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Summary: Directed acyclic mixed graphs (DAMG) provide a useful representation of network topology with both

directed and undirected edges subject to the restriction of no directed cycles in the graph. This graphical framework

may arise in many biomedical studies, for example when a directed acyclic graph (DAG) of interest is contaminated

with undirected edges induced by some unobserved confounding factors (e.g., unmeasured environmental factors).

Directed edges in a DAG are widely used to evaluate causal relationships among variables in a network, but detecting

them is challenging when the underlying causality is obscured by some shared latent factors. The objective of this

paper is to develop an effective structural equation model (SEM) method to extract reliable causal relationships from

a DAMG. The proposed approach, termed structural factor equation model (SFEM), uses the SEM to capture the

network topology of the DAG while accounting for the undirected edges in the graph with a factor analysis (FA)

model. The latent factors in the SFEM enable the identification and removal of undirected edges, leading to a simpler

and more interpretable causal network. The proposed method is evaluated and compared to existing methods through

extensive simulation studies, and illustrated through the construction of gene regulatory networks related to breast

cancer.
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1. Introduction

Reconstructing gene regulatory networks (GRN) using gene expression data furthers our

understanding of gene function and cellular dynamics in biological systems by elucidat-

ing regulatory mechanisms. Graphical models are a popular tool to analyze and visualize

conditional independence among variables of interest. A graphical model includes nodes

representing random variables and edges encoding relationships between the enclosing nodes.

Graphical models are classified into two classes depending on whether edges are directional:

directed graphical models and undirected graphical models. A directed graphical model, also

known as a Bayesian network, is a graphical model whose dependence structure is represented

by a directed acyclic graph (DAG). For example, a directed edge between two genes may

represent a molecular chain reaction of one gene regulating the other. The utility of DAGs

for inferring causality has received much attention in the reconstruction of gene regulatory

networks (Friedman et al., 2000; Segal et al., 2003; Hartemink et al., 2002; Pe’er et al., 2001).

When a DAG is used for causal network inference, some of the directed edges are often

masked by undirected edges induced by unmeasured confounding variables. The resulting

graph may become a mixed graph with both directed and undirected edges, or even an

undirected graph (Anandkumar et al., 2013). Thus, it seems inevitable to invoke a more

general graph than a DAG to analyze the underlying network topology, in which undirected

edges are allowed. This motivates us to focus on an analysis of causal relationships in a

directed acyclic mixed graph (DAMG). DAMG is sometimes called an acyclic directed mixed

graph, and also known as a semi-Markov model. It contains both directed and undirected

edges, subject to the restriction of no directed cycles in the graph. In a DAMG, the set

of directed edges represents the causal relationships between nodes and constitutes the

DAG of interest. It can, however, be contaminated by undirected edges introduced by some

unobserved factors. In practice, the latent factors may include, for example, biomarkers that
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are not included in experimental chips, environmental variables, and underlying populations

among experimental samples. Unfortunately, such shared masking factors are often not

directly measured in experiments despite their potential influence on measurements. In

the literature, methods for removing these masking factors have not been systematically

investigated. Here, we propose a new method that identifies and removes nuisance undirected

edges in the reconstruction of causal relationships to obtain an interpretable causal network.

Learning the dependence structure of a DAG from data presents a significant challenge

because the number of candidate DAGs can grow super-exponentially along with the number

of nodes (Robinson, 1973). There are three types of approaches to learning DAG structures:

search-and-score approaches, constraint-based approaches, and hybrid approaches. A search-

and-score approach attempts to learn a DAG structure by optimizing some criteria, such as

the BIC or validation set likelihood, using either a search algorithm (Lam and Bacchus,

1994; Heckerman et al., 1995) or Bayesian posterior distribution (Friedman and Koller,

2003; Ellis and Wong, 2008; Zhou, 2011). A constraint-based approach tries to prune a

set of possible edges identified by conditional independence hypothesis tests, including the

well-known Peter-Clark (PC) algorithm (Spirtes et al., 2000), or by removing conditional

dependencies that fall below a threshold (Cheng et al., 2002). A constraint-based method is

developed to prune a set of edges with a focus of improving computational efficiency (Li and

Yang, 2004; Tsamardinos et al., 2006).

A vast majority of recent work has focused on the reconstruction of a sparse DAG through

a penalized likelihood approach. In the special case where a topological ordering of the nodes

is given, learning the structure of a DAG is equivalent to sparse estimation of the modified

Cholesky decomposition of a concentration matrix (i.e., the inverse of the corresponding

covariance matrix), which is computationally feasible; see for example, Li and Yang (2005);

Huang et al. (2006); Levina et al. (2008); Shojaie and Michailidis (2010), among others.
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The information on node ordering is usually determined by a natural ordering of temporal

observations, previous experiments, and a priori knowledge (Shojaie and Michailidis, 2010).

For example, when learning GRNs for microarray data, a priori knowledge of the node

ordering could be obtained from the existing annotation software such as Cytoscape (Lopes

et al., 2010). If there is no established known node ordering, some penalized score-based

methods (e.g., Fu and Zhou (2013) and Aragam and Zhou (2015)) may be first applied

to estimate DAG structures, which is done without a priori knowledge of node ordering,

followed by extracting the node ordering from the estimated DAG.

