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ABSTRACT

50 Purpose: Transfer learning is commonly used in deep learning for medical imaging to alleviate 

the problem of limited available data. In this work we studied the risk of feature leakage and its 

dependence on sample size when using pre-trained deep convolutional neural network (DCNN) 

as feature extractor for classification breast masses in mammography.

Methods: Feature leakage occurs when the training set is used for feature selection and classifier 

55 modeling while the cost function is guided by the validation performance or informed by the test 
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performance. The high-dimensional feature space extracted from pre-trained DCNN suffers from 

the curse of dimensionality; feature subsets that can provide excessively optimistic performance 

can be found for the validation set or test set if the latter is allowed for unlimited reuse during 

algorithm development. We designed a simulation study to examine feature leakage when using 

60 DCNN as feature extractor for mass classification in mammography. 4,577 unique mass lesions 

were partitioned by patient into three sets: 3,222 for training, 508 for validation and 847 for 

independent testing. Three pre-trained DCNNs, AlexNet, GoogLeNet, and VGG16, were first 

compared using a training set in four-fold cross validation and one was selected as the feature 

extractor. To assess generalization errors, the independent test set was sequestered as truly 

65 unseen cases. A training set of a range of sizes from 10% to 75% was simulated by random 

drawing from the available training set in addition to 100% of the training set. Three commonly 

used feature classifiers, the linear discriminant, the support vector machine, and the random 

forest were evaluated.  A sequential feature selection method was used to find feature subsets 

that could achieve high classification performance in terms of the area under the receiver 

70 operating characteristic curve (AUC) in the validation set.  The extent of feature leakage and the 

impact of training set size were analyzed by comparison to the performance in the unseen test 

set.

Results: All three classifiers showed large generalization error between the validation set and the 

independent sequestered test set at all sample sizes. The generalization error decreased as the 

75 sample size increased.  At 100% of the sample size, one classifier achieved an AUC as high as 

0.91 on the validation set while the corresponding performance on the unseen test set only 

reached an AUC of 0.72.

Conclusions: Our results demonstrate that large generalization errors can occur in AI tools due 

to feature leakage. Without evaluation on unseen test cases, optimistically biased performance 

80 may be reported inadvertently, and can lead to unrealistic expectations and reduce confidence for 

clinical implementation.

Keywords: breast cancer classification, feature leakage, generalization error, pre-trained DCNN, 

sample size
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85

I. INTRODUCTION

Machine learning using deep convolutional neural network (DCNN) requires training of a 

large number of parameters. Typically, millions of training samples are needed to train DCNNs 

for computer vision tasks. Through representation learning, a DCNN learns to extract features 

90 from the input image via the shallow to the deep convolutional layers. It has been shown that the 

DCNN extracted features are more generic, such as lines and edges, in the shallow layers, and 

become progressively more specific to the target task as the layers get deeper. The feature 

extraction capability is incorporated in the weights of the convolutional filters. Due to the limited 

availability of medical image data, transfer learning is often used to train DCNNs for medical 

95 imaging tasks. Transfer learning from source to target tasks in medical imaging has been 

implemented using different strategies but generally starting with the transfer of weights from 

the source task. During transfer learning, the dense layers at the DCNN output may be replaced 

or new layers added to be trained with the target domain images, while the convolutional filter 

weights may be frozen at different levels 1 and the remaining unfrozen layers are allowed to be 

100 fine-tuned.  When the target domain data set is small, the pre-trained DCNN may be used 

directly as feature extractor and the extracted features are weighted and classified by an external 

classifier trained with the target domain data.  Since features can be extracted from any layers of 

the DCNN, the dimensionality of the extracted feature space can be extremely high and a subset 

of the features are often selected before or during formulation of the classifier.2-4 The high 

105 dimensionality of the extracted deep feature space coupled with the limited medical imaging data 

available creates the ‘curse of dimensionality’ problem.

Due to the large learning capacity, DCNNs can be over-trained to fit to the patterns or 

characteristics in the training set rather than learning generalizable features.5,6  Small training 

sets increases the risk of over-training.  Over-training results in drop in performance on unseen 

110 test cases. Regularization methods have been developed to mitigate the risk but cannot eliminate 

it.  Identifying the balance between learning and over-fitting is not trivial. In machine learning, 

usage of validation set is recommended to guide training, but the overfitting may then be directed 

to the validation set.  Over-training can also occur when a DCNN is used as feature extractor and 
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a subset of features is selected as input predictor variables for an external classifier.  The 

115 feedback from the validation set in the form of ‘data’ and ‘features’ is used to optimize the 

machine learning methods on the training set. In this work, we studied the ‘features’ feedback as 

‘feature leakage’7 between the training set and the validation set or test set that is allowed 

unlimited reuse. 

