑦𝑖 with 𝑦𝑗 , conditional on all
other parental nodes of 𝑦𝑖 . The matrix form of the SEM
is: 𝐲 = Θ𝐲 + 𝝐, where the vector of errors 𝝐 = (𝜖1, … , 𝜖𝑃)𝑇
has mean 0 and covariance 𝑊. Here, Θ = {𝜃𝑖𝑗} is a 𝑃 × 𝑃
lower triangular matrix with zeros on the diagonal, and is
termed the weighted adjacency matrix of the DAG . Given
both Θ of DAG  and 𝑊, the first two moments of the
SEM are 𝝁 = 𝐸(𝐲) = 0 and Σ = Cov(𝐲) = (𝐼 − Θ)−𝑇𝑊(𝐼 −
Θ)−1, which are uniquely determined by the two matri-
ces Θ and 𝑊. This formulation requires a priori variable
ordering.
We propose to model the covariance 𝑊 by the classi-

cal factor analysis model (FAM): 𝑊 = 𝐵𝐵𝑇 + Ψ, where 𝐵
is a 𝑃 × 𝐾 factor loading matrix for 𝐾 (≤ 𝑃) latent factors
and Ψ is a 𝑃 × 𝑃 diagonal matrix of uniqueness (Johnson
andWichern, 2007). Combining the SEMandFAMmodels
leads to the following SFEM:

𝐲 = Θ𝐲 + 𝐵𝐳 + 𝐞, (1)

where 𝐳 is a 𝐾-variate vector of uncorrelated latent
factors following multivariate normal distribution
MVN𝐾(0, 𝐼) and 𝐞 is an error vector distributed accord-
ing to MVN𝑃(0, Ψ) and is independent of 𝐳. Moreover,
the first two moments of 𝐲 are, respectively, 𝝁 = 0 and
Σ = (𝐼 − Θ)−𝑇(𝐵𝐵𝑇 + Ψ)(𝐼 − Θ)−1. It is obvious that
SFEM in (1) reduces to the classical SEM when 𝐾 = 0.
From (1), we can also see that conditioning on the vector
of 𝐾 unobserved latent variables 𝐳, the vector of variables
𝐲 satisfies the SEM for a DAG. Our objective is to estimate
the weighted adjacency matrix Θ of interest, the loading
matrix 𝐵 and uniqueness Ψ, as well as to determine the
number of factors 𝐾.

2.2 Graphical representation of SFEM

Due to the potential influence of latent factors on causal
relationships, we consider a more general graphical model
than a DAG to accommodate undirected edges. We con-
sider the class of DMGs that contain both directed and
undirected edges. A mixed graph is defined by  =

(𝑉, 𝐸,𝑈), where 𝑉 is a finite set of vertices and 𝐸, 𝑈 ⊆

𝑉 × 𝑉 are two disjoint sets of edges. The edges in 𝐸 are
directed; that is, (𝑖, 𝑗) ∈ 𝐸 ⇒ (𝑗, 𝑖) ∉ 𝐸, denoted by 𝑖 → 𝑗.
The edges in𝑈 are undirected or bidirected; that is, (𝑖, 𝑗) ∈
𝐸 ⇒ (𝑗, 𝑖) ∈ 𝐸 and vice versa, denoted by 𝑖 ↔ 𝑗. Part A of
Figure 1 displays four examples of DMGs. TheDMGshown

in Panel A(b) is cyclic, a type of DMG that is not considered
in this paper.
In this paper, we focus on DAMGs, a subclass of DMGs

that do not include directed cycles. More specifically, a
DAMG (𝑉, 𝐸,𝑈) consists of two subgraphs: one is a DAG
(𝑉, 𝐸) consisting of all directed edges, which is captured
by a weighted adjacency matrix Θ; and the other is a sub-
graph containing all undirected edges (𝑉,𝑈), which are
obtained by nonzero entries in the covariance matrix𝑊 =

𝐵𝐵𝑇 + Ψ with𝑊𝑖𝑗 = 𝑊𝑗𝑖 ≠ 0 for (𝑖, 𝑗) ∈ 𝑈 or 𝑖 = 𝑗. In the
GRN study, common factors attributed to matrix 𝐵 could
include, for example, environmental variables, which are
not measured but may alter gene expressions substan-
tially. These factors are useful to explain the mechanism of
generation of undirected edges that contaminate the
underlying causal relationships of interest. For exam-
ple, Figures 1A(c) and A(d) show that the directed
chain networks among nodes 𝑌1, 𝑌2, and 𝑌3 (which
contains a subgraph of interest, namely, Figure 1A(a),
shown by the arrowed solid edges) are masked by undi-
rected edges (indicated by dashed lines). Intuitively, it
would be impossible to reconstruct a DAG (ie, the chain
graph in Panel A(a)) if these nuisance undirected edges
were not properly removed. Our strategy is to identify
and quantify potential triggers of undirected edges via
the factor model, as illustrated in Part B of Figure 1.
Figure 1B shows an example in which undirected edges
arise from three shared common latent factors 𝑧1, 𝑧2, and
𝑧3 among the nine measured variables 𝑦1, … , 𝑦9; marginal-
izing these latent factors will lead to many nuisance undi-
rected edges in a complex DAMG. The proposed SFEM is
developed to identify and reconstruct this DAG by con-
ditioning out the three latent triggers responsible for the
nuisance edges.