To fill in the technical gap where no systematic work is available to assess sparse causal

relationships in DAMGs, we develop a regularization estimation method to extract and

evaluate a sparse causal network in the form of a DAG. We develop a new method based

on the structural factor equation model (SFEM) introduced in detail in Section 2 with

conditions for model identifiability. Section 3 concerns the penalized estimation of DAGs

based on an EM-Coordinate-Descent (EM-CD) algorithm for numerical implementation.

Operating characteristics of the proposed method are examined on both simulated and real

data in Sections 4 and 5. We conclude with a discussion in Section 6 in which we discuss the

estimation of directed acyclic graphs with unknown node ordering.

2. Structural factor equation model

2.1 Model

Given a P -dimensional random vector y = (y1, . . . , yP )T with known variable ordering,

we use a DAG G = (V,E) to describe causal relations, where V is the set of vertices (or

variables or nodes) and E is the collection of edges. That is, each variable yi corresponds to

one node in the DAG, and a directed edge between two nodes indicates a causal relationship

between them. Without loss of generality, we assume that y has been sorted according to
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its known ordering, which means a causal relationship is only possible from variable yj to

variable yi, denoted by yj → yi, for j < i. The set of parental nodes of yi is denoted by

pa(i) = {j : j < i, yj → yi}. Specifically, for any k < i, if k 6∈ pa(i) then yi is independent of

yk conditioning on {yj}j∈pa(i).

To model causality among the components of y, we invoke a structural equation model

(SEM): yi =
∑

j∈pa(i) θijyj+εi, i = 1, . . . , P, where εi’s are normal random errors with mean 0

and independent of yi’s parental nodes. Regression parameter θij is a coefficient representing

the association of yi with yj, conditional on all other parental nodes of yi. The matrix form

of the SEM is: y = Θy + ε, where the vector of errors ε = (ε1, . . . , εP )T has mean 0 and

covariance W . Here Θ = {θij} is a P ×P lower triangular matrix with zeros on the diagonal,

and is termed the weighted adjacency matrix of the DAG G. Given both Θ of DAG G and W ,

the first two moments of the SEM are µ = E(y) = 0 and Σ = Cov(y) = (I−Θ)−TW (I−Θ)−1,

which are uniquely determined by the two matrices Θ and W . This formulation requires a

priori variable ordering.

We propose to model the covariance W by the classical factor analysis model (FAM):

W = BBT + Ψ, where B is a P ×K factor loading matrix for K (6 P ) latent factors and

Ψ is a P × P diagonal matrix of uniqueness (Johnson and Wichern, 2007). Combining the

SEM and FAM models leads to the following structural factor equation model (SFEM):

y = Θy +Bz + e, (1)

where z is a K-variate vector of uncorrelated latent factors following multivariate normal

distribution MVNK(0, I) and e is an error vector distributed according to MVNP (0,Ψ) and

is independent of z. Moreover, the first two moments of y are, respectively, µ = 0 and

Σ = (I −Θ)−T (BBT + Ψ)(I −Θ)−1. It is obvious that SFEM in (1) reduces to the classical

SEM when K = 0. From (1), we can also see that conditioning on the vector of K unobserved

latent variables z, the vector of variables y satisfies the SEM for a DAG. Our objective is to
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estimate the weighted adjacency matrix Θ of interest, the loading matrix B and uniqueness

Ψ, as well as to determine the number of factors K.

2.2 Graphical representation of SFEM

Due to the potential influence of latent factors on causal relationships, we consider a more

general graphical model than a DAG to accommodate undirected edges. We consider the class

of directed mixed graphs (DMGs) that contain both directed and undirected edges. A mixed

graph is defined by G = (V,E, U), where V is a finite set of vertices and E, U ⊆ V ×V are two

disjoint sets of edges. The edges in E are directed; that is, (i, j) ∈ E ⇒ (j, i) 6∈ E, denoted

by i→ j. The edges in U are undirected or bi-directed; that is, (i, j) ∈ E ⇒ (j, i) ∈ E and

vice versa, denoted by i↔ j. Part A of Figure 1 displays four examples of DMGs. The DMG

shown in panel A(b) is cyclic, a type of DMG that is not considered in this paper.

[Figure 1 about here.]

In this paper, we focus on directed acyclic mixed graphs (DAMGs), a subclass of DMGs

that do not include directed cycles. More specifically, a DAMG (V,E, U) consists of two

subgraphs: one is a DAG (V,E) consisting of all directed edges, which is captured by a

weighted adjacency matrix Θ; and the other is a subgraph containing all undirected edges

(V, U), which are obtained by nonzero entries in the covariance matrix W = BBT + Ψ with

Wij = Wji 6= 0 for (i, j) ∈ U or i = j. In the gene regulatory network study, common factors

attributed to matrix B could include, for example, environmental variables, which are not

measured but may alter gene expressions substantially. These factors are useful to explain

the mechanism of generation of undirected edges that contaminate the underlying causal

relationships of interest. For example, Figure 1 A(c) and A(d) show that the directed chain

networks among nodes Y1, Y2 and Y3 (which contains a subgraph of interest, namely Figure

1 A(a), shown by the arrowed solid edges) is masked by undirected edges (indicated by

dashed lines). Intuitively, it would be impossible to reconstruct a DAG (i.e., the chain graph
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in panel A(a)) if these nuisance undirected edges were not properly removed. Our strategy

is to identify and quantify potential triggers of undirected edges via the factor model, as

illustrated in Part B of Figure 1. Figure 1B shows an example in which undirected edges

arise from three shared common latent factors z1, z2 and z3 among the 9 measured variables

y1, . . . , y9; marginalizing these latent factors will lead to many nuisance undirected edges in

a complex DAMG. The proposed SFEM is developed to identify and reconstruct this DAG

by conditioning out the three latent triggers responsible for the nuisance edges.