In machine learning, ‘data’ or ‘feature’ leakage between the training and the 

120 validation/test partitions results in overly optimistic results. An example of data leakage is when 

data from the same patient spread across the training and test partitions. Data within each patient 

is highly correlated resulting in the leakage. An example of feature leakage is when feature 

selection on the training partition is influenced by the performance on the test set. Feature 

leakage can occur unintentionally even if the training and test sets are separated with 

125 independent samples.  If the test set is not sequestered and the algorithm developer can reuse the 

same test set to evaluate the algorithm performance unlimited times during model development, 

the test set essentially becomes a part of the validation set that guides the feature selection and 

model formulation 8,9. Feature leakage can be particularly serious in the context of DCNNs 

because of the high-dimensional nature of the problem. Similar problem can occur in radiomics 

130 where hundreds or thousands of texture features can be extracted and a small subset is selected to 

build predictive models.  The risk of curse of dimensionality compounded with the issue of 

feature leakage in machine learning can potentially lead to overly optimistic reporting of the 

performance of clinical decision support tools.

The goal of this study is to demonstrate the hazards of feature leakage in the process of 

135 selecting deep features and classifier modeling, the generalization errors when the trained model 

is applied to truly unseen cases, and the effects of sample size on the problem.

Recent deep learning related work in medical imaging has renewed interest in developing 

machine learning, or artificial intelligence (AI), methods for various applications in healthcare. 

Transfer learning is an important technique of developing these tools, especially the use of a 

140 DCNN pre-trained with large source domain data as a feature extractor to alleviate the data 

shortage problem in medical domain. The extracted features of the target domain data are then 

used as input predictor variables to train an external classifier for the target task using the 
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available data set.  The limited available data may be split into a training set and a validation set 

with or without another held-out test set.  K-fold cross validation, leave-one-out, or a single split 

145 are basically the same data set partitioning in principle except for the differences in the number 

of partitions to split so that we will focus on the single split approach as example in the current 

study.10,11  An important issue of this developmental process is to understand whether and how 

feature leakage occurs and the impact of the sample size on feature leakage and generalization 

error, i.e., bias on the predicted performance relative to true performance on unseen test data. To 

150 study this process, we use a relatively large labeled data set of malignant and benign breast 

masses from mammograms. A subset is sequestered as an unseen test set that is not used in any 

process during training. Another independent subset is drawn as a validation set. The remaining 

cases are used to randomly drawn training sets that simulate a range of sample sizes. Sensitivity 

analysis within the variability of the data is also studied by repeated experiments at each training 

155 set size. Although we use the task of classifying malignant and benign masses in mammography 

as example, it can be expected that the observed trends are applicable to other similar tasks.

As described above, DCNNs learn low-level functions that transform an input image to 

an output class through representation learning but at a large scale producing hundreds of 

thousands or millions of these functions 12. Through back propagation, the layers closer to the 

160 input break down the image to build basic descriptors of the input domain, and the layers closer 

to the output amplify the attributes important for classification and suppress the rest. Thus the 

deep features in the DCNN are organized to transition from generic to specific to the source task. 

By using the DCNNs as feature extractors, these low-level functions, which can amount to 

thousands, can extract pertinent characteristics of the source domain images. The number of 

165 these deep features far exceeds that of the handcrafted features. Studies have shown that the 

knowledge of extracting representative features can be successfully transferred from the 

ImageNet 1000-class classification task to other domains.13 The discriminability of these deep 

features compared to traditional radiomics features and DCNN trained on target task data could 

depend on the complexity of the task, the quality of the extracted features and the 

170 training/validation data sizes.

The effectiveness of the extracted features is also influenced by the DCNN architecture. 

For example, VGG16 with convolutional filters of smaller receptive field and deeper 
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convolutional layers compared to AlexNet was found to be superior in the ImageNet 1000-class 

classification task. GoogLeNet consisting of inception blocks with parallel convolutional layers 

175 and vastly smaller number of trainable weights, was found superior to both AlexNet and VGG16. 

For transfer learning from the source task to the target tasks in medical imaging, the quality of 

the deep features will further be influenced by whether and how fine-tuning with target domain 

data is performed and how large the training target data set is. In our previous study1 using 

transfer learning with fine-tuning, where some deeper layer weights were fine-tuned in a two-

180 stage multi-task transfer learning process, we showed that transferring ‘knowledge’ from 

ImageNet-trained weights to mammography and then to digital breast tomosynthesis (DBT) 

resulted in higher performance when compared to direct transfer learning from ImageNet to 

DBT.  However, we also observed that at small training set sizes, both with mammography and 

DBT, the risk of overfitting increased substantially. Thus, for the current study, to focus on our 

185 goal of studying feature leakage, we used the pre-trained DCNN as feature extractor without 

fine-tuning.  This would keep the extracted deep feature set constant and facilitate the study of 

the impact of feature selection without the additional variabilities due to the strategy and training 

set size used for fine tuning.  The observed relative trends of feature leakage analyzed in this 

study, however, should not be dependent on the feature extractor used because we studied the 

190 feature leakage that occurred after the deep feature extraction process.

In the following sections, we will give a detailed description of the mammography data 

used in the study, compare three pre-trained DCNN structures as feature extractor for the mass 

classification task, describe the design of the simulation study and analyze feature leakage using 

deep features extracted from one of the pre-trained DCNNs. Preliminary results of the study 

195 were published in a conference proceedings 14.

