
 
 

 Providing Real-time Exercise Feedback to Patients Undergoing Physical Therapy 

by 

Ella E. Reimann 

 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Science in Engineering 
(Computer Engineering) 

in the University of Michigan-Dearborn 
2021 

 

 

 

 

 

Master’s Thesis Committee: 

 Associate Professor Samir Rawashdeh, Chair 
Associate Professor Amanda Esquivel 

 Assistant Professor Alireza Mohammadi 
 



 
 

© Ella Reimann 2021 

All Rights Reserved 

 

 



ii 
 

Acknowledgements 

To my parents and brother, for their continuing guidance and support. 

 



iii 
 

Table of Contents 

Acknowledgements ......................................................................................................................... ii 

List of Figures ................................................................................................................................. v 

List of Tables ................................................................................................................................ vii 

List of Abbreviations ................................................................................................................... viii 

Abstract .......................................................................................................................................... ix 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Contributions......................................................................................................................... 3 

Chapter 2: Clinical Literature Review ............................................................................................ 5 

Chapter 3: Engineering Background ............................................................................................... 7 

Chapter 4: Mathematical Modeling and System Design .............................................................. 10 

4.1 First Approach: Reference Sensor Method ......................................................................... 11 

4.1.1 Exercise Capture and Tagging ..................................................................................... 12 

4.1.2 Detecting Plane of Motion, Range of Motion, and Counting Repetitions ................... 13 

4.2 Second Approach: Set Start Position Method ..................................................................... 15 

4.2.1 Exercise Capture and Tagging ..................................................................................... 15 

4.2.2 Detecting Plane of Motion, Range of Motion, and Counting Repetitions ................... 15 

4.3 The RehabBuddy Application............................................................................................. 18 

4.3.1 Initialization ................................................................................................................. 19 

4.3.2 Exercise Setup and Definition ..................................................................................... 20 

4.3.3 Exercise Performance .................................................................................................. 22 

4.3.4 Exercise Conclusion..................................................................................................... 24



iv 
 

4.3.5 Additional Software Update ........................................................................................ 24 

Chapter 5: Evaluation ................................................................................................................... 26 

5.1 Experimental Procedure ...................................................................................................... 26 

5.2 Establishing a Ground Truth ............................................................................................... 27 

5.3 Preliminary Student Trial Results ....................................................................................... 28 

5.3.1 Demonstration of the Application ................................................................................ 29 

5.3.2 Trial 1: Arm Abduction ............................................................................................... 31 

5.3.3 Trial 2: Diagonal Motion ............................................................................................. 33 

5.4 Clinical Trial Results .......................................................................................................... 35 

5.4.1 Subject Recruitment and Trial Design ......................................................................... 35 

5.4.2 Individual Subject Details and Results ........................................................................ 37 

5.4.3 Summary of Results ..................................................................................................... 39 

Chapter 6: Conclusion................................................................................................................... 47 

6.1 Limitations .......................................................................................................................... 49 

6.2 Future Work ........................................................................................................................ 50 

Appendix ....................................................................................................................................... 51 

References ..................................................................................................................................... 56 

 

 



v 
 

List of Figures 

Figure 1. RehabBuddy extends the reach of the rehabilitation specialist to the home. In the clinic, 
the patient is prescribed exercises, which are recorded by the system. Beyond the clinic, the 
system assists the patient in performing the correct number .......................................................... 3 

Figure 2: IMU sensor placement and exercise declaration for two-sensor method ...................... 12 

Figure 3: IMU sensor placement and exercise declaration for single sensor method .................. 15 

Figure 4. Illustration of angle measurements between the start pose, current pose, and target 
pose. The three are used to estimate the plane of motion error. ................................................... 17 

Figure 5: Screenshot of Bluetooth sensor connection interface.................................................... 19 

Figure 6: Example of the RehabBuddy application data log ........................................................ 19 

Figure 7: Exercise parameters (top) and tagging of start and target poses (bottom) .................... 20 

Figure 8: Exercise definition file used to define and reconstruct PT recorded exercises ............. 21 

Figure 9: RehabBuddy exercise feedback screen ......................................................................... 22 

Figure 10: RehabBuddy application exercise summary screen .................................................... 24 

Figure 11. Demonstration of camera-based position reference using skeleton inference and an 
RGB-D camera.............................................................................................................................. 27 

Figure 12. Exercise execution performance comparing RGB-D and IMU estimates. The general 
agreement provides confidence in the IMU-estimate accuracy. ................................................... 28 

Figure 13. Arm abduction exercise, (a) start pose, (b) target pose, (c) arm too far forward, (d) 
arm too far backward. ................................................................................................................... 30 

Figure 14. Left: App feedback when correctly holding target pose. Right: App feedback (with red 
bar plot) when arm is held too far back during target pose. ......................................................... 31 

Figure 15. Graph of feedback for repetitions: first two were done correctly, the subject 
deliberately moved arm too far back for the second two repetitions, and too far forward for the 
final two repetitions ...................................................................................................................... 31 

Figure 16. Range of Motion (ROM) and Plane of Motion Error (POME) over time during an 
elevation exercise .......................................................................................................................... 32



vi 
 

Figure 17. Sword draw exercise, (a) start pose, (b) target pose .................................................... 34 

Figure 18. Range of Motion (ROM) and Plane of Motion Error (POME) over time during a 
sword draw exercise. ..................................................................................................................... 35 

Figure 19: Example of error in data collection in RehabBuddy and no feedback conditions ...... 38 

Figure 20: Average target pose ROM results for patient trials ..................................................... 39 

Figure 21: Average POME results across an exercise for patient trials ....................................... 40 

Figure 22: Maximum ROM for patient trials ................................................................................ 41 

Figure 23: Number of repetitions that reach a certain % ROM clockwise from upper left-hand 
corner: 90% ROM, 100% ROM, 110% ROM, 130% ROM ........................................................ 42 

Figure 24: Subject 23 RNG Exercise with high POME for the RehabBuddy condition .............. 46 

 

 

 



vii 
 

List of Tables 

Table 1. Results for forward elevation exercise with and without feedback. The feedback 
prevented over-extension, reduced range of motion (ROM) error, and plane of motion error 
(POME). ........................................................................................................................................ 33 

Table 2. Results for sword draw exercise with and without feedback. The feedback prevented 
over-extension, reduced range of motion (ROM) error, and plane of motion error (POME). ..... 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Abbreviations 

● AHRS: Altitude and Heading Reference System 

● DOF: degree-of-freedom 

● IMU: Inertial Measurement Unit 

● IRB: Institutional Review Board 

● PI: Principal Investigator 

● POM: Plane of motion 

● POME: Plane of motion error 

● PT: Physical Therapist 

● ROM: Range of motion 

● UK: University of Kentucky 
  



ix 
 

Abstract 

Musculoskeletal conditions, often requiring rehabilitation, affect one-third of the U.S. population 

annually. RehabBuddy is a rehabilitation assistance system that extends the reach of a physical 

rehabilitation specialist beyond the clinic. This thesis presents a system that uses body-worn 

motion sensors and a mobile application that provides the patient with assistance to ensure that 

home exercises are performed with the same precision as under clinical supervision. Assisted by a 

specialist in the clinic, the wearable sensors and user interface developed allow the capture of 

individualized exercises unique to the patient’s physical abilities. Beyond the clinical setting, the 

system can assist patients by providing real-time corrective feedback to repeat these exercises 

through a correct and complete arc of motion for the prescribed number of repetitions. An inertial 

measurement unit (IMU) is used on the body part to be exercised to capture its pose. Presented is 

a kinematics data processing approach to defining custom exercises with flexibility in terms of 

where it is worn and the nature of the exercise, as well as real-time corrective feedback parameters. 

This thesis goes through the engineering approach, initial student investigator trials, and presents 

new preliminary subject data from subject trials currently ongoing at the University of Kentucky. 

The system is tested on multiple exercises performed by multiple subjects. It is then demonstrated 

how it can improve exercise adherence by assisting patients in reaching the full prescribed range 

of motion and avoid overextension, assist in adherence to the ideal plane of motion, and affect 

hold time.  
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Chapter 1: Introduction 

Musculoskeletal injury rehabilitation, such as the one used to treat rotator cuff tendinopathy, 

requires highly individualized intervention to address patient-specific physical limitations such as 

dressing, toileting, grooming, and occupational demands to return to normal function. The current 

methods of home exercise instruction do not provide adequate monitoring or flexibility to support 

individualized patient education programs. When a patient performs home exercises, there is no 

feedback to ensure that exercises are performed correctly, which has been identified as a barrier to 

exercise adherence [1]. Lack of confidence or low self-efficacy has been directly connected with 

poor exercise adherence and poor treatment outcomes [2, 3]. This issue is further supported from 

the social cognitive theory perspective, which identifies that in order to change behavior, an 

intervention has to address issues of self-efficacy to be effective [4, 5]. Extending this concept to 

rehabilitation by providing exercise feedback beyond the clinic to empower the patient to manage 

their injury requires a novel approach that introduces automation while maintaining 

personalization by the rehabilitation specialists for the patient. 

In the clinical setting, rehabilitation specialists such as physical therapists (PTs), occupational 

therapists, athletic trainers or physicians prescribe and individualize exercises in order to minimize 

the patient’s pain and address their current level of disability [6]. Throughout rehabilitation, these 

exercises are constantly modified based on the patient’s response, symptoms, and physical 

capacity [7]. The patient is asked to perform the same exercises at home or outside of clinical 

supervision to facilitate recovery [8]. There are many methods used to illustrate home exercise 

performance and encourage exercise independence. The most common form is written instruction 

using static images with arrows. However, clinicians must constantly modify an illustration or 

rewrite verbal instructions to meet individual patient needs following exercise instruction. This 

can potentially confuse the patient and reduce their confidence in performing the exercises 

independently. In addition, treatment adherence with prescribed home exercises is a common 

concern [1] and is associated with poor patient outcomes [2, 3]. 
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It is this at-home portion of physical therapy exercise that was targeted and addressed in the project 

undertaken in this masters’ thesis. Presented in this paper is the realization of a system that extends 

the reach of the healthcare provider by providing both real-time feedback on individualized 

prescribed exercises and a less burdensome method to monitor exercise adherence. 

The approach, named as RehabBuddy, as illustrated in Figure 1, is based on body-worn inertial 

measurement units (IMUs) capable of body motion capture outside of a laboratory environment. 

This device is attached to the body around the joint being rehabilitated, such as the arm in the case 

of a shoulder injury. The IMU data is processed to find the three degree-of-freedom (DOF) rotation 

of the exercise, as well as other parameters such as the body pose relative to inertial space (e.g., 

whether the patient is lying down or standing). The current standard of care in the clinic is that the 

patient is educated by the healthcare provider to perform the exercises correctly. Once the patient 

is instructed, RehabBuddy is designed to allow the healthcare provider to record prescribed home 

exercises tailored to a particular patient at a specific time in their recovery schedule. With the aid 

of a mobile application, the RehabBuddy will provide patients with reminders to perform the 

correct number of repetitions of each exercise, while providing a graphical demonstration of the 

exercises to help the patient to recall them and providing real-time feedback on how accurately 

they are performing the exercises. These elements are expected to have an impact on compliance 

and ultimately on patient outcomes. 
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Figure 1. RehabBuddy extends the reach of the rehabilitation specialist to the home. In the clinic, the patient is 
prescribed exercises, which are recorded by the system. Beyond the clinic, the system assists the patient in performing 
the correct number 

To realize RehabBuddy, the final system is a fulfillment of the following list of requirements that 

will reappear throughout this paper as the guiding design objectives for the project: 

● Define the prescribed form of the exercise as closely guided by the PT. 