2.3 Parameter identifiability in SFEM

The parameters in the SFEM (1) include a lower triangular
𝑃 × 𝑃-weighted adjacencymatrixΘ, a 𝑃 × 𝐾 factor loading
matrix 𝐵, and a diagonal 𝑃 × 𝑃 uniqueness matrix Ψ. The
SFEM (1) may be rewritten as

𝐲 = (𝐼 − Θ)−1𝐵𝐳 + (𝐼 − Θ)−1𝐞 = Γ𝐳 + 𝜹, (2)

where Γ = (𝐼 − Θ)−1𝐵 and 𝜹 = (𝐼 − Θ)−1𝐞. The resulting
covariance matrix of 𝐲 is Σ = ΓΓ𝑇 + Σ𝛿 with Σ𝛿 = (𝐼 −

Θ)−1Ψ(𝐼 − Θ)−𝑇 . It is well known that the factors and load-
ings are not separably identified without further restric-
tions. Note that the factors 𝐳 ∼ MVN𝐾(0, 𝐼) and loadings
𝐵 enter the likelihood through ΓΓ𝑇 . Hence, for any 𝐾 ×
𝐾 rotation matrix Π, we have ΓΓ𝑇 = ΓΠΠ𝑇Γ𝑇 , producing
observationally equivalent models. Thus, we impose the
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F IGURE 1 Part A presents four examples of directed mixed graphs. The graph in A(b) is cyclic, while all others are acyclic. An arrowed
solid line indicates a directed edge and a dashed line denotes an undirected (or bidirected) edge. Part B presents an acyclic directed mixed
graph that contains a DAG with the directed edges (arrowed solid lines) among nine observed variables 𝑦1, … , 𝑦9 and a set of undirected edges
induced by three common latent factors 𝑧1, 𝑧2, and 𝑧3. This figure appears in color in the electronic version of this article, and any mention of
color refers to that version

following regularity conditions to identify parameters in
both Σ𝛿 and Γ in model (2).

∙ Condition (A): Assume that Γ𝑇Σ−1
𝛿
Γ = 𝐵𝑇Ψ−1𝐵 is diag-

onal with distinct entries arranged in a decreasing order.
∙ Condition (B): Assume that there exists a unique mod-
ified Cholesky decomposition of Σ𝛿 = (𝐼 − Θ)−1Ψ(𝐼 −
Θ)−𝑇 .

Condition (A) is a usual restriction for maximum like-
lihood estimation (MLE) in FAM (see, eg, Lawley and
Maxwell, 1962; Bai and Li, 2012). This condition is needed
to ensure that the reparameterization does not affect the
decomposition of the total variance into a sum of load-
ings 𝐵 and uniqueness Ψ. In other words, it ensures that
solutions from the MLE obtained under the reparame-
terization can be uniquely transformed back to the origi-

nal parameterization. Condition (B) is required to prohibit
the arbitrary permutation of node ordering, so that the
solution from the algorithm is unique. By taking Σ−1

𝛿
=

(𝐼 − Θ)𝑇Ψ−1(𝐼 − Θ), we obtain an alternative estimator to
the classic SEM. The fact that the DAG representation
(Θ,Ψ) encodes more conditional independence relations
than the inverse covariance matrix Σ−1

𝛿
motivates us to

obtain Θ for a simple and interpretable causal network.

3 REGULARIZED ESTIMATION

3.1 Formulation

Regularization methods are appealing in network learn-
ing settings because the dimension of unknown parame-
ters (eg, entries in Θ) can quickly exceed the sample size
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of the data. When natural ordering of the variables is avail-
able, and the number of latent factors𝐾 = 0 (ie,𝐵 = 0), the
reconstruction of a sparse DAG is equivalent to the sparse
estimation of themodifiedCholesky decomposition ofΣ−1

𝛿
.

In this case, the identifiability condition (A) automatically
holds. Several regularization approaches have been pro-
posed to shrink elements in Θ to zero. See Pourahmadi
(1999), Wu and Pourahmadi (2003), Huang et al. (2006),
Bickel and Levina (2008), and Levina et al. (2008), just to
name a few. More specifically, Huang et al. (2006) pro-
posed adding an 𝐿1 norm penalty onΘ to encourage zeros.
Levina et al. (2008) proposed a banding procedure using a
nested LASSO penalty. Recently, Shojaie and Michailidis
(2010) employed the adaptive LASSO penalty to estimate
the skeleton of aDAG in SEMs and showed that the LASSO
method is not sensitive to random permutations of the
order of variables in 𝐲.
Given 𝑁 samples 𝐲𝑛 = (𝑦𝑛1, … , 𝑦𝑛𝑃)𝑇, 𝑛 = 1,… ,𝑁, we

want to detect the sparse skeleton of a DAG adjusting
for latent factors. We propose the following penalized loss
function:

min
Θ

1

2𝑁

𝑁∑
𝑛=1

(𝐲𝑛 − Θ𝐲𝑛)
𝑇(𝐵𝐵𝑇 + Ψ)−1(𝐲𝑛 − Θ𝐲𝑛)