II. METHODS AND MATERIALS

Pre-trained DCNN can be used to extract deep features in the order of thousands from 

each mass lesion in mammography images.  In principle, the idea behind DCNNs is that the 

convolutional layers extract spatial features and the dense layer combines these spatial activation 

200 maps from the convolutional layer by assigning weights as determined by the loss function.  In 

this study, we extracted deep features only at the first dense layer to keep the feature space 
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dimensionality relatively low, although it is still in the thousands. Since the curse of 

dimensionality and the feature leakage generally get worse as the dimensionality increases, the 

trends observed in this study will be conservative but still serve the purpose of demonstrating the 

205 problem. The following sections give a description of the data set and the partitions used in the 

study, and the different DCNNs used to study the behavior of deep features and training external 

classifiers.

II.A. Data Set

A total of 4,577 unique mass lesions from the mammograms of 1882 patient cases were used in 

210 the study as shown in Table 1. The lesions were split into 3,222 training, 508 validation and 847 

independent test set by patient case. The mammography cases were collected from the University 

of Michigan Health System (UMHS) archives and the Curated Breast Imaging Subset of Digital 

Database for Screening Mammography (CBIS-DDSM) 15,16. The cases collected from the UMHS 

included digitized screen-film mammography (SFM) and digital mammography (DM). The cases 

215 from CBIS-DDSM included SFM cases. The mass lesions in the UMHS cases were identified by 

an MQSA approved breast radiologist with over 30 years of experience in breast imaging. All 

masses from the UMHS cases were biopsy-proven as malignant or benign. The malignancy or 

benignity of the masses from the DDSM database were described in the DDSM website16.  A 

region-of-interest (ROI) of 256x256 pixels in size was extracted from images of 100µm x 100µm 

220 pixel size centered over the radiologist-provided bounding box. The labeled ROI were extracted 

in the same size and resolution from the CBIS-DDSM data set. All the ROIs were background 

corrected to reduce the intensity inhomogeneity due to x-ray exposure and reduced the dynamic 

range variation across the different image sources 17-19. The improvement in the  generalizability 

due to the reduction of the dynamic range variation and the advantages of multi-task learning 

225 from SFM and DM tasks were studied in our previous works 19,20. The ROI of each mass lesion 

was duplicated in the RGB channel input of the pre-trained DCNN.

Table 1. Distribution of data in the training, validation, and independent sets.  The partitioning is 

by patient so that the three sets contained independent cases.

Training Validation Test
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M B M B M B

Unique mass lesions 1,550 1,672 239 269 363 484

Total in each set 3,222 508 847

Total 4,577

M: Malignant, B: benign

230 II.B. Selection of DCNN for the simulation study 

We first compared the deep features extracted by three DCNNs for breast mass 

classification before selecting one for this study: (a) AlexNet, (b) GoogLeNet and (c) VGG16 

(Fig. 1), all pre-trained on 1.2 million ImageNet 1000-class object classification task 21-23. 

AlexNet has five convolutional layers and three dense layers. VGG16 has thirteen convolutional 

235 layers and three dense layers. GoogLeNet has three convolutional layers, nine inception modules 

and a single dense layer. Each inception module has four convolutional layers arranged in 

parallel and two convolutional layers in series. GoogLeNet has the highest number of layers at 

22 compared to AlexNet at 8 and VGG16 at 16 layers. However, GoogLeNet has the lowest 

number of trainable parameters among the three DCNNs. These three DCNNs achieved the 

240 lowest ImageNet classification error (top 5) between the years 2012 and 2014 challenges. They 

were commonly used in the literature24 and represented the basis on which other more complex 

DCNNs were built.

Fig. 1. Three DCNNs: AlexNet, GoogLeNet and VGG16 for comparison as feature 

extractor. The input image patch size is a 256x256 extracted from a mammography 
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image at 100µmx100µm resolution. Feature extraction is performed at the first 

dense layer of all three DCNNs.

For the comparison of the three DCNNs as feature extractors, the validation and the test 

245 sets described in Section II.A were not used.  Only a subset of the training lesions consisting of 

886 UMHS-SFM, 337 UMHS-DM and 1446 CBIS-DDSM totaling 2,669 unique lesions was 

used in a four-fold cross-validation for this part of the study to avoid feature leakage at this 

preparatory step. The features were extracted from the first dense layer of each DCNN and a 

random forest classifier was trained. The folds were split by patient case, and the validation fold 

250 was not involved in any step of the training process, again to ensure no feature leakage. To 

reduce the influence of experimental uncertainties, all experiments were repeated ten times with 

different random seeds to introduce randomness in the generation of the random forest trees.

