
1.  Introduction
Recent climate change has significantly altered cold land hydrological cycles, where the freshwater is highly 
dependent upon the presence of the snow and ice in high altitude and latitude regions (Ficke et al., 2007; 
Hall et al., 2008; Hauer et al., 1997; Heino et al., 2009). Terrestrial seasonal snow has been a critically im-
portant water source for water-stressed regions, providing a large fraction of the freshwater to towns in arid 
and semi-arid climate zones in this globally changing era (Staudinger et al., 2014). Seasonal snow is one of 
the most vulnerable hydrologic elements in the terrestrial water cycle (Sturm et al., 2017). Monitoring the 
amount of the seasonal snow in a global scale remains a challenge. Improving the estimation of terrestrial 
snow water equivalent (SWE) is essential to understanding cold land hydrological processes (A. T. C. Chang 
et al., 1987; Kelly et al., 2003; Rott et al., 2010). Several efforts have been made to improve our understanding 
through the use of remote sensing techniques such as passive microwave sensing (Kelly et al., 2003; Pan 
et al., 2017; Pulliainen & Hallikainen, 2001; Saberi et al., 2020), active microwave sensing (Cline et al., 2003; 
Kim et al., 2017; Lievens et al., 2019; Rott et al., 2010), lidar altimetery (Broxton et al., 2019), and signal of 
opportunities (Shah et al., 2017). Compared with other remote sensing and microwave techniques, the ad-
vantages of active microwave (radar) observation include high spatial resolution and the ability to penetrate 
clouds (Lievens et al., 2019; National Research Council, 2007; Pettinato et al., 2013; Rott et al., 2010). SWE 
retrieval from radar observations relies on the volume scattering of snow, which tends to increase with SWE 
for dry snow (W. Chang et al., 2014; Lievens et al., 2019; Tan et al., 2015; Xu et al., 2012). However, single-pa-
rameter SWE retrieval is challenging because radar backscatter is a function of several other parameters, 
including snow depth, snow grain size, snow density, snow stratigraphy, snow wetness, and soil/vegetation 
conditions (Shi & Dozier, 2000; Thompson & Kelly, 2019). Several combinations of parameters can produce 
the same total backscatter and generate a non-unique retrieval (King et al., 2018). Thus, a priori information 
of the parameters and the use of complementary sensors to constrain these snow parameters can improve 

Abstract  This paper implements a newly developed combined active and passive algorithm for 
the retrieval of snow water equivalent (SWE) by using three-channel active and two-channel passive 
observations. First, passive microwave observations at 19 and 37 GHz are used to determine the scattering 
albedo of snow. An a priori scattering albedo is obtained by averaging over time series observations. 
Second, 13.3 GHz is introduced to formulate a three-channel (9.6, 13.3, and 17.2 GHz) radar algorithm 
which reduces effects of background scattering from the snow-soil interface, and improves SWE retrieval. 
In the algorithm, the bicontinuous dense media radiative transfer (DMRT-Bic) is used to compute look-up 
tables (LUTs) of both radar backscatter and radiometer brightness temperatures (TBs) of the snowpack. 
To accelerate the retrieval, a parameterized model is derived from LUT by regression training, which links 
backscatter to the scattering albedo at 9.6 GHz or 13.3 GHz and to SWE. The volume scattering of snow is 
obtained by subtracting the background scattering from radar observations. SWE is then retrieved through 
a cost function that is guided by the a priori scattering albedo obtained from the passive microwave 
observations. The proposed algorithm, along with the active-only version, is evaluated against the Finnish 
Nordic Snow Radar Experiment (NoSREx) data set measured in 2009–2013. The combined active-passive 
algorithm achieves root mean square errors (RSME) less than 27 mm and correlation coefficients above 
0.68 for 2009–2010, RMSE less than 21 mm and correlation above 0.85 for 2010–2011, and RMSE less than 
40 mm and correlation above 0.38 for 2012–2013.
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the accuracy of retrieved SWE based on radar observations and thereby improve our understanding of pro-
cesses within snowpacks that control the persistence of seasonal snow in both the horizontal and vertical 
dimensions, as well as melt onset and speed. These parameters are at the heart of determining when and 
where seasonal snow exists, and when and how fast it will melt—parameters of particular relevance to both 
hydrometeorolgical and hydroclimatological science and societal applications.

Multiple studies have applied radar measurements to the retrieval of snow physical properties. Empirical 
inverse models were proposed in pioneering studies (Drinkwater et al., 2001; Ulaby & Stiles, 1980) that are 
straightforward but unsuited for all snow types—for example, ephemeral, prairie, maritime, and mountain 
snow, etc (Sturm et al., 1995). To cope with non-uniqueness in radar signatures, investigators applied mul-
tiple channel measurements to determine multiple snow parameters (Rott et al., 2010; Shi & Dozier, 2000). 
These foundational studies set the stage for more recent studies that have derived a SWE retrieval algo-
rithm based on 10 and 17 GHz radar observations using vertical co-polarization (VV) (Cui et al., 2016; Zhu 
et al., 2018).

Radar observations of snow consist of two contributions: (a) volume scattering from the snowpack, which 
provides the SWE information and (b) background scattering from the underlying soil and vegetation, 
which cause uncertainties in the SWE retrieval (Shi & Dozier, 2000; Xu et al., 2012). The two biggest issues 
for radar SWE retrieval relate directly to these two contributions: obtaining a priori information to constrain 
the SWE retrieval from the volume scattering and eliminating the effects of background scattering from the 
soil.

A priori information for estimates of grain size or scattering albedo ω of snow is also important to imple-
ment an accurate SWE retrieval (Cui et al., 2016; Rott et al., 2010; Xiong & Shi, 2017; Zhu et al., 2018). The 
underlying physics of the non-unique solutions state that different snow microstructure configurations can 
have similar backscatter responses but distinct SWE (King et al., 2018; Tsang et al., 2004). A priori informa-
tion can be obtained from co-located field stations or historical ground measurement data (Cui et al., 2016; 
Rott et al., 2010; Zhu et al., 2018). In some studies, snow physical models were applied to provide a priori 
information (Xiong & Shi, 2017). Lemmetyinen et al. (2018) first proposed the retrieval of the effective cor-
relation length of snow with passive observations and in situ snow depth measurements. The derived corre-
lation length then served as a priori information to parameterize the SWE retrieval with radar observations. 
The expanded Microwave Emission Model for Layered Snowpacks (MEMLS3&a) has been used to simulate 
both the backscatter and TB of snow (Proksch et al., 2015).

Some studies (Drinkwater et al., 2001) considered the background scattering contribution to be negligible 
when compared with the volume scattering from snow. In other studies, the ground was simply modeled as 
bare soil (Shi & Dozier, 2000; Zhu et al., 2018). Shi and Dozier (2000) applied L-band radar observations to 
retrieve soil parameters and used them to calculate background scattering. A second method applied radar 
observations just before snowfall or with only thin snow as background scattering (Cui et al., 2016; Rott 
et al., 2010). This method works in the case that soil conditions remain reasonably similar during the entire 
winter, otherwise the SWE retrieval accuracy will be impacted. These studies partially address background 
scattering, but uncertainty of the acquired background scattering remains potentially significant to overall 
SWE retrieval accuracy.