● Compare the exercise as performed in real-time by the patient to this saved prescribed form 

as the patient attempts the exercise motion by tracking motion between start and target 

position. 

● Inform the patient in near real-time of the difference between their current position and 

what position they should be holding for that given point in time according to the prescribed 

exercise. 

1.1 Contributions 

Currently, a patient’s visit entails progress assessment and training on a set of exercises that the 

patient is expected to carry out until the next visit. The prescription is highly individualized and 

depends on the phase of healing, current symptoms, and functional level. Unfortunately, exercise 

adherence is often low, negatively affecting patient outcomes as will be discussed in detail in the 

next section. 

RehabBuddy combats this by introducing a new step into the visit, where the healthcare provider 
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instruments the patient with the wearable IMUs at the joint of interest. Then, the mobile application 

on a tablet is placed in a training mode to allow the healthcare provider to sequentially move the 

patient through the specific exercise. The tablet user interface is designed to allow the healthcare 

provider to indicate the beginning and target poses and specify the number of repetitions to be 

performed each day and hold times for each exercise. These parameters serve as reminders for the 

patients when they are on their own and are also used to build feedback visualizations. It will be 

demonstrated that this feedback improves the fidelity of exercise performance to the exercise 

prescribed by a PT. 
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Chapter 2: Clinical Literature Review 

Healthcare providers incorporate home exercise programs to promote patient self-reliance and 

improve the patient’s functional scale by reducing physical impairments of weakness or 

inflexibility [9, 10]. The effectiveness of home exercise in improving function, reducing pain, and 

returning toward normal function is well established and a critical adjunct to clinic-based 

rehabilitation [11, 12, 13]. However, two consistent problems arise in treating patients and 

evaluating treatment effectiveness: (i) objective measure of adherence and (ii) low exercise 

adherence [2, 14]. Measuring exercise adherence is challenging, as it is currently limited to a self-

report diary, which is often an overestimation of activities and burdens the patient [15]. A system 

that objectively records prescribed home exercises would provide an accurate representation of the 

exercise dosage being performed outside the clinic. Exercise adherence is commonly poor, with a 

completion rate ranging from 33–66% in patients with musculoskeletal injuries [16, 17]. Greater 

exercise adherence improves outcomes [18]. The primary factors associated with low adherence 

to home exercises in patients with musculoskeletal disorders are (i) discomfort when performing 

the exercise, (ii) time barriers to performing exercises, (iii) lack of confidence in performing 

exercises alone, and (iv) dependence on health care provider input to resolve challenges with the 

patient’s disability [1]. These factors, along with the manner in which the healthcare provider 

provides directions to the patient and the patient’s motivation to carry out the treatment 

intervention, directly affect adherence [19]. 

Providing biofeedback is beneficial to improving the patient’s physical limitations and can be done 

in many forms [20]. Specifically, inertial sensors have been used to improve the patient’s balance 

and modify incorrect movements and postures in the clinical setting [21, 22, 23, 24]. While in the 

clinical setting, patients have input from the healthcare provider when exercising. However, a 

greater need exists at home for similar input to be offered. RehabBuddy can objectively monitor 

exercise adherence and can be used at home to provide exercise feedback without the presence of 

a healthcare provider.  
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Some related work identifies motivation as a primary challenge for physical therapy beyond the 

clinic and addresses motivation by “gamification” of the exercises. While it is arguable that 

boredom or enjoyment are not critical elements of motivation [1], several projects have 

investigated ways on how to turn rehabilitation exercises into a game. For example, several 

projects are “gamifying” rehabilitation by using a visual motion capture system (Microsoft Kinect) 

and developing video games controlled by motion gestures [25, 26]. Other notable instances 

include a system for ankle sprain rehabilitation [27], balance training of adults with neurological 

injuries [28], fall rehabilitation [29], and “RIABLO” games for orthopedic exercises [30]. 

Such rehabilitation games which can motivate patients, provide feedback, and track progress, are 

particularly proving useful in cases where general movement is desired or coarse accuracy is 

acceptable, such as with patients recovering from a stroke. However, musculoskeletal 

rehabilitation is prescribed with deliberate motions and postures to target specific muscles while 

avoiding specific arcs of motion that can further damage healing tissues [31]. RehabBuddy is 

designed for explicit motions to be replicated later by the patient to remind them how to perform 

exercises correctly and warn them if moving beyond the safe range. Incorrect exercise and the lack 

of proper precautions have led to rotator cuff re-tears in post-operative patients. [32]. Therefore, a 

more targeted and precise approach is needed. 
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Chapter 3: Engineering Background 

Wearable sensor technology used for activity monitoring may be an option to assess data on 

exercise adherence. The use of inertial sensors for motion capture and analysis is well documented 

in the literature [33, 34] [35, 36, 37, 38, 39, 40] and includes commercial fitness activity trackers. 

Examples related specifically to physical therapy include several projects [41, 42, 43, 44] designed 

to track patient activity for the purpose of remote monitoring by the healthcare provider, yet with 

no real-time feedback component. The primary limitation and challenges with passive monitoring 

systems are that they are prone to gross false-positive detections because of the large amount of 

time the devices must be active and the presence of activities of daily living that must be discerned 

from the rehabilitation exercises. RehabBuddy addresses this by being an interactive system 

instead of a passive listener as the patient performs the exercises. Our system is started by the 

patient indicating they are ready, and the system prompts the patient to begin progressing through 

the exercise poses while monitoring quality and quantity of performance. 

Iosa et al. published an extensive literature survey on the medical use of inertial sensors in human 

movement analysis [45]. They identified a wealth of literature on patient monitoring and 

assessment in post-processing, and concluded that “…it is conceivable that in the next few years, 

wearable inertial devices will allow human movement analysis to go a step further, from 

assessment to a combined approach including assessment and rehabilitation at the same time.”[45] 

Another recent survey of wearables used for upper extremity rehabilitation includes some systems 

that provide feedback [46]. However, none targets musculoskeletal rehabilitation, which requires 

patients to exercise targeted muscles by moving and holding precise postures. Rather, the prior 

work discussed is primarily targeting patients recovering from a stroke, where gross movement is 

desired, and motivation is the main concern. There is a void in the literature on effective methods 

for real-time patient guidance and feedback for musculoskeletal rehabilitation is an open research 

area. 
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Some emerging rehabilitation systems are based on visual approaches for motion capture, such as 

using the Xbox Kinect or a similar technology [47, 48]. While there is potential with these 

approaches, there are limitations, which are overcome using wearable inertial sensors. (i) The use 

of IMUs is portable and not constrained to a specific location; patients often perform their exercises 

at the workplace and on the go. (ii) Items used in rehabilitation, such as elastic bands or 

wheelchairs, are known to interfere with a vision-based motion capture system. (iii) Also, some 

exercises utilize elements of the environment, such as rolling a ball on a wall to strengthen the 

shoulder or tying a resistive band to a door handle. It is difficult to guarantee that a vision-based 

motion capture system such as a Kinect will have a clear view for all types of exercises needed. 

RehabBuddy overcomes the limitations of visual motion capture systems with the freedom and 

portability of body-worn IMUs without infrastructure assistance. 

Using wearables, a system named PT-Vis uses visualization approaches for a feedback system for 

knee injury rehabilitation [49, 50]. Through trials with six knee injury patients, they found great 

utility and promise in using wearable sensors to provide visual and numeric feedback on joint 

angle and progress to assist with knee rehab. The patients report positive experiences on the 

usefulness of feedback. However, PT-Vis uses a flex sensor to provide a single degree of freedom 

(DOF) measurement of the knee angle. Flex sensors and similar approaches such as an optical 

linear encoder (OLE) [51] would not work for a multi-joint structure with more degrees of freedom 

like the shoulder. Also, with RehabBuddy, we go beyond providing feedback only on range of 

motion to also provide feedback on taking the correct pose along the correct plane of motion. This 

requires sensing in more degrees of freedom, which IMUs provide. 

Using IMUs, the Rehabilitation Visualization System (RVS) utilizes two sensors to track knee 

exercises [52, 53]. RVS provides patients with a demonstration of the exercise and on a separate 

screen provides real-time feedback on the range of motion for the knee and leg elevation. In a 

randomized clinical trial, they found improved outcomes for patients who used RVS, which is 

encouraging for our proposed general solution. Interactive Virtual Telerehabilitation (IVT) is a 

similar system that also uses IMUs, intended for tele-rehabilitation, and is used to track knee 

exercises [54]. The third project in this category is the Automated Rehabilitation System (ARS), 

which also focuses on knee exercises and is intended for use in the clinic where the physical 

therapist is training several patients at once. RVS, IVT, ARS, and a fourth unnamed similar project 
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[55] are all designed specifically for the knee, with pre-defined exercises but with no ability to 

tune them (except for ARS) or capability to define custom exercises. They demonstrate the 

potential and effectiveness of a wearable approach using IMUs. With RehabBuddy, the goal is a 

general solution to be able to mount the sensor on any joint and prescribe an arbitrary arc of motion. 

This provides the ability to individualize physical therapy to a patient-centric approach which is 

key for wide applicability and use. 

Each wearable sensor node is based on a set of orthogonal inertial sensors, commonly referred to 

together as an Inertial Measurement Unit (IMU). Pose estimation is done using a sensor fusion 

algorithm, where the 3 degree-of-freedom orientation/pose of the device can be tracked in inertial 

space. The sensor suite and algorithm are commonly used in unmanned vehicle control systems to 

provide stability and are often referred to as an Attitude and Heading Reference System (AHRS). 

This pose estimator is used to process the raw data (rotation rates, acceleration, and magnetic field) 

and produce the orientation angles in a world reference frame defined by the gravity vector and 

magnetic north. The sensor fusion algorithm utilizes knowledge of dynamics to propagate the 

orientation changes based on the rate gyroscope data and fuses the propagated estimate with the 

direct orientation estimate based on the accelerometer and compass. This way, the AHRS can 

tolerate shocks and vibration and maintain a stable estimate of the device’s orientation. The 

RehabBuddy’s worn sensors measure and report their 3DOF orientation, typically referred to as 

“pose”. Off-the-shelf units, Shimmer3 IMU made by Shimmer Sensing, were used to design this 

system. 
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Chapter 4: Mathematical Modeling and System Design 

The core measurement that each IMU along with its sensor fusion algorithm produces is the 

orientation/pose estimate in three-dimensional space ℝ3 in the world reference frame. The pose 

can be represented in several ways, including a Direction Cosine Matrix, Euler Angles, the Eigen 

Axis and Angle representation, and Quaternions [56]. We note that conversion between these 

forms of representing pose is a direct calculation. The orientation of an object, like RehabBuddy’s 

worn sensor units, is represented as a rotation in ℝ3 between the world reference frame and the 

object’s body frame. In this discussion, we use Quaternions to represent orientation. An orientation 

quaternion can be defined as: 

 𝒒𝒒 = 𝑞𝑞𝑤𝑤 +  𝒊𝒊 𝑞𝑞𝑥𝑥 + 𝒋𝒋 𝑞𝑞𝑦𝑦 + 𝒌𝒌 𝑞𝑞𝑧𝑧 Eq. 1 

 𝒒𝒒 =  𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜃𝜃
2
� +  𝒊𝒊 𝑒𝑒𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜃𝜃
2
� + 𝒋𝒋 𝑒𝑒𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜃𝜃
2
� + 𝒌𝒌 𝑒𝑒𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜃𝜃
2
� Eq. 2 

 𝜃𝜃 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝒒𝒒) =  2 cos−1 𝑞𝑞𝑤𝑤 Eq. 3 

where q is an orientation quaternion defined by a rotation around the axis 𝒆𝒆�⃑ =  �𝑒𝑒𝑥𝑥, 𝑒𝑒𝑦𝑦, 𝑒𝑒𝑧𝑧�  by an 

angle θ. Eq. 1 relates the mathematically favorable Quaternion form for orientation representation 

with the more intuitive representation of orientation, the Eigen-axis (𝒆𝒆�⃑  ) and Angle (θ) 

representation (Eq. 2), which represents a 3DOF rotation by a single rotation about an arbitrary 

axis. The Eigen-axis represents the plane of motion between two reference frames, while the angle 

represents the range of motion (Eq. 3). 