The random forest classifier 25 is an ensemble algorithm that builds and aggregates the 

votes from multiple decision trees. The advantage of this approach is aggregation from many 

255 decision trees that reduces overfitting risk even when presented with a high dimensional feature 

space. Each decision tree is trained on a bootstrapped training data using randomly selected 

features, thus also avoiding the explicit need for feature selection.  Because of the randomness in 

initializing multiple trees, the method scales well for large dimensional space. Due to these 

characteristics, both the feature selection and large dimensional feature space were internally 

260 handled thus avoiding potential bias by the developer. Note that this step of selecting the DCNN 

is only a precursor to the simulation study. The experimental setup for the selection of DCNN is 

deliberately focused on selecting the ImageNet pre-trained DCNN that could provide effective 

deep features for classification of masses on mammograms.

As a reference, we also trained a DCNN directly for the mass classification task with and 

265 without transfer learning from the ImageNet data, rather than as a feature extractor.  The 

AlexNet was chosen for this comparison. 

II.C. Simulation study – feature leakage 

Fig. 2 shows the approach used to simulate feature leakage between training and 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



11

This article is protected by copyright. All rights reserved

validation sets. The data set partitions have been described in Section II.A. The test set is kept 

270 independent of any training process so that the evaluation of the trained classifier on the test set 

can serve as a reference of its performance in truly unseen cases. The deep features extracted 

from the training set are used to build the classifier model including feature selection and weight 

training in a wrapper-mode. The cost function for selecting the classifier, and therefore the 

feature combination, at each iteration depends on the performance of the trained classifier 

275 applied to the validation set. The classification performance is assessed using the area under the 

receiver operating characteristic curve (AUC) estimated by the trapezoidal rule for fast 

calculation. This process is implemented in an automatic algorithm that searches through a large 

number of feature combinations to identify selected feature subsets that can provide high AUC 

values in the validation set.  The classifier models that are found to have high AUC values will 

280 then be applied to the independent test set to assess the generalization error, estimated as the 

potential optimistic bias on the validation performance with reference to the true performance on 

unseen cases.

Fig. 2. Simulation study for data leakage using cross-validation and independent testing. 

An ImageNet-pre-trained DCNN was used to extract deep features for mass 

classification. The simulated sizes of training and validation data sets were varied 

over a range (10% to 100% of the available training and validation sets) by random 

drawing from the original 100% sets. The independent test set is fixed. Data 

leakage was introduced by directing the cost function of feature selection by the 

performance on the validation set.  The optimistic bias, or generalization error, on 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



12

This article is protected by copyright. All rights reserved

the validation set was assessed with reference to the classifier performance on the 

truly unseen independent test set.

To study the impact of training and validation set sizes on feature leakage, we simulated a 

285 range of available sample size by randomly drawing a subset from the original training set (3,222 

at 100%) and validation set (508 at 100%), respectively. The simulated sample sizes at 75%, 

50%, 25% and 10% were studied in addition to the 100%.  To keep the ratio of malignant and 

benign masses about the same as the original set, the desired percentages were separately drawn 

from the two classes. The performance on the independent test set was assessed at the 100% size 

290 (847 masses) for all conditions such that the generalization errors can be compared on the same 

set of unseen cases as reference. The experiment at each sample size was repeated 10 times by 

randomly drawing from the original set to simulate sample variations.

Sequential feature selection (SFS) is a simple and fast feature selection algorithm used in 

wrapper-based mode. It belongs to the family of greedy search algorithms, the AUC of the 

295 classifier on the validation set iteratively guides the SFS to find the “best” feature combinations. 

In our implementation, it starts by finding a single best feature (n=1) from the available feature 

pool containing a total of M features, and adds a new feature sequentially at a time until it is 

terminated by a preset maximum number of features to be included. For a given subset of n 

features that has already been selected, all new combinations of (n+1) features obtained by 

300 combining the n features with one of the remaining (M-n) features in the feature pool are 

compared, resulting in (M-n) feature combinations as input to the classifier being evaluated for 

their AUC values. Each of this process is called an iteration in the following discussion. The 

combination yielding the best performance based on a cost function is then identified to be the 

subset of (n+1) selected features and continues onto the selection of the next feature. Thus, SFS 

305 is ideal for this study because we can implement the feature selection process with an automated 

algorithm to search through a large number of feature combinations efficiently and 

systematically. This can simulate an AI developer optimizing the deep feature selection and 

classifier modeling while checking the performance on the validation set, or retesting on the test 

set many times until a satisfactory performance is found. Further, the range of overfitting 

310 observed through this analysis provides the extent of the risks from the perspective of a 

developer with computer-assisted search.
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Three classifiers were chosen to verify if there are any advantages of using a simple 

classifier like linear discriminant analysis (LDA) classifier or more complex non-linear 

classifiers like the random forest or support vector machine (SVM). An LDA classifier models 

315 the class conditional distribution of the training data to generate a discriminant function for 

classification. LDA is optimal for multivariate normally distributed feature spaces with equal 

covariance matrices and the coefficients of the transformation function provide simple 

interpretation. LDA is not effective for complex feature spaces but is least prone to overfitting 

compared to  complex classifiers when the training set is small.26 Support vector machine (SVM) 