Zhu et al. (2018) developed a SWE retrieval algorithm that used 10 and 17 GHz VV radar observations. The 
algorithm proved its effectiveness in the validation of three sets of airborne SnowSAR data including the 
2011 and 2012 campaigns in Finland (W. Chang et al., 2014; Meta et al., 2012) and the 2013 campaign in 
Canada (King et al., 2018), which achieved an RSME below 30 mm of SWE and a correlation coefficient 
above 0.64. Nevertheless, there are two limitations to this radar retrieval algorithm. Due to the absence of 
ground parameter measurements, in situ snow measurements and co-located radar observations were used 
to determine background scattering, and the background scattering values were not validated. Second, a 
priori scattering albedo ω was obtained by in situ measurements; however, in a satellite mission, it is not 
possible to obtain global in situ measurements for the scattering albedo.

In this paper, we focus our studies on overcoming these two limitations. The objectives are to:

1.	 �Add a third frequency (13 GHz) to the original dual-frequency (10 and 17 GHz) radar retrieval algorithm 
to reduce uncertainties caused by the background scattering.
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2.	 �Determine a priori ω by applying only passive observations. a priori estimates are then used to initialize 
the radar (active) retrieval algorithm, making the method a combined active and passive algorithm.

Utilizing 13 and 17 GHz for SWE retrieval has been proposed for the Terrestrial Snow Measurement Mission 
(TSMM) from the Canadian Space Agency (CSA) (Derksen et al., 2018). In Figure 7 of Section 3.3, this paper 
shows two advantages of including the 13 GHz channel. The first is increased total sensitivity to SWE by 
adding a second frequency with more sensitivity (steeper slope) than at 10 GHz. The second is additional 
information to help minimize the impact of the background contribution since we now have a second fre-
quency that has a stronger absolute backscatter than that at 10 GHz.

In this paper, we adopt a strategy of estimating a priori values from passive observations of 19 and 37 GHz. 
However, a priori information is determined purely by matching passive observations with the DMRT-Bic 
LUTs. There is no in situ measurement involved in this procedure. In addition, a priori estimates are charac-
terized by a different parameter: the scattering albedo ω = κs/κe that represents the fraction of extinction due 
to scattering, where κs and κe are the scattering and extinction coefficients of the snowpack, respectively. The 
scattering albedo directly quantifies the scattering efficiency of the snow microstructure (grain size, snow 
aggregation, and other parameters) and is directly related to backscatter in DMRT theory. Higher scattering 
efficiency of snow is typically associated with a larger albedo. In the algorithm, the DMRT-Bic model is 
applied for predictions of the backscatter and TB of snow (Tan et al., 2015).

The organization of this paper is as follows: In Section 2, we describe the Finnish NoSREx data sets. In Sec-
tion 3, we propose the parameterized model of DMRT-Bic for 13 GHz backscatter and generate the passive 
LUT for 19 and 37 GHz. In Section 4, we describe the combined active and passive retrieval algorithm. In 
Section 5, we evaluate the combined active and passive algorithm with the NoSREx data set. We first com-
pare the retrieval with different frequency combinations and discuss the performance. Next, we compare 
the active/passive retrieval with the active-only retrieval. The background effects and accuracy of the scat-
tering albedo retrieval from passive observations are also discussed.

2.  Data
The Finnish NoSREx data set (Lemmetyinen et al., 2016) collected by the Finnish Meteorological Institute 
(FMI) is used to evaluate the algorithm in the paper. The NoSREx campaigns were initially performed 
for four successive winters 2009–2013 at the Arctic Research Center (67.3618°N, 26.6338°E) in Sodankylä, 
northern Finland. The site was chosen in a clear area within the spruce forest which is a typical boreal forest 
landscape. There is mainly short and small vegetation, such as lichen and heather, covering the area. All 
the short trees and bushes were removed before the snowfall each year, as shown in Figure 1. According to 
Lemmetyinen et al. (2016), based on a 30-year average, the soil starts freezing at the end of October, reaches 
maximum frost depth around early April and then thaws in the middle of May. Regarding snow conditions 
over 30 years, seasonal snow cover starts at the end of October and the maximum SWE occurs in April with 
a mean of 186.5 and 41.9 mm standard deviation. The average snowmelt-onset date is May 9.

Both active and passive microwave instruments were installed on tower platforms. The locations of sensors 
are shown in Figure 1. The active measurements were provided by SnowScat, a scatterometer operating at 
10.2, 13.3, and 16.7 GHz (X- to Ku-band) with full polarization. The SnowScat scanned over both elevation 
(30°, 40°, 50°, and 60°) and azimuth angles (17 angles between −62° and 34° are scanned). Backscatter was 
averaged over azimuth angles. The passive measurements were collected by the SodRad which is a radiom-
eter operating from 10.65, 18.7, 36.5, and 90 GHz (X- to W-band). Radiometer observations were made at 
elevation angles between 30° and 70° with a 5° increment. Both backscatter and TB measurements were 
collected every 3 h (2009–2010) or 4 h (2010–2013). In Figures 2a–2d, time series backscatter of all three 
frequencies and TB of 18.7 and 36.5 GHz at 40° elevation angle are shown, respectively.