2.3 Parameter identifiability in SFEM

The parameters in the SFEM (1) include a lower triangular P×P weighted adjacency matrix

Θ, a P ×K factor loading matrix B and a diagonal P ×P uniqueness matrix Ψ. The SFEM

(1) may be rewritten as

y = (I −Θ)−1Bz + (I −Θ)−1e = Γz + δ, (2)

where Γ = (I − Θ)−1B and δ = (I − Θ)−1e. The resulting covariance matrix of y is Σ =

ΓΓT + Σδ with Σδ = (I−Θ)−1Ψ(I−Θ)−T . It is well known that the factors and loadings are

not separably identified without further restrictions. Note that the factors z ∼ MVNK(0, I)

and loadings B enter the likelihood through ΓΓT . Hence, for any K ×K rotation matrix Π,

we have ΓΓT = ΓΠΠTΓT , producing observationally equivalent models. Thus, we impose the

following regularity conditions in order to identify parameters in both Σδ and Γ in model

(2).

• Condition (A): Assume that ΓTΣ−1
δ Γ = BTΨ−1B is diagonal with distinct entries arranged

in a decreasing order.

• Condition (B): Assume that there exists a unique modified Cholesky decomposition of

Σδ = (I −Θ)−1Ψ(I −Θ)−T .

Condition (A) is a usual restriction for maximum likelihood estimation (MLE) in factor
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analysis (see e.g., Lawley and Maxwell (1962), Bai and Li (2012)). This condition is needed

to ensure that the reparametrization does not affect the decomposition of the total variance

into a sum of loadings B and uniqueness Ψ. In other words, it ensures that solutions from

the MLE obtained under the reparametrization can be uniquely transformed back to the

original parametrization. Condition (B) is required to prohibit the arbitrary permutation of

node ordering, so that the solution from the algorithm is unique. By taking Σ−1
δ = (I −

Θ)TΨ−1(I − Θ), we obtain an alternative estimator to the classic SEM. The fact that the

DAG representation (Θ,Ψ) encodes more conditional independence relations than the inverse

covariance matrix Σ−1
δ motivates us to obtain Θ for a simple and interpretable causal network.

3. Regularized estimation

3.1 Formulation

Regularization methods are appealing in network learning settings because the dimension

of unknown parameters (e.g., entries in Θ) can quickly exceed the sample size of the data.

When a natural ordering of the variables is available, and the number of latent factors K = 0

(i.e., B = 0), the reconstruction of a sparse DAG is equivalent to the sparse estimation of

the modified Cholesky decomposition of Σ−1
δ . In this case, the identifiability condition (A)

automatically holds. Several regularization approaches have been proposed to shrink elements

in Θ to zero. See Pourahmadi (1999); Wu and Pourahmadi (2003); Bickel and Levina (2008);

Huang et al. (2006); Levina et al. (2008), just to name a few. More specifically, Huang

et al. (2006) proposed adding an L1 norm penalty on Θ to encourage zeros. Levina et al.

(2008) proposed a banding procedure using a nested LASSO penalty. Recently, Shojaie and

Michailidis (2010) employed the adaptive LASSO penalty to estimate the skeleton of a DAG

in SEMs and showed that the LASSO method is not sensitive to random permutations of

the order of variables in y.
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Given N samples yn = (yn1, . . . , ynP )T , n = 1, . . . , N , we want to detect the sparse skeleton

of a DAG adjusting for latent factors. We propose the following penalized loss function:

min
Θ

1

2N

N∑

n=1

(yn −Θyn)T (BBT + Ψ)−1(yn −Θyn) + λ
P∑

i=1

i−1∑

j=1

ξij|cijθij|, (3)

where λ is a nonnegative tuning parameter, cij represents the prior causal relationship of yj

on yi, and ξij is the adaptive weights of yj on yi. The L1 norm penalty term in the above

loss function (3) regularizes the sparsity in Θ.

Prior knowledge on the existence of causal relationships in y can be incorporated into the

regularization procedure through a pre-specified P ×P flag matrix C = {cij}, whose (i, j)-th

element is given by:

cij =





1 if there is no prior information of causality between j and i, when j < i;

0 if there exists prior knowledge of causality j → i,when j < i.

(4)

Matrix C in the penalty function is useful for screening all available edges in exploratory

analyses. In addition, Ξ = {ξij} is a P ×P lower triangular matrix of adaptive weights with

the (i, j)-th element given by

ξij =





max(1, |θ̃ij|−γ), if cij = 1 and j < i;

0, otherwise,

(5)

where θ̃ij is the estimate of θij obtained from classical LASSO estimation given by (3) with

ξij = 1 if cij = 1 and j < i.