+ 𝜆

𝑃∑
𝑖=1

𝑖−1∑
𝑗=1

𝜉𝑖𝑗|𝑐𝑖𝑗𝜃𝑖𝑗|, (3)

where 𝜆 is a nonnegative tuning parameter, 𝑐𝑖𝑗 represents
the prior causal relationship of 𝑦𝑗 on 𝑦𝑖 , and 𝜉𝑖𝑗 is the adap-
tive weights of 𝑦𝑗 on 𝑦𝑖 . The 𝐿1 norm penalty term in the
above loss function (3) regularizes the sparsity in Θ.
Prior knowledge on the existence of causal relationships

in 𝐲 can be incorporated into the regularization procedure
through a prespecified 𝑃 × 𝑃 flag matrix 𝐶 = {𝑐𝑖𝑗}, whose
(𝑖, 𝑗)th element is given by:

𝑐𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩

1 if there is no prior information of causality
between 𝑗 and 𝑖, when 𝑗 < 𝑖;

0 if there exists prior knowledge of
causality 𝑗 → 𝑖,when 𝑗 < 𝑖.

(4)
Matrix 𝐶 in the penalty function is useful for screening all
available edges in exploratory analyses. In addition, Ξ =
{𝜉𝑖𝑗} is a 𝑃 × 𝑃 lower triangular matrix of adaptive weights
with the (𝑖, 𝑗)th element given by

𝜉𝑖𝑗 =

{
max(1, |𝜃𝑖𝑗|−𝛾), if 𝑐𝑖𝑗 = 1 and 𝑗 < 𝑖;
0, otherwise,

(5)

where 𝜃𝑖𝑗 is the estimate of 𝜃𝑖𝑗 obtained from the classical
LASSO estimation given by (3) with 𝜉𝑖𝑗 = 1 if 𝑐𝑖𝑗 = 1 and
𝑗 < 𝑖.

3.2 EM-coordinate-descent algorithm

We propose a two-step iterative approach to estimate three
unknown matrices (Θ, 𝐵, Ψ). Given the current estimates
(𝐵(𝑡), Ψ(𝑡)), Θ(𝑡+1) is updated by minimizing the penalized
loss function (3) using the coordinate descent (CD) algo-
rithm, and then (𝐵(𝑡+1), Ψ(𝑡+1)) are updated through the
EM algorithm. Both the EM and CD algorithms are dis-
cussed below. Repeating the two-step procedure iteratively
until convergence yields estimates (Θ̂, 𝐵̂, Ψ̂).
EM algorithm. We use the EM algorithm to estimate

(𝐵, Ψ) in the FAM.We can implement the EMalgorithmby
treating the latent factors 𝐳𝑛 = (𝑧𝑛1, … , 𝑧𝑛𝐾)𝑇 , 𝑛 = 1,… ,𝑁
as “missing data” and Θ as a fixed “known” constant
matrix. The M-step maximizes the log-likelihood of the
full data {(𝐲∗𝑛 ≜ 𝐲𝑛 − Θ𝐲𝑛, 𝐳𝑛), 𝑛 = 1,… ,𝑁}. We outline
the EM algorithm to update 𝐵 and Ψ, respectively, at the
(𝑡 + 1)th iteration. In the E-step, we obtain the following
moments of 𝐳𝑛, 𝑛 = 1,… ,𝑁,

𝐸(𝐳𝑛|𝐲∗𝑛; 𝐵, Ψ) = (𝐵𝑇Ψ−1𝐵 + 𝐼𝐾)−1𝐵𝑇Ψ−1𝐲∗𝑛,
V𝑎𝑟(𝐳𝑛|𝐲∗𝑛; 𝐵, Ψ) = 𝐼𝐾 − 𝐵𝑇Ψ−1𝐵(𝐵𝑇Ψ−1𝐵 + 𝐼𝐾)−1,
𝐸(𝐳𝑛𝐳

𝑇
𝑛 |𝐲∗𝑛; 𝐵, Ψ) = 𝐸(𝐳𝑛|𝐲∗𝑛; 𝐵, Ψ)𝐸(𝐳𝑇𝑛 |𝐲∗𝑛; 𝐵, Ψ)

+V𝑎𝑟(𝐳𝑛|𝐲∗𝑛; 𝐵, Ψ). (6)

In the M-step, 𝐵 and Ψ are updated at the (𝑡 + 1)th iter-
ation by, respectively,

𝐵(𝑡+1) =

{
𝑁∑
𝑛=1

𝐲∗𝑛𝐸(𝐳
𝑇
𝑛 |𝐲∗𝑛; 𝐵(𝑡), Ψ(𝑡))}

[
𝑁∑
𝑛=1

{
𝐸(𝐳𝑛𝐳

𝑇
𝑛 |𝐲∗𝑛; 𝐵(𝑡), Ψ(𝑡))}]−1 ,

Ψ(𝑡+1) =
1

𝑁

𝑁∑
𝑛=1

𝐸
{
(𝐲∗𝑛 − 𝐵𝐳𝑛)(𝐲

∗
𝑛 − 𝐵𝐳𝑛)

𝑇|𝐲∗𝑛; 𝐵(𝑡), Ψ(𝑡)}.
(7)

