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Abstract    

 

Word count: 200 

 

Objective: To compare the predictive accuracy of two approaches to target price calculations 

under Bundled Payments for Care Improvement-Advanced (BPCI-A): the traditional Centers for 

Medicare and Medicaid Services (CMS) methodology and an empirical Bayes approach 

designed to mitigate the effects of regression to the mean. 

 

Data Sources: Medicare fee-for-service claims for beneficiaries discharged from acute care 

hospitals between 2010 and 2016. 

 

Study Design: We used data from a baseline period (discharges between January 1, 2010 and 

September 30, 2013) to predict spending in a performance period (discharges between October 1, 

2015 and June 30, 2016). For 23 clinical episode types in BPCI-A, we compared the average 

prediction error across hospitals associated with each statistical approach. We also calculated an 

average across all clinical episode types and explored differences by hospital size. 

 

Data collection/extraction methods: We used a 20% sample of Medicare claims, excluding 

hospitals and episode types with small numbers of observations.  

 

Principal Findings: The empirical Bayes approach resulted in significantly more accurate 

episode spending predictions for 19 of 23 clinical episode types. Across all episode types, 



3 
 

prediction error averaged $8,456 for the CMS approach versus $7,521 for the empirical Bayes 

approach. Greater improvements in accuracy were observed with increasing hospital size. 

 

Conclusions: CMS should consider using empirical Bayes methods to calculate target prices for 

BPCI-A. 

 

 

 

 

 

Key Words 

bundled payments, target prices, spending predictions, health policy, regression to the mean, 

Bayesian shrinkage  

 

 

 

A. What is known on this topic:  

● The U.S. Centers for Medicare and Medicaid Services (CMS) implemented the 

voluntary Bundled Payments for Care Improvement-Advanced (BPCI-A) program in 

2018. 

● Prior work demonstrates that target price calculations used by BPCI-A do not account 

for regression to the mean over time in hospital spending. 



4 
 

● BPCI-A may lead to undue financial losses for CMS because hospitals are more 

likely to join the program if they are offered higher target prices – but hospitals 

offered higher target prices are more likely to experience decreases in spending and 

therefore achieve shared savings due to statistical artifact.  

B. What this study adds: 

● Empirical Bayes estimation, which accounts for regression to the mean, can be used 

to predict hospital spending and set BPCI-A target prices. 

● When applied to BPCI-A, empirical Bayes estimation improved target price accuracy 

for the majority of BPCI-A clinical episode types, and calculated target prices were 

generally lower. 

● CMS should consider using empirical Bayes estimation to set BPCI-A target prices.  
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Introduction 

The Centers for Medicare and Medicaid Services (CMS) implemented the voluntary 

Bundled Payments for Care Improvement-Advanced (BPCI-A) program in 2018.1 Bundled 

payment models seek to reduce spending by making providers responsible for spending that 

occurs throughout a predefined clinical episode.2 For 29 inpatient clinical episode types, CMS 

defines target prices for each participating hospital for a particular measurement period. If 

hospital spending in the performance period is below the target price, a hospital earns shared 

savings.  However, spending above the target price leads to penalties. Target prices are 

calculated for a particular hospital by applying a discount to that hospital’s predicted spending 

for a particular episode.3 Predicted spending is based on risk-adjusted spending during prior 

years and peer-group spending trends. For BPCI-A to function appropriately, target prices should 

achieve a balance between incentivizing spending reductions and encouraging program 

participation. The ability for CMS to save money in voluntary programs like BPCI-A stems 

almost entirely from setting an appropriate target price. 

However, the best way to set target prices under bundled payment is unknown. Predicting 

provider spending, while necessary for alternative payment models, is challenging.4-6 Hospital 

spending is susceptible to a statistical phenomenon known as regression to the mean, where 

hospital spending that is unusually high in a particular year is likely to decrease in following 

years, and hospital spending that is unusually low in a particular year is likely to increase in 

following years.6 In essence, random noise can obscure policymakers’ ability to observe 

hospitals’ true spending performance. Evaluating hospitals’ expected spending trends, and 

incorporating them into predictions, is another challenge. Inaccurate predictions may lead to 

CMS failing to reward some deserving hospitals and rewarding some undeserving hospitals. 
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Inaccurate predictions may also discourage program participation. Setting target prices that more 

accurately predict hospital spending has the potential to more appropriately balance incentives in 

BPCI-A. 

In this context, we developed an alternative methodology to calculate target prices under 

BPCI-A. Specifically, we used empirical Bayes estimation to mitigate the effects of regression to 

the mean. Empirical Bayes estimation addresses regression to the mean by “shrinking” 

predictions of spending for any particular hospital to average spending across other similar 

hospitals.4 Using national Medicare data, we calculated target prices using the standard CMS 

approach and our alternative approach. We then compared the predictive accuracy of target 

prices calculated using the standard CMS approach and our alternative method. 

 

 

Methods 

 

Data Source and Definitions 

 We used inpatient and outpatient physician claims and 20% MEDPAR files for patients 

discharged from acute care hospitals. We also used Provider of Service (POS), Academic 

Medical Center (AMC) list, Provider Specific Files (PSF), and American Hospital Association 

Annual Survey (AHA) for hospital characteristics.  

For each inpatient clinical episode, BPCI-A determines target prices for a single year 

based on hospital performance during a prior period spanning multiple years. We mirrored this 

approach using index admissions between January 1, 2010 and September 30, 2013 to define a 

baseline period and index admissions between October 1, 2015 and June 30, 2016 to define a 
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performance period. We evaluated these baseline and performance periods because they 

preceded the announcement of BPCI-A. As a result, our assessment of the accuracy of alternative 

approaches to set target prices would not be affected by hospitals’ attempts to reduce episode 

spending as a result of the program. Towards this end, we also excluded hospitals that 

participated in the same episode under the BPCI program.  

