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Purpose: Transfer learning is commonly used in deep learning for medical imaging to alleviate the
problem of limited available data. In this work, we studied the risk of feature leakage and its depen-
dence on sample size when using pretrained deep convolutional neural network (DCNN) as feature
extractor for classification breast masses in mammography.
Methods: Feature leakage occurs when the training set is used for feature selection and classifier
modeling while the cost function is guided by the validation performance or informed by the test per-
formance. The high-dimensional feature space extracted from pretrained DCNN suffers from the
curse of dimensionality; feature subsets that can provide excessively optimistic performance can be
found for the validation set or test set if the latter is allowed for unlimited reuse during algorithm
development. We designed a simulation study to examine feature leakage when using DCNN as fea-
ture extractor for mass classification in mammography. Four thousand five hundred and seventy-
seven unique mass lesions were partitioned by patient into three sets: 3222 for training, 508 for vali-
dation, and 847 for independent testing. Three pretrained DCNNs, AlexNet, GoogLeNet, and
VGG16, were first compared using a training set in fourfold cross validation and one was selected as
the feature extractor. To assess generalization errors, the independent test set was sequestered as truly
unseen cases. A training set of a range of sizes from 10% to 75% was simulated by random drawing
from the available training set in addition to 100% of the training set. Three commonly used feature
classifiers, the linear discriminant, the support vector machine, and the random forest were evaluated.
A sequential feature selection method was used to find feature subsets that could achieve high classi-
fication performance in terms of the area under the receiver operating characteristic curve (AUC) in
the validation set. The extent of feature leakage and the impact of training set size were analyzed by
comparison to the performance in the unseen test set.
Results: All three classifiers showed large generalization error between the validation set and the
independent sequestered test set at all sample sizes. The generalization error decreased as the sample
size increased. At 100% of the sample size, one classifier achieved an AUC as high as 0.91 on the
validation set while the corresponding performance on the unseen test set only reached an AUC of
0.72.
Conclusions: Our results demonstrate that large generalization errors can occur in AI tools due to
feature leakage. Without evaluation on unseen test cases, optimistically biased performance may be
reported inadvertently, and can lead to unrealistic expectations and reduce confidence for clinical
implementation. © 2020 American Association of Physicists in Medicine [https://doi.org/10.1002/
mp.14678]
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1. INTRODUCTION

Machine learning using deep convolutional neural network
(DCNN) requires training of a large number of parameters.
Typically, millions of training samples are needed to train
DCNNs for computer vision tasks. Through representation
learning, a DCNN learns to extract features from the input
image via the shallow to the deep convolutional layers. It has
been shown that the DCNN extracted features are more gen-
eric, such as lines and edges, in the shallow layers, and
become progressively more specific to the target task as the
layers get deeper. The feature extraction capability is incorpo-
rated in the weights of the convolutional filters. Due to the

limited availability of medical image data, transfer learning is
often used to train DCNNs for medical imaging tasks. Trans-
fer learning from source to target tasks in medical imaging
has been implemented using different strategies but generally
starting with the transfer of weights from the source task.
During transfer learning, the dense layers at the DCNN out-
put may be replaced or new layers added to be trained with
the target domain images, while the convolutional filter
weights may be frozen at different levels1 and the remaining
unfrozen layers are allowed to be fine-tuned. When the target
domain dataset is small, the pretrained DCNN may be used
directly as feature extractor and the extracted features are
weighted and classified by an external classifier trained with
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the target domain data. Since features can be extracted from
any layers of the DCNN, the dimensionality of the extracted
feature space can be extremely high and a subset of the fea-
tures are often selected before or during formulation of the
classifier.2–4 The high dimensionality of the extracted deep
feature space coupled with the limited medical imaging data
available creates the “curse of dimensionality” problem.

Due to the large learning capacity, DCNNs can be over-
trained to fit to the patterns or characteristics in the training
set rather than learning generalizable features.5,6 Small train-
ing sets increases the risk of over-training. Over-training
results in drop in performance on unseen test cases. Regular-
ization methods have been developed to mitigate the risk but
cannot eliminate it. Identifying the balance between learning
and over-fitting is not trivial. In machine learning, usage of
validation set is recommended to guide training, but the over-
fitting may then be directed to the validation set. Over-train-
ing can also occur when a DCNN is used as feature extractor
and a subset of features is selected as input predictor vari-
ables for an external classifier. The feedback from the valida-
tion set in the form of “data” and “features” is used to
optimize the machine learning methods on the training set. In
this work, we studied the “features” feedback as “feature leak-
age”7 between the training set and the validation set or test
set that is allowed unlimited reuse.