3.2 EM-Coordinate-Descent Algorithm

We propose a two-step iterative approach to estimate three unknown matrices (Θ, B,Ψ).

Given the current estimates (B(t),Ψ(t)), Θ(t+1) is updated by minimizing the penalized loss

function (3) using the coordinated descent (CD) algorithm, and then (B(t+1),Ψ(t+1)) are

updated through the EM algorithm. Both the EM and CD algorithms are discussed below.

Repeating the two-step procedure iteratively until convergence yields estimates (Θ̂, B̂, Ψ̂).
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EM Algorithm. We use the EM algorithm to estimate (B,Ψ) in the factor analysis model.

We mcan implement the EM algorithm by treating the latent factors zn = (zn1, . . . , znK)T ,

n = 1, . . . , N as “missing data” and Θ as a fixed “known” constant matrix. The M-step

maximizes the log-likelihood of the full data {(y∗n , yn − Θyn, zn), n = 1, . . . , N}. We

outline the EM algorithm to update B and Ψ respectively at the (t+ 1)-th iteration. In the

E-step, we obtain the following moments of zn, n = 1, . . . , N ,

E(zn|y∗n;B,Ψ) = (BTΨ−1B + IK)−1BTΨ−1y∗n,

V ar(zn|y∗n;B,Ψ) = IK −BTΨ−1B(BTΨ−1B + IK)−1,

E(znz
T
n |y∗n;B,Ψ) = E(zn|y∗n;B,Ψ)E(zTn |y∗n;B,Ψ) + V ar(zn|y∗n;B,Ψ).

(6)

In the M-step, B and Ψ are updated at the (t+ 1)-th iteration by, respectively,

B(t+1) =
{ N∑

n=1

y∗nE(zTn |y∗n;B(t),Ψ(t))
}[ N∑

n=1

{
E(znz

T
n |y∗n;B(t),Ψ(t))

}]−1

,

Ψ(t+1) =
1

N

N∑

n=1

E
{

(y∗n −Bzn)(y∗n −Bzn)T |y∗n;B(t),Ψ(t)
}
.

(7)

Noting that Ψ takes the special form Ψ = σ2IP , we consider a simple re-parameterization

by letting B̃ = σ−1B and z̃n = σzn. Clearly, Bzn and B̃z̃n follow the same distribution.

Thus, the EM algorithm updates B̃ and σ2 by the following expressions:

B̃(t+1) =

{ N∑

n=1

y∗nE
(
z̃Tn |y∗n; B̃(t), σ2(t)

)}{ N∑

n=1

E
(
z̃nz̃

T
n |y∗n; B̃(t), σ2(t+1)

)}−1

,

σ2(t+1)
=

1

NQ

N∑

n=1

y∗Tn

{
IQ − B̃(t)

(
IK + B̃T (t)B̃(t)

)−1
B̃T (t)

}
y∗n.

(8)

Coordinate Descent Algorithm. We implement a coordinate descent algorithm to obtain the

optimal solution that minimizes the L1-norm penalized loss function (3) under a fixed positive

definite matrix W = BBT + Ψ. The sparse solution of Θ is obtained efficiently by an active-

shooting algorithm. Refer to Section 1 of the Supporting Information for details.

EM-CD Algorithm. Finally, combining the EM and CD algorithms, termed the EM-CD

algorithm, we can iteratively update Θ, B and Ψ as follows:

Step 1. Initialization of B(0), Ψ(0), and β(0) with some suitable values.
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Step 2. Given (B(t),Ψ(t),Θ(t)), update Θ(t+1) by the CD active-shooting algorithm.

Step 3. Given Θ(t+1), update (B(t+1), Ψ(t+1)) via the EM algorithm until convergence.

Step 4. Repeat steps 2-3 above until convergence.

3.3 Tuning parameter selection

Choosing the number of latent factors K and tuning the sparsity parameter λ are both

of critical importance in the proposed method. Since K can affect the resulting sparsity

in the estimated Θ, it has to be tuned properly. In the factor analysis model literature,

some methods have been developed for selecting K. For example, Bai and Ng (2002) and

Onatski (2010) proposed methods to determine the number of factors in certain approximate

factor analysis models. Onatski (2009) developed test statistics for a hypothesized number of

factors using the empirical distribution of eigenvalues of the sample covariance matrix. Hirose

and Konishi (2012) and Caner and Han (2014) employed shrinkage estimation to determine

relevant factors. Here, we invoke an “eigenvalue ratio (ER)” criterion (Ahn and Horenstein,

2013) to select K, mainly for its simplicity and computational ease. In a general factor model

given in (2), we can convert the selection of K in the original loading matrix B to that in

the new loading matrix Γ. Following Ahn and Horenstein (2013), for a sample covariance

matrix Y Y T/(NP ), denote its kth largest eigenvalues by ηk, k = 1, . . . ,min(N,P ). The

corresponding eigenvalue ratio is given by ER(k) = ηk/ηk+1. The eigenvalue ratio criterion

is given by KER = arg maxKmin6k6Kmax ER(k), where Kmin and Kmax may be prespecified

according to the scree plot, say, Kmin = 1 or 2 and Kmax = min(N,P )/2.