320 classifier constructs hyperplanes in the multidimensional feature space that maximizes the 

separation of classes. We used the SVM with radial basis function (RBF) kernel to map the input 

space. In comparison to the LDA, SVM with RBF kernel is known to handle high dimensional 

feature space and control the effects of outliers.27 SVM also has the advantage of interpreting the 

transformation function. However, SVM due to the algorithmic complexity do not scale well 

325 with large-scale tasks. In addition, as the dimensionality of the feature space increased, due to 

limited samples, the feature space becomes sparse, affecting the construction of the hyperplanes 

in SVM. We chose fixed gamma and C values at 0.1 and 1.0, respectively, for the RBF. The 

random forest classifier described in Section II.B was used as the third classifier. We had 

evaluated the random forest parameters for the mass classification task in a previous study 28 and 

330 chose the total number of trees and the tree depth at 100 and 10, respectively, which were 

therefore also chosen for the experiments in the current study.

For reference, a commonly used SVM classifier with linear kernel was also evaluated 

with the same experimental settings except that no feature selection was performed but the 

regularization parameter (C) was chosen based on the validation performance. This type of 

335 classifier parameter optimization guided by validation performance is a common approach 

during classifier design. The performance curves would reveal the impact of sample size without 

explicit feature leakage on this classifier, and the difference between the performances on the 

validation set and the sequestered test set demonstrates the generalization error if the validation 

performance is reported without independent testing or if the “test” set is repeatedly used. 

340
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III. RESULTS

To limit the number of conditions in this study, we first compared the deep features 

extracted by three commonly used DCNNs for mass classification, and selected one as the 

feature extractor for this study. Using the deep features from the selected DCNN, the simulation 

345 study is performed with the SFS feature selection method and three classifiers while varying the 

sample sizes for the training and validation sets.

III.A. Selection of pre-trained DCNN for mass classification in mammography

A subset of the training partition containing 2,669 masses was used in four-fold cross-

validation to evaluate the deep features from the pre-trained DCNN. Features from the first dense 

350 layer of all the DCNNs were extracted, resulting in 4096, 1024 and 4096 features from AlexNet, 

GoogLeNet and VGG16, respectively, for each mass. As discussed in Section II.B, we used the 

random forest classifier for this relative performance comparison. The four-fold cross-validation 

was repeated ten times with different seed initialization of the random forest classifier to estimate 

the variance. The results from the cross-validation are shown in Fig. 3 in a box plot. The average 

355 test performance across the four folds is indicated by a blue dot, which shows AlexNet 

performed the best while GoogLeNet the worst. The mean AUC for AlexNet, GoogLeNet and 

VGG16 were 0.77±0.04, 0.58±0.05 and 0.74±0.03, respectively. Thus, AlexNet was chosen for 

the simulation study.
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Fig. 3. Selection of DCNN among three 

common DCNNs for classification of 

masses in mammograms. Each pre-

trained DCNN was used as feature 

extractor without fine-tuning by 

training data from the mass 

classification task and random forest 

was used as classifier. Four-fold cross-

validation with the training set was 

used in the experiments. All 

experiments were repeated ten times 

using different stochastic 

initializations. The error bars indicate 

95% confidence interval. The average 

performance of the test AUCs over the 

four folds is indicated by a blue dot, 

linked by a blue dotted line to facilitate 

visualization.

Fig. 4. Comparison of AlexNet 

training from scratch and with 

transfer learning from 

ImageNet data. The box plot 

shows the AUCs from the four-

fold cross-validation.

360 The advantage of transfer learning from non-medical imaging domain with large data set 

to medical imaging can be seen in the comparison between training DCNN from scratch and 

with transfer learning for AlexNet shown in fig. 4. Training from scratch was unstable for all 

four folds and the test performance was much lower than that with transfer learning.  It is 

interesting to note that, for the AlexNet with transfer learning, the average test AUCs were 

365 similar when it was used as a feature extractor with an external random forest or used directly for 

the mass classification task.

III.B. Simulation study: Feature leakage 

To simulate feature leakage, the classifier weight training or formulation was performed 

on the training set, while the trained classifier was applied to the validation set for each feature 
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370 combination examined by SFS so that the feature search was informed by the classifier 

performance on the validation set. Fig. 5 illustrates the SFS feature search process to select up to 

a maximum of 75 features from the 4096 deep features extracted by the AlexNet, using 100% of 

the training and validation data and an LDA classifier. About 300K different combinations of 

features were assessed (i.e., about 300K iterations as plotted) before arriving at the best 75 

375 features. We set a maximum of 75 selected features to limit the time required for the experiments 

and also we observed that this was large enough to reach a validation AUC greater than 0.8, 

which is sufficiently high to demonstrate feature leakage for the mass classification task in this 

study. Fig. 5(a) and 5(b) show the increasing number of features selected and the variation of the 

validation AUCs for all evaluated feature combinations as the SFS method sequentially selected 