In machine learning, “data” or “feature” leakage between
the training and the validation/test partitions results in overly
optimistic results. An example of data leakage is when data
from the same patient spread across the training and test par-
titions. Data within each patient are highly correlated result-
ing in the leakage. An example of feature leakage is when
feature selection on the training partition is influenced by the
performance on the test set. Feature leakage can occur unin-
tentionally even if the training and test sets are separated with
independent samples. If the test set is not sequestered and the
algorithm developer can reuse the same test set to evaluate
the algorithm performance unlimited times during model
development, the test set essentially becomes a part of the
validation set that guides the feature selection and model for-
mulation.8,9 Feature leakage can be particularly serious in the
context of DCNNs because of the high-dimensional nature of
the problem. Similar problem can occur in radiomics where
hundreds or thousands of texture features can be extracted
and a small subset is selected to build predictive models. The
risk of curse of dimensionality compounded with the issue of
feature leakage in machine learning can potentially lead to
overly optimistic reporting of the performance of clinical
decision support tools.

The goal of this study is to demonstrate the hazards of fea-
ture leakage in the process of selecting deep features and
classifier modeling, the generalization errors when the
trained model is applied to truly unseen cases, and the effects
of sample size on the problem.

Recent deep learning related work in medical imaging has
renewed interest in developing machine learning, or artificial
intelligence (AI), methods for various applications in health-
care. Transfer learning is an important technique of

developing these tools, especially the use of a DCNN pre-
trained with large source domain data as a feature extractor to
alleviate the data shortage problem in medical domain. The
extracted features of the target domain data are then used as
input predictor variables to train an external classifier for the
target task using the available dataset. The limited available
data may be split into a training set and a validation set with
or without another held-out test set. K-fold cross validation,
leave-one-out, or a single split are basically the same dataset
partitioning in principle except for the differences in the num-
ber of partitions to split so that we will focus on the single
split approach as example in the current study.10,11 An impor-
tant issue of this developmental process is to understand
whether and how feature leakage occurs and the impact of
the sample size on feature leakage and generalization error,
that is, bias on the predicted performance relative to true per-
formance on unseen test data. To study this process, we use a
relatively large labeled dataset of malignant and benign breast
masses from mammograms. A subset is sequestered as an
unseen test set that is not used in any process during training.
Another independent subset is drawn as a validation set. The
remaining cases are used to randomly drawn training sets that
simulate a range of sample sizes. Sensitivity analysis within
the variability of the data is also studied by repeated experi-
ments at each training set size. Although we use the task of
classifying malignant and benign masses in mammography
as example, it can be expected that the observed trends are
applicable to other similar tasks.

As described above, DCNNs learn low-level functions that
transform an input image to an output class through represen-
tation learning but at a large scale producing hundreds of
thousands or millions of these functions.12 Through back
propagation, the layers closer to the input break down the
image to build basic descriptors of the input domain, and the
layers closer to the output amplify the attributes important for
classification and suppress the rest. Thus the deep features in
the DCNN are organized to transition from generic to specific
to the source task. By using the DCNNs as feature extractors,
these low-level functions, which can amount to thousands,
can extract pertinent characteristics of the source domain
images. The number of these deep features far exceeds that of
the handcrafted features. Studies have shown that the knowl-
edge of extracting representative features can be successfully
transferred from the ImageNet 1000-class classification task
to other domains.13 The discriminability of these deep fea-
tures compared to traditional radiomics features and DCNN
trained on target task data could depend on the complexity of
the task, the quality of the extracted features and the train-
ing/validation data sizes.

The effectiveness of the extracted features is also influ-
enced by the DCNN architecture. For example, VGG16 with
convolutional filters of smaller receptive field and deeper
convolutional layers compared to AlexNet was found to be
superior in the ImageNet 1000-class classification task. Goo-
gLeNet consisting of inception blocks with parallel convolu-
tional layers and vastly smaller number of trainable weights,
was found superior to both AlexNet and VGG16. For transfer
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learning from the source task to the target tasks in medical
imaging, the quality of the deep features will further be influ-
enced by whether and how fine-tuning with target domain
data is performed and how large the training target dataset is.
In our previous study1 using transfer learning with fine-tun-
ing, where some deeper layer weights were fine-tuned in a
two-stage multi-task transfer learning process, we showed
that transferring “knowledge” from ImageNet-trained weights
to mammography and then to digital breast tomosynthesis
(DBT) resulted in higher performance when compared to
direct transfer learning from ImageNet to DBT. However, we
also observed that at small training set sizes, both with mam-
mography and DBT, the risk of overfitting increased substan-
tially. Thus, for the current study, to focus on our goal of
studying feature leakage, we used the pretrained DCNN as
feature extractor without fine-tuning. This would keep the
extracted deep feature set constant and facilitate the study of
the impact of feature selection without the additional variabil-
ities due to the strategy and training set size used for fine tun-
ing. The observed relative trends of feature leakage analyzed
in this study, however, should not be dependent on the feature
extractor used because we studied the feature leakage that
occurred after the deep feature extraction process.