Following CMS methodology, we excluded hospitals with fewer than 40 cases during the 

baseline period for each clinical episode. This resulted in the exclusion of one clinical episode. 

We also excluded clinical episodes for which fewer than 20 hospitals met the case requirement, 

resulting in the exclusion of 5 clinical episodes. 

Data on hospital characteristics came from the American Hospital Association Data 

Annual Survey between 2010 and 2013. 

 

Target price calculation using current CMS approach 

 We calculated target prices for each clinical episode using the current CMS approach. 

CMS calculates a benchmark price which incorporates observed spending, expected spending 

based on case mix, and peer-group spending trends. Then, benchmark prices are converted to 

target prices using a formula that incorporates a 3% discount. The formula accounts for inflation; 

results are reported in 2013 dollars. The CMS approach is described in detail in Appendix 

Figure A1. 

 

Target price calculation using empirical Bayes estimation 

We also calculated target prices for each clinical episode using empirical Bayes 

estimation. This approach derives two separate appraisals of hospitals’ episode spending: (1) one 
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that is determined by a hospital’s own risk-adjusted spending in the baseline period; and (2) 

another that is a hospital’s expected spending, estimated by the hospital’s characteristics. 

Throughout this paper we refer to appraisal (1) as “historical spending” and appraisal (2) as 

“expected spending.”  

A weight, based on the reliability of a hospital’s risk-adjusted baseline (appraisal 1), is 

then derived and applied to each appraisal of spending. Generally, reliability increases as 

hospital case volume increases. If risk-adjusted spending is highly reliable, it will receive much 

of the weight. This approach was developed to profile hospital quality,7 has been shown to have 

greater predictive accuracy than other common approaches to measure quality,8-11 and is used by 

agencies such as Leapfrog for quality reporting.12 The formula for the weights is described in 

detail in the Technical Appendix. Essentially, weights are derived from a ratio of signal to 

noise. When hospital spending predictions are more reliable, they receive more weight.  

To implement the empirical Bayes approach, we first employed random forest machine 

learning estimation to select independent variables to predict hospital spending. The goal of this 

approach was to develop the best possible predictive model of hospital spending during the 

performance period. Importance weights of variables in our model are presented in Appendix 

Figure A2. These variables were then used to estimate linear models for each clinical episode. In 

contrast to the traditional CMS methodology, we incorporated peer-group spending trends as 

simply another factor that could predict future spending. The two separate appraisals of hospital 

episode spending were then developed and combined using the derived reliability weights. How 

the empirical Bayes approach affects target prices can be seen in Appendix Figure A3, where 

the median estimate is lower and extreme values are shrunk towards the mean. Further 
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description of the methodology is provided in the Technical Appendix and Appendix Figure 

A1. 

 

Statistical Analyses 

 Our analysis sought to compare the predictive accuracy of the CMS and empirical Bayes 

approaches. For each clinical episode type, at each hospital, we calculated the risk-adjusted 

spending in the performance period. This was our “gold standard” – the value that target prices 

sought to estimate. We then calculated the mean absolute prediction error, defined as the 

difference between risk-adjusted spending in the performance period and target prices. Mean 

absolute prediction error was calculated using both the CMS and empirical Bayes approaches. 

We compared the mean absolute prediction error between these approaches across all hospitals. 

We then conducted a sensitivity analysis where we evaluated hospitals separately by size, 

categorized as follows: small (0-250 beds), medium (251-500 beds), large (501-850 beds), and 

extra-large (>850 beds).  

We then created a measure of overall performance to compare the CMS and empirical 

Bayes estimators across all clinical episodes by calculating the unweighted mean absolute 

prediction error across all 23 episodes. We recalculated this value for 1,000 bootstrap resamples 

of the data and compared the bootstrap distribution between the CMS and empirical Bayes 

approach. We then repeated this approach separately by hospital size, categorized as above. 

Standard errors were clustered by hospital. 

Our empirical Bayes estimation differed in how it incorporated peer-group spending 

trends into target price calculations (Appendix Figure A1). To understand the extent to which 

changes in predictive accuracy were due to shrinkage itself versus the modifications to how peer-
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group trends were incorporated into the model, we conducted additional sensitivity analyses 

(Appendix Figure A4). First, we used the traditional CMS methodology with the peer-adjusted 

trend factor removed from the calculation (Sensitivity Analysis A). Second, we left the “peer-

adjusted trend” as-is and excluded peer-group spending trends from the calculation of expected 

spending used by the empirical Bayes estimator (Sensitivity Analysis B). Third, we excluded all 

information about peer-group spending trends (Sensitivity Analysis C). 

 Because some hospitals may use more recent data to inform their decisions related to 

alternative payment models, we conducted a sensitivity analysis where we extended the baseline 

period until December 31, 2014. To examine possible distributional effects related to the 

accuracy of target price predictions, supplemental analysis also examined differences in the 

accuracy of target prices across hospital size, teaching status, profit status, urban versus rural, 

and region. 

All p-values were two-sided, and alpha = 0.05 was set as the threshold for significance. 

Analyses were performed using Stata version 16.0 (Stata Corp, College Station, TX). 

 

 

 

Results 

The study sample included 2,589 hospitals across 23 BPCI-A clinical episodes. During 

the baseline period (2010-2013), there were 1,837,861 clinical episodes with average spending of 

$20,039 per hospital-episode (Appendix Table A1).  

Allocation of weight between hospitals’ historical spending versus expected spending 

was similar across episodes included in BPCI-A (Appendix Table A2). For 22 of 23 episodes, 
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between 28% and 33% of the weight was applied to hospitals’ historical spending. For acute 

myocardial infarction, 45% of the weight for the empirical Bayes approach was based on the 

historical spending, and 55% was based on expected spending.  