Defining the ideal exercise is defining the quaternion that encapsulates that exercise motion from 

the start position to the target position. Comparing this ideal quaternion to the quaternion 

representing their current position, the difference between the correct form and the actual form is 

found. To inform the patient of their error, this difference quaternion can be translated to an error 

in degrees. To inform the patient of where they are in the exercise, this difference quaternion can 

be compared with a reference quaternion (start or target position) to give the ROM (range of 
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motion) in either degrees or percent of the final pose (where 100% indicates they are at the target 

position). 

However, there are issues using quaternions in the world reference frame to this end. Most patients 

are accustomed to performing directions relative to their current pose, not with respect to a 

universal outside coordinate system they are oriented within. Take an exercise starting with an arm 

resting at the patient’s side and moving up to be parallel to the floor, a 90-degree abduction. If in 

the course of setting down the tablet after the exercise is defined, the patient turns their body so 

that they are 90-degrees from their initial position, despite still having their arm by their side and 

therefore considering themselves still in the start position, the IMU sees this as a difference as 

great as moving the arm to the final pose, as the patient is 90-degrees from the start pose recorded 

in the initial directional frame of reference. Therefore, the POME reads at a 90-degree error, telling 

the patient they are severely off track and potentially greatly confusing them. The patient should 

always have a POME and ROM of 0-degrees in the start position if their arm is by their side in 

that pose regardless of their direction. In short, the quaternions must be transformed to place the 

poses of an exercise into the personal frame of reference that provides intuitive and therefore 

meaningful feedback to the patient. 

The initial method described below in First Approach: Reference Sensor Method attempts to 

change the frame of reference via a reference IMU affixed to the patient’s body. The second 

method, described below in Second Approach: Set Start Position Method, attempts to change the 

frame of reference via an adjustable start position the patient sets while performing the exercise. 

The reasons for adopting the second approach over the first one for the application are based on 

the issues discussed at the end of the First Approach section, and both are worth discussing as this 

first approach was the basis of the project and the second approach followed from the first.  

4.1 First Approach: Reference Sensor Method 

The original design for the system involves two IMU sensors.  The system is designed to deal with 

differences between the world reference frame and the frame relative to the patient by relating the 

IMU around the limb being tracked to a fixed reference IMU. For a shoulder exercise, the sensor 

tracking the patient’s exercise movement is placed around the patient’s forearm, and the stationary 

reference sensor is placed around the patient’s chest, as shown in Figure 2. By taking the difference 
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between the quaternion describing the reference and the quaternion describing the patient’s arm 

position, all exercises are moved out of the world reference frame and into the reference frame of 

the stationary quaternion, a process described mathematically in Eq. 4.  

eq(t) = wq(treference_IMU) -1 wq(tmoving_IMU) Eq. 4 

The motion of the exercise is now described in 

terms of the difference between the patient’s arm 

and center, denoted by the e as the exercise frame 

of reference as opposed to w, the world frame. The 

t denotes time dependence and the continual 

updating of this measurement as the patient moves. 

This time dependance contrasts with saved static 

quaternions such as the one used to define the 

exercise arc that will be discussed next. The new 

frame of reference is easier to think about than 

translating the units for the exercise’s arc of motion 

in the larger world reference frame. It also solves 

the issue of slight movements of the patient 

throughout the exercise, for example going to get a 

drink between exercises and coming back to a 

slightly different position, causing large errors in 

the exercise as initially defined from the original 

orientation. As long as the patient keeps the sensors fixed in the same locations, they remain in the 

correct reference frame regardless of their direction, which is not true in the world reference frame. 

4.1.1 Exercise Capture and Tagging 

To create the exercise, the difference between the start and target position is recorded as the 

exercise arc.  

wq(treference_IMU) 

wq(tmoving_IMU) 

eq(t) 

Figure 2: IMU sensor placement and exercise 
declaration for two-sensor method 
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eqstart = eq(tat_moment_user_is_at_start) Eq. 5 

eqtarget = eq(tat_moment_user_is_at_end_pose) Eq. 6 

eqexercise_arc = ( eqstart )-1
 eqtarget Eq. 7 

 

Once this exercise arc in Eq. 7 is defined and stored, the patient can go to the start position and 

begin to go through the exercise motion. As the quaternions are streamed from the IMUs, the 

transformation in Eq. 4 continuously moves them from the world reference frame to the reference 

sensor frame. Calculating the distance from this current position to the target quaternion in Eq. 8, 

this quaternion describes the arc of motion for the orientation of the patient relative to the target 

pose. The exercise arc quaternion in Eq. 7 describes the orientation of the patient relative to the 

target pose for the ideal exercise.  

eqarc_to_target(t) = (eq(t))-1
 eqtarget Eq. 8 

These two quaternions describe the same arc of motion if the patient is following the correct 

exercise arc and differ if the patient is diverging from the path established as the correct arc. By 

comparing the current arc of motion in Eq. 8 to the ideal one in Eq. 7, and quantifying how far off 

path the patient is, correct feedback can be expressed to help the patient correct their exercise form. 

4.1.2 Detecting Plane of Motion, Range of Motion, and Counting Repetitions 

To get this feedback in an intuitive form, both arcs of motion are converted to angle-axis form. Eq. 

7 yields Eq. 9 and Eq. 8 yields Eq. 10. If these two axes around the arc of rotation are aligned on 

top of one another, the arc of motion the patient is currently performing is following the exercise 

defined. If they are not aligned, that means the current path the patient is following differs from 

the correct exercise motion. Taking the angle of the dot product between these two axes gives the 

difference between the correct POM and the current POM, which is the POME in Eq. 11. This 

error in degrees communicates to the user that they need to change their current pose until the error 

in degrees is close to zero. The error increases proportionally if the patient continues to move off-

path. 
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𝒆𝒆�⃑  arc_to_target = axis(eq arc_to_target) Eq. 9 

𝒆𝒆�⃑  exercise_arc = axis(eqexercise_arc) Eq. 10 

𝜃𝜃POME = acos(dot(𝒆𝒆�⃑  exercise_arc, 𝒆𝒆�⃑  arc_to_target)) Eq. 11 

The ROM the patient is currently positioned at is the distance from the start position to the current 

position which is equal to the total ROM of the exercise minus how far the exercise has yet to go. 

This can be calculated by comparing the angle of the current position to the target (Eq. 12) and the 

angle of the total exercise ROM (Eq. 13) for a final current ROM in degrees as calculated in Eq. 

14. 

𝜃𝜃 arc_to_target = angle(eq arc_to_target) Eq. 12 

𝜃𝜃exercise_arc = angle(eqexercise_arc) Eq. 13 

𝜃𝜃ROM = 𝜃𝜃exercise_arc - 𝜃𝜃 arc_to_target Eq. 14 

This angle is how far from the initial start pose the user has moved. The patient uses this to track 

how close to the target pose they are, and in conjunction with the angle for POME, can help the 

user move along the correct POM and reach the target position, avoiding motions in an incorrect 

direction via POME feedback and overextension or under extension via ROM feedback. 

The primary issue with this method is finding a stationary location on the body for the reference 

sensor. A slight movement of the sensor can lead to considerable error because both sensors have 

an unknown and changing bias with respect to the world reference frame and the exercise reference 

frame, so it’s hard to quantify error for that relative measurement. And correcting it requires 

realigning the sensors to be in the same agreement they originally were when the exercise was 

defined, which is hard to do. This is a source of frustration during exercise, as the sensor often 

moves slightly on the chest mid-performance, especially when positioned over the shirt. Different 

reference points such as the thigh or ankle were tested as well, but slight unconscious foot 

movements during the exercise yield similarly inaccurate results. And if the sensor has moved and 

cannot be placed directly back in the original position, redoing the entire exercise definition is 

currently the only solution. This issue leads into the method described in the next section, the 

development of a method that makes it easier to account for movements of the reference by saving 

a reference position at the start position that can be reset if the patient adjusts that position and 

finds the measurements to be incorrect, instead of relying on the continuous stream of quaternions 
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from a reference sensor. This has the added benefit of removing the need for the reference sensor 

altogether, although adjustments to the ROM and POME calculations are needed to work with this 

new method as discussed in the next section. 

4.2 Second Approach: Set Start Position Method 

4.2.1 Exercise Capture and Tagging 

In the new single sensor method, the difference quaternion between start and target is calculated 

and represents the ideal range and plane of motion path that encapsulates the correct form of the 

exercise: 

eqexercise_arc = wq(t exercise definition start pose)-1 wq(t exercise definition target pose) Eq. 15 

eqtarget = eqexercise_arc Eq. 16 

 where wq(t exercise definition start pose) is the quaternion 

captured while the patient is standing in start pose in the 

world reference frame, and wq(t exercise definition target pose) is 

the target quaternion captured while the patient is 

standing in the final target pose, both defined in the 

world reference frame. The difference quaternion 

eqexercise_arc is the difference quaternion between the two, 

which represents the target pose relative to the start 

pose as the reference frame. This effectively defines the 

exercise reference frame and eqtarget as the target pose in 

that frame which represents the ideal motion of the 

exercise in a single quaternion.  

4.2.2 Detecting Plane of Motion, Range of Motion, 

and Counting Repetitions 

Defining an exercise reference frame allows an account 

for differences in start position from when the exercise is defined to when it is utilized in tracking 

eqexercise_arc  

Figure 3: IMU sensor placement and exercise 
declaration for single sensor method 
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the motion during exercise execution. When the patient wishes to begin exercising, they need to 

stand in the new start pose and indicate this on the app to capture the exercise execution start pose: 

wqstart = wq(t exercise execution start pose) Eq. 17 

eq(t) = wqstart -1 wq(t) Eq. 18 

wq(t exercise execution start pose) is the quaternion that the patient sets as the start pose upon beginning to 

perform the exercise which we define as the start pose wqstart. This new start pose wqstart is used to 

transform the current pose of the sensor wq(t) in the world reference frame to find eq(t), which 

represents the orientation of the IMU in the exercise execution reference frame. This single sensor 

method is sensitive to changes in the patient’s position in the world reference frame without the 

reference sensor. However, to adjust for the change in position, the patient can simply overwrite 

the start pose defined in Eq. 17 and continue performing the exercise. Contrast this to the method 

with the reference sensor where an issue in the position of either sensor resulted in the exercise 

having to be redefined to account for the new difference between the two sensors, which resulted 

in the need to restart the exercise completely, instead of simply resetting the start position as many 

times as needed.  