In the following sections, we will give a detailed descrip-
tion of the mammography data used in the study, compare
three pretrained DCNN structures as feature extractor for the
mass classification task, describe the design of the simulation
study and analyze feature leakage using deep features
extracted from one of the pretrained DCNNs. Preliminary
results of the study were published in a conference proceed-
ings.14

2. MATERIALS AND METHODS

Pretrained DCNN can be used to extract deep features in
the order of thousands from each mass lesion in mammogra-
phy images. In principle, the idea behind DCNNs is that the
convolutional layers extract spatial features and the dense
layer combines these spatial activation maps from the convo-
lutional layer by assigning weights as determined by the loss
function. In this study, we extracted deep features only at the
first dense layer to keep the feature space dimensionality rela-
tively low, although it is still in the thousands. Since the curse
of dimensionality and the feature leakage generally get worse
as the dimensionality increases, the trends observed in this
study will be conservative but still serve the purpose of
demonstrating the problem. The following sections give a
description of the dataset and the partitions used in the study,
and the different DCNNs used to study the behavior of deep
features and training external classifiers.

2.A. Dataset

A total of 4577 unique mass lesions from the mammo-
grams of 1882 patient cases were used in the study as shown
in Table I. The lesions were split into 3222 training, 508 vali-
dation and 847 independent test set by patient case. The

mammography cases were collected from the University of
Michigan Health System (UMHS) archives and the Curated
Breast Imaging Subset of Digital Database for Screening
Mammography (CBIS-DDSM).15,16 The cases collected from
the UMHS included digitized screen-film mammography
(SFM) and digital mammography (DM). The cases from
CBIS-DDSM included SFM cases. The mass lesions in the
UMHS cases were identified by an MQSA approved breast
radiologist with over 30 yr of experience in breast imaging.
All masses from the UMHS cases were biopsy-proven as
malignant or benign. The malignancy or benignity of the
masses from the DDSM database were described in the
DDSM website.16 A region-of-interest (ROI) of 256 9 256
pixels in size was extracted from images of
100 µm 9 100 µm pixel size centered over the radiologist-
provided bounding box. The labeled ROI were extracted in
the same size and resolution from the CBIS-DDSM dataset.
All the ROIs were background corrected to reduce the inten-
sity inhomogeneity due to x-ray exposure and reduced the
dynamic range variation across the different image
sources.17–19 The improvement in the generalizability due to
the reduction of the dynamic range variation and the advan-
tages of multi-task learning from SFM and DM tasks were
studied in our previous works.19,20 The ROI of each mass
lesion was duplicated in the RGB channel input of the pre-
trained DCNN.

2.B. Selection of DCNN for the simulation study

We first compared the deep features extracted by three
DCNNs for breast mass classification before selecting one for
this study: (a) AlexNet, (b) GoogLeNet and (c) VGG16
(Fig. 1), all pretrained on 1.2 million ImageNet 1000-class
object classification task.21–23 AlexNet has five convolutional
layers and three dense layers. VGG16 has 13 convolutional
layers and three dense layers. GoogLeNet has three convolu-
tional layers, nine inception modules and a single dense layer.
Each inception module has four convolutional layers arranged
in parallel and two convolutional layers in series. GoogLeNet
has the highest number of layers at 22 compared to AlexNet
at 8 and VGG16 at 16 layers. However, GoogLeNet has the
lowest number of trainable parameters among the three
DCNNs. These three DCNNs achieved the lowest ImageNet
classification error (top 5) between the years 2012 and 2014
challenges. They were commonly used in the literature24 and

TABLE I. Distribution of data in the training, validation, and independent
sets. The partitioning is by patient so that the three sets contained indepen-
dent cases.

Training Validation Test

M B M B M B

Unique mass lesions 1550 1672 239 269 363 484

Total in each set 3222 508 847

Total 4577

M: Malignant, B: benign.
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represented the basis on which other more complex DCNNs
were built.

For the comparison of the three DCNNs as feature extrac-
tors, the validation and the test sets described in Section 2.A
were not used. Only a subset of the training lesions consisting
of 886 UMHS-SFM, 337 UMHS-DM, and 1446 CBIS-
DDSM totaling 2669 unique lesions was used in a fourfold
cross-validation for this part of the study to avoid feature
leakage at this preparatory step. The features were extracted
from the first dense layer of each DCNN and a random forest
classifier was trained. The folds were split by patient case,
and the validation fold was not involved in any step of the
training process, again to ensure no feature leakage. To
reduce the influence of experimental uncertainties, all experi-
ments were repeated ten times with different random seeds to
introduce randomness in the generation of the random forest
trees.

The random forest classifier25 is an ensemble algorithm
that builds and aggregates the votes from multiple decision
trees. The advantage of this approach is aggregation from
many decision trees that reduces overfitting risk even when
presented with a high-dimensional feature space. Each deci-
sion tree is trained on a bootstrapped training data using
randomly selected features, thus also avoiding the explicit
need for feature selection. Because of the randomness in
initializing multiple trees, the method scales well for large-
dimensional space. Due to these characteristics, both the
feature selection and large-dimensional feature space were
internally handled thus avoiding potential bias by the devel-
oper. Note that this step of selecting the DCNN is only a

precursor to the simulation study. The experimental setup
for the selection of DCNN is deliberately focused on
selecting the ImageNet pretrained DCNN that could pro-
vide effective deep features for classification of masses on
mammograms.