The empirical Bayes approach had a lower mean target price for all 23 clinical episode 

types (Table 1). For cardiac valve, there was a very large difference in mean target price – mean 

target price was $11,716 higher under the traditional CMS methodology than under the empirical 

Bayes methodology. For the remaining clinical episodes, the difference in mean target price 

ranged from $343 for urinary tract infection to $2,757 for coronary artery bypass graft surgery. 

 The empirical Bayes approach had significantly lower mean absolute prediction error 

than the CMS approach for 19 out of 23 clinical episodes (Table 1, Figure 1). The largest 

improvement was for cardiac valve (Δ=$11,716). For coronary artery bypass graft surgery 

(Δ=$2,757), major bowel procedure (Δ=$2,579), spinal fusion (Δ=$2,472), and sepsis 

(Δ=$1,752), the empirical Bayes estimator outperformed the CMS estimator by a wide margin. 

For 4 clinical episode types (lower extremity and humerus procedure, cardiac defibrillator, 

cervical spinal fusion, and cellulitis), there was no significant difference in mean absolute 

prediction error between both approaches. The fact that target prices were generally both lower 

and more accurate under the empirical Bayes methodology suggests that the CMS methodology 

was systematically over-predicting spending during the performance period. 

In sensitivity analysis by hospital size, we observed similar results for hospitals of all 

sizes (Appendix Figure A5). In sensitivity analysis including the year 2014, results did not 

differ substantially, and absolute and relative prediction errors were relatively similar (Appendix 

Figure A6). 
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 Across all clinical episodes, mean absolute prediction error was $7,521 for the empirical 

Bayes approach versus $8,456 for the CMS approach (p<0.001, Figure 2). There was not a 

single bootstrap iteration in which the CMS approach outperformed the empirical Bayes 

approach. For all four hospital size categories, mean absolute prediction error was higher when 

using the CMS estimator than when using the empirical Bayes approach (p<0.001 for all 

categories, Appendix Figure A7). 

 The traditional CMS methodology resulted in higher prediction error for large hospitals 

than small hospitals; mean absolute prediction error was $9,042 for large hospitals versus $8,437 

for small hospitals (Figure 3). The empirical Bayes methodology improved prediction accuracy 

for all hospital size categories. There were greater improvements for large hospitals than for 

small hospitals, so that compared with the traditional CMS methodology, the relationship 

between hospital size and prediction error was reversed. Using empirical Bayes estimation, 

prediction error was higher for small hospitals than for large hospitals; mean absolute prediction 

error was $7,982 for small hospitals versus $6,846 for large hospitals. Lastly, improvements in 

accuracy for larger hospitals were generally higher for surgical episodes than medical episodes. 

Five of the 6 episodes with greatest improvements in prediction accuracy were surgical episodes. 

Hospital size was the only hospital characteristic for which the accuracy of target prices varied 

substantially between the traditional CMS methodology and the empirical Bayes methodology 

(Appendix Table A3).      

 Decreases in mean absolute prediction error were due to the shrinkage aspect of the 

empirical Bayes model to a greater extent than modifications of how the peer-adjusted trend 

factor was incorporated into the predictive methodology. When the peer-adjusted trend factor 

was removed from the traditional CMS methodology (Sensitivity Analysis A), mean error did 
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not decrease substantially ($8,470 for Sensitivity Analysis A vs. $8,456 for traditional CMS 

methodology). When the peer-adjusted trend factor was left as-is and peer-group trends were 

excluded from the calculation of expected spending used by the empirical Bayes estimator 

(Sensitivity Analysis B), mean absolute prediction error decreased substantially and was similar 

to the empirical Bayes estimator used in the primary analysis ($7,681 for Sensitivity Analysis B 

versus $7,684 for the primary empirical Bayes analysis). When all information about peer-group 

spending trends was excluded, mean prediction error was similar $7,686, similar to Sensitivity 

Analysis B and the primary empirical Bayes analysis. 

 

 

 

 

Discussion 

In this national study comparing the accuracy of target prices for BPCI-A between the 

current CMS approach and a modified approach using empirical Bayes estimation, we report 

three main findings. First, there was substantial prediction error in BPCI-A target prices 

calculated using the traditional CMS methodology, and target prices were generally too high. 

Second, the empirical Bayes estimator statistically outperformed the CMS estimator for 19 of 23 

clinical episodes. Performance was not statistically different for the remaining 4 episodes, and 

there were no episodes where the CMS estimator outperformed the empirical Bayes estimator. 

Third, the empirical Bayes estimator outperformed the CMS approach for hospitals of all sizes, 

and improvements were greatest for larger hospitals. Together, these findings suggest an 
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empirical Bayes approach could improve the ability of BPCI-A to set accurate target prices that 

balance incentivizing spending reductions with encouraging program participation.  

Our results are consistent with other research showing the benefits of empirical Bayes 

estimation for profiling hospital spending16 and quality outcomes.17-19 However, ours is the first 

to apply empirical Bayes estimation to the problem of setting target prices under BPCI-A. We 

also provide insight into where improvements in the predictive accuracy of target prices are most 

likely to be observed. We found greatest improvements for larger hospitals, who are more likely 

to participate in voluntary bundled payment programs than smaller hospitals.14 We still found 

improved spending predictions for smaller hospitals, whose spending is more susceptible to 

regression to the mean. Improvements were generally larger for surgical conditions, which are 

more susceptible to influence by bundled payment programs15 than medical conditions.  