To select tuning parameter λ, we adopt M -fold cross-validation. Since the true model

is believed to be sparse, we use the ordinary least squares (OLS) estimates instead of the

shrunken estimates to calculate the cross-validation error score. This is because the cross-

validation error score based on the shrunken estimates often leads to severe false positive

rates when there are many potential poor predictors (Peng et al., 2010; Efron et al., 2004).
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The OLS estimates are suggested in the literature as a reasonable remedy, as confirmed in

our simulation studies. The Bayesian information criterion (BIC), another popular tuning

parameter selection method, is not considered here mainly because estimating the degrees

of freedom required by the BIC is difficult under a nonorthogonal design.

4. Simulation Experiments

4.1 Simulation setup

To examine the performance of the proposed SFEM for the estimation of a sparse DAG in

DAMGs, we consider two types of DAG designs.

In simulation experiment I, we consider a small and simple DAG with P = 50 nodes and

M = 25 edges that is randomly generated by the R-package pcalg (Kalisch and Bühlmann,

2007). To control for the sparsity of the DAG, we set the maximum number of parents for

each node at 2, and the depth of the DAG to 3, and then randomly generate DAGs until the

exact number of M = 25 edges is achieved.

In simulation experiment II, we consider a more complex DAG consisting of 19 master reg-

ulators (i.e., parental nodes). Among them, 4 are strong master regulators, each influencing

14 to 18 nodes, 7 are moderate master regulators, each influencing 3 to 7 nodes, and the rest

are 8 weak parental nodes that link to only 1 or 2 offspring nodes. Such a DAG is generated

by first randomly selecting 19 master parental nodes, and then further randomly selecting

offspring nodes within each parental node. As a result, we create a DAG with M = 100

edges. In this second experiment we vary both the number of nodes and the number of

latent factors. We set up the SFEM with fixed P = 200 nodes and a varying number of

latent factors K = 1, 5, 10, and also set up the SFEM with fixed K = 5 but varying number

of nodes P = 50, 100, 200. Clearly, with a fixed number of edges M = 100, a larger number

of nodes P leads to a sparser network.
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In both simulation designs we generate N = 25 and 100 units of networks, respectively,

from the specified SFEMs above. In addition, we generate the elements of the weighted

adjacency matrix Θ by θij
i.i.d.∼ U([−3,−1]

⋃
[1, 3]) in Simulation I, and set constant θij = 0.5

in Simulation II. In each case, we simulate latent factors znk
i.i.d.∼ N(0, 1), loadings Bik

i.i.d.∼

U([−b,−a]
⋃

[a, b]) and noise enj
i.i.d.∼ N(0, σ2), where the parameters a, b and σ2 are chosen

to satisfy a pre-specified percent of explained variability (PEV): PEV =
√
tr(Σδ)/tr(Σ),

where Σδ = (I − Θ)−1Ψ(I − Θ)−T and Σ = (I − Θ)−1(BBT + Ψ)(I − Θ)−T . The tuning

parameter λ is determined by 5-fold cross validation. In both simulation studies, 50 replicates

are carried out to draw summary statistics.

The performances of the proposed estimation method and algorithm are compared mainly

under three cases, including (i) the latent factors are ignored, i.e. K = 0, which is equivalent

to the method proposed by Shojaie and Michailidis (2010); (ii) the number of latent factors

K is over-specified or under-specified, corresponding to overestimation or underestimation

of the latent factors covariance W in a DAMG; and (iii) the number of latent factors K

is selected by the proposed eigenvalue ratio (ER) method, i.e. K = KER. That is, KER =

maxKmin6k6Kmax ηk/ηk+1, where ηk is the kth largest eigenvalue of
∑N

n=1 yny
T
n/(NP ), with

Kmin = 1, Kmax = min(N,P )/2.

For each simulated dataset, we generate the solution paths for the elements of Θ using a

geometric sequence of values for λ, starting from the largest value λmax at which Θ̂λmax = 0

and decreasing to the smallest value λmin = 10−4. Note that the total number of detected

edges increases as λ decreases. We then evaluate the performances of both estimation method

and algorithm under different numbers of latent factors nested within a series of tuning

parameter values. We also compare the performances of the proposed estimation method and

algorithm with two top methods in the literature, namely the score-based method available

in the R-package sparsebn (Aragam et al., 1956) (which is referred to as sparsebn hereafter),
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and the PC-algorithm implemented in the R-package pcalg (Kalisch and Bühlmann, 2007),

where the significance levels of the PC-algorithm are given by a geometric sequence of values

{10−15, . . . , 0.95}. Neither the sparsebn nor the PC-algorithm requires the knowledge of

node ordering as an input. An advantage of the SFEM is that it enables the use of partial

knowledge on the node order to improve the statistical analysis. In practice, partial prior

knowledge of biological network structure may be obtained from existing pathway databases,

for example. To give the highest favor to these existing methods, when reporting the results

from the software, we simply ignore the edge direction or equivalently assume the direction

is always correctly detected.