As a reference, we also trained a DCNN directly for the
mass classification task with and without transfer learning
from the ImageNet data, rather than as a feature extractor.
The AlexNet was chosen for this comparison.

2.C. Simulation study – feature leakage

Figure 2 shows the approach used to simulate feature leak-
age between training and validation sets. The dataset parti-
tions have been described in Section 2.A. The test set is kept
independent of any training process so that the evaluation of
the trained classifier on the test set can serve as a reference of
its performance in truly unseen cases. The deep features
extracted from the training set are used to build the classifier
model including feature selection and weight training in a
wrapper-mode. The cost function for selecting the classifier,
and therefore the feature combination, at each iteration
depends on the performance of the trained classifier applied
to the validation set. The classification performance is
assessed using the area under the receiver operating charac-
teristic curve (AUC) estimated by the trapezoidal rule for fast
calculation. This process is implemented in an automatic
algorithm that searches through a large number of feature
combinations to identify selected feature subsets that can pro-
vide high AUC values in the validation set. The classifier

FIG. 1. Three DCNNs: AlexNet, GoogLeNet and VGG16 for comparison as feature extractor. The input image patch size is a 256 9 256 extracted from a mam-
mography image at 100 µm 9 100 µm resolution. Feature extraction is performed at the first dense layer of all three DCNNs. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 2. Simulation study for data leakage using cross-validation and independent testing. An ImageNet-pretrained DCNN was used to extract deep features for
mass classification. The simulated sizes of training and validation datasets were varied over a range (10% to 100% of the available training and validation sets) by
random drawing from the original 100% sets. The independent test set is fixed. Data leakage was introduced by directing the cost function of feature selection by
the performance on the validation set. The optimistic bias, or generalization error, on the validation set was assessed with reference to the classifier performance
on the truly unseen independent test set. [Color figure can be viewed at wileyonlinelibrary.com]
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models that are found to have high AUC values will then be
applied to the independent test set to assess the generalization
error, estimated as the potential optimistic bias on the valida-
tion performance with reference to the true performance on
unseen cases.

To study the impact of training and validation set sizes on
feature leakage, we simulated a range of available sample size
by randomly drawing a subset from the original training set
(3222 at 100%) and validation set (508 at 100%), respec-
tively. The simulated sample sizes at 75%, 50%, 25%, and
10% were studied in addition to the 100%. To keep the ratio
of malignant and benign masses about the same as the origi-
nal set, the desired percentages were separately drawn from
the two classes. The performance on the independent test set
was assessed at the 100% size (847 masses) for all conditions
such that the generalization errors can be compared on the
same set of unseen cases as reference. The experiment at each
sample size was repeated 10 times by randomly drawing from
the original set to simulate sample variations.

Sequential feature selection (SFS) is a simple and fast fea-
ture selection algorithm used in wrapper-based mode. It
belongs to the family of greedy search algorithms, the AUC
of the classifier on the validation set iteratively guides the
SFS to find the “best” feature combinations. In our imple-
mentation, it starts by finding a single best feature (n = 1)
from the available feature pool containing a total of M fea-
tures, and adds a new feature sequentially at a time until it is
terminated by a preset maximum number of features to be
included. For a given subset of n features that has already
been selected, all new combinations of (n + 1) features
obtained by combining the n features with one of the remain-
ing (M-n) features in the feature pool are compared, resulting
in (M-n) feature combinations as input to the classifier being
evaluated for their AUC values. Each of this process is called
an iteration in the following discussion. The combination
yielding the best performance based on a cost function is then
identified to be the subset of (n + 1) selected features and
continues onto the selection of the next feature. Thus, SFS is
ideal for this study because we can implement the feature
selection process with an automated algorithm to search
through a large number of feature combinations efficiently
and systematically. This can simulate an AI developer opti-
mizing the deep feature selection and classifier modeling
while checking the performance on the validation set, or
retesting on the test set many times until a satisfactory perfor-
mance is found. Further, the range of overfitting observed
through this analysis provides the extent of the risks from the
perspective of a developer with computer-assisted search.