It is now possible to calculate the exercise feedback variables based on the quaternions shown in 

Eq. 16 and Eq. 18. The method is based on conceptualizing a triangle of quaternions representing 

(i) the rotation from start pose to target pose eqtarget, (ii) the rotation from the start pose to the 

current sensor pose eq(t), and (iii) the rotation from the current pose to the target pose eqerror(t) 

defined as: 

eqerror(t) = eq(t)-1 eqtarget Eq. 19 

θideal = angle(eqtarget) Eq. 20 

θcurrent(t) = angle(eq(t)) Eq. 21 

θerror(t) = angle(eqerror(t)) Eq. 22 

ROM error = θideal - θcurrent(t) Eq. 23 

POME = θcurrent(t) + θerror(t) - θideal Eq. 24 

Calculate the relative pose between eq(t) and eqtarget to find eqerror(t) which reflects the error between 

the patient’s current pose and the exercise target pose which the patient should be in as defined in 

Eq. 19. Range and plane of motion information are converted from quaternion representation to 
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the more intuitive angle-axis form. The angle of eq(t) in angle-axis form (Eq. 21) represents the 

total angle by which the patient has moved from the start pose, without regard to the axis of 

rotation. This is the range of motion (ROM) as described by the system. Quaternion eqerror(t) is the 

error in both range of motion and plane of motion relative to the target pose. Translating the 

quaternion to angle-axis form and taking the angle of eqerror(t) (Eq. 22) represents the total angle 

by which the range of motion differs from the target pose. It is how many degrees the patient must 

move before they reach the target pose.  

Figure 4 illustrates the angle measurements used to 

estimate the plane of motion error. If the patient moves 

perfectly in the correct arc of motion, the sum of θerror(t) 

and θcurrent(t) should equal θideal, being the ROM from start 

to target expressed in degrees. But θideal is the shortest path 

between the start and target poses along the POM, so if 

the patient is off-plane, the path in degrees from start pose 

to current pose to target pose will be a longer one than the 

optimal path. This can be visualized as a triangle between 

the start pose, target pose, and current pose. By 

subtracting this ideal angle from the angle of the total 

displacement in degrees, θcurrent plus θerror, the difference 

gives a measure of the error in the plane of motion. This 

value is reported back to the patient as the error by which 

they must adjust their current pose to once again be correctly following the ideal path of motion. 

This is defined as the plane of motion error (POME) in Eq. 24. 

In summary, with the IMU reporting current orientation at a rate of approximately 50 Hz, the 

patient’s progress from their start pose to their target pose and back again can be detected, as 

θcurrent(t) starts at zero at the start pose increases until it matches that of θideal. This method is an 

improvement over the two-sensor method and was used in the design of an application 

programmed using a simple state machine that tracks the patient’s progress from start pose to target 

pose to back to start pose. This application will be described further in the next section and is the 

basis for the Results based on trials undertaken by both the PIs and patients in the pilot program. 

 
Figure 4. Illustration of angle 
measurements between the start pose, 
current pose, and target pose. The three are 
used to estimate the plane of motion error.  
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4.3 The RehabBuddy Application 

Given the above mathematical solution and the stated goal to introduce it to inform patients as they 

exercise and evaluate if it improves exercise adherence, it was necessary to build a user interface 

capable of this. The first project was built in MATLAB, but due to the overhead of a laptop and 

working with a GUI most users are going to be unfamiliar with, it was determined that switching 

to an Android application would be preferable. An Android application was selected as most 

patients are familiar with mobile apps, there is a lot of Android development support, and there 

are a wide variety of affordable tablets compatible with an Android app. University of Michigan- 

Dearborn undergraduate students Sarah Makki and Max Theisen helped to translate the original 

application from MATLAB to Android. The RehabBuddy application was designed to accomplish 

three primary tasks. One, have a setup method to allow a PT to create and store exercises performed 

correctly as quaternions using the method from the Single Sensor Method Section to define the 

exercises. Two, have a series of options to allow the patient to indicate they are attempting an 

exercise and either (i) received real-time feedback based on the ROM and POME calculated from 

their current positions they used to correct their exercise form while performing the exercise, (ii) 

received PT feedback, not application feedback or (iii) received no feedback at all and performed 

the feedback without any outside guidance. And three the application should be consistently 

capturing, tagging, and storing the time series quaternion data streaming as the patient performs 

the exercises for all three conditions so that the investigators can evaluate the effect of application 

feedback versus PT feedback or no feedback at all. These three main components, as well as 

session set up and conclusion, were accomplished in the following design. 
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4.3.1 Initialization 

The Shimmer sensors used for this project came with an Android API to connect the Shimmer to 

a phone or tablet sensor via Bluetooth. After a brief period of allowing the data to stream so that 

the AHRS system can being getting accurate data, the sensor could then stream the data shown in 

columns B through E below. This data is processed by the tablet via the Madgwick IMU-AHRS 

sensor fusion algorithm to compute the quaternions from the IMU data. This information was 

saved to the csv and used in the creation of the feedback that will be discussed in the Exercise 

Performance section. 

 
Figure 6: Example of the RehabBuddy application data log 

Figure 5: Screenshot of Bluetooth sensor connection interface 
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4.3.2 Exercise Setup and Definition 

 
Figure 7: Exercise parameters (top) and tagging of start and target poses (bottom) 
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To create the exercise, first the healthcare provider names the exercise and sets the number of 

repetitions to be performed as well as the length of time the patient should hold the start and target 

poses while performing the exercise. Then, the healthcare provider moves the patient into the start 

pose and presses the record start button, at which point the app defines the start pose by taking the 

average of the quaternions captured while the patient is holding their arm still in this start pose. 

Next, the healthcare provider guides the patient through the motion of the exercise until their arm 

is in the stop pose and uses RehabBuddy to record the stop pose in the same way. The application 

then uses these two quaternions to calculate the “exercise arc” quaternion encompassing the 

trajectory of the exercise performed correctly as described in the above Section on the Single 

Sensor method. This ideal exercise quaternion is named and saved to a csv with the exercise’s 

repetition and hold time parameters. 

Figure 8: Exercise definition file used to define and reconstruct PT recorded exercises 

This saved exercise can now be selected from a menu and the patient can proceed to a page with a 

screen containing a line graph of the range of motion path of the exercise and a bar graph depicting 

the error in the plane of motion. 
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Figure 9: RehabBuddy exercise feedback screen 

4.3.3 Exercise Performance 

When the exercises are recorded in the application, the patient continues to the exercise feedback 

screen. Figure 9 shows this feedback system as it is currently designed in the app. The panel in the 

middle tracks the patient’s sets and reps and has a countdown timer that helps the user track how 

long they should hold at the target pose. To the right of that is the guide path that shows the user 

their current range of motion and guides them to move to their target, the plateau at which they 

will then hold before following the range of motion path back down to the start pose. Providing 

reliable feedback about how long they have been holding their poses will encourage patients to 

hold those poses longer. The horizontal axis of the step function indicates the progress the patient 

has made towards completing an exercise repetition. If the user moves in a direction that indicates 

they are not making forward progress, the cursor halts and moves above or below the line, 
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indicating the incorrect direction of movement, and the line fails to make progress. This feedback 

visually shows the patient to adjust the exercise. The vertical axis is a percentage scale from 0% 

ROM at the start position to 100% ROM at the target position. The path from start to target to start 

again is incremental and tied to them moving in the correct direction.  

To the right of the guide path is the error bar, which shows the patient the magnitude of how far 

from the plane of motion their current pose is, which helps them adjust their current pose toward 

the plane of motion. Due to the freedom with which the sensor is placed and the exercise is defined 

by the PT, directions such as move “arm left to get into position” are not possible, but because the 

feedback is near real-time the patient can move their arm slightly forward or back and see if that 

decreases the error and the error bar goes down, indicating they are moving in the correct direction 

to get back on the correct plane of motion, or if that slight movement causes the error to increase, 

indicating the patient is moving in the wrong direction.  Plane of motion is important as some 

patients, in particular, those who experience pain may perform exercises incorrectly to avoid pain 

by compensating with another joint.  
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4.3.4 Exercise Conclusion 

Once the patient has completed the total number of repetitions assigned to the exercise, they are 

free to use the Back button to go back to the exercise selection list and select another exercise from 

the list. Or they can hit the Continue button to go to an exercise screen, where they can review 

their overall performance as well as average ROM and POME. The graph also shows them 

comparisons of the repetitions they did with RehabBuddy assisting them and without, so they have 

a visualization of the aid the system provides and how accurate their exercise performance is with 

and without assistance. 

4.3.5 Additional Software Update 

After subject trials that will be introduced and discussed in the Evaluation section, it became 

apparent partway through testing that the small adjustments to the arm’s position in the start pose 

create the appearance of a large POME. This POME was concerning to patients who complained 

about the RehabBuddy feedback being prone to error as a result. This complaint has merit as users 

Figure 10: RehabBuddy application exercise summary screen 
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were encouraged to see a POME of around 20-degrees to be a problem mid-exercise but not at the 

start of the repetition. To deal with this issue a gamma function was used to suppress POME at the 

start of the exercise which is shown in Eq. 25. All angles are in degrees, and the function is 

designed to affect the first 20 degrees the most as this was the point at which the POME caused by 

a slightly incorrect POME was most apparent. The 4th power is used because running the data from 

a series of trials that had this issue through a series of gamma functions with different powers from 

1 to 10 with a step of 0.5 indicated this was the most acceptable solution. The issue was discovered 

after the start of subject trials, and this quick solution proved effective.  

20∙minimum(θcurrent(t), (θcurrent(t) /20)4)/( θideal) Eq. 25 

This implementation was used only in the feedback for the patient. The data presented in 

Evaluation is post-processed separately and the gamma function is not implemented.
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Chapter 5: Evaluation 

5.1 Experimental Procedure 

Once a working application was built, a series of trials were undertaken to demonstrate the 

system’s ability to guide the patient to perform exercises to the correct range of motion and hold 

times while detecting when they move out of plan. This section lays out the general procedure 

followed. It was first used in the lab with the principal investigators serving as test subjects and 

then later in the clinic with therapy patients recruited for a pilot study. 

First, the Shimmer IMU is affixed to a limb of interest, typically directly below the elbow on the 

forearm but varying with exercise. Then, the application discussed in the section RehabBuddy is 

launched from a Samsung Galaxy Tab A Model SM-T510 with 32GB storage, Octa-core (2x1.8 

GHz Cortex-A73 & 6x1.6 GHz Cortex-A53) CPU, and 2 GB RAM. Following the prompts by the 

app, the PT connects the IMU to the tablet via Bluetooth. They select Create New Exercise, type 

in an exercise name, and set the number of repetitions and the hold time they wish the application 

to use at the start pose and the target post. Then the PT guides the patient to stand in the start 

position, which they then tag by pressing “Set Start Position”. The patient was then guided by the 

PT into their target pose, which is tagged by pressing “Set End Position”. 

This data collection process results in quaternions labeled as the definition of the exercise saved 

in the Exercises csv file, as well as time-series data of the quaternions streaming as the exercise is 

performed, labeled by the exercise, and saved in the Data csv file. This Data csv file log can then 

be processed with the equations discussed above to recreate the exercise as recorded by the IMU, 

from both the trials where RehabBuddy is providing feedback as well as the trials that are passively 

recorded for the comparison data without feedback. Clinical data is processed the same way as 

student trials, except there is a third condition where the patient is given PT guidance that is 

processed in the same manner as well.