Two kinds of co-located in situ measurements were included: manual snowpit measurements and automat-
ed snow measurements. The snowpit measurements were performed weekly 10–20 m from the footprints of 
the microwave sensors. Consecutive pits were made 0.5–1 m away from the previous pits. In this study, the 
manual measurements of SWE, snow depth, density profiles, and grain size profiles were used. The snow 
density profile was measured with a 250 cm3 manual cutter and scale. The estimation of snow grain size 
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was taken from visual macro-photography against a 1 mm grid. There were 81 snowpits from October 2009 
to May 2010, 31 snowpits from October 2010 to May 2011, 23 snowpits from November 2011 to May 2012 
and 32 snowpits from October 2012 to May 2013 (Lemmetyinen et al., 2016). There were also several auto-
mated instruments installed near the SodRad footprint to collect observations of SWE, snow depth, air and 
soil temperature, as well as soil moisture, which were obtained every 10 min. Snow depth was measured by 
an acoustic sensor and SWE was taken directly from the Gamma Water Instrument (GWI) (Lemmetyinen 
et al., 2016). There were some irregular values in SWE from GWI (some measurements deviate from the 
average) for all the seasons. These variabilities in measured SWE are errors of the automated instruments, 
which was confirmed by the manual snowpit measurements and studies of Lemmetyinen et al. (2016) and 
Lemmetyinen et al. (2018). In this paper, the basic assumption is that the snowpack was cold and dry with 
no liquid water present. Efforts were therefore made to center the observations on periods of dry snow 
accumulation. The data were chosen from the start of snow accumulation to the SWE peak during which 
both backscatter and TB data are available. Therefore, the study periods of December 15, 2009 to March 29, 
2010, November 5, 2010 to March 13, 2011, and November 27, 2012 to April 12, 2013 were selected. Data 
from the 3rd year are not used because of instrument malfunction (described in Leinss et al., 2015) and the 
lack of observations during the dry snow season. The automated sensors and snowpit locations are shown 
in Figure 1. In Figures 2a–2d, time series SWE, air and soil temperature are illustrated in the bottom figures, 
respectively. In Figure 3, the evolution of snow stratigraphy is illustrated for 2010–2011. Considering the 
effects of grain size on scattering, the snowpack is separated into two layers by grain type. The layers with 
new and rounded grains compose the top layer and the layers with faceted grains is treated as the bottom 
layer (Lemmetyinen et al., 2015).
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Figure 1.  Illustration of the NoSREx campaign ground measurements system. The background picture is from Lemmetyinen et al. (2016).
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Figure 2b illustrates that 2010–2011 is the year in which the continuous backscatter and TB data from snow-
free to snow melt-off are available. In other years, there were data gaps due to instrument malfunctions and 
installation delays (Lemmetyinen et al., 2016). In the early snow season, there were several sudden drops 
in backscatter which were caused by the snow melting and refreezing. This is supported by two indications: 
the air temperature went above and below zero during this period, and the TB data also shows several peaks 
at the same time--indicating episodes of high TB ∼273 K. Under such conditions, wet snow can exist at or 
near the surface, and the snow behaves like a blackbody with low scattering. Similar phenomena are also 
more apparent around April 1, 2011, which is the beginning of the snow melting season. It is interesting 
to note that during 2009–2011 (Figures 2a and 2b) and 2012–2013 (Figure 2d) the backscatter gradually 
decreased after an initial increase. This was more apparent at 13.3 and 16.7 GHz than at 10.2 GHz indi-
cating the change was dominated by changes in snow volume scattering (Lemmetyinen et al., 2016). As 
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Figure 2.  (a–d) Data summary of the NoSREx campaigns for 2009–2013. From top to bottom, each figure contains: the first panel is the vertically co-polarized 
backscatter at 10.2, 13.3, and 16.7 GHz with 40° elevation angle. The second panel is the TB at 19 and 37 GHz with 40° elevation angle; The third panel is 
snow water equivalent (SWE), air (at 2 m height) and soil (2 cm below soil surface) temperature measurements from automated instruments. This figure was 
modified from Lemmetyinen et al. (2016).
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described by Lemmetyinen et al. (2016) and indicated by the early season grain size measurements (Fig-
ures 3a and 3b), the initial increase in backscatter was caused by formation of crust structures (grain size 
∼1 mm) in the surface of the top layer due to the melting events. The crust structures then gradually relaxed 
and the grain size in the top layer decreased corresponding to the decrease of backscatter. Meanwhile, 
the bottom layer grain size was almost constant (Figure 4b of Lemmetyinen et al.  [2015]; Lemmetyinen 
et al. [2016]). Based on Rayleigh scattering theory, volume scattering is proportional to the third power of 
grain size while only linearly proportional to SWE (Tsang et al., 2004). Therefore, the change of grain size 
in the top layer dominated backscatter change in the early season. After that, backscatter increased with 
snow evolution to the more typical snow in the late season (Lemmetyinen et al., 2016). During the typical 
dry snow season, the backscatter at 10.2 GHz kept stable with little increase with SWE and even showed a 
gradually decreasing signature in 2011–2012, while backscatter at 13.3 and 16.7 GHz showed some increase 
until March 1 in 2009–2011 and 2012–2013 and no increase in 2011–2012. After March 1, the backscatter of 
13.3 and 16.7 GHz did not increase in 2010–2011 and 2012–2013 which may be attributed to the decrease 
of the top layer grain size as indicated by Figures 3e and 3f. The TB measurements indicated similar effects 
caused by the evolution of the snowpack.

3.  Methods
As illustrated in Figure 4, the retrieval method consists of four parts: the parameterized forward model de-
rived from the DMRT-Bic LUT for predictions of snow volume scattering, the subtraction of the background 
scattering, the estimation of a priori scattering albedo  from passive observations, and the SWE retrieval al-
gorithm based on three-channel (10, 13, and 17 GHz) radar observations. In the retrieval algorithm, we first 
obtain the volume scattering component of snow by substracting the background scattering from the total 
radar observation. Then, the scattering albedo ω is estimated by using a cost function to find the minimum 
difference between the passive observation and the passive LUT. A priori  is computed by averaging all the 
ω. With the obtained volume scattering component and a priori , we run the retrieval algorithm with the 
support of the parameterized forward model to determine SWE.

3.1.  Forward Model

Figure 5 provides a flow chart of LUT generation and regression training for the parameterized DMRT-Bic 
model. We first apply the DMRT-Bic model to calculate backscatter (W. Chang et al., 2014; Tan et al., 2015) 
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Figure 3.  The time series snow stratigraphy measurements for the winter season of 2010–2011. The snowpit measurement dates are (a) November 16, 2010, (b) 
December 1, 2010, (c) January 4, 2011, (d) January 18, 2011, (e) March 1, 2011, and (f) March 15, 2011.
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and TBs (Liang et al., 2008) of the snowpack. We simulate the scattering properties of the snowpack with 
a homogenous single-layer. The single-layer model is simple for both forward model and retrieval. If the 
effective grain size can be obtained accurately from the in situ measurement, the single-layer model can 
generate similar backscatter with the multi-layer model (King et al., 2018). The single-layer model is sensi-
tive to snow grain size. The scattering contribution of smaller grains is less than that of larger grains (King 
et al., 2018). There are four input parameters for the DMRT-Bic model: snow density (ρsnow), snow depth (d), 
and snow microstructure parameters (b and ⟨ζ⟩) (Ding et al., 2010). The mean wave number ⟨ζ⟩ with units of 
m−1 is inversely proportional to the mean grain size of snow. Parameter b is dimensionless and reflects the 
aggregation of snow particles (Xu et al., 2012). Then a parameterized model is derived by regression training 
with a backscatter LUT that makes the retrieval algorithm much more straightforward.