Three classifiers were chosen to verify if there are any
advantages of using a simple classifier like linear discrimi-
nant analysis (LDA) classifier or more complex nonlinear
classifiers like the random forest or support vector machine
(SVM). An LDA classifier models the class conditional dis-
tribution of the training data to generate a discriminant func-
tion for classification. LDA is optimal for multivariate
normally distributed feature spaces with equal covariance
matrices and the coefficients of the transformation function

provide simple interpretation. LDA is not effective for com-
plex feature spaces but is least prone to overfitting compared
to complex classifiers when the training set is small.26 Sup-
port vector machine (SVM) classifier constructs hyperplanes
in the multidimensional feature space that maximizes the sep-
aration of classes. We used the SVM with radial basis func-
tion (RBF) kernel to map the input space. In comparison to
the LDA, SVM with RBF kernel is known to handle high-di-
mensional feature space and control the effects of outliers.27

Support vector machine also has the advantage of interpreting
the transformation function. However, SVM due to the algo-
rithmic complexity do not scale well with large-scale tasks.
In addition, as the dimensionality of the feature space
increased, due to limited samples, the feature space becomes
sparse, affecting the construction of the hyperplanes in SVM.
We chose fixed gamma and C values at 0.1 and 1.0, respec-
tively, for the RBF. The random forest classifier described in
Section 2.B was used as the third classifier. We had evaluated
the random forest parameters for the mass classification task
in a previous study28 and chose the total number of trees and
the tree depth at 100 and 10, respectively, which were there-
fore also chosen for the experiments in the current study.

For reference, a commonly used SVM classifier with lin-
ear kernel was also evaluated with the same experimental set-
tings except that no feature selection was performed but the
regularization parameter (C) was chosen based on the valida-
tion performance. This type of classifier parameter optimiza-
tion guided by validation performance is a common approach
during classifier design. The performance curves would
reveal the impact of sample size without explicit feature leak-
age on this classifier, and the difference between the perfor-
mances on the validation set and the sequestered test set
demonstrates the generalization error if the validation perfor-
mance is reported without independent testing or if the “test”
set is repeatedly used.

3. RESULTS

To limit the number of conditions in this study, we first
compared the deep features extracted by three commonly
used DCNNs for mass classification, and selected one as the
feature extractor for this study. Using the deep features from
the selected DCNN, the simulation study is performed with
the SFS feature selection method and three classifiers while
varying the sample sizes for the training and validation sets.

3.A. Selection of pretrained DCNN for mass
classification in mammography

A subset of the training partition containing 2669 masses
was used in fourfold cross-validation to evaluate the deep fea-
tures from the pretrained DCNN. Features from the first
dense layer of all the DCNNs were extracted, resulting in
4096, 1024, and 4096 features from AlexNet, GoogLeNet
and VGG16, respectively, for each mass. As discussed in Sec-
tion 2.B, we used the random forest classifier for this relative
performance comparison. The fourfold cross-validation was
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repeated ten times with different seed initialization of the ran-
dom forest classifier to estimate the variance. The results
from the cross-validation are shown in Fig. 3 in a box plot.
The average test performance across the fourfold is indicated
by a blue dot, which shows AlexNet performed the best while
GoogLeNet the worst. The mean AUC for AlexNet, GoogLe-
Net, and VGG16 were 0.77 � 0.04, 0.58 � 0.05, and
0.74 � 0.03, respectively. Thus, AlexNet was chosen for the
simulation study.

The advantage of transfer learning from nonmedical imag-
ing domain with large dataset to medical imaging can be seen
in the comparison between training DCNN from scratch and
with transfer learning for AlexNet shown in Fig. 4. Training
from scratch was unstable for all four folds and the test per-
formance was much lower than that with transfer learning. It
is interesting to note that, for the AlexNet with transfer learn-
ing, the average test AUCs were similar when it was used as a
feature extractor with an external random forest or used
directly for the mass classification task.

3.B. Simulation study: Feature leakage

To simulate feature leakage, the classifier weight training
or formulation was performed on the training set, while the
trained classifier was applied to the validation set for each
feature combination examined by SFS so that the feature
search was informed by the classifier performance on the val-
idation set. Figure 5 illustrates the SFS feature search process
to select up to a maximum of 75 features from the 4096 deep
features extracted by the AlexNet, using 100% of the training
and validation data and an LDA classifier. About 300K

different combinations of features were assessed (i.e., about
300K iterations as plotted) before arriving at the best 75 fea-
tures. We set a maximum of 75 selected features to limit the
time required for the experiments and also we observed that
this was large enough to reach a validation AUC greater than
0.8, which is sufficiently high to demonstrate feature leakage
for the mass classification task in this study. Figures 5(a) and
5(b) show the increasing number of features selected and the
variation of the validation AUCs for all evaluated feature
combinations as the SFS method sequentially selected the
best combination of features. The histogram of the validation
AUCs is shown in Fig. 5(C) and the top 20K AUCs were
highlighted. Figure 5(d) shows the corresponding AUCs
when deployed on the independent unseen test set, where the
AUCs corresponding to those highlighted in Fig. 5(c) were
also highlighted. Despite the wide range of AUCs in the vali-
dation set, the AUCs on the unseen cases distributed in a
much narrower range. The highlighted AUCs on the valida-
tion set had an average AUC of 0.91, whereas the correspond-
ing AUCs for the independent test set reached an average
AUC of only 0.72. The large difference between the average
AUC values on the validation and on unseen cases is indica-
tive of the optimistic bias on the classifier, and thus the large
generalization error. In addition, for a given training set,
although higher and higher validation AUCs may be found
by further feature search, the AUCs on the unseen cases are
relatively stable, indicating that searching for extremely high
validation performance only increases generalization errors
without benefiting performance in unseen cases. To observe
trends over different experimental conditions, these average
AUC values were tracked for each experiment, as described
next.