27 
 

5.2 Establishing a Ground Truth 

 
Figure 11. Demonstration of camera-based position reference using skeleton inference and an RGB-D camera. 

To validate the IMU sensor output, we used an RGB-D camera as a reference sensor, namely the 

Intel RealSense. The reported images and depth measurements were processed by Skeleton 

Tracking software developed by Cubemos. This method was utilized to provide us with a 

secondary reference. The RGB-D camera frames are fed into the pose estimation software. There, 

each joint in the frame is detected and estimated in 3D space based on human pose inference and 

reported depth and RGB measurements. The result is a 3D map of the patient’s position as shown 

in Figure 11. This skeleton, composed of reported joint positions, can be transformed into vectors 

describing the motion of the person at a given frame. Selecting a pair of joints that are of relevance 

to the exercise in question, a vector estimating the limb is formed. For instance, the forearm is a 

vector that can be created between the wrist and the elbow joints. By tracking this vector over 

time, exercise execution performance can be recorded in a way similar to that limb’s motion as 

tracked by an IMU. To capture an exercise using the RGBD data, first, the shortest angle between 

the start vector and the end vector is calculated, denoted as 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑒𝑒𝑒𝑒𝑒𝑒. Second, each frame’s two 

joints of interest are used to create a limb vector. Third, the shortest angle between this limb vector 

and the start vector is calculated, denoted as 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. Fourth, the shortest angle between the 

limb vector and the end vector is calculated, denoted as 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑒𝑒𝑒𝑒𝑒𝑒. The range of motion 𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅 is 

the angle between the start and current moving vector (the limb vector) 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. The plane of 
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motion error 𝜃𝜃𝑃𝑃𝑃𝑃𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the sum of the angles between the start and the current limb position 

and that limb and the end position, minus the ideal angle between start and end. 

𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Eq. 26 

𝜃𝜃𝑃𝑃𝑃𝑃𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑒𝑒𝑒𝑒𝑒𝑒 − 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑒𝑒𝑒𝑒𝑒𝑒 Eq. 27 

 
The ROM and POME calculated using this alternative RGB-D method are graphed on top of the 

ROM and POME calculated using the IMU data to get a second reference for comparison. We 

found general agreement between the pose estimates from the IMUs compared to the RGB-D 

skeleton inference. Figure 12 shows an example recording comparing the two methods for five 

repetitions of an exercise. 

 
Figure 12. Exercise execution performance comparing RGB-D and IMU estimates. The general agreement provides 
confidence in the IMU-estimate accuracy. 

5.3 Preliminary Student Trial Results 

Once the feedback seemed to be working in short informal trials and the ground truth established 

basic accuracy, the system was tested in a longer series of formally recorded trials to demonstrate 

its ability to guide the patient to perform exercises to the correct range of motion and hold times 
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while detecting when they move out of the plane of motion. The test subject in the trials is the 

student researcher for the project. This introduces a bias in that one of the people who would most 

benefit from the Application performing well is the one testing it. However, with knowledge that 

clinical trials were already being planned, setting up a formal IRB and recruiting human subjects 

for the proof-of-concept phase was deemed a prohibitive overhead. The trials were conducted with 

just the student as a subject to avoid a lengthy approval process in the summer of 2020, with 

knowledge that this is a trial run for formal trials to begin in fall of 2020. These initial results are 

described and discussed next. 

5.3.1 Demonstration of the Application 

Displayed in Figure 13 is an arm elevated into abduction, a common exercise that is defined by 

the start pose with the arm at the side and the correct target pose as shown in Figure 13b. These 

are the two poses used to calculate eqexercise_arc as described in the Single Sensor Method a 

Section IV.B. The exercise describes a forward elevation of around 85 degrees. For demonstration 

purposes, Figure 13c and Figure 13d also show deliberate incorrect execution of the exercise for 

demonstration purposes, where the arm is moved out of the desired plane of motion, too far 

forward, and too far back.  
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Figure 13. Arm abduction exercise, (a) start pose, (b) target pose, (c) arm too far forward, (d) arm too far backward. 

As shown in Figure 14, the feedback error bar reflects the difference between a correct intermediate 

pose and an incorrect one, and is used as feedback to guide the student to adjust to a pose like that 

in Figure 13b. 

For this demonstration trial, the student performs six repetitions of the exercise highlighted in 

Figure 13. The student receives feedback for the entirety of the test. The first two repetitions are 

done as close to correct as possible, the second two are done moving off-plane too far back, and 

the final two are done off-plane too far forward. Figure 15 shows the resulting range of motion 

(ROM) and the plane of motion error (POME) plots. The differences in the resulting plane of 

motion errors graphed in red on the bottom plot highlight the difference between a rep following 

the correct plane of motion and either of the two types of incorrect ones, despite each repetition 

achieving the same range of motion. 
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Figure 14. Left: App feedback when correctly holding target pose. Right: App feedback (with red bar plot) when arm 
is held too far back during target pose. 

 
Figure 15. Graph of feedback for repetitions: first two were done correctly, the subject deliberately moved arm too far 
back for the second two repetitions, and too far forward for the final two repetitions 

5.3.2 Trial 1: Arm Abduction  

For trial 1, the quaternions are recorded from a trial calculating the ROM and POME while the 

student follows the exercise with the guide system providing feedback. Then for comparison, the 

student repeats the exercise again without being given this feedback. The exercise is the same as 

in the demonstration, a forward flexion of around 85 degrees defined in Figure 13. Figure 16 shows 

the four resulting graphs of 7 repetitions with and then without feedback. The exercise’s range of 
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motion is graphed in blue, and the error generated when moving off the plane of motion is given 

in red.  

 
Figure 16. Range of Motion (ROM) and Plane of Motion Error (POME) over time during an elevation exercise 

Table 1 below shows a summary of the results for Trial 1. For the range of motion graphed in 

Figure 16, the average, standard deviation, and the percent error are calculated at a per-repetition 

basis based on the average range of motion when the user is near the target pose for each of the 

seven repetitions. This is achieved by taking all values above a certain threshold calculated by 

taking the average of the highest 90th percentile of the range of motion points recorded. When the 

exercise was done without feedback, the average range of motion was about 10% higher than it 

was when the exercise was done with feedback. This shows that the 85-degree target ROM was 

hard to hit and, in this case, the subject routinely overestimated. In cases where over extension 

could lead to re-tears, this feedback could be helpful.  
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For the plane of motion error graphed in red above, the mean and standard deviation are calculated 

over the entirety of the exercise. The ideal plane of motion error is zero throughout the exercise. 

When the exercise was done without feedback, the average plane of motion error was more than 

double the error recorded with feedback. This shows that the feedback system does help keep the 

user closer to the desired exercise plane of motion by helping them gauge their current success.  

Average hold time was calculated as well, based on the length of time the user held each 

repetition’s target pose. In this exercise, the outcomes were similar, although the user did hold 

about a second longer when using the feedback system. 

Table 1. Results for forward elevation exercise with and without feedback. The feedback prevented over-extension, 
reduced range of motion (ROM) error, and plane of motion error (POME). 

Condition 
ROM 
mean 
(deg) 

ROM 
standard 
deviation 
(deg) 

ROM 
error 

POME 
mean 
(deg) 

POME 
standard 
deviation  
(deg) 

With Feedback 
(84.9° target)  83.42 3.71 1.74% 5.72 5.45 

Without 
Feedback 
(84.9° target) 

93.55 2.73 10.19% 17.16 11.32 

5.3.3 Trial 2: Diagonal Motion  

The first trial was a linear exercise of arm abduction which involves a single plane of motion for 

the shoulder. For trial 2, we demonstrate the system’s capability of allowing clinicians to use any 

plane of motion with a diagonal proprioceptive neuromuscular facilitation diagonal pattern of 

flexion/abduction/external rotation. The motion resembles drawing a sword. The exercise’s start 

and target poses are shown in Figure 17. Again, the quaternions are recorded from a trial 

calculating the ROM and POME while the student follows the exercise with the guide system 

providing feedback. Then for comparison, this was followed by the student performing the exercise 

again without being given this feedback.  
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Figure 17. Sword draw exercise, (a) start pose, (b) target pose 

Figure 18 shows the four resulting graphs of five repetitions with and without feedback. Table 2 

is a summary of the ROM calculated in the same manner as described for trial 1. This time the 

student is close to the desired ROM of 146 degrees graphed in green with and without feedback. 

However, the average hold time is about 50% longer when using the system feedback. For the 

POME, without feedback, the student has about twice as much average error as they did when they 

were following the guided feedback reference. 

Table 2. Results for sword draw exercise with and without feedback. The feedback prevented over-extension, reduced 
range of motion (ROM) error, and plane of motion error (POME). 

Condition 
ROM 
mean 
(deg) 

ROM 
standard 
deviation 

(deg) 

ROM 
error 

POME 
mean 
(deg) 

POME 
standard 
deviation 

(deg) 
With Feedback 
(146.1° target) 145.6 8.94 0.34% 11.2 7.3 

Without 
Feedback 

(146.1° target) 
148 14.5 1.3% 19.2 13.1 
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Figure 18. Range of Motion (ROM) and Plane of Motion Error (POME) over time during a sword draw exercise. 

5.4 Clinical Trial Results 

With preliminary student trials experiments showing promise, clinical trials were undertaken with 

PI Dr. Timothy Uhl from the College of Health Sciences at the University of Kentucky. The goal 

of this study was to evaluate RehabBuddy on real patients and collect data of Dr. Uhl’s PT 

feedback, to compare RehabBuddy’s guidance to that of the professional the system is trying to 

emulate. The trial designed was given IRB approval on February 19th, 2019 and assigned IRB 

number 46074. 

5.4.1 Subject Recruitment and Trial Design 

The subjects recruited to the trials are patients attending physical therapy at a University of 

Kentucky outpatient physical therapy clinic.  

The inclusion criteria are:  
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• Attending physical therapy for rehabilitation following shoulder surgery.  
• Has started their physical therapy at a UK outpatient physical therapy clinic. 
• Plans to follow up with physical therapy at UK outpatient physical therapy clinic for the 

duration of their care,  
• Is between the age of 18-99. 
• Has undergone an informed consent procedure to ensure complete understanding of what 

being a subject will entail. 
• Has given permission to have the trial results collected published without identifying 

information. 

Participants are excluded from participation for any of the following criteria:  

• Before surgery patient reports having arm weakness due to a neurological disorder 
(stroke, Multiple sclerosis, spinal cord injury, other)  

• Started physical therapy after surgery at another physical therapy location. 
• The patient is planning to seek care at another rehabilitation facility. 
• Is outside of the age range for inclusion,  
• Cannot speak or comprehend English. 

This study will include approximately 40 patients who have undergone shoulder surgery and is 

currently ongoing. A total of 31 patients have been subjects in the study so far. For this paper, 

preliminary results will be presented based on 25 of these patients, as some trials were discarded 

for reasons discussed later in this section. Each patient is requested to perform two different 2 

exercises, time permitting, and these exercises vary based on their current rehabilitation plan. Most 

exercise trials involved the patient completing a set of 10 repetitions, although it did vary according 

to patient needs. Exact records of the repetitions performed by each of the 25 subjects with useable 

results are in the Appendix. Together they performed a total of 39 exercises. 