380 the best combination of features. The histogram of the validation AUCs is shown in fig. 5(c) and 

the top 20K AUCs were highlighted. Fig. 5(d) shows the corresponding AUCs when deployed on 

the independent unseen test set, where the AUCs corresponding to those highlighted in fig. 5(c) 

were also highlighted. Despite the wide range of AUCs in the validation set, the AUCs on the 

unseen cases distributed in a much narrower range. The highlighted AUCs on the validation set 

385 had an average AUC of 0.91, whereas the corresponding AUCs for the independent test set 

reached an average AUC of only 0.72. The large difference between the average AUC values on 

the validation and on unseen cases is indicative of the optimistic bias on the classifier, and thus 

the large generalization error. In addition, for a given training set, although higher and higher 

validation AUCs may be found by further feature search, the AUCs on the unseen cases are 

390 relatively stable, indicating that searching for extremely high validation performance only 

increases generalization errors without benefiting performance in unseen cases. To observe 

trends over different experimental conditions, these average AUC values were tracked for each 

experiment, as described next.

III.C. Simulation study: Effects of training and validation sample size 

395 Feature leakage results in large generalization error as shown in fig. 5. However, the 

extent of generalization error caused by feature leakage also depends on the sample size. To 

study the effects of the training and validation sample sizes on the feature leakage, LDA, SVM 

and random forest classifiers were trained while using SFS to select features. The training set and 

validation set sizes were varied together by the same percentage; the size of the test set was fixed 
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400 at 100% (847 masses) to avoid introducing more variables and provide a consistent reference for 

comparison.

Fig. 5. Feature selection based on high AUCs from the validation set using SFS for feature 

selection and LDA for classification. The training and validation partitions were 

used at 100%. (a) Number of features selected as the number of iterations increased 

in the SFS method. (b) Performance on the validation set for the various feature 

combinations as the number of iterations increased in the SFS method. (c) 

Histogram of all the validation AUCs. The top 20K AUC values are highlighted. 

(d) Histogram of the corresponding test AUCs, in which the highlighted AUC 

values corresponded to those highlighted in (c).  The average AUC values in the 

highlighted region for validation and test set are 0.91 and 0.72, respectively.
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Fig. 6 shows the AUC obtained from the best selected feature set for the three classifiers 

when the feature set was increased by one single feature at a time using the SFS algorithm. For 

405 demonstration purpose, we tracked the validation and the test AUCs up to 150 selected features 

from the available 4096 features for two validation set sizes at 10% and 100% for this 

experiment. At the point of 75 features selected, the validation AUCs ranged from 0.78 to 0.99 

whereas the test AUCs ranged from 0.55 to 0.72. The changes were relatively gradual after 75 

features so that we chose 75 to be the maximum number of features for the rest of the 

410 experiments. Of the three classifiers, the random forest appeared to be least prone to overfitting 

with the smallest generalization errors, especially when the sample size was large (see random 

forest curves at 100%).

At each simulated sample size of 75%, 50%, 25% and 10%, the smaller training set and 

validation set were obtained by random drawing without replacement from the respective 

415 original 100% sets. Ten repeated experiments were performed for each condition. As the 

simulated sample size increased, the variation in the data set for the 10 repeated experiments 

decreased.  One major reason is that a larger and larger subset was drawn from the original set 

and more cases would overlap among different drawings, which contributed to the smaller spread 

in the repeated experiments in the boxplot.  At 100%, the entire set was used in a single 

420 experiment. Another reason is that the variance of the performance decreases with increasing 

training set size.29  In each experiment, the maximum number of selected features were fixed at 

75 and the top 20K validation AUCs in the feature selection process were averaged to obtain an 

average AUC, as described in Section III.B. The average AUC of the validation and the 

corresponding average AUC for the test set were tracked for each experiment and used to plot 

425 the boxplot in fig. 7.  The dotted line shows the mean performance over the 10 experiments at 

each sample size and the difference between the two mean curves from validation and testing 

indicates the average generalization error. These results show that feature leakage resulted in 

generalization error over the range of sample sizes studied. The generalization error increased as 

the validation sample size decreased.  At a validation set size of 10% (about 50 masses) the 

430 validation AUCs were 0.9 or higher while the AUC in unseen cases were about 0.5 to 0.65.  

Even with a large validation set (508 masses at 100%), the generalization errors in AUC were 
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still as large as 0.1 to 0.2.   The scenario of reporting these validation results when independent 

unseen test set is not available can set unreasonably high expectations for the AI tool being 

reported.

435

Fig. 6. The AUC performance by selecting the best set of N features that provided the highest AUC 

on the validation set. The number of selected features was tracked up to 150. The 

performances on the validation and independent test sets are shown for the simulated training 

and validation sample sizes of 10% and 100% of the respective available data sets in this 

study. The test set was fixed at 100%.
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Fig. 7. Performance curves to study the feature leakage and finite sample size dependency 

for three classifiers. The box plot was obtained from ten repeated experiments for 

each condition. In each experiment the training and validation sets were randomly 
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drawn from the respective original 100% sets to analyze the sensitivity of the 

results to variations in the data set. The test set was fixed at 100%. The red dotted 

line indicates the mean performance.