FIG. 3. Selection of DCNN among three common DCNNs for classification
of masses in mammograms. Each pretrained DCNN was used as feature
extractor without fine-tuning by training data from the mass classification
task and random forest was used as classifier. Fourfold cross-validation with
the training set was used in the experiments. All experiments were repeated
ten times using different stochastic initializations. The error bars indicate
95% confidence interval. The average performance of the test AUCs over the
four folds is indicated by a blue dot, linked by a blue dotted line to facilitate
visualization. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Comparison of AlexNet training from scratch and with transfer learn-
ing from ImageNet data. The box plot shows the AUCs from the fourfold
cross-validation. [Color figure can be viewed at wileyonlinelibrary.com]
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3.C. Simulation study: Effects of training and
validation sample size

Feature leakage results in large generalization error as
shown in Fig. 5. However, the extent of generalization error
caused by feature leakage also depends on the sample size.
To study the effects of the training and validation sample
sizes on the feature leakage, LDA, SVM and random forest
classifiers were trained while using SFS to select features.
The training set and validation set sizes were varied together
by the same percentage; the size of the test set was fixed at
100% (847 masses) to avoid introducing more variables and
provide a consistent reference for comparison.

Figure 6 shows the AUC obtained from the best selected
feature set for the three classifiers when the feature set was
increased by one single feature at a time using the SFS algo-
rithm. For demonstration purpose, we tracked the validation
and the test AUCs up to 150 selected features from the avail-
able 4096 features for two validation set sizes at 10% and
100% for this experiment. At the point of 75 features selected,
the validation AUCs ranged from 0.78 to 0.99 whereas the
test AUCs ranged from 0.55 to 0.72. The changes were rela-
tively gradual after 75 features so that we chose 75 to be the
maximum number of features for the rest of the experiments.
Of the three classifiers, the random forest appeared to be least
prone to overfitting with the smallest generalization errors,
especially when the sample size was large (see random forest
curves at 100%).

At each simulated sample size of 75%, 50%, 25%, and
10%, the smaller training set and validation set were obtained
by random drawing without replacement from the respective
original 100% sets. Ten repeated experiments were performed
for each condition. As the simulated sample size increased,
the variation in the dataset for the 10 repeated experiments
decreased. One major reason is that a larger and larger subset
was drawn from the original set and more cases would over-
lap among different drawings, which contributed to the smal-
ler spread in the repeated experiments in the boxplot. At
100%, the entire set was used in a single experiment. Another
reason is that the variance of the performance decreases with
increasing training set size.29 In each experiment, the maxi-
mum number of selected features were fixed at 75 and the top
20K validation AUCs in the feature selection process were
averaged to obtain an average AUC, as described in Sec-
tion 3.B. The average AUC of the validation and the corre-
sponding average AUC for the test set were tracked for each
experiment and used to plot the boxplot in Fig. 7. The dotted
line shows the mean performance over the 10 experiments at
each sample size and the difference between the two mean
curves from validation and testing indicates the average gen-
eralization error. These results show that feature leakage
resulted in generalization error over the range of sample sizes
studied. The generalization error increased as the validation
sample size decreased. At a validation set size of 10% (about
50 masses) the validation AUCs were 0.9 or higher while the
AUC in unseen cases were about 0.5 to 0.65. Even with a
large validation set (508 masses at 100%), the generalization
errors in AUC were still as large as 0.1 to 0.2. The scenario
of reporting these validation results when independent unseen
test set is not available can set unreasonably high expecta-
tions for the AI tool being reported.

The performance curves of the SVM with linear kernel
trained under the same experimental conditions using all
4096 deep features as input without feature selection are
shown in Fig. 8(a). For each experiment, the selection of the
regularization parameter (C) of the SVM classifier with linear
kernel was guided by the validation AUC. The difference
between the corresponding validation AUC and test AUC as
a function of the validation AUC for each experiment is plot-
ted in Fig. 8(b). Although the mean generalization errors

FIG. 5. Feature selection based on high AUCs from the validation set using
SFS for feature selection and LDA for classification. The training and valida-
tion partitions were used at 100%. (a) Number of features selected as the
number of iterations increased in the SFS method. (b) Performance on the
validation set for the various feature combinations as the number of iterations
increased in the SFS method. (c) Histogram of all the validation AUCs. The
top 20K AUC values are highlighted. (d) Histogram of the corresponding test
AUCs, in which the highlighted AUC values corresponded to those high-
lighted in (c). The average AUC values in the highlighted region for valida-
tion and test set are 0.91 and 0.72, respectively. [Color figure can be viewed
at wileyonlinelibrary.com]
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appeared to be only about 0.02 to 0.04 over the sample size
range studied, Fig. 8(b) revealed a strong trend of sample size
dependence. The generalization error was between �0.1 and
0.2 at 10% sample size and about 0.02 at 100% sample size,
with the variance decreasing with increasing sample size.
Thus, even without feature leakage due to feature selection,
classifier parameter selection guided by validation perfor-
mance or repeated use of test set will still introduce general-
ization errors.