CMS should consider incorporating empirical Bayes estimation into target price setting 

for BPCI-A. This may be especially helpful for particular episode types, such as cardiac valve 

and coronary artery bypass grafting, where we observed the highest improvements in predictive 

accuracy when employing empirical Bayes estimation. There is a precedent for using empirical 

Bayes estimation in other CMS incentive programs, including the construction of the PSI-90 for 

the Hospital Acquired Conditions Reduction Program.20,21 Both the Hospital Readmission 

Reductions Program22 and Hospital Compare23 use Bayesian Shrinkage to profile hospital 

readmission and mortality rates. The primary advantage of the using the empirical Bayes 

approach for BPCI-A is that it addresses the issue that hospitals with high target prices may join 

the program and experience unwarranted financial gains through regression to the mean.6 More 

accurate target prices could also address issues such as low participation rates,24,25 high drop-out 

rates,24,25 inequitable distribution of risk-sharing,26 and substantial differences in hospital 
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characteristics between participants and non-participants.27,28 Savings associated with BPCI-A 

have been modest1,29 in prior years; lower target prices resulting from empirical Bayes estimation 

would further encourage hospitals to lower spending and achieve shared savings with CMS. 

Lastly, our finding that current target prices are too high suggests that CMS may be losing 

money both because hospitals are more likely to join the program if they are offered higher target 

prices and because CMS is paying unnecessarily high target prices to hospitals who are already 

participating in the program. Additionally, even if BPCI-A participation were made mandatory – 

a policy solution suggested by many researchers25 – the program would continue to result in 

financial loss for CMS if there are no substantial changes in the target price formula. Of note, 

while our analysis suggests how the accuracy of spending predictions may be improved, an 

additional policy question is whether 3% is the appropriate discount factor between the 

benchmark price and target price. Further research can explore the implications of different 

discount rates for hospital behavior and reconciliation payments under bundled payment 

programs.  

The empirical Bayes approach may have disadvantages. Shrinkage may reduce incentives 

for small hospitals to change behavior, since target prices are less dependent on their own 

spending.30 In addition, empirical Bayes estimation is limited by the ability of hospital 

characteristics to explain spending. Contrary to other applications of empirical Bayes 

estimation,10 such as profiling hospital mortality, we found greater improvements in accuracy for 

larger hospitals than for smaller hospitals. This was likely because of stronger relationships 

between hospital characteristics and spending for larger hospitals than for smaller hospitals. 

Even though the empirical Bayes estimator was designed to help smaller hospitals specifically, 

there was more room for improvement in spending predictions for larger hospitals than for 
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smaller hospitals. Nevertheless, the substantial errors observed for our application of empirical 

Bayes estimation suggests that hospital spending predictions could be improved further, 

enhancing target prices set under BPCI-A and other alternative payment programs. 

 Our study had limitations. First, we used a 20% sample of Medicare claims rather than 

the 100% sample used by CMS to determine target prices. However, the 100% sample is only 

available to researchers working under contract for CMS. In addition, sensitivity analysis found 

that the empirical Bayes approach outperformed the CMS approach for all hospital size 

categories, suggesting that it would similarly outperform the CMS approach when using 100% 

files. Second, we used data between 2010 and 2016, which are older than the data that will be 

used for BPCI-A, and hospitals may have changed their clinical operations between the baseline 

and performance period because of the influence of other value-based purchasing programs. To 

address this, we excluded hospitals that participated in similar clinical episodes in BPCI, the 

precursor program to BPCI-A. Additional limitations derive from minor differences in our 

replication of the CMS approach to calculating target prices. For instance, we used generalized 

linear models instead of compound lognormal regression. We also did not include spending on 

home health and durable medical equipment, which are a small component of episode 

spending.13 These minor differences are unlikely to materially affect our conclusions. Finally, we 

were not able to observe the “true spending” of hospitals, instead relying on the ability of 

alternative estimators to predict future spending as a proxy for relative accuracy. While 

imperfect, this strategy allowed us to examine estimator accuracy using actual data (rather than 

simulated data) under the plausible assumption that an estimator that is better able to predict 

observed future spending provides a more accurate estimate of true spending, which is 

unobserved.  
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Conclusions 

Effective alternative payment programs depend on the ability of program sponsors to set 

accurate and appropriate targets for quality and spending. Empirical Bayes estimation has the 

potential to enhance BPCI-A by improving target price setting under the program.  
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Table 1. Target price, mean absolute prediction error, and percent error comparing 
traditional CMS methodology and empirical Bayes methodology, for all clinical episode 
types      

      Traditional CMS Methodology 

 

Empirical Bayes Methodology 

BPCI-A Episode 

Mean 
Target 
Price ($) 

Mean 
Absolute 
Prediction 
Error ($) 

Mean  
Absolute 
Prediction 
Error (%) 

 

Mean Target 
Price ($) 

Mean 
Absolute 
Prediction 
Error ($) 

Mean  
Absolute 
Prediction 
Error (%) 

Cardiac Valve 65,548.3 19,870.6 30.3  50,654.7 8,154.9 16.1 

Cardiac defibrillator 50,770.2 15,716.5 31.0  37,706.9 14,454.0 38.3 

Coronary artery bypass graft 
surgery 44,005.8 11,756.2 26.7 

 
37,936.4 8,999.7 23.7 

Spinal fusion (non-Cervical) 38,009.2 9,963.9 26.2  31,347.4 7,491.8 23.9 

Hip and femur procedures 
except major joint 35,749.5 9,266.1 25.9 

 
32,675.9 8,503.2 26.0 

Major bowel procedure 34,506.3 12,328.4 35.7  28,861.9 9,749.9 33.8 

Sepsis 28,812.0 8,951.2 31.1  23,858.5 7,199.4 30.2 

Lower extremity and humerus 
procedure except hip, foot, 
femur 28,694.0 8,531.3 29.7 

 