Noting that whenΨ takes the special formΨ = 𝜎2𝐼𝑃, we
consider a simple reparameterization by letting 𝐵̃ = 𝜎−1𝐵
and 𝐳̃𝑛 = 𝜎𝐳𝑛. Clearly, 𝐵𝐳𝑛 and 𝐵̃𝐳̃𝑛 follow the same distri-
bution. Thus, the EM algorithm updates 𝐵̃ and 𝜎2 by the
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following expressions:

𝐵̃(𝑡+1) =

{
𝑁∑
𝑛=1

𝐲∗𝑛𝐸
(
𝐳̃𝑇𝑛 |𝐲∗𝑛; 𝐵̃(𝑡), 𝜎2(𝑡))}

×

{
𝑁∑
𝑛=1

𝐸
(
𝐳̃𝑛𝐳̃

𝑇
𝑛 |𝐲∗𝑛; 𝐵̃(𝑡), 𝜎2(𝑡+1))}−1

,

𝜎2
(𝑡+1)

=
1

𝑁𝑄

𝑁∑
𝑛=1

𝐲∗
𝑇
𝑛

{
𝐼𝑄 − 𝐵̃

(𝑡)
(
𝐼𝐾 + 𝐵̃

𝑇(𝑡)𝐵̃(𝑡)
)−1

𝐵̃𝑇(𝑡)
}
𝐲∗𝑛.

(8)

Coordinate descent algorithm. We implement a CD algo-
rithm to obtain the optimal solution that minimizes the
𝐿1-norm penalized loss function (3) under a fixed positive-
definite matrix 𝑊 = 𝐵𝐵𝑇 + Ψ. The sparse solution of Θ
is obtained efficiently by an active-shooting algorithm.
Refer to Section 1 of the Supporting Information for
details.
EM-CD algorithm. Combining the EM and CD algo-

rithms, termed the EM-CD algorithm, we can iteratively
update Θ, 𝐵, and Ψ as follows:

Step 1. Initialization ofΘ(0),Ψ(0), andΘ(0) with some suit-
able values.

Step 2. Given (𝐵(𝑡), Ψ(𝑡), Θ(𝑡)), update Θ(𝑡+1) by the CD
active-shooting algorithm.

Step 3. Given Θ(𝑡+1), update (𝐵(𝑡+1), Ψ(𝑡+1)) via the EM
algorithm until convergence.

Step 4. Repeat steps 2 to 3 above until convergence.

3.3 Tuning parameter selection

Choosing the number of latent factors 𝐾 and tuning the
sparsity parameter 𝜆 are both of critical importance in the
proposed method. Since 𝐾 can affect the resulting sparsity
in the estimatedΘ, it has to be tuned properly. In the FAM
literature, some methods have been developed for select-
ing 𝐾. For example, Bai and Ng (2002) and Onatski (2010)
proposed methods to determine the number of factors in
certain approximate FAMs. Onatski (2009) developed test
statistics for a hypothesized number of factors using the
empirical distribution of eigenvalues of the sample covari-
ancematrix. Hirose andKonishi (2012) andCaner andHan
(2014) employed shrinkage estimation to determine rele-
vant factors. Here, we invoke an “eigenvalue ratio (ER)”
criterion (Ahn and Horenstein, 2013) to select 𝐾, mainly
for its simplicity and computational ease. In a general fac-
tor model given in (2), we can convert the selection of 𝐾
in the original loading matrix 𝐵 to that in the new loading

matrix Γ. Following Ahn and Horenstein (2013), for a sam-
ple covariance matrix 𝑌𝑌𝑇∕(𝑁𝑃), denote its 𝑘th largest
eigenvalues by 𝜂𝑘, 𝑘 = 1,… ,min(𝑁, 𝑃). The correspond-
ing ER is given by ER(𝑘) = 𝜂𝑘∕𝜂𝑘+1. The ER criterion is
given by 𝐾ER = arg max𝐾min≤𝑘≤𝐾max ER(𝑘), where 𝐾min
and 𝐾max may be prespecified according to the scree plot,
say, 𝐾min = 1 or 2 and 𝐾max = min(𝑁, 𝑃)∕2.
To select tuning parameter 𝜆, we adopt 𝑀-fold cross-

validation. Since the true model is believed to be sparse,
we use the ordinary least squares (OLS) estimates instead
of the shrunken estimates to calculate the cross-validation
error score. This is because the cross-validation error score
based on the shrunken estimates often leads to severe false
positive (FP) rates when there are many potential poor
predictors (Efron et al., 2004; Peng et al., 2010). The OLS
estimates are suggested in the literature as a reasonable
remedy, as confirmed in our simulation studies. The BIC,
another popular tuning parameter selectionmethod, is not
considered here mainly because estimating the degrees of
freedom required by the BIC is difficult under a nonorthog-
onal design.