Fig. 8(a) Performance curves to study 

the finite sample size dependency for 

SVM-linear classifier without feature 

selection but with optimization of 

regularization parameter (C) based on 

the validation set performance. The 

box plot was obtained from 20 

repeated experiments for each 

condition. In each experiment the 

training and validation sets were 

randomly drawn from the respective 

original 100% sets to analyze the 

sensitivity of the results to variations 

in the data set. The test set was fixed 

at 100%. The blue, green and red 

dotted lines indicate the mean 

performance on the training, 

Fig. 8(b) Plot of the difference in the corresponding 

validation and test AUCs as a function of the 

validation AUC for each experiment in fig. 8(a). Five 

marker types with different colors were used to 

indicate the sample sizes at 100%, 75%, 50%, 25% 

and 10%.
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validation and test set, respectively. 

The data points of the three curves 

were plotted offset to facilitate 

visualization.

The performance curves of the SVM with linear kernel trained under the same 

440 experimental conditions using all 4096 deep features as input without feature selection are shown 

in fig. 8(a).  For each experiment, the selection of the regularization parameter (C) of the SVM 

classifier with linear kernel was guided by the validation AUC. The difference between the 

corresponding validation AUC and test AUC as a function of the validation AUC for each 

experiment is plotted in fig. 8(b). Although the mean generalization errors appeared to be only 

445 about 0.02 to 0.04 over the sample size range studied, fig. 8(b) revealed a strong trend of sample 

size dependence.  The generalization error was between -0.1 and 0.2 at 10% sample size and 

about 0.02 at 100% sample size, with the variance decreasing with increasing sample size. Thus, 

even without feature leakage due to feature selection, classifier parameter selection guided by 

validation performance or repeated use of test set will still introduce generalization errors.  

450

IV. DISCUSSION

The important issues of limited data availability and the repeated use of test data leading 

to bias in the predicted performance of machine learning algorithms have been recognized before 

the era of deep-learning9,30 but have not been systematically studied.  Due to the large number of 

455 parameters for training and the large number of features that can be extracted with deep-learning 

models, these issues have exacerbated and it is important to understand the risks and take 

necessary caution to avoid over-training. In this work, we studied the importance of data usage in 

the context of deep learning using classification of masses in mammography as an example.

Deep learning with transfer learning has the potential to develop robust computer-assisted 

460 tools in medical imaging. However, unlike the traditional feature engineering approaches where 

significant domain knowledge was needed to develop and achieve presentable results, deep 
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learning, due to representation learning and ease of using developer tools, can be used with 

minimal effort and thus prone to oversight of fundamental issues in machine learning field. In 

this work, we studied an important application with transfer learning, where DCNN is used to 

465 extract thousands of deep features, from which predictor variables are selected to build classifier 

model for a classification task. With a limited available data set for model development, it is 

often split into training and validation sets without an independent test set. The validation set is 

used both for model optimization and performance reporting.  Even when a test set is reserved, if 

it is reused numerous times for testing when high performance cannot be achieved at a few trials, 

470 the test result essentially is used to guide model selection.  The feature leakage between the 

training and validation/test set during the numerous trials lead to over-training of the classifier 

and overfitting to the validation/test set. We designed a simulation study to demonstrate the 

effects of feature leakage in the cross-validation scenario, where the developer optimizes the 

model while using the feedback from the validation/test set in the process. We showed that over-

475 training can occur for all three classifiers studied, and the bias or generalization error of the 

predicted performance increases as the training set size decreases. Even in the case of classifier 

modeling without explicit feature selection, using the validation/test performance to guide 

parameter or model selection will still introduce bias.  Without a sequestered representative test 

set for evaluation of the model generalizability, the reported validation/test results will be overly 

480 optimistic.

Three popular DCNNs in medical imaging, AlexNet, GoogLeNet and VGG16 were 

compared for the mass classification task and AlexNet was chosen as the deep feature extractor 

for the current study. Although we selected one feature extractor to simulate how DCNN may be 

used to extract deep features, it is expected that the feature leakage trends observed in this study 

485 should be applicable to similar problems when features are selected from a large feature space 

with thousands of features, regardless of the specific feature extractor used or whether the pre-

trained DCNN is fine-tuned with target domain data before it is used to extract deep features.  In 

fact, even manually extracted texture features in radiomics that can easily add up to hundreds or 

thousands will suffer the same high risk of feature leakage problem while selecting features and 

490 building predictive model using a limited data set.
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We chose SFS as the feature selection method for this study due to its efficiency. 

However, the feature leakage problem exists regardless of the feature selection method used.  