3.1.1.  The LUTs for Active and Passive Observations

In Zhu et al. (2018), the active LUT of the snowpack has been generated at 10 and 17 GHz. The LUT covers 
the following snow parameters: ρsnow varies from 91.7 to 412.7 kg/m3 with a step of 45.9 kg/m3, d starts from 
0.1 to 1.5 m with a step of 0.1 m, parameter b varies between 0.6 and 1.6 with a step of 0.2 and ⟨ζ⟩ varies 
from 5,000 to 15,000 m−1 with a step of 2,000 m−1 corresponding to snow grain size from 0.6 to 2 mm (W. 
Chang et al., 2016; Ding et al., 2010; Zhu et al., 2018). Based on the in situ measurements (Lemmetyinen 
et al., 2016), the snow properties during the NoSREx campaign are spanned by the LUT. This paper extends 
the active LUT by including 13 GHz. In addition, a new passive LUT of the snowpack with the same param-
eter ranges for 19 and 37 GHz passive observations was also generated. The simulations were performed at 
an elevation angle of 40° for all frequencies. Based on the ground measurements from the NoSREx, during 
the dry snow season, the average temperature of the snowpack and soil at 2 cm depth were 269 and 265 K, 
respectively. Both soil and snow temperature are treated as constant in simulations. The soil under dry snow 
conditions is treated as frozen. The relative permittivity of frozen soil is ϵg = 5 + i0.5 according to the in situ 
measurements (Lemmetyinen et al., 2018).
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Figure 4.  Illustration of a physical model based SWE retrieval algorithm using 10, 13, and 17 GHz radar channels aided with passive microwave observations 
at 19 and 37 GHz.
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3.1.2.  Regression Training: The Parameterized Model From the Active LUT for Snow Volume 
Scattering

The radiative transfer solution indicates that the first-order snow volume scattering is a function of ω and τ 
at the corresponding frequency,         1st

VV 0.75cos 1 exp 2 / cost t  (Cui et al., 2016; Zhu et al., 2018). 

The transmitted angle in snow is θt. The first-order solution  1st
VV and multiple order solution VV  from the 

active LUT are strongly correlated. Therefore, snow volume scattering can be expressed by

        1st
VV 10 VVdB A B10 log ,� (1)

Equation 1 is the parameterized model. In Zhu et al. (2018), the parameterized model for 10 and 17 GHz 
snow volume scattering was derived and is listed here in Table 1 (first and third rows). In this paper, we 
extend the parameterized model for snow volume scattering at 13 and 17 GHz. The procedure of regression 
training is illustrated in Figure 5 which follows Zhu et al. (2018). In the active LUT, 9 outputs have been tab-
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Figure 5.  Flow diagram of the parameterized model of the bicontinuous dense media radiative transfer model from regression training. The superscript “1st” 
refers to first-order scattering of snow.
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ulated: the scattering albedo ω10, ω13, ω17, the optical thicknesses τ10, τ13, τ17, and VV snow volume scattering 
  10 13 17

VV VV VV, ,  at 10, 13, and 17 GHz. Regression training is conducted for ω17 versus ω13 and τ17 versus τ13. 
The regression formulas are

 




 






13
17

13
0.97

17 13

0.32 0.69

1.87
� (2)

In Figures 6a and 6b, the regression curves represent the simulations of LUT well. For ω17 and ω13, the 
coefficient of determination is 0.99. For τ17 and τ13, the coefficient of determination is 0.99. In addition, a 
similar relationship between  13,1st

VV  and  13
VV was derived, listed in Table 1 second row. The RMSE in regres-

sion is 0.96 dB and the coefficient of determination is ∼0.94 for the 13 GHz channel, as shown in Figure 6c. 
With the relationship that the absorption loss τa = (1−ω)τ is proportional to SWE (Cui et al., 2016; Zhu 
et al., 2018), the regression formula between the absorption and SWE at 13 GHz based on LUT is

    13 13SWE 1c� (3)

where c  =  4,683. As illustrated in Figure  6d, Equation  3 shows a strong relationship with an RMSE of 
∼16 mm and a coefficient of determination of ∼0.96. Thus, the snow volume scattering of 13 and 17 GHz 
as a function of SWE and ω13 is obtained and listed Table 1 (second and fourth rows). For either pair of fre-
quencies (10&17 GHz or 13&17 GHz), σVV is only dependent upon two unknowns which leads to a retrieval 
that has two observations and two unknowns. Such a parameterized model is simpler and more efficient for 
retrieval than a fully physics-based model. With such characterization of the snowpack, ω and SWE are the 
only two parameters retrieved in the retrieval algorithm.

3.2.  Determination of Background Scattering

In this paper, the Oh model will be applied to retrieve the soil permittivity and roughness with radar obser-
vations at 10 GHz (Oh et al., 1992) just before snowfall or under thin snow conditions. With the retrieved 
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Snow volume 
scattering A B The first-order scattering  1st

VV

 10
VV

−2.81 0.96

 
 

 

    
    

10
10

2SWE0.75 cos 1 exp
1 cost

ta

a = 9745 (Zhu et al., 2018)

 13
VV

−1.6 1.00
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2 SWE0.75 cos 1 exp 5.37
0.66 0.37 cos 1t

t a

a = 9745 (Zhu et al., 2018)
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 
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
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13

13 13

2 SWE0.75 cos 1 exp 1.87
0.32 0.69 cos 1t

t c

c = 4683

Note. θt is the transmitted angle within the snowpack.

Table 1 
Summary of Coefficients and First-Order Scattering for Expressions of Snow Volume Scattering at 10, 13, and 17 GHz
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roughness, the background scattering at 10, 13, and 17 GHz are calculated using the Oh model. The total 
backscatter (radar observations) consist of volume scattering from snow and background scattering from 
the snow/ground interface, which is described by the expression as (Cui et al., 2016; Xu et al., 2012):

       obs bg snow
VV VV VVexp 2 / cos t� (4)

where  snow
VV  is the contribution from volume scattering of snowpack and  bg

VV is the background scattering 
component attenuated by snowpack with a factor of   exp 2 / cos t . In this paper, the transmitted angle θt 
is calculated by assuming a constant snow permittivity of 1.45. Based on Zhu et al. (2018) and Equation 3, 

   10 10SWE / 1a  and    13 13SWE / 1c  in the retrieval algorithm. The volume scattering compo-
nent is the component sensitive to snow information such as SWE. The background scattering component 
reduces the sensitivity of the total backscatter to SWE. The effects of background scattering decrease with 
increasing SWE or frequency. With Equation 4, the volume scattering component can be extracted from the 
total backscatter.

Background scattering at a given frequency is determined by two key parameters of the underlying ground 
(assuming the ground is bare soil): soil permittivity and roughness (rms height) (Oh et al., 1992). We make 
a simplifying assumption that the roughness of the soil surface remains constant from the time of the snow-
free observation and the time of the SWE retrieval, and that this is the case for all soil conditions. The soil 
permittivity depends on the freeze/thaw state and soil moisture. It is possible that soil is unfrozen before 
snow accumulation. If independent freeze/thaw state information is not available, then an alternative such 
as using time-series radar observations is needed to retrieve both roughness and soil permittivity. Fortunate-
ly, in the the NoSREx campaign, the soil was frozen or near-frozen after November, as shown by Figure 2. 
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Figure 6.  Summary of regression trainings and their accuracy. Comparison of parameters between simulation and regression results: (a) optical thickness,  
(b) scattering albedo, (c) multiple scattering and first-order regression at 13 GHz, and (d) SWE as a function of the absorption loss at 13 GHz, 13

a . The circles are 
simulation results from the look-up table (LUT) and the lines are the regression curves.
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Thus, the permittivity of frozen soil is constant through the winter, and we assume a value of ϵg = 5 + i0.5. 
With this soil permittivity, we select radar observations around November 10, 2010 (−17.4 dB at 10 GHz) 
for retrieval of soil roughness, though there is snow cover with a depth of 18 cm. For 18 cm snow, total 
backscatter at 10 GHz is dominated by the background scattering. With the Oh model, the retrieved rms 
surface roughness is 2 mm. With this rms height and soil permittivity, the background scattering at 10, 13, 
and 17 GHz are calculated using the Oh model. The calculated background scattering at the three frequen-
cies are used in the retrieval for all seasons. Note that such an approach assumes that soil conditions are 
constant during the period of applicability of this algorithm (the dry snow season).