24,285.8 6,907.9 28.4 

Stroke 26,588.7 8,879.3 33.4  23,169.0 7,844.5 33.9 

Pacemaker 26,116.1 9,239.2 35.4  21,481.4 8,398.4 39.1 

Cervical spinal fusion 26,046.7 8,271.7 31.8  22,202.2 7,358.3 33.1 

Major joint replacement of the 
lower extremity 24,707.5 6,940.3 28.1 

 
21,795.9 5,991.7 27.5 

Acute myocardial infarction 23,415.3 9,322.4 39.8  20,042.7 8,417.9 42.0 

Percutaneous coronary 
intervention 22,746.0 7,267.2 31.9 

 
18,839.7 6,866.3 36.4 

Renal failure 21,906.4 8,000.1 36.5  18,513.6 7,300.9 39.4 

Congestive heart failure  21,582.6 8,208.0 38.0  18,256.4 7,646.3 41.9 

Simple pneumonia and 
respiratory infections  19,586.9 8,504.0 43.4 

 
16,971.5 7,892.0 46.5 

Gastrointestinal hemorrhage  18,103.5 8,177.5 45.2  15,155.5 7,601.3 50.2 

Cellulitis 17,892.6 9,309.8 52.0  15,351.7 8,966.4 58.4 

Urinary tract infection 17,717.0 7,806.7 44.1  15,537.6 7,463.5 48.0 

Chronic obstructive pulmonary 17,102.5 7,827.9 45.8  14,542.8 7,282.2 50.1 
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disease, bronchitis/asthma 

Gastrointestinal obstruction 15,810.1 7,591.9 48.0  13,325.5 6,826.2 51.2 

Cardiac arrhythmia 15,371.7 7,046.5 45.8  12,893.9 6,634.3 51.5 
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Figure Legends 
 
Figure 1. Difference in prediction error between traditional CMS methodology and empirical 
Bayes estimation, for all clinical episode types 
 
Figure 2. Mean prediction error for all hospitals, averaged across all clinical episodes 
 
Figure 3. Mean prediction error across all clinical episodes, by hospital size, using traditional 
CMS estimation and empirical Bayes estimation 
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Technical Appendix 
 
General Approach 
As described in the manuscript, we extracted a 20% sample of Medicare fee-for-service claims 
for beneficiaries discharged from acute care hospitals during a baseline period (between 1/1/2010 
and 9/30/2013) and a performance period (between 10/1/15 and 6/30/16). We used data from the 
baseline period to calculate target prices for the performance period. We evaluated prediction 
accuracy by comparing calculated target prices with observed spending during the performance 
period. 
 
Traditional CMS approach to calculating target prices 
We first extracted spending during the baseline period for each clinical episode. Let 𝐶𝐶𝐵𝐵𝐵𝐵 be the 
cost per beneficiary for a particular clinical episode at hospital j during the baseline period B. We 
then estimated target prices for each hospital using the traditional CMS method, published by 
CMS1 and summarized in Appendix Figure A1. For each clinical episode, let 𝑃𝑃�𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶 be the 
estimated target price at each hospital j calculated using the traditional CMS methodology. 
 
Modified approach using Bayesian Shrinkage to account for mean reversion 
We then estimated target prices for each hospital using empirical Bayes estimation. This 
technique is used to address random variation in health metrics and resultant mean reversion over 
time. The estimator is a weighted average of two quantities: (1) risk-adjusted spending and (2) 
expected spending conditioned on a variety of hospital-level factors.2 Throughout this paper, (1) 
is referred to as “historical hospital spending” and (2) is referred to as “expected spending.” The      
estimator distributes weight between quantities (1) and (2) based on a measure of the reliability 
of risk-adjusted spending. The reliability measure depends on hospital volume and signal-to-
noise measurements. When risk-adjusted spending is less reliable, less weight is applied to the 
estimate, so it is “shrunk” towards the conditional mean. Thus, for smaller hospitals, estimated 
spending depends to a greater extent on spending at other hospitals.  
 
To implement the estimator, we first estimated patient episode spending as a function of      
hospital characteristics (Quantity 2 as described above). We selected independent variables using 
a random forest machine learning algorithm (Appendix Figure A2). We implemented the 
estimator separately for each clinical episode. For each clinical episode, we estimated the 
following linear model for patient i, in hospital j, in quarter t: 
 

𝐶𝐶𝑖𝑖𝐵𝐵𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 𝑙𝑙𝑙𝑙 �𝑉𝑉𝑉𝑉𝑙𝑙𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵�  + 𝛽𝛽2𝑋𝑋𝐵𝐵 +
𝛽𝛽3 𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑡𝑡 + 𝛽𝛽4 𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉𝑡𝑡 ∙ 𝑋𝑋𝑗𝑗+ 𝛽𝛽5 𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉𝑙𝑙𝑡𝑡 +𝑉𝑉𝑇𝑇𝑗𝑗𝑡𝑡 

 
Where 𝐶𝐶𝑖𝑖𝐵𝐵𝑖𝑖 is episode spending, 𝑉𝑉𝑉𝑉𝑙𝑙𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵 is the number of times the episode is performed at 
hospital j, X is a vector of hospital characteristics (academic, urban, safety net, census, bed size), 
Time is a quarterly time trend, and Season is a vector of dummy variables for each season. 
Explanatory variables were defined as in the traditional CMS methodology.1 
 
We then calculated �̂�𝐶𝐵𝐵_𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎, the risk-adjusted spending at hospital j for each clinical episode 
during the baseline period (Quantity 1 as described above). To accomplish this, we took the ratio 
of predicted episode spending based on case mix (using the same HCCs and HCC interactions as 
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in Step 3 of the traditional CMS process1) to observed spending at each hospital for each clinical 
episode. Then we multiplied this value by the average of 𝐶𝐶𝐵𝐵 across all hospitals. 
 