4.2 Findings from simulation studies

Figure 2 shows two plots of the average number of correctly detected edges against the total

number of detected edges over different numbers of latent factors K over 50 replicates. This

figure appears in color in the electronic version of this article, and any mention of color refers

to that version. Here “oracle” refers to the case where the proposed regularized estimation

is carried out by using the true covariance matrix W = BBT + Ψ without estimating B

and Ψ, namely the EM algorithm is not used in the estimation. We find that the proposed

SFEM method in the case of K = KER with estimated B and Ψ produces results very close

to those obtained in the “oracle” case. This suggests that the EM algorithm works well to

estimate the W matrix. Also, we see that the SFEM method with K = Ktrue, equal to 2 in

the top panel (a) and 5 in the bottom panel (b) of Figure 2, outperforms all the other cases

with misspecified K.

The performances of the PC-algorithm and the sparsebn method appear to be the worst,

and are even worse than the SFEM with K = 0 where no latent factors are accounted for

in the analysis. Figure 2 (a) shows that under a relatively light degree of masking (K =

2), the proposed SFEM(K = 0) can gradually pick up more true signals when more false
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discoveries are allowed. In contrast, neither the PC-algorithm nor the sparsebn method

show any noticeable improvement. This is probably because both the PC-algorithm and the

sparsebn method do not use any a priori knowledge of node ordering. In Figure 2(b) with

100 detected edges, the sparse SFEM with K = KER can detect more than 95% of the true

edges correctly with an average standard deviation of 1.45 edges, whereas the PC-algorithm

or the score-based method can only detect about 10% of the true edges successfully. In

other words, the unmeasured confounding factors can severely impair the performances of

the PC-algorithm and the sparsebn method.

[Figure 2 about here.]

The quality of our method is further measured by the average number of true positive

(TP), false positive (FP) and false negative (FN) edges, sensitivity (Sen) and Matthews

correlation coefficient score (MCC). Table 1 summarizes the average performance of the

SFEM with K = KER for different numbers of P in the second simulation experiment with

Ktrue = 5. For example, when P = 200, on average the estimated graph is able to identify

104.04 directed edges, of which 98.12 edges are the true edges, and the other 5.92 edges are

false. In the case of P = 200, the number of parameters to be estimated is around 20, 000,

which is much larger than the sample size N = 100. In this high-dimensional setting with a

substantial amount of masking by K = 5 latent factors, results in Table 1 suggest that our

regularization method can estimate the DAG structure with reasonable accuracy even with

the limited sample size N = 100. When the network is relatively simpler with P = 50 or

100, the proposed estimation method and algorithm perform even better.

[Table 1 about here.]

Table 2 lists the results of both simulation experiments I and II with different numbers

of latent factors and different percents of explained variability. Table 2 suggests that the

proposed ER criterion works well in selecting the number of latent factors, except for the case
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of Simulation II with PEV=1:2. This is because in this setting PEV is relatively small, and

the ER criterion is always in favor of a stronger nuisance covariance structure with two latent

factors. However, it is interesting to notice that, although the nuisance structure is slightly

overestimated (i.e., one additional factor to the true K = 1), the resulting performance

(KER = 2) still appears much better than that with an under-specified nuisance structure

(K = 0), judging by, for example, MCC=0.85 versus 0.29. As shown in Table 2, either

ignoring or under-specifying the number of latent factors results in abundant nonzero entries

in Θ, many of which may be false edges. In contrast, if the number of factors is overestimated,

the proposed method would produce a sparse Θ matrix, leading to many false negative

discoveries. The latter presents a conservative analysis that fails to detect some of the true

signals, which is often a more favorable scenario than the former, which reports excessive

false signals. In summary, the proposed SFEM with KER shows a satisfactory performance

with the highest sensitivity and MCC, as well as the lowest false discovery rate.

[Table 2 about here.]

Section 2 of the Supporting Information provides some additional simulation results for

the comparison of SFEM, PC-algorithm, and sparsebn in both DAG simulation settings.

4.3 Sensitivity analysis on the knowledge of node ordering

An input of a priori node ordering presents a noticeable limitation on the proposed SFEM

method. We further assess the performance of the proposed method under three scenarios:

(i) fully known node ordering, (ii) fully unknown node ordering, and (iii) partially known

node ordering. The second scenario is most likely to occur in practice, given that practitioners

often know part of a network under investigation based on their own experiences and relevant

publications. Here we use the setting of Simulation II with P = 200, K = 5, N = 100,

PEV = 1 : 4, and M = 100. Figure 3 reports the results.

In scenario (ii) of fully unknown node ordering, we first apply the sparsebn method on
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each of 50 simulated datasets Y(s), s = 1, ..., 50 to learn the underlying node ordering order(s)

of the network. Reordering the nodes Y(s) based on the learned ôrder(s) leads to a reordered

Y ∗(s). Finally, we apply our SFEM method on Y ∗(s), s = 1, ..., 50. In scenario (iii) of partially

known node ordering, our design is given as follows. Since the true DAG in the Simulation

II design consists of 4 strong master regulators (or hubs), we randomly pick two of them and

treat the corresponding sub-DAG as our prior knowledge about the network. So, we know a

priori part of the true node ordering of the network, called order(prior). For the rest of nodes,

we once again learn the node ordering by the sparsebn method. We merge these two pieces

as (ôrder
rest

(s) , order(prior)) to form the node ordering of the network.