In Figure 7, the total backscatter (a) from the NoSREx 2010–2011 is compared with the volume scattering 
(b) at 10, 13, and 17 GHz. The volume scattering is obtained by subtracting the background scattering from 
radar observations with Equation 4. We find τ and cosθt using in situ measurements and the DMRT-Bic 
LUT. The comparison reveals that the volume scattering components for SWE below 100 mm are 1.6 dB be-
low the total backscatter at 10 GHz, 1 dB at 13 GHz, and 0.5 dB at 17 GHz. This means that the background 
scattering is 45%, 25%, and 12% of the volume scattering of snow, respectively. Therefore, the effects of the 
background are weaker at 13 and 17 GHz.

3.3.  The Combined Active and Passive Retrieval Algorithms

Passive microwave observations (TBs) of snow are also based on volume scattering by the snowpack. The 
volume scattering increases with the fourth power of frequency and the third power of the grain size of 
snow, if Rayleigh scattering is assumed (Tsang et al., 2004; Xu et al., 2012). Therefore, high-frequency pas-
sive observations are highly sensitive to snow microstructure, which we utilize to estimate an a priori ω.

As illustrated in Figure 4, the passive observations are compared with the passive LUT to determine ω. The 
passive observations of the snowpack depend on the physical temperatures of the snow and the ground, 
SWE, and the scattering albedo ω. For example, at 37 GHz and V-polarization

       V,37 V,37 37 snow 37 ,TB SD, T exp / cos t V g ga e T� (5)

where aV,37 is the absorption of snowpack, which depends on snow depth (SD) and scattering albedo ω37 at 
37 GHz. The physical temperature of snow and ground are Tsnow and Tg, respectively. The ground emissivity is 
eV, g. Because of strong volume scattering at 37 GHz, the optical thickness τ37 at 37 GHz is large. Thus, we can 
ignore the effect of the ground at 37 GHz. With the ratio of V- and H-polarization TBs at 37 GHz TBV,37/TBH,37, 
the physical temperature cancels out. Therefore, with passive observations at 37 GHz, SD is also needed to 
determine the scattering albedo ω37. In order to avoid using in situ snow depth, we apply the passive observa-

ZHU ET AL.

10.1029/2020WR027563

11 of 21

Figure 7.  Vertically co-polarized backscatter as a function of SWE from the NoSREx 2010–2011 data: (a, left) total backscatter versus SWE and (b, right) 
volume scattering component of backscatter versus SWE.
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tions to retrieve snow depth (Markus & Cavalieri, 1998),     1 2 V,37 V,19 V,37 V,19SD TB TB / TB TBd d , 
where d1 and d2 are coefficients derived from in situ measurements and passive observations. This indicates 
that  V,37 V,19 V,37 V,19TB TB / TB TB  is proportional to SD, which can help in our algorithm to determine 
the scattering albedo. Therefore, a simple cost function is established to find the best match in passive LUT 
with the passive observation.
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where V and H mean polarizations. The standard deviation p1 and p2 are obtained from

                    
                  

Model obs
V,37 V,19 V,37 V,19

1
V,37 V,19 V,37 V,19

Model obs
V,37 V,37

2
H,37 H,37

TB TB TB TB
std MIN

TB TB TB TB

TB TB
std MIN

TB TB

p

p

� (7)

We compare the model predictions with the each set of observations to find the minimum value. Consid-
ering all sets of observations, p1 and p2 are calculated by taking the standard deviation. With the NoSREx 
2010–2011 dataset, we get p1 = 5.99 × 10−5 and p2 = 0.0076. In this paper, for all seasons, we use same values 
of p1 and p2.

We use Equation 6 to derive ω from passive observations. The first term in Equation 6 includes information 
on snow depth. Since the higher frequency is more sensitive to the scattering albedo, we use the TB polar-
ization ratio at 37 GHz in the second term. As shown in Figure 5, there are 13 tabulated outputs from the 
DMRT-Bic model: the scattering albedo ω10, ω13, ω17, the optical thicknesses τ10, τ13, τ17, and VV snow volume 
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Figure 8.  (a, left) Comparison of the passive observations of 2010–2011 (red circles) and passive LUT (other color 
circles) in terms of  V,37 V,19 V,37 V,19/TB TB TB TB  and V,37 H,37/TB TB . The color bar is ω10. (b, right) Comparison of 
retrieved ω from in situ measurements and passive obervations.
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scattering   10 13 17
VV VV VV, , , and TB of 19 and 37 GHz TBV,19, TBH,19, TBV,37, TBH,37. These 13 outputs are corre-

lated and corresponding to the same simulated snowpack. After finding the best match TB with Equation 6 
for each set of observations, the associated ω10 and ω13 are obtained simultaneously.

Note that, by using Equation 6, there are several assumptions included. The passive LUT is generated by as-
suming constant temperatures for both snow and ground. The paper also assumes that the effect of ground 
is negilible for TB at 37 GHz. SD is retrieved by using passive observations, which includes errors from the 
retrieval. Such a retrieval approach is also affected by physical temperatures and ground conditions. These 
facts can cause uncertainties for the estimation of scattering albedo. In this paper, we focus on the prelim-
inary examination of the method and ignore these effects. In the future, we will quantitatively study the 
uncertainties of these assumptions and consider using ancillary data of temperatures, ground conditions, 
and SD to improve the accuracy of the scattering albedo estimation.