We used the empirical Bayes estimator to create shrunk estimates of the benchmark prices at 
each hospital: 

� 𝐸𝐸𝑉𝑉𝑝𝑝𝑇𝑇𝑝𝑝𝑇𝑇𝑆𝑆𝑙𝑙 𝐵𝐵𝑆𝑆𝐵𝐵𝑉𝑉𝑆𝑆 𝑗𝑗 = �̂�𝐶𝐵𝐵_𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑊𝑊𝐵𝐵 + (�̂�𝐶𝐵𝐵)(1 −𝑊𝑊𝐵𝐵) 
 
where 𝐸𝐸𝑉𝑉𝑝𝑝𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝑆𝑆𝑙𝑙 𝐵𝐵𝑆𝑆𝐵𝐵𝑉𝑉𝑆𝑆� 𝐵𝐵 is the estimated benchmark price. In brief, 𝑊𝑊𝐵𝐵 is the ratio of signal 
variance to total variance in residual spending. Signal variance is derived from a regression of 
hospital spending on hospital volume. Noise variance is derived from the mean-squared error of 
a regression of spending on hospital fixed effects to the number of observations for each hospital. 
This is described in detail in the statistical appendix of Ryan et al., 20123. 𝑊𝑊𝐵𝐵 is generally 
inversely associated with hospital volume. 
 
We converted the benchmark price to the target price using the traditional CMS formula, which 
involved application of a 3% discount. For each clinical episode, let 𝑃𝑃�𝐵𝐵_𝑎𝑎𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒_𝐵𝐵𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎 be the 
target price at hospital j calculated using the empirical Bayes estimator.  
 
We evaluated hospital performance by comparing the estimated target prices (𝑃𝑃�𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶 and  
𝑃𝑃�𝐵𝐵_𝑎𝑎𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒_𝐵𝐵𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎) to risk-adjusted spending during the performance period. Let �̂�𝐶𝑃𝑃𝐵𝐵_𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 be 
risk-adjusted cost per beneficiary for a particular clinical episode at hospital j during the 
performance period P. We calculated �̂�𝐶𝑃𝑃𝐵𝐵_𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 using the same risk-adjustment procedure as 
�̂�𝐶𝐵𝐵_𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎, explained above. 
 
For each clinical episode, at each hospital, we determined the absolute value of the difference 
(“error”) between cost/beneficiary during the performance period and the target price, using both 
traditional CMS methodology and the empirical Bayes methodology. Error using CMS 
methodology was 𝐸𝐸�𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑃𝑃�𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶 − �̂�𝐶𝑃𝑃𝐵𝐵_𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎�. Error using the empirical Bayes estimator 
was 𝐸𝐸�𝐵𝐵_𝑎𝑎𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒_𝐵𝐵𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎 = �𝑃𝑃�𝐵𝐵_𝑎𝑎𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒_𝐵𝐵𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎 − �̂�𝐶𝑃𝑃𝐵𝐵_𝑎𝑎𝑎𝑎𝐵𝐵𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎�.  
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Appendix Figure A1. Methodology for calculating BCPI-A target prices for a given clinical 
episode, comparing traditional CMS method (A) versus modified method incorporating 
empirical Bayes estimation to account for mean reversion (B) 
 

 
 
NOTES:  
*Risk-adjustment based on age, sex, race, and HCCs. 
**Hospital characteristics include volume (number of patients undergoing that particular clinical 
episode), academic vs non-academic medical center, urban vs rural, safety net hospital versus 
non-safety net hospital, census division (9 categories), proportion of Medicare days, proportion 
of Medicaid days, and bed size (small [0-250 beds], medium [251-500 beds], large [501-850 
beds], extra-large [>850 beds]) 
***PCMA = patient case mix adjustment. This is based on realized case mix during the 
performance period.  
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Appendix Figure A2. Importance weights for random forest machine learning estimation 
used to model hospital expected spending 
 

 
 
NOTES:  
Volume is a continuous variable, representing the number of cases for a particular clinical 
episode at a particular hospital. Micripdtoipdtot is a hospital’s proportion of Medicare days. 
Mcdipdtoipdtot is a hospital’s proportion of Medicaid days. Bed size is categorized as follows: 
small [0-250 beds], medium [251-500 beds], large [501-850 beds], extra-large [>850 beds]. 
Cens_div is United States census division. 
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Appendix Figure A3. Distribution of target prices for simple pneumonia and respiratory 
infections, comparing traditional CMS methodology versus empirical Bayes estimation 
 
 

 
 
Note: simple pneumonia and respiratory infections is the most common episode in BCPI-A. 
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Appendix Figure A4: Sensitivity analysis to address drivers of changes in prediction 
accuracy between traditional CMS methodology and empirical Bayes approach  
 
 
Sensitivity Analysis A: Traditional 
CMS methodology with the peer-
adjusted trend factor removed from 
the calculation  
 

 

 Sensitivity Analysis B: Leave the “peer-adjusted trend” 
as-is and apply the empirical Bayes estimation to the 
benchmark price as calculated using the traditional CMS 
methodology 
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Sensitivity Analysis C: Exclude all information about peer-group spending trends  
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Appendix Table A1: Number of episodes and spending per episode, comparing the baseline 
period (2010-2013) and the performance period (2015-2016), for all clinical episodes 
 
 
 
     Baseline Period (2010-2013)  Performance Period (2015-2016) 

Episode 

 
Number of 
hospitals 

 Mean number of 
annual episodes 
(SD) 

Mean spending 
per episode, $ 
(SD) 

 Mean number of 
annual episodes 
(SD) 

Mean spending 
per episode, $ 
(SD) 

All Episodes  
2589 

 459465.3 
(54418.25) 20,039 (18,209) 

 
185527.0 (99198.6) 19,717 (17,782) 

Acute myocardial 
infarction 

 
523 

 
8550 (1277.87) 20,587 (18,696) 

 
3481 (1656.04) 19,178 (18,632) 

Cardiac Valve 
 

206 
 

4454 (389.06) 52,283 (25,543) 
 

2480 (1429.77) 47,001 (22,244) 

Cardiac 
arrhythmia 

 
1367 

 
31453.5 (4280.71) 13,495 (14,540) 

 
11479 (5648.37) 13,942 (14,817) 