4. DISCUSSION

The important issues of limited data availability and the
repeated use of test data leading to bias in the predicted per-
formance of machine learning algorithms have been recog-
nized before the era of deep-learning9,30 but have not been
systematically studied. Due to the large number of parameters
for training and the large number of features that can be
extracted with deep-learning models, these issues have exac-
erbated and it is important to understand the risks and take
necessary caution to avoid over-training. In this work, we
studied the importance of data usage in the context of deep
learning using classification of masses in mammography as
an example.

Deep learning with transfer learning has the potential to
develop robust computer-assisted tools in medical imaging.
However, unlike the traditional feature engineering
approaches where significant domain knowledge was needed
to develop and achieve presentable results, deep learning, due

to representation learning and ease of using developer tools,
can be used with minimal effort and thus prone to oversight
of fundamental issues in machine learning field. In this work,
we studied an important application with transfer learning,
where DCNN is used to extract thousands of deep features,
from which predictor variables are selected to build classifier
model for a classification task. With a limited available data-
set for model development, it is often split into training and
validation sets without an independent test set. The validation
set is used both for model optimization and performance
reporting. Even when a test set is reserved, if it is reused
numerous times for testing when high performance cannot be
achieved at a few trials, the test result essentially is used to
guide model selection. The feature leakage between the train-
ing and validation/test set during the numerous trials lead to
over-training of the classifier and overfitting to the validation/
test set. We designed a simulation study to demonstrate the
effects of feature leakage in the cross-validation scenario,
where the developer optimizes the model while using the
feedback from the validation/test set in the process. We
showed that over-training can occur for all three classifiers
studied, and the bias or generalization error of the predicted
performance increases as the training set size decreases. Even
in the case of classifier modeling without explicit feature
selection, using the validation/test performance to guide
parameter or model selection will still introduce bias. With-
out a sequestered representative test set for evaluation of the
model generalizability, the reported validation/test results will
be overly optimistic.

FIG. 6. The AUC performance by selecting the best set of N features that provided the highest AUC on the validation set. The number of selected features was
tracked up to 150. The performances on the validation and independent test sets are shown for the simulated training and validation sample sizes of 10% and
100% of the respective available datasets in this study. The test set was fixed at 100%. [Color figure can be viewed at wileyonlinelibrary.com]
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Three popular DCNNs in medical imaging, AlexNet, Goo-
gLeNet, and VGG16 were compared for the mass classifica-
tion task and AlexNet was chosen as the deep feature
extractor for the current study. Although we selected one fea-
ture extractor to simulate how DCNN may be used to extract

FIG. 7. Performance curves to study the feature leakage and finite sample
size dependency for three classifiers. The box plot was obtained from ten
repeated experiments for each condition. In each experiment the training and
validation sets were randomly drawn from the respective original 100% sets
to analyze the sensitivity of the results to variations in the dataset. The test set
was fixed at 100%. The red dotted line indicates the mean performance.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. (a) Performance curves to study the finite sample size dependency
for SVM-linear classifier without feature selection but with optimization of
regularization parameter (C) based on the validation set performance. The
box plot was obtained from 20 repeated experiments for each condition. In
each experiment the training and validation sets were randomly drawn from
the respective original 100% sets to analyze the sensitivity of the results to
variations in the dataset. The test set was fixed at 100%. The blue, green, and
red dotted lines indicate the mean performance on the training, validation,
and test set, respectively. The data points of the three curves were plotted off-
set to facilitate visualization. (b) Plot of the difference in the corresponding
validation and test AUCs as a function of the validation AUC for each experi-
ment in (a). Five marker types with different colors were used to indicate the
sample sizes at 100%, 75%, 50%, 25%, and 10%. [Color figure can be
viewed at wileyonlinelibrary.com]
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deep features, it is expected that the feature leakage trends
observed in this study should be applicable to similar prob-
lems when features are selected from a large feature space
with thousands of features, regardless of the specific feature
extractor used or whether the pretrained DCNN is fine-tuned
with target domain data before it is used to extract deep fea-
tures. In fact, even manually extracted texture features in
radiomics that can easily add up to hundreds or thousands
will suffer the same high risk of feature leakage problem
while selecting features and building predictive model using
a limited dataset.