Multiple passive observations in time series are acquired to help improve the estimation. A priori  is 
the average of all the retrieved ω. In this paper, for each season, we use time series passive observations 
during the dry snow season to obtain a single a priori  and apply it to the retrieval for the whole season. 
As an example, we derive a priori 10 for the 2010–2011 winter season. In Figure 8a, we plot the passive 
observations in terms of  V,37 V,19 V,37 V,19TB TB / TB TB  and V,37 H,37TB / TB  against the passive LUT. 
Generally,  V,37 V,19 V,37 V,19TB TB / TB TB  decreses with the increase of ω10. Most of passive observations 
are located around the region of ω10 = 0.6. By using snowpit measurements and microwave observations 
simultaneously measured when snowpit was being excavated, we can estimate the scattering albedo. The 
detailed procedure is as follows: First, we follow Zhu et al. (2018) to find the associated ω10 for each pair 
of radar observations by using in situ measurements. The volume scattering components of the total radar 
observations are obtained by excluding background scattering (determined in Section 3.2). Next, the co-lo-
cated SWE and snow density measurements are taken as known parameters. With these two parameters, 
we search for the best ω10 to match with the volume scattering components of the total radar observations 
using the parameterized model. The best match ω10 is the associated ω for the corresponding pair of radar 
observations. A priori 10 is the average of associated ω10 of all radar observations,  10 0.63. The retrieved 
ω10 and 10 from the in situ measurements are taken as a benchmark and illustrated in Figure 8b. Next, 
we apply the passive observations collected at the same time as snowpit measurements to determine ω10 
with Equation 6, where no ground measurements are required. The determined 10 is the average of all 
the retrieved ω10 from passive observations,  10 0.61. Comparing the retrieved ω10 from in situ measure-
ments and passive observations, the RMSE is about 0.1 and the correlation is 0.525. These two results are 
moderately correlated. In the early season, the retrieved ω10 from passive observations tend to be similar 
with that of in situ measurements. While ω10 from passive observations is overestimated in the late season. 
Fortunately, both of the retrieved ω10 have almost same average values. Since it is hard to get the retrieved 
ω10 from passive observations that accurately at the local time period, we need to use the average to reduce 
estimation errors. In Section 6, we have tested this for multiple years of observations, and the approach 
provides sufficient fidelity for our purposes.

With this a priori  from passive observations, the active retrieval algorithm is applied. The cost function is 
guided by a priori  to avoid getting trapped in a local minimum. Through this minimization, the algorithm 
retrieves both ω and SWE. The active algorithm refines the estimation of ω, which enhances the sensitivity 
of backscatter to SWE.

For the SWE retrieval, a least-square cost function constrained by a priori  is applied to fit the parameter-
ized model results into radar observations (Cui et al., 2016; Zhu et al., 2018). Although using three frequen-
cy radar observations provides more information, it also involves more uncertainties. In the cost function, 
only two-frequency radar observations which give the best sensitivity to SWE are selected. The cost function 
is given as:

       
 

       
 

   
   

 
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2 2 21,snow 1,model 2,snow 2,model
VV VV VV VV

2 2 2,SWE 1 2
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s s s
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where  1,snow 2,snow
VV VV,  are radar observations of VV-polarization at dual 

frequencies excluding background scattering from the snow/ground 
interface (which is determined in Section  3.2).  1,model 2,model

VV VV,  are the 
backscatter predictions from the parameterized model. The reason that 
VV observations are used in the retrieval rather than HH (horizontal 
co-polarization) is that HH backscatter will have a stronger background 
scattering contribution than in the case of VV. This is apparent since the 
Fresnel reflection coefficients of the snow/soil interface at H-polarization 
are larger than at V-polarization.  is an a priori value for the scattering 
albedo determined from passive observations. 2 2

1 2,s s  are the expected error 
standard deviation of the radar measurements, and 

2s  act as the variance 
of the a priori constraint. Each term is normalized by assuming a Gauss-

ian distribution. According to Cui et al. (2016) and Zhu et al. (2018), s1 and s2 are assumed to be 0.5, which 
are based on the error standard deviation of radar measurements. We also set sω to be 0.1.

4.  Results
In this section, the combined active and passive retrieval algorithm is validated against the NoSREx dataset. 
We test the retrieval algorithm for three sets of frequency combinations:

1.	 �SWE Retrieval with 10 and 17 GHz channels and 10 as a priori information.
2.	 �SWE Retrieval with 13 and 17 GHz channels and 13 as a priori information.
3.	 �First, retrieve with 13 and 17 GHz channels using 13. If the retrieved SWE is large than 80 mm, do an-

other retrieval with 10 and 17 GHz channels using 10.

The threshold of 80 mm is chosen since it is near the median value of SWE measurements. The idea is to 
create an adaptive way to combine three frequencies. Since the backscatter of 13 and 17 GHz is less affected 
by the background scattering, retrieval based on 13 and 17 GHz channels may be better for thin snow.

In addition, the paper also compared the combined active and passive algorithm with the active-only algo-
rithm. In the active-only algorithm, a priori  is determined with the in situ measurements and radar obser-
vations. As introduced in Section 3.3, we calculate a priori  at 10 and 13 GHz following Zhu et al. (2018). 
In this paper, a priori  and the performance of the active-only algorithm are regarded as benchmarks since 
ground measurements are applied. For the combined active and passive algorithm, only passive observa-
tions are applied to determine  with Equation 6. In this section, we select the passive observations which 
correspond to the simultaneous TB scenes when the snowpit was being excavated. In Table 2, we list a 

priori 10 and 13 determined from these two methods. Generally, results 
of these two methods agree well. In retrieval, both the active-only and 
combined method use a single a priori  for the whole season.

SWE retrieval performance for the active-only algorithm is shown in Ta-
ble 3, while retrieval performance of the combined active-passive algo-
rithm is listed in Table 4. Both tables list the achieved RMSE, correlation, 
and bias of SWE retrieval to facilitate intercomparison. The retrieval re-
sults of 2010–2011 achieved the best RMSE (<21 mm) and correlation 
(>0.85) while the results of 2012–2013 were the worst. Comparing the 
performance among the three sets of frequency combinations, we found 
the retrieval based on 13 & 17 GHz for 2009–2011 usually had the best 
RMSE and correlation (except for the combined active-passive method 
for 2009–2010 in which the 13 is overestimated). In contrast, for 2012–
2013, the retrieval of 13 & 17 GHz gives the worst RMSE and correlation. 
Using all three frequencies does not result in better performance than the 
dual-frequency retrieval—at least for the snow conditions encountered 
at NoSREX. This may be because the snowpack was not thick enough 
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Method
Scattering 

albedo 2009–2010 2010–2011
2012–
2013

In situ measurements 10 0.58 0.63 0.44

13 0.64 0.65 0.51

Passive observations 10 0.59 0.61 0.48

13 0.67 0.65 0.55

Table 2 
A Priori Scattering Albedo Determined From In Situ Measurements and 
Passive Observations

Year Radar channel
Correlation 
coefficient

RMSE 
(mm)

Bias 
(mm)

2009–2010 10 & 17 GHz 0.693 26.30 14.50

13 & 17 GHz 0.698 23.21 5.13

Combining 10, 13, 17 GHz 0.685 27.70 15.37

2010–2011 10 & 17 GHz 0.860 17.05 −0.70

13 & 17 GHz 0.872 15.94 −1.01

Combining 10, 13, 17 GHz 0.859 17.19 0.74

2012–2013 10 & 17 GHz 0.585 31.71 1.54

13 & 17 GHz 0.377 35.71 −1.94

Combining 10, 13, 17 GHz 0.585 31.71 1.59

Table 3 
Performance of Active-Only Snow Water Equivalent (SWE) Retrieval Using 
NoSREx Campaign Data
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to result in differentiations among the three frequencies that were large 
compared to the corresponding uncertainties at those frequencies.