Under PT guidance, the patients followed the RehabBuddy setup procedure outlined in the 

RehabBuddy Application Design Section and demonstrated in the student trial results above. After 

having each subject fill out a consent form, an IMU is affixed to their arm, where it remains for 

the entirety of the exercise session. Then the PT goes through the process of defining the two 

exercises the patients will be performing in RehabBuddy, including an additional exercise called 

practice. The practice exercise has a few repetitions and is typically a simple exercise motion such 

as a wave. This practice exercise is used to get the patient comfortable with using RehabBuddy 

and allows them to point out major concerns before the trials start, where the PT is not in the room 
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for the RehabBuddy feedback and no feedback conditions so as to not bias the results of these 

conditions. 

The trials are set up so that the patient was randomly assigned one of the three conditions, either 

RehabBuddy feedback, no feedback, or PT feedback. They are told to perform the exercise with 

the IMU recording data regardless of whether they are receiving feedback or not. Once the first 

condition is complete, they are given an 8-minute rest period. This is partially done so that there 

is enough time between conditions that patients no longer rely on the routine they have established 

in the previous condition. Once the break is complete, the patient is randomly assigned a second 

condition. The patient then does the second and the third conditions in the same manner as the 

first.  

5.4.2 Individual Subject Details and Results 

The Appendix shows the full results of the trials undergone thus far. The first 5 trials were omitted 

because there was an issue with the start position that was corrected with a gamma function as 

discussed in the RehabBuddy Application section. Subjects 17 and 26 each recorded only a single 

exercise. Subjects 12, 21, and 30 had one or more exercises omitted due to a failure to capture all 

3 conditions, for example missing the no-feedback condition, which would mean their inclusion 

imbalanced the number of trials for each condition. Subjects 9, 11, 18, 22, 24, and 27 had one or 

both exercises omitted due to data collection issues that created errors in the collection method 

that left data in one or more of the conditions unusable. An example of this is in Figure 19 where 

the RehabBuddy and no feedback cases indicate an issue with either forgetting to set a start 

position, moving the IMU mid exercise, or some other error during the trial that causes the data to 

be incorrect to the degree the data is discarded. 
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Figure 19: Example of error in data collection in RehabBuddy and no feedback conditions 

A notable difference to the data collected on the student is that instead of degrees, ROM is 

measured as a percent of 100, where 0% is at the start position and 100% is at the target position. 

This is because each exercise had a unique ROM, anywhere from 30 degrees to 150 degrees.  By 

converting ROM from degrees to a percent scale, the data can be more easily aggregated and 

compared. 
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5.4.3 Summary of Results 

Figure 20: Average target pose ROM results for patient trials 

Figure 20 shows the results of Percent ROM for all three conditions. The average ROM is taken 

at 80% of the 100% target where everything above this line is counted as being at the hold position. 

The 80% target was chosen because most repetitions, even those with underextensions or without 

user feedback, hit this point even if the repetition did not hit 100% ROM. The data above this line 

is considered the hold position for a given repetition. The ROM reached is the average of these 

points above the threshold for a given repetition and the hold time of each repetition is the time 

that passes. The average of the 8 middle repetitions is taken for an exercise where the user 

performed 10 repetitions. If less than 8 repetitions are performed, data from two conditions is 

trimmed to match the condition with the least amount of repetitions for a fair comparison. The 

repetitions trimmed were the first repetition if only one is missing and the first and the last 

repetition if two or more are missing. This pattern of taking a starting repetition and an ending 

repetition continues until all three conditions have an even number of repetitions. This is done as 

the first and last repetitions were often outliers, regardless of the condition, likely due to user 

inexperience or fatigue. The average ROM for each repetition is itself averaged across the exercise 
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to get a single value representing the average ROM achieved during the trial. This is plotted 

separately for each exercise in Figure 20. The total average is the mean of these plotted exercise 

points. RehabBuddy has the lowest average ROM and is about 3% below the 100% target. 

However, the distribution is more tightly clustered, indicating RehabBuddy’s ability to help users 

reach a more consistent final pose. No feedback had the worst average and the largest spread, but 

on average was only 3% higher than the 100% target position. PT feedback had a similarly wide 

spread to no feedback, but the average ROM was closest, differing 1% on average from the target 

position. The results of these 3 conditions were analyzed by Dr. Uh. The ANOVA used was not a 

traditional ANOVA, but a non-parametric version called Friedman’s test with post hoc analysis 

using Wilcoxon Signed rank which is the non-parametric paired t-test. Due to lack of normal 

distribution, these are appropriate alternative management of data approaches. Significant 

differences found were further analyzed with Wilcoxon Signed Rank test with alpha set at ≤0.016 

due to multiple comparisons. Median (interquartile ranges) were used to represent the data. The 

average range of motion during all exercises under the no feedback condition 99(97-109°) was 

significantly greater motion than with RehabBuddy feedback 96(94-99°, p=0.003) which was not 

significantly different from the PT condition 99(95-107°, p=0.08).  

Figure 21: Average POME results across an exercise for patient trials 
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The POME, again averaged over each exercise, is measured in degrees off of the target POM. 

Instead of across the top of the repetitions, it is taken across the entire exercise, as POME should 

be minimized at the start pose, target pose, and on the transition between them. The error across 

all exercises was again averaged and can be found in Figure 21. Here RehabBuddy still has a tight 

cluster, disregarding the obvious outlier, but the differences are not as stark as with ROM. 

RehabBuddy also has the lowest average error, though PT feedback is close, with both at around 

18 degrees. The no-feedback condition’s error is on average 3 degrees higher, a percent difference 

of about 15%. According to Dr. Uhl’s statical analysis, the average plane motion error was the 

greatest in the no feedback condition 18(12-27°) compared to the RehabBuddy condition 14(8-

21°, p=0.002). 

Figure 22: Maximum ROM for patient trials 

While the average ROM across all exercises was close to 100% for all three conditions, the 

severity of undershooting and overshooting for both the PT feedback and no feedback conditions 

led to an exploration of the differences in maximum ROM for each condition. Here the metric 

used is the “point” maximum, the highest recorded ROM for each exercise, even if it was only 

reached momentarily. This was compared to see how common overextension was for all three 

conditions. The results show RehabBuddy has the lowest overextension, 2% below PT feedback 
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and 6% below no feedback, as shown in Figure 22. This continues to indicate that the 

RehabBuddy feedback has a conservative effect on patients’ ROM. 

 

 
Figure 23: Number of repetitions that reach a certain % ROM clockwise from upper left-hand corner: 90% ROM, 
100% ROM, 110% ROM, 130% ROM 

Figure 23 is this maximum ROM described in a different way. A set of bar graphs showing how 

many exercises reach a specific ROM. The upper left-hand corner shows the number of exercises 

that reached 90% ROM, which was met across virtually all exercises, regardless of condition. This 

is confirmed by a chi-squared test measure of difference. The number of repetitions hitting 90% 

ROM under the RehabBuddy condition was compared with the number hitting 90% without 

feedback. Against the null hypothesis that the condition made no difference in the number of 

repetitions to hit 90% ROM, the p-value was 0.0357 which rejects the null hypothesis with alpha 

0.05 for criteria. This was repeated to test the number of repetitions hitting 90% ROM under the 

RehabBuddy condition compared with the number hitting 90% with PT feedback. Here the p-value 

was 0.559, indicating not significant difference between the number of repetitions hitting 90% 

ROM for PT and RehabBuddy conditions. This means there was significant difference between 

the number of repetitions without feedback that failed to hit 90% compared to when the subject 

was using PT or RehabBuddy assistance. Since the latter two conditions got closer to the 279/279 

repetition goal, this indicates that RehabBuddy encouraged uses to move past and underextended 

final ROM. But at 100% ROM RehabBuddy performed worse than the other cases, as a greater 
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number of repetitions failed to reach this marker. This was confirmed by the chi-squared test where 

the p-value versus no feedback was 0.0001 and the p-value versus PT feedback was 0.0094. Since 

ideally all 279 repetitions should hit 100% ROM, the PT and no feedback conditions getting closer 

to that ideal than RehabBuddy indicates RehabBuddy feedback did encourage slight under-

extension. Conversely, this also meant that at 110% ROM, RehabBuddy shows significantly fewer 

instances of overextension. Ideally 0 repetitions should reach a 110% ROM overextension. Only 

34 out of 279 repetitions hit 110% ROM under the RehabBuddy condition, as opposed to the 108 

and 118 repetitions with overextension of 110% for PT and no feedback respectively, both with p-

values less than 0.00001 for the chi-squared test for both comparisons to RehabBuddy. As the 

ROM increases to 130% of ROM, only 8 exercise trials performed with feedback from 

RehabBuddy have this large overextension. This is slightly less than the PT condition’s 12, but not 

significantly so (p-value 0.3884). But both are much lower repetition values than the no-feedback 

condition in which 27 of the 279 trials reach 130% ROM, which when compared with the 

RehabBuddy condition’s 8 repetitions resulted in a p-value of 0.0009, indicating a significant 

difference. This indicates RehabBuddy helps keep a conservative ROM closer to the lower bound 

of the ROM target the PT prescribed, which is aids in preventing users from possibly re-injuring 

themselves by overextending, as this analysis indicates they occasionally would without feedback. 

However, it also means RehabBuddy was less likely to hit the exact target ROM, although users 

did reliably hit 90% of that ROM target. 

This makes sense when considering the design choice to allow users to continue making progress 

at 90% ROM. Forcing them to hit and maintain 100% ROM led to frustration even in student trials 

but it is suspected that because the subject saw the cursor continue to make progress on the graph 

at 90% they were content to stay put instead of extending their arm more, despite the patients’ PT 

feedback and no feedback conditions indicating they were generally capable of this greater ROM. 

The clinical significance of this RehabBuddy’s conservative effect had not yet been fully explored, 

but trials are still outgoing, and post exercise survey results are being collected as to the effect 

RehabBuddy has on these patients. 

Hold times in general have yielded interesting results so far. As the ROM at the target pose is 

calculated at 80% of the ideal target pose (so that under extended repetitions are still detected), the 

hold times do bias longer than the patient was likely holding the final pose. RehabBuddy 
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implements hold times via a timer function native to Android. Even so, patient hold times when 

using RehabBuddy are much higher than the number of seconds prescribed by the PT. The average 

hold time in the final position across all repetitions for an exercise, when compared with the PT 

set prescribed hold time as an absolute difference between the prescribed hold time and actual hold 

time is, for RehabBuddy, an average of 2.67 seconds different. Compare this to the average hold 

time for PT and no feedback conditions which are on average about half a second different than 

the prescribed hold time, 0.53 seconds for PT feedback and 0.60 seconds for no feedback. Given 

that a hold time for an exercise target pose is typically 2 to 4 seconds, holding on average 2.67 

seconds longer than prescribed is a notable error. With PT feedback as well as with no feedback 

patient hold time tends to be slightly shorter or longer than the prescribed target. RehabBuddy 

always causes patients to hold the target position longer than prescribed. 