4 SIMULATION EXPERIMENTS

4.1 Simulation setup

To examine the performance of the proposed SFEM for the
estimation of a sparse DAG in DAMGs, we consider two
types of DAG designs.
In simulation experiment I, we consider a small and

simple DAG with 𝑃 = 50 nodes and 𝑀 = 25 edges that is
randomly generated by the R-package pcalg (Kalisch and
Bühlmann, 2007). To control for the sparsity of the DAG,
we set the maximum number of parents for each node
at 2, and the depth of the DAG to 3, and then randomly
generate DAGs until the exact number of𝑀 = 25 edges is
achieved.
In simulation experiment II, we consider a more com-

plex DAG consisting of 19 master regulators (ie, parental
nodes). Among them, four are strong master regulators,
each influencing 14 to 18 nodes, seven are moderate mas-
ter regulators, each influencing three to seven nodes, and
the rest are 8 weak parental nodes that link to only one or
two offspring nodes. Such a DAG is generated by first ran-
domly selecting 19master parental nodes, and then further
randomly selecting offspring nodes within each parental
node. As a result, we create a DAGwith𝑀 = 100 edges. In
this second experiment, we vary both the number of nodes
and the number of latent factors. We set up the SFEMwith
fixed 𝑃 = 200 nodes and a varying number of latent factors
𝐾 = 1, 5, 10, and also set up the SFEMwith fixed𝐾 = 5 but
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varying number of nodes 𝑃 = 50, 100, 200. Clearly, with a
fixed number of edges𝑀 = 100, a larger number of nodes
𝑃 leads to a sparser network.
In both simulation designs, we generate 𝑁 = 25 and

100 units of networks, respectively, from the speci-
fied SFEMs above. In addition, we generate the ele-
ments of the weighted adjacency matrix Θ by 𝜃𝑖𝑗

𝑖.𝑖.𝑑.
∼

𝑈([−3,−1]
⋃
[1, 3]) in Simulation I, and set constant 𝜃𝑖𝑗 =

0.5 in Simulation II. In each case,we simulate latent factors
𝑧𝑛𝑘

𝑖.𝑖.𝑑.
∼ 𝑁(0, 1), loadings 𝐵𝑖𝑘

𝑖.𝑖.𝑑.
∼ 𝑈([−𝑏,−𝑎]

⋃
[𝑎, 𝑏]) and

noise 𝑒𝑛𝑗
𝑖.𝑖.𝑑.
∼ 𝑁(0, 𝜎2), where the parameters 𝑎, 𝑏, and 𝜎2

are chosen to satisfy a prespecified percent of explained
variability (PEV): 𝑃𝐸𝑉 =

√
𝑡𝑟(Σ𝛿)∕𝑡𝑟(Σ), where Σ𝛿 = (𝐼 −

Θ)−1Ψ(𝐼 − Θ)−𝑇 and Σ = (𝐼 − Θ)−1(𝐵𝐵𝑇 + Ψ)(𝐼 − Θ)−𝑇 .
The tuning parameter 𝜆 is determined by five-fold cross-
validation. In both simulation studies, 50 replicates are car-
ried out to draw summary statistics.
The performances of the proposed estimation method

and algorithm are compared mainly under three cases,
including (a) the latent factors are ignored, ie, 𝐾 = 0,
which is equivalent to themethod proposed by Shojaie and
Michailidis (2010); (b) the number of latent factors 𝐾 is
overspecified or underspecified, corresponding to overesti-
mation or underestimation of the latent factors covariance
𝑊 in a DAMG; and (c) the number of latent factors 𝐾 is
selected by the proposed ER method, ie, 𝐾 = 𝐾𝐸𝑅. See the
detail in Section 3.3.
For each simulated dataset, we generate the solution

paths for the elements of Θ using a geometric sequence
of values for 𝜆, starting from the largest value 𝜆max at
which Θ̂𝜆max = 𝟎 and decreasing to the smallest value
𝜆min = 10

−4. Note that the total number of detected edges
increases as 𝜆 decreases. We then evaluate the perfor-
mances of both estimation method and algorithm under
different numbers of latent factors nested within a series
of tuning parameter values. We also compare the per-
formances of the proposed estimation method and algo-
rithm with two top methods in the literature, namely, the
score-based method available in the R-package sparsebn
(Aragam et al., 1956) (which is referred to as sparsebn
hereafter), and the PC-algorithm implemented in the R-
package pcalg (Kalisch and Bühlmann, 2007), where the
significance levels of the PC-algorithm are given by a
geometric sequence of values {10−15, … , 0.95}. Neither the
sparsebn nor the PC-algorithm requires the knowledge of
node ordering as an input. An advantage of the SFEM is
that it enables the use of partial knowledge on the node
order to improve the statistical analysis. In practice, par-
tial prior knowledge of biological network structure may
be obtained from existing pathway databases. To give the
highest favor to these existingmethods,when reporting the
results from the software, we simply ignore the edge direc-

tion or equivalently assume that the direction is always cor-
rectly detected.

4.2 Findings from simulation studies

Figure 2 shows two plots of the average number of cor-
rectly detected edges against the total number of detected
edges over different numbers of latent factors 𝐾 over 50
replicates. This figure appears in color in the electronic ver-
sion of this article, and any mention of color refers to that
version. Here, “oracle” refers to the case where the pro-
posed regularized estimation is carried out by using the
true covariance matrix 𝑊 = 𝐵𝐵𝑇 + Ψ without estimating
𝐵 and Ψ, namely, the EM algorithm is not used in the esti-
mation. We find that the proposed SFEM method in the
case of 𝐾 = 𝐾𝐸𝑅 with estimated 𝐵 and Ψ produces results
very close to those obtained in the “oracle” case. This sug-
gests that the EM algorithm works well to estimate the𝑊
matrix. Also, we see that the SFEMmethodwith𝐾 = 𝐾true,
equal to 2 in the top Panel A and 5 in the bottom Panel B
of Figure 2, outperforms all the other cases with misspeci-
fied 𝐾.
The performances of the PC-algorithm and the sparsebn