We chose SFS as the feature selection method for this
study due to its efficiency. However, the feature leakage prob-
lem exists regardless of the feature selection method used.
According to the well-known “curse of dimensionality” prob-
lem in the machine learning field, there always exist feature
subsets in a high-dimensional feature space that can provide
excessively high classification performance for a small data-
set, for example, the validation set. The role of the feature
selection algorithm is only to search for these existing feature
combinations, but not to create them. We tried other feature
selection methods such as genetic algorithm and found that it
is very slow and often trapped in local maxima, depending on
the choice of parameters (number of chromosomes, crossover
rate, mutation rate, etc) so that it is extremely time consum-
ing. Exhaustive search is impractical because of the astro-
nomical number of possible feature combinations needed to
be checked when selecting up to 75 features from the 4096
deep features. On the other hand, the SFS method searches
for the feature combinations systematically without depend-
ing on choices of parameters. It can be expected that the
trends observed in this study do not depend on the feature
selection method as long as some high-performance feature
combinations can be found, and this simulation study is pos-
sible only if these feature combinations can be found within a
reasonably achievable computation time due to the large
number of experiments for the various conditions we exam-
ined. In reality, the SFS may not have found the highest per-
formance feature combinations. However, as can be seen
from our analysis, we only used the average AUCs from the
top 20K feature combinations for comparison and demon-
strated that feature leakage can occur even without reaching
the extreme situations.

Figure 7 shows that all three classifiers could achieve
overly optimistic performance specific to the validation set,
resulting in large generalization errors. The generalization
errors of all classifiers follow a similar trend, increasing with
decreasing sample size. At 10% of the training and validation
set size, LDA had the largest generalization error while ran-
dom forest classifier had the smallest. At 100% sample size,
the LDA, SVM and random forest classifier had AUCs of
0.91, 0.83, 0.80 on the validation set and 0.72, 0.69, 0.68 on
the unseen independent test set, respectively. Ideally, if the
validation sample size can increase well beyond the sample
size available for this study (i.e., >>100%) to sufficiently
cover all characteristics of unseen cases in the population,
optimizing the feature classifier to the validation set should

be the same as optimizing for the population so that the bias
should eventually reduce to negligibly small. However, many
studies in medical imaging only have small datasets and may
not reserve independent unseen cases or cannot avoid reuse
of the independent test set repeatedly during model develop-
ment. Optimistic bias on the reported results due to feature
leakage can be substantial.

There are limitations in the study. To reduce the complex-
ity and the computational resource required for the experi-
ments, we kept the number of variables and conditions
manageably small. First, we compared three popular DCNNs
in medical imaging as deep feature extractor and chose only
one, AlexNet, for further analysis. Second, we chose the SFS
method to search for the feature subsets that can provide high
classification performance without exhaustively searching for
those with the highest performances. Third, the breast mass
classification task was used as example because of the avail-
ability of a large dataset. However, as discussed above, the
trends observed in this study should not be specific to the fea-
ture extractor, the feature selection method used, or the target
classification task. If a different DCNN or target task is used
for deep feature extraction, the deep features may have differ-
ent distributions and different discriminative power, but the
bias exists as long as a feature subset is selected from the
high-dimensional feature space based on excessive search for
high performance on a small dataset. Fourth, we chose three
commonly used feature classifiers (LDA, SVM, and random
forest) as examples, and the user-selected parameters for the
latter two were fixed. Since all three classifiers show similar
trends, that is, feature leakage leads to optimistic bias and the
bias increases with decreasing sample size, it can be expected
that the trends would not be very different for other classifiers
or other parameters. Overall, although the amount of general-
ization error between the validation set and the unseen data
may depend on the deep feature space or classifier used, the
trends of optimistic bias and its dependence on the sample
size used for guiding the model design should be general.

5. CONCLUSION

Development of AI tools in medical imaging is an impor-
tant area of research. With the limited dataset available in
many clinical applications, use of pretrained DCNN as fea-
ture extractor and selecting feature subsets from the large-di-
mensional feature space to form an external classifier is a
common approach. In order to maximize the training data, AI
developers may not reserve independent unseen cases or can-
not avoid using a single independent test set repeatedly dur-
ing model development. Feature leakage is one of the
potential sources leading to generalization errors due to over-
training of the classification methods in order to achieve high
performance on the validation set or the test set.

We studied feature leakage in a cross-validation approach
over a range of sample sizes used by developers in medical
imaging where dataset sizes are small compared to other com-
puter vision areas. When the validation set is used for guiding
feature selection and classifier optimization, the validation
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performance is optimistically biased relative to the perfor-
mance in independent unseen cases. It can be expected that
guidance can also occur indirectly if an independent test set is
not sequestered and is allowed to be reused unlimited times.
The generalization error worsens as the dataset size decreases.
A similar problem occurs in radiomics where a small feature
subset is often selected from a high-dimensional feature space
to build predictive model for clinical decision support. Opti-
mistic biases on the reported performance may drive unrealistic
expectations in the field and thus proper rules in machine
learning should be followed when developing AI tools and
reporting their performances. AI users should also be aware of
the potential biases and evaluate the generalizability of a pre-
dictive model in the patient population of interest properly
before implementation for clinical use.31,32
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