We also apply the proposed eigenvalue ratio method, which consistently selects K =

5(100%) under each scenario. Thus we compare the performance of our method SFEMK=5

under the three levels of node ordering knowledge, as well as the naive PC-algorithm and

sparsebn method that do not input any knowledge of node ordering. From Figure 3, with no

surprise, our SFEMK=5 method significantly outperforms the PC-algorithm and the sparsebn

method in all scenarios. This figure appears in color in the electronic version of this article,

and any mention of color refers to that version. Interestingly, accounting for latent factors

with our SFEM method in scenario (ii) clearly helps boost the detection power compared to

the sparsebn method that supplies the node ordering to the SFEM method. In the presence

of such strong masking due to 5 unmeasured factors, it is certainly beneficial to use our

SFEM method. Another important conclusion from this comparison is that knowing the

node ordering partially can help a lot. The proposed SFEM method has the flexibility to

accommodate some incomplete knowledge for improvement of detection power.

[Figure 3 about here.]

Under the same DAG setting, Section 2 of the Supporting Information provides an ex-

panded simulation experiment II with 500 replicates. Section 3 of the Supporting Information
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reports the results of average computation time for the EM-CD algorithm over different K

values based on 50 rounds of simulations. It ranges from 3 minutes with K = 0 to 7 minutes

with K = 5, which is reasonably fast given the size and complexity of the computational

operations.

5. Analysis of METABRIC gene expression data

This section demonstrates the application of the proposed SFEM method to the METABRIC

data, which consists of gene expression measurements collected from a study of the genomic

landscape of breast cancers (Pereira et al., 2016). In the analysis of genetic regulatory

networks, we focus on 82 driver genes identified by Pereira et al. (2016), which are measured

from 1222 primary tumor samples. This set of driver genes is known for their individual causal

effects on breast cancer outcomes, which have been established through somatic mutation

patterns, which are independent of their gene expression profiles. Applying the proposed

method, we hope to estimate DAGs involving these causal genes to learn about biological

interactions and pathways relevant to the disease.

To obtain the node ordering required by our SFEM method, we first apply the sparsebn

method to obtain an estimated ordering of 82 driver genes. We do not use the node ordering

from the PC algorithm simply because it is sensitive to a pre-defined threshold required by the

method. The SFEM method is then applied with K varying from 0 to 5. At K=0 (no latent

factors), 211 edges are detected, some of which may be potentially masked by ubiquitous

confounding in the experiment. When applying the eigenvalue ratio method to select K,

we get K = 2, leading to 170 detected edges. The reduction of the detected edges seems

to suggest that some of the detected edges at K = 0 can be explained by the unmeasured

confounding that is accounted for with K = 2. Thus, the edges inferred at K = 2 are likely

more robust. The related details can be found in the Supporting Information, Section 5.

To enhance the stability of the analysis results, we generated 50 bootstrap samples with
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replacements from the gene expression data under the previously given node ordering. For

each bootstrap sample, we apply the SFEM method in which K is determined by the

eigenvalue ratio method, and the tuning parameter λ is selected by the 5-fold cross-validation.

The final gene regulatory network is drawn following the majority voting strategy; that is,

a final edge is reported only if it is detected at least 50% of the time out of 50 bootstrap

samples. As shown in Table 5 of the Supporting Information, K=2 appears to be the dominant

mode. In the final causal network voted by the 50 bootstrap samples, we detect 125 causal

relationships among 71 genes. The detail of the regulatory network is shown in Figure 7 of

the Supporting Information.

The gene regulatory network constructed by the SFEM shows some delicate structures

among these breast cancer driver genes. Within the network, we find some interesting

sub-networks, displayed in Figure 4. Unlike a star-shape topology where each driver gene

independently causes the disease, our result reveals a pattern of complicated interactions

between the driver genes. We find that the biggest hub is gene CCND2, which regulates

the other 8 genes (BRCA1, JAK2, ABCC4, ERCC4, MLH1, DHRS13, LMO2, NFIB), while

CCND2 is regulated by genes BIRC3 and FBN1. Another major hub is gene RUNX1, which

regulates 7 genes (RAD51C, CCT2, BCL10, NDRG1, PTEN, HERPUD1, EXT1) while

itself is regulated by TRIP11 and COL1A1. See Part A of Figure 4. In addition, we find that

genes BRCA1 and LMO are two major offspring nodes, each of which is regulated by five

genes. BRCA1 is a well-known breast cancer oncogene that is regulated by RAD51C, EZH2,

RECQL4, NF1, and CCND2. Also, LMO is regulated by FH, PIK3C3, EZH2, CCND2, and

FOXA1. See Part B of Figure 4. These intriguing results illustrate how pathway analysis can

shed light on the regulatory mechanisms of these important disease genes.

[Figure 4 about here.]

Another real data example using cell signaling data is given in Section 4 of the Supporting
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Information. This is a multivariate flow cytometry dataset that has been previously analyzed

by many statisticians. Our analysis using the proposed SFEM method gives similar findings

to those published.