Cardiac 
defibrillator 

 
79 

 
1128.75 (337.48) 39,058 (19,813) 

 
208.5 (89.8) 45,195 (24,181) 

Cellulitis  472  7543 (1032.16) 16,007 (15,916)  2647.5 (1317.34) 15,945 (15,019) 

Cervical spinal 
fusion 

 
40 

 
512.75 (25.53) 22,906 (16,259) 

 
238 (121.62) 23,352 (18,139) 

Chronic 
obstructive 
pulmonary 
disease, 
bronchitis/asthma 

 

1800 

 

46141 (7165.02) 15,406 (15,650) 

 

14504 (8571.55) 15,131 (15,383) 

Congestive heart 
failure  

 
1822 

 
50988.5 (7301.79) 19,127 (18,659) 

 
21187.5 (11156.02) 19,073 (18,324) 

Coronary artery 
bypass graft 
surgery 

 

256 

 

4247.75 (744.28) 39,056 (20,107) 

 

1543.5 (801.15) 37,294 (17,668) 

Gastrointestinal 
hemorrhage  

 
1142 

 
22018.75 (2574.33) 15,947 (15,563) 

 
8152 (4091.32) 15,848 (15,415) 

Gastrointestinal 
obstruction 

 
610 

 
4463 (528.37) 13,951 (15,149) 

 
1627 (885.3) 12,779 (15,563) 

Hip and femur 
procedures 
except major joint 

 

436 

 

9790.25 (1261.59) 33,378 (17,706) 

 

4003 (1920.5) 32,307 (16,936) 

Lower extremity 
and humerus 
procedure except 
hip, foot, femur 

 

23 

 

304 (53.97) 24,900 (18,109) 

 

95.5 (51.62) 25,395 (15,595) 

Major bowel 
procedure 

 
436 

 
7065 (773.08) 29,803 (22,993) 

 
2804.5 (1529.47) 26,096 (20,355) 

Major joint 
replacement of 
the lower 
extremity 

 

1467 

 

48990.5 (4916.42) 21,700 (12,686) 

 

23147 (12440.84) 18,931 (11,752) 

Pacemaker  360  5760 (1073.15) 22,180 (14,432)  1659 (975.81) 22,906 (15,080) 

Percutaneous 
coronary 
intervention 

 

892 

 

25583.75 (4917.18) 19,539 (14,423) 

 

7861.5 (4198.09) 21,818 (16,321) 
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Renal failure  1142  23037.5 (2855.65) 19,168 (18,019)  9675 (5170.36) 18,548 (16,953) 

Sepsis  1569  42402.5 (3513.01) 24,700 (22,750)  26273 (14062.94) 22,569 (20,891) 

Simple 
pneumonia and 
respiratory 
infections  

 

2139 

 

59388.25 (7433.74) 17,863 (16,905) 

 

20866.5 (12304.37) 17,353 (16,770) 

Spinal fusion 
(non-cervical) 

 
238 

 
4015 (435.84) 32,493 (15,900) 

 
1803 (919.24) 31,588 (15,615) 

Stroke  1066  23162.75 (2321.05) 23,863 (20,780)  10009 (5109.55) 22,456 (19,347) 

Urinary tract 
infection 

 
1357 

 
28464.75 (4305.53) 16,282 (15,311) 

 
9782 (4747.51) 16,094 (15,114) 

 
 
 
NOTES: SD = standard deviation. 
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Appendix Table A2. Weights applied to historical hospital spending and expected spending 
used by the empirical Bayes estimator, for each clinical episode 
 

BPCI -A Clinical Episode 

Weight applied to 
risk-adjusted 
spending, mean 
across hospitals (SD) 

Weight applied to expected 
spending, conditioned on 
hospital characteristics and 
peer-group spending trends, 
mean across hospitals (SD) 

Acute myocardial infarction 0.4529 (0.0456) 0.5471 (0.0456) 

Cardiac Valve 0.323 (0.0292) 0.677 (0.0292) 

Cardiac arrhythmia 0.2974 (0.0415) 0.7026 (0.0415) 
Cardiac defibrillator 0.3252 (0.0274) 0.6748 (0.0274) 

Cellulitis 0.2907 (0.0474) 0.7093 (0.0474) 

Cervical spinal fusion 0.318 (0.0551) 0.682 (0.0551) 
Chronic obstructive pulmonary disease, bronchitis/asthma 0.2928 (0.0469) 0.7072 (0.0469) 

Congestive heart failure  0.2954 (0.0445) 0.7046 (0.0445) 

Coronary artery bypass graft surgery 0.3249 (0.0303) 0.6751 (0.0303) 
Gastrointestinal hemorrhage  0.2948 (0.045) 0.7052 (0.045) 

Gastrointestinal obstruction 0.301 (0.0458) 0.699 (0.0458) 

Hip and femur procedures except major joint 0.3155 (0.0385) 0.6845 (0.0385) 
Lower extremity and humerus procedure  0.3075 (0.0474) 0.6925 (0.0474) 

Major bowel procedure 0.3103 (0.0387) 0.6897 (0.0387) 

Major joint replacement of the lower extremity 0.3286 (0.0461) 0.6714 (0.0461) 
Pacemaker 0.3191 (0.0344) 0.6809 (0.0344) 

Percutaneous coronary intervention 0.3181 (0.0315) 0.6819 (0.0315) 

Renal failure 0.2996 (0.0445) 0.7004 (0.0445) 
Sepsis 0.3004 (0.0512) 0.6996 (0.0512) 

Simple pneumonia and respiratory infections  0.2903 (0.0501) 0.7097 (0.0501) 

Spinal fusion (non-Cervical) 0.325 (0.0398) 0.675 (0.0398) 
Stroke 0.2957 (0.0469) 0.7043 (0.0469) 