method appear to be theworst, and are evenworse than the
SFEM with 𝐾 = 0 where no latent factors are accounted
for in the analysis. Figure 2A shows that under a rel-
atively light degree of masking (𝐾 = 2), the proposed
SFEM(𝐾 = 0) can gradually pick up more true signals
when more false discoveries are allowed. In contrast, nei-
ther the PC-algorithm nor the sparsebn method show
any noticeable improvement. This is probably because
both the PC-algorithm and the sparsebn method do
not use any a priori knowledge of node ordering. In
Figure 2B with 100 detected edges, the sparse SFEM with
𝐾 = 𝐾ER can detect more than 95% of the true edges cor-
rectly with an average standard deviation of 1.45 edges,
whereas the PC-algorithm or the score-based method can
only detect about 10% of the true edges successfully. In
other words, the unmeasured confounding factors can
severely impair the performances of the PC-algorithm and
the sparsebn method. The quality of our method is fur-
ther measured by the average number of true positive
(TP), FP and false negative (FN) edges, sensitivity (Sen),
and Matthews correlation coefficient score (MCC). Table 1
summarizes the average performance of the SFEM with
𝐾 = 𝐾𝐸𝑅 for different numbers of 𝑃 in the second sim-
ulation experiment with 𝐾true = 5. For example, when
𝑃 = 200, on average, the estimated graph is able to iden-
tify 104.04 directed edges, of which 98.12 edges are the
true edges, and the other 5.92 edges are false. In the case
of 𝑃 = 200, the number of parameters to be estimated is
around 20 000, which is much larger than the sample size
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F IGURE 2 Summary results from two DAGs designed in the simulation studies. The 𝑥-axis is the total number of detected edges, and the
𝑦-axis is the average number of correctly identified edges over 50 replicates. The vertical (gray) line corresponds to the number of true edges.
Panel A displays the results from the first small DAG simulation design with 𝑃 = 50,𝑀 = 25, 𝐾 = 2,𝑁 = 25 as well as the estimated 𝐾𝐸𝑅 = 2.
Panel B shows the results of the second large DAG simulation design with 𝑃 = 200,𝑀 = 100, 𝐾 = 5,𝑁 = 100 as well as the estimated 𝐾𝐸𝑅 = 5.
This figure appears in color in the electronic version of this article, and any mention of color refers to that version
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TABLE 1 Performance comparison with different number of
nodes, 𝑃 = 50, 100, 200 under the second large DAG simulation
design with𝑀 = 100, 𝐾 = 5, and 𝑁 = 100

P
Total
(TP+FP) TP FP FN Sen MCC 𝑲𝑬𝑹(%)

50 99.07 97.12 1.95 1.94 0.98 0.99 5 (100%)
100 100.69 97.56 3.13 2.17 0.97 0.97 5 (100%)
200 104.04 98.12 5.92 1.88 0.98 0.96 5 (100%)

𝑁 = 100. In this high-dimensional setting with a substan-
tial amount of masking by 𝐾 = 5 latent factors, results
in Table 1 suggest that our regularization method can
estimate the DAG structure with reasonable accuracy even
with the limited sample size 𝑁 = 100. When the network
is relatively simpler with 𝑃 = 50 or 100, the proposed esti-
mation method and algorithm perform even better.
Table 2 lists the results of both simulation experiments I

and II with different numbers of latent factors and differ-
ent percents of explained variability. Table 2 suggests that
the proposed ER criterionworks well in selecting the num-
ber of latent factors, except for the case of Simulation II
with PEV=1:2. This is because in this setting, PEV is rel-
atively small, and the ER criterion is always in favor of
a stronger nuisance covariance structure with two latent
factors. However, it is interesting to notice that, although
the nuisance structure is slightly overestimated (ie, one
additional factor to the true 𝐾 = 1), the resulting perfor-
mance (𝐾𝐸𝑅 = 2) still appears much better than that with
an underspecified nuisance structure (𝐾 = 0), judging by,
for example, MCC= 0.85 versus 0.29. As shown in Table 2,
either ignoring or underspecifying the number of latent

factors results in abundant nonzero entries in Θ, many of
whichmay be false edges. In contrast, if the number of fac-
tors is overestimated, the proposedmethodwould produce
a sparseΘmatrix, leading tomany FN discoveries. The lat-
ter presents a conservative analysis that fails to detect some
of the true signals, which is often amore favorable scenario
than the former, which reports excessive false signals. In
summary, the proposed SFEM with 𝐾𝐸𝑅 shows a satisfac-
tory performance with the highest sensitivity andMCC, as
well as the lowest false discovery rate.
Section 2 of the Supporting Information provides some

additional simulation results for the comparison of SFEM,
PC-algorithm, and sparsebn in both DAG simulation set-
tings.