6. Discussion

Given prior knowledge on node ordering among variables, we proposed a class of SFEMs for

an exploratory analysis of causal network construction. The proposed methodology combines

the structural equation model and the factor analysis model. Our SFEM method may be

regarded as a general factor analysis model that enables to effectively segregate a DAG

with directed edges from an acyclic directed mixed graph, where undirected edges induced

by unmeasured confounding factors are identified and removed. In this way, a simpler and

more interpretable causal network is obtained. When there are no latent factors included,

the proposed SFEM reduces to the classical SEM. In this case, the reconstruction of DAGs

based on our proposed L1 norm regularization method is equivalent to the L1 norm penalized

likelihood method proposed by Shojaie and Michailidis (2010).

We developed a two-step EM-coordinate-descent algorithm for implementation of the

proposed method that works reasonably well and can be applied to large networks, as

shown in various numerical settings. However, our objective function for the whole set of

parameters is non-convex, which might yield multiple local solutions in the optimization.

Since both the CD algorithm and EM algorithm solve their respective convex functions, the

algorithm convergence is certain. Finding a global optimal solution for non-convex problems

is numerically very challenging, and worth further exploration. In addition, if information

on node ordering is fully or partially unavailable, our method can incorporate an estimated

ordering obtained from existing methods (e.g., the score-based method). Our simulation

studies have demonstrated a clear improvement of the proposed SFEM method on detection

power over existing methods in the presence of masking factors. We expect that our method
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can further improve detection power given better estimation of causality direction among

network nodes. In addition, in the real data analysis, causal relations in gene regulatory

networks are possibly nonlinear and may not be detectable using the linear SFEM proposed

in this paper. Learning nonlinear causality presents another interesting extension of this

research topic.
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paper at the Biometrics website on Wiley Online Library. In addition, some of the computing

code used in the simulation studies is available in Section 6 of the Supporting Information.
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Figure 1: Part A presents four examples of directed mixed graphs. The graph in A(b) is
cyclic, while all others are acyclic. An arrowed solid line indicates a directed edge and a
dashed line denotes an undirected (or bi-directed) edge. Part B presents an acyclic directed
mixed graph that contains a DAG with the directed edges (arrowed solid lines) among nine
observed variables y1, . . . , y9 and a set of undirected edges induced by 3 common latent
factors z1, z2 and z3. This figure appears in color in the electronic version of this article, and
any mention of color refers to that version.

A. Four examples of directed mixed graphs.

3Y2Y

1Y 3Y2Y

1Y 3Y2Y
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1Y 3Y2Y

(d)

B. An acyclic directed mixed graph containing a DAG.
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Figure 2: Summary results from two DAGs designed in the simulation studies. The x-axis
is the total number of detected edges, and the y-axis is the average number of correctly
identified edges over 50 replicates. The vertical (gray) line corresponds to the number of
true edges. Panel (a) displays the results from the first small DAG simulation design with
P = 50,M = 25, K = 2, N = 25 as well as the estimated KER = 2. Panel (b) shows the
results of the second large DAG simulation design with P = 200,M = 100, K = 5, N = 100
as well as the estimated KER = 5. This figure appears in color in the electronic version of
this article, and any mention of color refers to that version.
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Figure 3: Summary results based on the large DAG simulation design with P = 200,M =
100, K = 5, N = 100 as well as the estimated KER = 5. The x-axis is the total number
of detected edges, and the y-axis is the number of correctly identified edges averaged over
50 replicates. The vertical (black) line corresponds to the number of true edges. This figure
appears in color in the electronic version of this article, and any mention of color refers to
that version.
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Figure 4: Sub-networks for master regulator genes (CCND2 and RUNX1) and master
offspring genes (BRCA1 and LMO), respectively. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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B. Sub-networks for master offspring genes.
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Table 1: Performance comparison under different number of nodes, P = 50, 100, 200 under the second large DAG
simulation design with M = 100,K = 5 and N = 100.

P Total (TP+FP) TP FP FN Sen MCC KER(%)

50 99.07 97.12 1.95 1.94 0.98 0.99 5 (100%)
100 100.69 97.56 3.13 2.17 0.97 0.97 5 (100%)
200 104.04 98.12 5.92 1.88 0.98 0.96 5 (100%)
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Table 2: Results from both small and large DAG simulation designs, respectively, where the number of latent
factors K and the percent of explained variability (PEV) varies over four cases.

PEV Ktrue Method Total (TP+FP) TP FP FN Sen MCC KER(%)

Simulation I
1:3 2 SFEMER 29.44 24.76 4.68 0.24 0.99 0.92 2 (100%)

SFEMK=0 118.84 24.96 93.88 0.04 0.99 0.44
SFEMK=5 25.88 20.24 5.64 4.76 0.81 0.80

Simulation II
1:4 5 SFEMER 104.04 98.12 5.92 1.88 0.98 0.96 5 (100%)

SFEMK=0 1530.92 97.96 1432.96 2.04 0.98 0.24
SFEMK=7 72.29 63.86 8.43 36.14 0.64 0.70

1:2 1 SFEMER 88.2 79.84 8.34 20.16 0.80 0.85 2(100%)
SFEMK=1 104.44 97.44 7.00 2.56 0.97 0.95
SFEMK=0 1015.32 93.64 921.68 6.36 0.94 0.29

1:6 10 SFEMER 93.76 91.52 2.24 8.48 0.92 0.94 10 (100%)
SFEMK=0 3686.72 97.64 3589.08 2.36 0.98 0.14
SFEMK=15 53.28 49.64 3.64 50.36 0.50 0.67