Comparing the combined active-passive and the active-only algorithms, 
the combined algorithm achieves similar performance, which reveals 
that passive observations do help to provide an acceptable a priori scat-
tering albedo. As an example, SWE retrieval performance for both algo-
rithms for 2010–2011 are shown in Figure 9. In Figure 10, the SWE re-
trieval performance using the combined active-passive algorithm with 10 
& 17 GHz and with 13 & 17 GHz are compared with measured SWE for 
all three winters.

For the SWE retrieval of NoSREx 2010–2011, overall, retrieved SWE is 
in reasonable agreement with measured SWE. However, there are some 
inconsistencies. The retrieved SWE overestimates the SWE and gradually 
decreases in the early season (Figures 10b and 10e). This is because the 
backscatter of 13 and 17  GHz was decreasing in the early season (see 
Section 2 for additional explanation). We also find retrieved SWE based 
on 10 and 17 GHz (Figures 9a and 9d or Figure 10b) does not change 

for measured SWE between 60 and 100 mm. Some inconsistent SWE were found caused by errors from 
automated measurements as mentioned in Section 2. Another potential reason is that although the SWE 
increased from 60 to 100 mm, 10 and 17 GHz backscatter hardly increased during January 1 to February 1 
of 2011 (Figure 2b). However, the 13 GHz backscatter increased with SWE leading to better performance 
with 13 and 17 GHz (Figures 9b and 9e or Figure 10e). From January 1 to February 1, as shown in Figures 3c 
and 3d, the snow accumulation was mostly from the top layer. The grain size of top layer decreased while 
the bottom layer grain size increased. For 17 GHz, these two effects canceled each other leading to constant 
backscatter. However, because of its longer wavelength, the backscatter at 13 GHz was affected more by 
the change of the bottom layer. For measured SWE above 100 mm, there might be measurement errors in 
the middle of February where the SWE fluctuates. The 10 and 17 GHz retrieval (Figure 10b) overestimates 
SWE for measured SWE above 100 mm while the 13 and 17 GHz retrieval (Figure 10e) provides reasonable 
results. The early season inconsistency and the inconsistency in the February 2011 retrieval using 10 and 
17 GHz demonstrates the possibility that an increase of SWE does not lead to an increase of backscatter. The 
retrieval algorithm currently does not address this problem well. It implies a limitation of the algorithm due 
to its use of a single-layer model with a single a priori scattering albedo and insufficient degrees of freedom 
to adequately represent the actual impact of stratigraphy.

The retrieval for 2009–2010 (Figures 10a and 10d) also achieves reasonable performance in general. Howev-
er, it also has similar inconsistencies in the early season and February 2010 as those for 2010–2011, as shown 
by Figure 2a. These inconsistencies are more distinct and affect a longer period, which makes the retrieval 
performance of 2009–2010 worse than that of 2010–2011. In addition, the 13 from passive observations is 
overestimated which leads to underestimation of SWE beginning in the middle of February 2010 for the 13 
and 17 GHz retrieval.

The retrieval for 2012–2013 (Figures 10c and 10f) gives the worst performance. In general, the retrieved 
SWE is underestimated compared with measured SWE. One reason is that both 10 and 13 from passive ob-
servations are overestimated. The other more important reason is that, similar to 2009–2010 and 2010–2011, 
the backscatter of 13 and 17 GHz decreased from December 1, 2012 to January 1, 2013 and subsequently 
remained stable until the middle of February 2013 (Figure 2d), which causes the most distinct inconsisten-
cies in retrieval among three seasons.

5.  Discussion
In the retrieval, uncertainty of the magnitude of background scattering directly impacts SWE retrieval accu-
racy. When radar observations are not available just before the snow accumulation period or soil conditions 
change during the dry snow season, we cannot obtain an exact magnitude of background scattering contri-
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Year Radar channel
Correlation 
coefficient

RMSE 
(mm)

Bias 
(mm)

2009–2010 10 & 17 GHz 0.691 22.03 2.81

13 & 17 GHz 0.698 24.86 −9.19

Combining 10, 13, 17 GHz 0.684 24.46 8.44

2010–2011 10 & 17 GHz 0.860 19.73 5.24

13 & 17 GHz 0.875 15.99 0.15

Combining 10, 13, 17 GHz 0.857 20.08 3.07

2012–2013 10 & 17 GHz 0.587 36.22 −20.30

13 & 17 GHz 0.387 39.42 −19.34

Combining 10, 13, 17 GHz 0.585 36.14 −20.24

Table 4 
Performance of Combined Active-Passive SWE Retrieval Using NoSREx 
Campaign Data
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bution. To better understand the impact of this uncertainty, the SWE retrieval of the active-only algorithm is 
tested based on the total backscatter without subtracting the background scattering (Figure 11). Figures 11a 
shows that the retrieval results with 10 and 17 GHz backscatter overestimate the SWE (the RMSE increas-
es by 8 mm compared with Figure 9a) because the total backscatter is assumed to be entirely from snow 
volume scattering. The retrieval results based on 13 and 17 GHz backscatter as shown in Figures 11b show 
the retrieval using 13 and 17 GHz backscatter which still overestimates for SWE below 60 mm but provides 
better retrieval results than that of 10 and 17 GHz for SWE above 60 mm (the RMSE increases by 3 mm 
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Figure 9.  Comparison of SWE retrieved with SWE measured for the NoSREx campaign 2010–2011 data. (Left) 
retrieval based on the active-only algorithm using (a, top) 10 & 17 GHz, (b, middle) 13 & 17 GHz and (c, bottom) using 
all three frequencies. (Right) retrieval based on the combined active-passive algorithm using (d, top) 10 & 17 GHz, (e, 
middle) 13 & 17 GHz and (f, bottom) using all three frequencies.
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compared with Figure 9b). Therefore, for the NoSREx site, using both Ku frequencies limits the background 
effects and improves SWE retrieval.

We examined how TB measurement uncertainty would affect the estimation of a priori information. Fig-
ure 12 illustrates the TB for V and H polarization at 19 and 37 GHz as a function of scattering albedo at 10 
and 13 GHz from the DMRT-Bic LUT. TB of both polarizations at 19 GHz are not sensitive to scattering al-
bedo until it is larger than 0.75 in both Figures 12a and 12b. Thus, using the 19 GHz TB channel to estimate 
scattering albedo of snow can be affected by measurement errors. However, TB at 37 GHz for both polari-
zations show good sensitivity to scattering albedo. The change of scattering albedo with Δω = 0.1 can have 
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Figure 10.  Measured SWE compared with SWE retrieved using the combined active-passive method for the NoSREx campaign. The retrievals in the top figures 
are based on 10 and 17 GHz: (a, left) 2009–2010, (b, middle) 2010–2011, and (c, right) 2012–2013. The retrievals in the bottom figures are based on 13 and 
17 GHz: (d, left) 2009–2010, (e, middle) 2010–2011, and (f, right) 2012–2013.