There are a few suspected reasons for this. For one, understanding RehabBuddy feedback does 

have an acclamation period. While the interface is designed to be simple to follow and the subjects 

are given a practice period to get comfortable with the system, it is possible new users go slower 

as they adjust to monitoring and adjusting their exercise based on external feedback they must 

interpret. Another possible cause is that the hold timer for RehabBuddy stops making progress if 

the user moves their arm under 90% ROM before they have held for the whole time, and they 

cannot make progress unless they move their arm back up. Although the timer speeds up to account 

for the time they were not at full ROM, it still potentially confuses patients when they start moving 

back towards the start position while following the correct path, but the graph indicates they are 

off-path, and they realize they have to go back to finish the repetition because they were slightly 

too fast to start their descent. This is a function of the state machine and the design choice to tie 

the patient to a predefined path where they cannon make progress if their current position is over 

10% off of what their position should be. Also, this path ties users to a specific pace that 

emphasizes slow steady progress, and that could mean more time is made progressing from 80% 

to 100% ROM, which would increase RehabBuddy hold times over hold times of trials passively 

recording PT or no-feedback conditions. Finally, all programmers who contributed to the 

RehabBuddy application were very new to Android studios and application design in general. It 

was a direction the team felt necessary to go in as in-clinic setup and existing user familiarity 

makes an Android application much simpler for both the PT and the patients, but this inexperience 

may mean RehabBuddy has undiagnosed software bugs. The timer function is an API provided by 
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Android Studios basic libraries, but how it interacts with the other threads running in the 

application is unknown. Ultimately, this hold time difference remains in the current application as 

there are concerns that changing the application partway through testing could greatly affect trial 

results, especially if the change has unanticipated effects on application functionally, and this is 

an area that still needs further exploration. 

Additionally, while the average POME error is similar for both RehabBuddy and PT feedback, 

there is an extreme outlier that affects RehabBuddy’s average. There is no justification for 

discarding this trial, so it remains, despite greatly affecting the average. A graph of the exercise in 

question is shown in Figure 24. All three conditions reach the correct ROM, and the PT and no 

feedback cases do it with a typical level POME. Yet in the RehabBuddy condition, the patient 

frequently reaches an improbable 200-degree POME. Why this occurred and only affected the 

RehabBuddy case is unknown, but it is suspected there was an issue with the user setting an 

incorrect start position when beginning the exercise, that due to chance did not affect ROM and 

was therefore not detected. The POME bar would have been completely red, indicating an error of 

greater than 50 degrees throughout most of the exercise, but the user is not penalized for being off 

the POM, so they likely ignored this. 
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Figure 24: Subject 23 RNG Exercise with high POME for the RehabBuddy condition 

Cases such as this one are rare however, and the aggregated results across all trials shown in Figure 

21 indicate this was an atypical event.  
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Chapter 6: Conclusion 

Presented in this thesis is the implementation of an application that utilizes IMUs to provide real-

time feedback for patients performing exercises during physical therapy. The system requires a 

single IMU and an Android tablet that does not need a lot of processing power. This means 

RehabBuddy is simple and cost-effective, providing feedback that is fast, accurate, and can work 

with cheap devices, unlike other state-of-the-art methods. Saving and recalling an exercise is 

straightforward and allows the PT complete control of creating exercises that are tailored to the 

patient.  

The approach demonstrated above can be extended to be versatile enough to allow a rehabilitation 

professional to prescribe any limb motion from any posture. This approach allows healthcare 

providers to individualize the exercise prescription in response to pain and a variety of disabilities. 

In addition, it removes the need for the standard written illustration that can lead to confusion and 

non-adherence. Also, the system potentially decreases the risk of further injury by providing real-

time feedback to notify the patient that exercises are performed incorrectly in either quantity or 

quality. The real-time positive feedback when the patient performs the exercises correctly 

simulates an at-home “physical therapist”, promising to enhance patient confidence. Correct 

exercise performance with feedback has improved pain and outcomes [57] while empowering 

patient independence [10]. Finally, the system can provide an objective record of the number of 

exercises performed correctly, frequency of performance, and duration of exercise sessions which 

are valuable as well compared to self-reporting.   

Trials were run first on the PIs where differences were seen between the exercises performed with 

RehabBuddy feedback as opposed to exercises without. These trials indicate that IMUs can be 

used to effectively interpret and display real-time user feedback. Providing subjects with this 

feedback during exercise execution results in a more accurate range of motion (ROM) adherence, 

less plane of motion error (POME) as the exercise is performed, and longer hold times. The system 

helped both subjects maintain proper form by providing feedback about the POM error. When 
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performing the exercises with feedback, the subjects were more capable of correcting these 

specific issues, and offset the effort of simultaneously tracking repetition count, hold time, so that 

accurately performing the exercise could be the focus of the session.  

This general trend held even for more complex exercises and this proof of concept led to a set of 

clinical trials. These trials are still ongoing, but the preliminary results presented indicate that with 

RehabBuddy feedback, patients on average achieve a POME very close to the error in the path 

they display with the guidance of a PT. This POME is 15% lower than the average error in 

performance when they are performing the exercise with no feedback. There is also a difference 

in ROM when using RehabBuddy. Subjects on average show a 3% under extension when 

compared to the 100% target, whereas trials of the exercises where patients did not have feedback 

showed an average overextension of around 3%. Further exploration of the maximum ROM 

achieved by the average subject shows that RehabBuddy’s tendency to keep patients at a less 

ambitious end pose keeps them from the larger overextensions. Patients without any feedback were 

over 3 times more likely to reach 130% ROM, a very large overextension. PT feedback was on 

average the closest to the 100% ROM target. One notable issue with RehabBuddy was that it 

encouraged patients to hold the target pose for longer than the PT selected. While this was 

unexpected, and the underlying reasons have not been ascertained, given that RehabBuddy has 

proven adept at keeping the patient from overextension, the extra few seconds at the hold position 

are not of serious concern and could likely be adjusted with a bug patch to the Android timer 

function utilized for tracking hold time. 

The subjects were assigned a wide variety of exercises, each one with a customized target ROM. 

These results demonstrate a system that is simple to utilize and flexible enough to work with a 

wide variety of shoulder exercises. It allowed the PT full control to set ROM and POM to tailor an 

exercise for a specific patient. Although not used with patients with severe limitations to motion 

in clinical trials, this flexible exercise definition can be used to modify exercises to suit a particular 

patient’s recovery as they progress through their training regimen.  

There are, however, limitations and compromises associated with the system as it currently exists. 
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6.1 Limitations 

The IMU must be affixed in the exact position it was during the original exercise creation process. 

If not, this difference in sensor position creates a lot of error between the exercise as it was 

recorded. Solutions such as a sensor embedded in a glove or brace would ensure the same 

placement of the sensor each time the patient put it on, but this is theoretical, and as is the system 

is not ready for take-home use. 

There are tradeoffs associated with the design choice to keep RehabBuddy general enough for 

most exercises as opposed to being specifically designed to work with a predetermined list of 

exercises. First, acceptable error varies by exercise and for certain exercises, can be more severe 

along a specific plane. Even for a single patient, there can be injury-specific concerns such that 

particular arm rotations place the arm in a position that threatens injury retear, while other incorrect 

movements are not as high risk. RehabBuddy makes no such distinctions, and all error is treated 

as equally problematic as indicated by an absolute value on the error. This is especially noticed in 

exercises with large ROM, for example, a 150 side abduction, where the broad range means errors 

of even 20 degrees are not concerning in terms of exercise form. Compare this to a recently post-

surgery patient performing an exercise with ROM of 30 degrees but that same 20-degree error 

means the patient is twisting their arm into a motion that risks retear. 

Second, there are differences in how an IMU registers POME versus how it is perceived by the 

patient. For example, a 15-degree rotation of the wrist as measured by the IMU is perceived by the 

patient as a minuscule turn. If this motion causes a 15-degree error on the POME bar, it is seen as 

a “system malfunction” that could potentially lead to patient frustration or mistrust. Additionally, 

this slight wrist rotation often poses no real risk to the patient, if they are performing an exercise 

targeted at an elbow injury, for example. However, to ignore incorrect rotations on specific planes 

irrelevant to the exercise requires RehabBuddy to be tailored to such exercise, because this same 

rotation on the same plane can be a meaningful error for a different exercise, especially one where 

the sensor has been repositioned. 

Finally, the error can only be reported back as an absolute measure of how far off the POM the 

patient is. No directional advice can be diagnosed from this POME, to get the patient back on the 
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correct POM such as move left or move right, as this would require registration of the sensor’s 

location on the body relative to these unfixed directions. 

6.2 Future Work 

The limitations listed above are all functions that, if implemented, can improve RehabBuddy’s 

feedback system. Most crucially, setting up an IMU calibration or device embedding method 

would be necessary for take-home use. Without solving this first limitation this system will not 

fulfill its intended use case of monitoring exercises outside of the clinic. The PT would need to set 

the exercise to reflect the change in sensor position at the start of each session, which defeats the 

purpose of a system intended to act as a stand-in for the PT during at-home exercise sessions. 

Tailoring for specific exercises is a lesser concern that could nonetheless be an interesting and 

useful problem to tackle.
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7 er90 PT Feedback 97.49 103.6
5 

101.0
7 

109.6
3 

3.8
2 

2 37.08 17.32 9 10 

7 er90 No feedback 100.7
1 

104.9
6 

102.9
3 

112.6
9 

3.5
6 

2 41.30 19.00 10 10 

8 scaption RehabBuddy 86.28 104.6
5 

96.03 114.1
7 

6.8
4 

3 36.79 13.45 7 10 

8 scaption PT Feedback 93.98 103.6
3 

98.56 109.0
3 

5.4
5 

3 22.51 9.22 10 10 

8 scaption No feedback 109.8
7 

116.7
5 

113.3
2 

123.6
4 

5.6
2 

3 42.29 21.87 12 10 

8 horizabd RehabBuddy 89.05 107.8
3 

98.34 118.4
4 

5.1
6 

3 33.72 11.98 8 10 

8 horizabd PT Feedback 110.1
1 

113.9
6 

112.2
3 

135.7
7 

5.2
8 

3 39.44 13.74 10 10 

8 horizabd No feedback 104.8
4 

119.7
7 

109.6
6 

137.8
4 

6.5
1 

3 48.81 20.21 12 10 
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9 flexion  RehabBuddy 97.20 119.3
9 