According to the well-known “curse of dimensionality” problem in the machine learning field, 

there always exist feature subsets in a high-dimensional feature space that can provide 

495 excessively high classification performance for a small data set, e.g., the validation set.  The role 

of the feature selection algorithm is only to search for these existing feature combinations, but 

not to create them.  We tried other feature selection methods such as genetic algorithm and found 

that it is very slow and often trapped in local maxima, depending on the choice of parameters 

(number of chromosomes, crossover rate, mutation rate, etc) so that it is extremely time 

500 consuming. Exhaustive search is impractical because of the astronomical number of possible 

feature combinations needed to be checked when selecting up to 75 features from the 4096 deep 

features. On the other hand, the SFS method searches for the feature combinations systematically 

without depending on choices of parameters. It can be expected that the trends observed in this 

study do not depend on the feature selection method as long as some high-performance feature 

505 combinations can be found, and this simulation study is possible only if these feature 

combinations can be found within a reasonably achievable computation time due to the large 

number of experiments for the various conditions we examined. In reality, the SFS may not have 

found the highest performance feature combinations.  However, as can be seen from our 

analysis, we only used the average AUCs from the top 20K feature combinations for comparison 

510 and demonstrated that feature leakage can occur even without reaching the extreme situations.

Fig. 7 shows that all three classifiers could achieve overly optimistic performance 

specific to the validation set, resulting in large generalization errors. The generalization errors of 

all classifiers follow a similar trend, increasing with decreasing sample size. At 10% of the 

training and validation set size, LDA had the largest generalization error while random forest 

515 classifier had the smallest.  At 100% sample size, the LDA, SVM and random forest classifier 

had AUCs of 0.91, 0.83, 0.80 on the validation set and 0.72, 0.69, 0.68 on the unseen 

independent test set, respectively. Ideally, if the validation sample size can increase well beyond 

the sample size available for this study (i.e., >>100%) to sufficiently cover all characteristics of 

unseen cases in the population, optimizing the feature classifier to the validation set should be 

520 the same as optimizing for the population so that the bias should eventually reduce to negligibly 

small. However, many studies in medical imaging only have small data sets and may not reserve 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



25

This article is protected by copyright. All rights reserved

independent unseen cases or cannot avoid reuse of the independent test set repeatedly during 

model development. Optimistic bias on the reported results due to feature leakage can be 

substantial.

525 There are limitations in the study. To reduce the complexity and the computational 

resource required for the experiments, we kept the number of variables and conditions 

manageably small.  First, we compared three popular DCNNs in medical imaging as deep feature 

extractor and chose only one, AlexNet, for further analysis. Second, we chose the SFS method to 

search for the feature subsets that can provide high classification performance without 

530 exhaustively searching for those with the highest performances.  Third, the breast mass 

classification task was used as example because of the availability of a large data set. However, 

as discussed above, the trends observed in this study should not be specific to the feature 

extractor, the feature selection method used, or the target classification task. If a different DCNN 

or target task is used for deep feature extraction, the deep features may have different 

535 distributions and different discriminative power, but the bias exists as long as a feature subset is 

selected from the high-dimensional feature space based on excessive search for high 

performance on a small data set. Fourth, we chose three commonly used feature classifiers 

(LDA, SVM, and random forest) as examples, and the user-selected parameters for the latter two 

were fixed. Since all three classifiers show similar trends, i.e., feature leakage leads to optimistic 

540 bias and the bias increases with decreasing sample size, it can be expected that the trends would 

not be very different for other classifiers or other parameters. Overall, although the amount of 

generalization error between the validation set and the unseen data may depend on the deep 

feature space or classifier used, the trends of optimistic bias and its dependence on the sample 

size used for guiding the model design should be general.

545 V. CONCLUSION 

Development of AI tools in medical imaging is an important area of research. With the 

limited data set available in many clinical applications, use of pre-trained DCNN as feature 

extractor and selecting feature subsets from the large-dimensional feature space to form an 

external classifier is a common approach. In order to maximize the training data, AI developers 

550 may not reserve independent unseen cases or cannot avoid using a single independent test set 
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repeatedly during model development.  Feature leakage is one of the potential sources leading to 

generalization errors due to over-training of the classification methods in order to achieve high 

performance on the validation set or the test set. 

We studied feature leakage in a cross-validation approach over a range of sample sizes 

555 used by developers in medical imaging where data set sizes are small compared to other 

computer vision areas. When the validation set is used for guiding feature selection and classifier 

optimization, the validation performance is optimistically biased relative to the performance in 

independent unseen cases.  It can be expected that guidance can also occur indirectly if an 

independent test set is not sequestered and is allowed to be reused unlimited times.  The 

560 generalization error worsens as the data set size decreases. A similar problem occurs in 

radiomics where a small feature subset is often selected from a high dimensional feature space to 

build predictive model for clinical decision support.  Optimistic biases on the reported 

performance may drive unrealistic expectations in the field and thus proper rules in machine 

learning should be followed when developing AI tools and reporting their performances.  AI 

565 users should also be aware of the potential biases and evaluate the generalizability of a predictive 

model in the patient population of interest properly before implementation for clinical use.31,32
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Table 1. Distribution of data in the training, validation, and independent sets.  The partitioning is 

by patient so that the three sets contained independent cases. 

 Training Validation Test 

 M B M B M B 

Unique mass lesions 1,550 1,672 239 269 363 484 

Total in each set 3,222 508 847 

Total 4,577 

M: Malignant, B: benign 
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