Urinary tract infection 0.2884 (0.0465) 0.7116 (0.0465) 
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Appendix Figure A5. Difference in prediction error between traditional CMS methodology 
and empirical Bayes estimation, for all clinical episodes, by hospital size 
 
Small hospitals (0-250 beds)      

 
 
Medium hospitals (251-500 beds) 
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Large hospitals (501 - 850 beds) 

 
 
Extra-large hospitals (>850 beds) 
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Appendix Figure A6: Difference in prediction error between traditional CMS methodology 
and empirical Bayes estimation, for all clinical episodes, including data from the year 2014 
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Appendix Figure A7. Mean prediction error for all hospitals averaged across all clinical 
episode types, across 1,000 bootstrap iterations, by hospital size 
 
 
Small hospitals (0-250 beds) 

 
 
 
Medium hospitals (251-500 beds) 
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Large hospitals (501 - 850 beds) 

 
 
 
 
Extra-large hospitals (>850 beds) 
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Appendix Table A3: Distribution of absolute prediction error, comparing traditional CMS 
methodology and empirical Bayes estimation, stratifying by hospital characteristics 
 
 

Hospital characteristics Percentile Traditional CMS Estimation Empirical Bayes Estimation 
 
 
Hospital size       

   Small (0-250 beds) 25p 
                                         
3,039.1  

                                         
2,706.8  

  50p 
                                         
6,210.6  

                                         
5,560.1  

  75p 
                                       
10,387.9  

                                         
9,294.8  

   Medium (251-500 beds) 25p 
                                         
2,943.8  

                                         
2,424.9  

  50p 
                                         
6,159.4  

                                         
5,085.1  

  75p 
                                       
10,459.3  

                                         
8,741.6  

   Large (501-850 beds) 25p 
                                         
3,257.7  

                                         
2,187.0  

  50p 
                                         
6,771.9  

                                         
4,679.6  

  75p 
                                       
11,754.4  

                                         
8,401.7  

   Extra-large (> 850 beds) 25p 
                                         
3,693.5  

                                         
2,090.1  

  50p 
                                         
7,291.7  

                                         
4,455.8  

  75p 
                                       
13,163.6  

                                         
8,175.5  

Teaching status       

   Teaching  25p 
                                         
4,003.3  

                                         
2,369.2  

  50p 
                                         
8,231.6  

                                         
5,069.9  

  75p 
                                       
13,616.6  

                                         
8,926.4  

   Non-teaching 25p 
                                         
2,928.2  

                                         
2,533.3  

  50p 
                                         
6,018.1  

                                         
5,280.7  

  75p 
                                       
10,130.2  

                                         
8,952.4  

Profit status       

   For-profit 25p 
                                         
2,982.8  

                                         
2,862.2  

  50p 
                                         
6,162.6  

                                         
5,916.0  

  75p 
                                       
10,773.5  

                                         
9,726.3  

   Not-for-profit 25p 
                                         
3,070.4  

                                         
2,472.1  
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  50p 
                                         
6,299.5  

                                         
5,161.7  

  75p 
                                       
10,625.2  

                                         
8,838.8  

   Other 25p 
                                         
3,008.8  

                                         
2,304.8  

  50p 
                                         
6,257.4  

                                         
4,984.4  

  75p 
                                       
10,625.6  

                                         
8,658.5  

Urban/Rural status       

   Urban 25p 
                                         
3,046.2  

                                         
2,499.4  

  50p 
                                         
6,290.6  

                                         
5,254.9  

  75p 
                                       
10,686.4  

                                         
8,950.9  

   Rural 25p 
                                         
3,073.4  

                                         
2,596.3  

  50p 
                                         
5,830.4  

                                         
5,146.7  

  75p 
                                         
9,504.4  

                                         
9,111.3  

Region Category       

   Midwest 25p 
                                         
2,965.2  

                                         
2,532.7  

  50p 
                                         
5,992.8  

                                         
5,217.3  

  75p 
                                         
9,964.0  

                                         
8,831.6  

   Northeast 25p 
                                         
3,327.5  

                                         
2,565.3  

  50p 
                                         
6,973.3  

                                         
5,337.9  

  75p 
                                       
12,044.7  

                                         
9,141.1  

   South 25p 
                                         
2,701.8  

                                         
2,436.1  

  50p 
                                         
5,586.3  

                                         
5,138.4  

  75p 
                                         
9,551.9  

                                         
8,952.4  

   West 25p 
                                         
4,165.6  

                                         
2,591.5  

  50p 
                                         
8,346.7  

                                         
5,460.2  

  75p 
                                       
13,086.4  

                                         
8,915.7  
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The corresponding author should obtain permission to name all individuals named in an Acknowledgment or 
the Contributorship Section because readers may infer their endorsement of data and conclusions.  
 
The corresponding author must check the box below to affirm his/her certification that:  
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 (Adapted, with permission, from the Journal of the American Medical Association, 2006) 



 
 

Figure 1. Difference in prediction error between traditional CMS methodology and 
empirical Bayes estimation, for all clinical episode types      
 
      
 

 
 



 
 

Figure 2. Mean prediction error for all hospitals, averaged across all clinical episodes 
 
      

 
 
NOTES: Figure based on 1,000 bootstrap iterations. Mean absolute prediction error is 
unweighted mean error across all episodes. Mean prediction error for traditional CMS estimator 
= $8,455.7. Mean prediction error for empirical Bayes estimator = $7,521.4. 
 



 
 

Figure 3. Mean prediction error across all clinical episodes, by hospital size, using 
traditional CMS estimation and empirical Bayes estimation 
 
      

 
 
NOTES: Figure based on 1,000 bootstrap iterations. Mean absolute prediction error is 
unweighted mean error across all episodes. Hospital size defined as follows: small (0-250 beds), 
medium (251-500 beds), large (501-850 beds), and extra-large (>850 beds). 
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