4.3 Sensitivity analysis on the
knowledge of node ordering

An input of a priori node ordering presents a notice-
able limitation on the proposed SFEM method. We fur-
ther assess the performance of the proposedmethod under
three scenarios: (a) fully known node ordering, (b) fully
unknown node ordering, and (c) partially known node
ordering. The third scenario is most likely to occur in prac-
tice, given that practitioners often know part of a network
under investigation based on their own experiences and
relevant publications. Here, we use the setting of Simu-
lation II with 𝑃 = 200, 𝐾 = 5, 𝑁 = 100, 𝑃𝐸𝑉 = 1 ∶ 4, and
𝑀 = 100. Figure 3 reports the results.
In scenario (b) of fully unknown node ordering, we

first apply the sparsebn method on each of 50 simulated

TABLE 2 Results from both small and large DAG simulation designs, respectively, where the number of latent factors 𝐾 and the percent
of explained variability (PEV) vary over four cases

PEV 𝑲true Method Total (TP+FP) TP FP FN Sen MCC 𝑲𝑬𝑹(%)
Simulation I
1:3 2 SFEM𝐸𝑅 29.44 24.76 4.68 0.24 0.99 0.92 2 (100%)

SFEM𝐾=0 118.84 24.96 93.88 0.04 0.99 0.44
SFEM𝐾=5 25.88 20.24 5.64 4.76 0.81 0.80

Simulation II
1:4 5 SFEM𝐸𝑅 104.04 98.12 5.92 1.88 0.98 0.96 5 (100%)

SFEM𝐾=0 1530.92 97.96 1432.96 2.04 0.98 0.24
SFEM𝐾=7 72.29 63.86 8.43 36.14 0.64 0.70

1:2 1 SFEM𝐸𝑅 88.2 79.84 8.34 20.16 0.80 0.85 2(100%)
SFEM𝐾=1 104.44 97.44 7.00 2.56 0.97 0.95
SFEM𝐾=0 1015.32 93.64 921.68 6.36 0.94 0.29

1:6 10 SFEM𝐸𝑅 93.76 91.52 2.24 8.48 0.92 0.94 10 (100%)
SFEM𝐾=0 3686.72 97.64 3589.08 2.36 0.98 0.14
SFEM𝐾=15 53.28 49.64 3.64 50.36 0.50 0.67
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F IGURE 3 Summary results based on the large DAG simulation design with 𝑃 = 200,𝑀 = 100, 𝐾 = 5,𝑁 = 100 as well as the estimated
𝐾𝐸𝑅 = 5. The 𝑥-axis is the total number of detected edges, and the 𝑦-axis is the number of correctly identified edges averaged over 50 replicates.
The vertical (black) line corresponds to the number of true edges. This figure appears in color in the electronic version of this article, and any
mention of color refers to that version

datasets 𝑌(𝑠), 𝑠 = 1,… , 50 to learn the underlying node
ordering order(𝑠) of the network. Reordering the nodes
𝑌(𝑠) based on the learned ôrder(𝑠) leads to a reordered
𝑌∗
(𝑠)
. Finally, we apply our SFEM method on 𝑌∗

(𝑠)
, 𝑠 =

1,… , 50. In scenario (c) of partially known node order-
ing, our design is given as follows. Since the true DAG
in the Simulation II design consists of four strong mas-
ter regulators (or hubs), we randomly pick two of them
and treat the corresponding sub-DAG as our prior knowl-
edge about the network. So, we know a priori part of the
true node ordering of the network, called order(prior). For
the rest of nodes, we once again learn the node ordering
by the sparsebn method. We merge these two pieces as
(ôrder

rest
(𝑠) , order(prior)) to form the node ordering of the net-

work.
We also apply the proposed ER method, which consis-

tently selects 𝐾 = 5(100%) under each scenario. Thus, we
compare the performance of our method SFEM𝐾=5 under
the three levels of node ordering knowledge, as well as the
naive PC-algorithmand sparsebnmethod that do not input
any knowledge of node ordering. From Figure 3, with no
surprise, our SFEM𝐾=5 method significantly outperforms

the PC-algorithm and the sparsebn method in all scenar-
ios. This figure appears in color in the electronic version
of this article, and any mention of color refers to that ver-
sion. Interestingly, accounting for latent factors with our
SFEMmethod in scenario (b) clearly helps boost the detec-
tion power compared to the sparsebnmethod that supplies
the node ordering to the SFEM method. In the presence
of such strong masking due to five unmeasured factors, it
is certainly beneficial to use our SFEM method. Another
important conclusion from this comparison is that know-
ing the node ordering partially can help a lot. The pro-
posed SFEM method has the flexibility to accommodate
some incomplete knowledge for improvement of detec-
tion power.
Under the sameDAG setting, Section 2 of the Supporting

Information provides an expanded simulation experiment
II with 500 replicates. Section 3 of the Supporting Infor-
mation reports the results of average computation time for
the EM-CD algorithm over different 𝐾 values based on 50
rounds of simulations. It ranges from 3minuteswith𝐾 = 0
to 7minutes with𝐾 = 5, which is reasonably fast given the
size and complexity of the computational operations.
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5 ANALYSIS OFMETABRIC GENE
EXPRESSION DATA