Figure 11.  SWE retrieved results with of the active-only algorithm without background scattering subtraction for the 
NoSREx 2010–2011. (a, left) using 10 and 17 GHz retrieval and (b, right) using 13 and 17 GHz retrieval.
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ΔTB = 20 K, which is quite large compared with TB measurement errors. Therefore, 37 GHz TB observation 
is promising to determine the scattering albedo of snow.

In a real application, it is rare to have simultaneous active and passive observations. The retrieval algorithm 
should accommodate timing differences between active and passive observations. The measurement inter-
val refers to the time between successive measurements. For example, the AMSR-2 measurement interval 
is typically 2–3 days. In Figure 13, we show the estimated a priori scattering albedos at 10 and 13 GHz, 
respectively, are plotted as a function of measurement interval. Equation 6 is then applied to determine the 
scattering albedo by comparing passive observations with LUTs. The measurement frequency is interval 
ranged from 4 h (nearly simultaneous with active measurements) to 7 days. The scattering albedos deter-
mined based on the in situ measurements (the yellow curves) are regarded as a benchmark. In general, the 
estimated 10 and 13 from passive observations are in good agreement with the benchmark. The differences 
for both frequencies are smaller than 0.03. By revisiting Tables 2–4, for 2012–2013, there is a 0.04 difference 
for 10 and 13. The RMSE difference between the combined algorithm and the active-only algorithm is 
less than 5 mm and the correlation is almost same. Thus, the 0.03 difference is acceptable for the retrieval. 
For 13 GHz, the 13 is overestimated (0.01 bias) compared with the benchmark. The results indicate that 
the algorithm can tolerate a time difference (one week for the NoSREx) between active and passive meas-
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Figure 12.  Sensitivity of TB at 19 and 37 GHz to scattering albedo at (a, left) 10 GHz and (b, right) 13 GHz. The 
simulated snowpack density is 183.4 kg/m3, depth is 30 cm, and the snow microstructure parameter b is 1.4.

Figure 13.  Estimated a priori scattering albedo at (a, left) 10 GHz and (b, right) 13 GHz as a function of passive 
measurement interval (e.g., 4 days means one passive measurement per 4 days). The red marker is the result based on 
passive measurements selected simultaneous with the snowpit operations. The yellow line is the result based on in situ 
ground measurements.
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urements. Low Earth orbit measurement interval for passive observations can be once a week which still 
provides acceptable scattering albedos.

All the discussion and validations are based on data from the NoSREx near arctic boreal forest site in Fin-
land. So the retrieval approach is supposed to be effective for snow in open area of boreal forest. As the 
original active algorithm has been validated for tundra snow (Zhu et al., 2018), the improved combine active 
and passive method may also work for tundra areas. Due to the bare soil assumption, the retrieval algorithm 
may not work for snow over sea ice. It also does not work for forest areas since forest effects have not been 
included in this paper. In addition, for thick snowpack (above 2 meter), backscatter at Ku bands will satu-
rate. This may also lead to the failure of the algorithm.

As Sturm et al. (2017) pointed out, snowmelt plays an important role to generate streamflow where a sea-
sonal snow is a key source of the water resources, and SWE becomes a critical variable to evaluate hydrolog-
ical impacts driven by recent climate change (Cochand et al., 2019; Déry et al., 2009; Tague & Grant, 2009). 
If future remote sensing and field observations from sites with other snow types (Sturm et al., 1995) become 
available, the performance of the proposed active/passive algorithm should be re-calibrated and validated 
to demonstrate an exact SWE prediction for different snow types.

6.  Conclusions
A combined active/passive retrieval algorithm is proposed and evaluated against the NoSREx data. Com-
pared with the active-only version of the retrieval (Zhu et al., 2018), the combined active-passive algorithm 
provides a deterministic way to obtain an a priori scattering albedo by using passive observations without 
the need for in situ ground measurements. For the NoSREx data, the performance of this combined SWE re-
trieval shows promise. The a priori scattering albedo values estimated from passive observations are in good 
agreement with those from in situ measurements, and the combined algorithm achieves retrieval perfor-
mance as good as the active-only algorithm. The retrieval of the combined algorithm achieves a RSME less 
than 27 mm and correlation coefficients above 0.68 for 2009–2010, RMSE less than 21 mm and correlation 
above 0.85 for 2010–2011, and RMSE less than 40 mm and correlation above 0.38 for 2012–2013. In addition, 
the algorithm introduces a 13 GHz radar channel that improves the robustness of the SWE retrieval. The 13 
and 17 GHz backscatter is less affected by background scattering and more sensitive to the SWE. By incor-
porating the 13 GHz channel, the retrieval performance is enhanced and the background effects are limited.

Improvements for the combined active-passive algorithm are still needed. Although the 13 GHz channel 
is introduced to reduce uncertainties from background scattering, it is still challenging to characterize the 
snow/ground interface and compute the background scattering. Testing of the combined algorithm (with in 
situ ground truth) for a wider range of snow classfications (Sturm et al., 1995) than experienced during NoS-
REx is needed. In the absence of radar acquisitions before the snow season, existing satellite radar sensors 
like TerraSAR-X (X band) and Sentinel-1 (C band) could be used to obtain radar measurements at different 
frequencies over the study area. Those low-frequency observations might allow the removal of background 
scattering associated with the lower boundary by relating the low-frequency backscatter to SWE retrieval 
frequencies via frequency-scaling laws. Additionally, the paper describes a natural, multi-layered and heter-
ogeneous snowpack with only a single homogeneous layer. Results showed that the single-layer model can-
not account for the complex evolution of snow stratigraphy which leads to uncertainties of the SWE retriev-
al. A two-layer snow physics model is desirable to improve the algorithm (King et al., 2018). Furthermore, 
the resolution difference between active and passive microwave sensors for satellite remote sensing needs to 
be overcome in future studies. Another limitation of the implemented method is associated with the SWE 
retrieval with a bare soil assumption. Forest effects need to be further evaluated with the microwave volume 
scattering approach (Rott et al., 2010). With ancillary data of ground conditions and snow properties, quan-
titatively study uncertainties for the estimation of scattering albedo from passive observations will also be 
a goal for our future study.

Recent climate change has been shown to significantly alter previously stable annual water budgets—espe-
cially when snowmelt-runoff dominates the freshwater supply (Diffenbaughet al., 2015; Fowler et al., 2003; 
Harley et al., 2020). As noted in Sturm (2015) and Sturm et al. (2017), improved cold region hydrology is 
becoming more and more critical and urgent, as snowmelt-dominated water sources are shrinking. At a 

ZHU ET AL.

10.1029/2020WR027563

19 of 21



Water Resources Research

global scale, a near earth orbit satellite can provide observations with a 5–10 day revisit cycle, to enhance 
cryospheric condition tracking. At smaller scales, the SWE retrieval algorithms presented in this paper 
can drive distributed land surface models across watersheds for improved streamflow prediction (Bales 
et al., 2006; Durand et al., 2008).

Data Availability Statement
Data sets for this research are included in this paper (Lemmetyinen et al., 2016).
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