This section demonstrates the application of the proposed
SFEM method to the METABRIC data, which consists of
gene expression measurements collected from a study of
the genomic landscape of breast cancers (Pereira et al.,
2016). In the analysis of genetic regulatory networks, we
focus on 82 driver genes identified by Pereira et al. (2016),
which are measured from 1222 primary tumor samples.
This set of driver genes is known for their individual causal
effects on breast cancer outcomes, which have been estab-
lished through somatic mutation patterns that are inde-
pendent of their gene expression profiles. Applying the
proposed method, we hope to estimate DAGs involving
these causal genes to learn about biological interactions
and pathways relevant to the disease.
To obtain the node ordering required by our SFEM

method, we first apply the sparsebn method to obtain an
estimated ordering of 82 driver genes. We do not use the
node ordering from the PC algorithm simply because it is
sensitive to a predefined threshold required by themethod.
The SFEM method is then applied with 𝐾 varying from 0
to 5. At K = 0 (no latent factors), 211 edges are detected,
some of which may be potentially masked by ubiquitous
confounding in the experiment. When applying the ER
method to select 𝐾, we get 𝐾 = 2, leading to 170 detected
edges. The reduction of the detected edges seems to suggest
that some of the detected edges at 𝐾 = 0 can be explained
by the unmeasured confounding that is accounted for with
𝐾 = 2. Thus, the edges inferred at 𝐾 = 2 are likely more
robust. The related details can be found in Section 5 of the
Supporting Information.
To enhance the stability of the analysis results, we gener-

ated 50 bootstrap sampleswith replacements from the gene
expression data under the previously given node ordering.
For each bootstrap sample, we apply the SFEMmethod in
which K is determined by the ER method, and the tun-
ing parameter 𝜆 is selected by the five-fold cross-validation.
The final GRN is drawn following themajority voting strat-
egy; that is, a final edge is reported only if it is detected
at least 50% of the time out of 50 bootstrap samples. As
shown in Table S5 of the Supporting Information, K =

2 appears to be the dominant mode. In the final causal
network voted by the 50 bootstrap samples, we detect 125
causal relationships among 71 genes. The detail of the reg-
ulatory network is shown in Figure S7 of the Supporting
Information.
The GRN constructed by the SFEM shows some del-

icate structures among these breast cancer driver genes.
Within the network, we find some interesting subnet-
works, displayed in Figure 4. Unlike a star-shape topol-
ogy where each driver gene independently causes the

disease, our result reveals a pattern of complicated inter-
actions between the driver genes. We find that the biggest
hub is gene CCND2, which regulates the other eight genes
(BRCA1, JAK2, ABCC4, ERCC4, MLH1, DHRS13, LMO2,
NFIB), while CCND2 is regulated by genes BIRC3 and
FBN1. Another major hub is gene RUNX1, which regu-
lates seven genes (RAD51C, CCT2, BCL10, NDRG1, PTEN,
HERPUD1, EXT1), and while itself is regulated by TRIP11
and COL1A1. See Part A of Figure 4. In addition, we
find that genes BRCA1 and LMO2 are two major off-
spring nodes, each of which is regulated by five genes.
BRCA1 is a well-known breast cancer oncogene that is
regulated by RAD51C, EZH2, RECQL4, NF1, and CCND2.
Also, LMO2 is regulated by FH, PIK3C3, EZH2, CCND2,
and FOXA1. See Part B of Figure 4. These intriguing
results illustrate how pathway analysis can shed light on
the regulatory mechanisms of these important disease
genes.
Another real data example using cell signaling data is

given in Section 4 of the Supporting Information. This
is a multivariate flow cytometry dataset that has previ-
ously been analyzed by many statisticians. Our analysis
using the proposed SFEM method gives similar findings
to those published.

6 DISCUSSION

Given prior knowledge on node ordering among variables,
we proposed a class of SFEMs for an exploratory analysis
of causal network construction. The proposed methodol-
ogy combines the SEM and the FAM. Our SFEM method
may be regarded as a general FAM that enables to effec-
tively segregate a DAGwith directed edges from an acyclic
DMG, where undirected edges induced by unmeasured
confounding factors are identified and removed. In this
way, a simpler and more interpretable causal network is
obtained. When there are no latent factors included, the
proposed SFEM reduces to the classical SEM. In this case,
the reconstruction ofDAGsbased on our proposed𝐿1 norm
regularization method is equivalent to the 𝐿1 norm penal-
ized likelihood method proposed by Shojaie and Michai-
lidis (2010).
We developed a two-step EM-CD algorithm for imple-

mentation of the proposed method that works reasonably
well and can be applied to large networks, as shown in
various numerical settings. However, our objective func-
tion for the whole set of parameters is nonconvex, which
might yield multiple local solutions in the optimization.
Since both the CD algorithm and EM algorithm solve their
respective convex functions, the algorithm convergence is
certain. Finding a global optimal solution for nonconvex
problems is numerically very challenging, and worth fur-
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F IGURE 4 Subnetworks for master regulator genes (CCND2 and RUNX1) and master offspring genes (BRCA1 and LMO2), respectively.
This figure appears in color in the electronic version of this article, and any mention of color refers to that version

ther exploration. In addition, if information on node order-
ing is fully or partially unavailable, our method can incor-
porate an estimated ordering obtained from existing meth-
ods (eg, the score-based method). Our simulation studies
have demonstrated a clear improvement of the proposed
SFEM method on detection power over existing methods
in the presence of masking factors. We expect that our

method can further improve detection power given better
estimation of causality direction among network nodes. In
addition, in the real data analysis, causal relations in GRNs
are possibly nonlinear and may not be detectable using
the linear SFEM proposed in this paper. Learning nonlin-
ear causality presents another interesting extension of this
research topic.
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