103.9
6 

143.7
7 

7.2
8 

3 54.08 14.43 8 8 

9 flexion  PT Feedback 95.31 102.8
2 

99.65 128.0
3 

5.3
3 

3 52.52 14.57 8 8 

9 flexion  No feedback 98.54 118.5
0 

106.9
1 

133.3
9 

4.3
5 

3 44.98 22.31 8 8 

10 wexercise RehabBuddy 90.83 96.98 93.06 104.7
9 

4.3
2 

2 33.08 5.75 10 10 

10 wexercise PT Feedback 102.3
8 

110.2
3 

107.1
9 

116.7
2 

3.5
6 

2 33.20 13.10 10 10 

10 wexercise No feedback 85.51 92.73 89.99 98.19 1.6
9 

2 47.48 21.16 10 10 

10 rows RehabBuddy 91.80 97.72 95.26 104.3
4 

3.7
0 

2 41.62 16.02 10 10 

10 rows PT Feedback 108.4
7 

118.8
8 

114.0
1 

135.6
4 

2.5
0 

2 44.17 14.11 10 10 

10 rows No feedback 100.3
5 

106.9
4 

103.7
2 

118.0
7 

1.6
2 

2 42.90 17.04 11 10 

11 scaption  RehabBuddy 92.45 96.37 94.45 104.7
1 

5.2
3 

2 62.01 24.14 9 10 

11 scaption  PT Feedback 92.63 96.97 94.51 103.0
2 

4.4
0 

2 14.85 5.38 10 10 

11 scaption  No feedback 94.01 96.81 95.30 102.4
4 

3.8
5 

2 33.89 7.02 10 10 

12 lowrows RehabBuddy 91.64 96.26 93.84 102.3
2 

5.5
3 

3 31.32 8.16 11 10 

12 lowrows PT Feedback 88.29 112.9
7 

98.97 122.3
8 

3.8
8 

3 37.43 11.93 11 10 

12 lowrows No feedback 92.37 119.6
0 

105.4
0 

141.5
6 

4.0
2 

3 39.76 12.11 14 10 

13 flexion  RehabBuddy 91.83 97.55 94.18 108.9
9 

5.9
1 

2 25.18 8.42 6 10 

13 flexion  PT Feedback 114.3
9 

119.7
6 

117.6
1 

125.5
6 

5.0
1 

2 55.43 29.52 6 10 

13 flexion  No feedback 113.8
4 

118.6
3 

115.7
3 

128.7
2 

3.7
5 

2 64.56 28.45 6 10 

13 abduction  RehabBuddy 92.19 99.78 96.95 105.4
4 

4.5
3 

2 29.26 12.50 6 6 

13 abduction  PT Feedback 89.44 92.56 91.34 96.85 3.4
6 

2 27.50 15.25 6 6 

13 abduction  No feedback 86.76 88.02 87.48 90.60 2.5
6 

2 31.51 7.45 6 6 

14 flexion  RehabBuddy 95.89 98.01 96.68 106.2
6 

3.0
2 

2 14.90 4.31 10 10 

14 flexion  PT Feedback 95.52 99.45 97.86 105.6
8 

2.4
3 

2 16.75 6.21 10 10 

14 flexion  No feedback 94.74 101.7
9 

99.11 110.1
1 

2.1
9 

2 21.37 7.33 8 10 

14 er RehabBuddy 95.88 98.53 97.27 102.6
8 

2.9
1 

2 55.46 13.57 10 10 

14 er PT Feedback 107.8
7 

110.8
6 

109.3
7 

118.4
1 

2.6
6 

2 37.35 12.99 10 10 

14 er No feedback 85.14 88.28 86.85 89.73 1.8
8 

2 73.29 25.54 10 10 

15 horizontal 
abduction  

RehabBuddy 92.17 98.27 95.99 113.5
3 

3.4
3 

2 39.55 8.49 10 10 



53 
 

15 horizontal 
abduction  

PT Feedback 121.4
2 

128.8
9 

125.4
3 

145.4
1 

3.3
5 

2 85.33 21.95 11 10 

15 horizontal 
abduction  

No feedback 98.64 119.7
2 

109.0
1 

134.5
0 

2.9
2 

2 60.96 9.72 9 10 

15 ER RehabBuddy 94.20 100.1
6 

96.84 106.5
7 

3.4
5 

2 11.70 3.15 10 10 

15 ER PT Feedback 108.4
7 

111.2
3 

109.4
9 

119.3
3 

3.3
3 

2 31.30 10.24 10 10 

15 ER No feedback 111.5
7 

117.3
2 

113.4
8 

127.5
7 

3.3
6 

2 44.03 14.76 10 10 

16 prone rows RehabBuddy 100.0
5 

103.1
3 

101.7
7 

108.6
6 

4.9
8 

3 41.23 14.21 10 10 

16 prone rows PT Feedback 91.67 101.0
4 

96.58 108.2
8 

4.7
3 

3 53.28 16.37 10 10 

16 prone rows No feedback 109.6
6 

114.5
8 

111.6
8 

127.2
1 

5.1
4 

3 74.19 41.56 10 10 

16 IR RehabBuddy 94.36 105.0
1 

99.83 115.5
3 

5.6
5 

3 44.88 10.84 8 8 

16 IR PT Feedback 91.53 98.58 95.56 105.1
9 

4.9
6 

3 50.86 8.75 8 8 

16 IR No feedback 84.07 96.30 92.14 100.3
2 

4.1
1 

3 30.42 5.77 8 8 

17 prone 
extensions  

RehabBuddy 95.75 103.9
1 

98.70 114.0
9 

5.2
1 

3 61.21 12.24 8 8 

17 prone 
extensions  

PT Feedback 89.92 94.75 91.62 97.28 3.9
6 

3 123.0
3 

38.02 8 8 

17 prone 
extensions  

No feedback 92.51 104.1
4 

99.22 112.5
2 

3.3
9 

3 33.61 12.72 9 8 

18 pronation-
supination 

RehabBuddy 91.74 93.71 93.02 98.93 5.7
0 

3 41.84 10.15 9 8 

18 pronation-
supination 

PT Feedback 81.09 83.01 81.77 84.87 1.8
6 

3 28.48 5.89 8 8 

18 pronation-
supination 

No feedback 94.21 98.02 96.19 104.0
8 

4.1
4 

3 26.62 9.24 7 8 

19 sh flexion  RehabBuddy 93.62 109.4
5 

97.67 120.2
6 

4.8
9 

3 42.09 15.72 12 12 

19 sh flexion  PT Feedback 100.1
0 

108.4
9 

105.1
8 

112.7
3 

4.9
1 

3 34.11 14.21 13 12 

19 sh flexion  No feedback 106.8
6 

116.9
5 

110.1
6 

124.9
3 

3.3
6 

3 58.20 29.51 12 12 

19 ER RehabBuddy 100.7
4 

118.0
7 

112.5
7 

133.7
6 

6.4
6 

3 38.65 17.52 12 12 

19 ER PT Feedback 99.41 117.1
6 

107.9
9 

124.8
3 

3.8
6 

3 42.75 22.25 11 12 

19 ER No feedback 86.51 121.8
0 

108.0
1 

129.2
5 

3.4
3 

3 36.53 14.37 11 12 

20 flexion  RehabBuddy 91.06 92.59 91.95 98.74 6.7
0 

2 79.20 20.70 6 6 

20 flexion  PT Feedback 90.04 93.23 92.13 99.27 5.7
0 

2 80.64 28.42 6 6 

20 flexion  No feedback 91.33 93.02 92.22 98.40 4.9
4 

2 79.94 30.29 6 6 

20 scaption  RehabBuddy 91.99 94.61 93.51 103.5
0 

4.6
9 

2 79.25 29.52 10 10 

20 scaption  PT Feedback 87.64 94.40 91.35 98.81 4.5
4 

2 69.14 24.49 10 10 
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20 scaption  No feedback 95.94 98.54 97.25 106.3
0 

3.8
8 

2 87.77 37.30 10 10 

21 scaption RehabBuddy 97.79 122.7
3 

111.6
1 

140.1
6 

7.7
4 

3 142.6
9 

41.22 8 8 

21 scaption PT Feedback 101.5
0 

115.3
0 

106.6
7 

125.4
7 

4.4
7 

3 127.1
1 

32.38 8 8 

21 scaption No feedback 111.4
1 

123.0
0 

118.8
9 

134.6
3 

5.2
2 

3 139.3
8 

63.01 9 8 

22 supination RehabBuddy 93.41 95.38 94.61 100.6
0 

3.6
5 

2 22.49 5.63 5 5 

22 supination PT Feedback 94.56 98.35 96.06 102.1
5 

2.9
1 

2 28.48 5.48 5 5 

22 supination No feedback 93.87 97.93 95.54 100.7
4 

3.5
0 

2 29.32 12.06 5 5 

23 rng RehabBuddy 95.02 98.11 96.24 103.0
9 

4.3
3 

1 234.2
0 

120.1
0 

6 5 

23 rng PT Feedback 97.61 100.8
5 

99.26 105.8
1 

5.9
3 

1 19.33 5.94 5 5 

23 rng No feedback 100.6
1 

107.1
2 

105.0
2 

112.7
4 

5.9
7 

1 34.13 15.61 5 5 

25 scaption  RehabBuddy 96.75 101.4
7 

99.80 106.5
8 

3.0
4 

2 31.43 13.24 5 6 

25 scaption  PT Feedback 96.30 100.8
6 

98.05 105.8
2 

3.1
8 

2 28.52 17.40 6 6 

25 scaption  No feedback 96.18 98.26 96.87 102.0
0 

2.7
9 

2 28.82 17.08 6 6 

25 ER RehabBuddy 95.48 106.4
8 

102.0
3 

117.0
6 

3.1
7 

2 33.46 15.29 7 6 

25 ER PT Feedback 114.2
8 

120.2
8 

116.8
2 

130.4
1 

3.0
4 

2 57.65 41.99 6 6 

25 ER No feedback 126.3
1 

145.7
1 

132.4
4 

160.0
9 

3.8
9 

2 69.68 26.32 6 6 

26 pronet RehabBuddy 82.64 89.98 86.49 93.12 5.8
0 

5 37.76 14.97 8 8 

26 pronet PT Feedback 99.74 108.0
1 

102.7
8 

116.5
4 

8.3
7 

5 49.13 13.92 8 8 

26 pronet No feedback 87.11 96.78 92.20 103.9
7 

7.1
4 

5 89.64 14.00 7 8 

27 biceps curl RehabBuddy 82.79 95.46 93.43 99.98 3.2
8 

2 13.82 5.06 10 10 

27 biceps curl PT Feedback 94.28 97.90 96.52 102.5
8 

2.8
1 

2 21.61 7.29 10 10 

27 biceps curl No feedback 97.82 100.8
0 

98.89 106.6
8 

2.7
0 

2 28.51 9.23 17 10 

28 elbow ext RehabBuddy 94.39 106.6
7 

99.79 119.8
7 

18.
60 

10 80.36 24.38 6 5 

28 elbow ext PT Feedback 101.0
7 

105.6
3 

103.6
8 

112.2
5 

19.
33 

10 67.26 25.22 5 5 

28 elbow ext No feedback 95.41 98.22 96.69 103.3
0 

14.
10 

10 58.42 23.73 5 5 

28 elbows ext 
lb 

RehabBuddy 94.63 101.6
4 

99.14 111.3
5 

12.
23 

5 89.60 29.20 5 5 

28 elbows ext 
lb 

PT Feedback 87.78 92.74 89.93 100.9
8 

9.6
5 

5 132.2
1 

60.85 5 5 

28 elbows ext 
lb 

No feedback 95.33 97.19 96.42 105.5
0 

12.
06 

5 60.00 28.32 5 5 
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29 skates RehabBuddy 93.37 96.80 94.45 100.6
0 

6.1
1 

5 17.74 4.32 9 8 

29 skates PT Feedback 86.43 90.99 88.41 95.40 6.1
8 

5 22.22 4.71 8 8 

29 skates No feedback 90.68 100.6
6 

96.10 109.4
8 

8.1
8 

5 33.27 14.36 7 8 

29 active 
elbow 
flexion  

RehabBuddy 96.81 99.39 97.63 106.3
1 

6.4
2 

5 51.50 23.52 8 8 

29 active 
elbow 
flexion  

PT Feedback 92.80 95.57 94.58 100.9
2 

6.3
3 

5 30.57 9.38 8 8 

29 active 
elbow 
flexion  

No feedback 97.52 99.11 98.50 106.3
1 

8.4
6 

5 47.20 20.14 6 8 

30 flexion  RehabBuddy 93.02 96.39 94.37 101.3
8 

5.6
9 

3 33.29 8.01 10 10 

30 flexion  PT Feedback 96.75 101.2
3 

98.74 107.1
1 

3.5
4 

3 21.32 7.38 10 10 

30 flexion  No feedback 97.55 102.9
2 

100.5
1 

109.7
3 

3.0
6 

3 27.87 8.54 10 10 

31 prone ext RehabBuddy 91.17 100.3
8 

96.02 107.5
8 

4.5
9 

3 34.85 10.39 11 10 

31 prone ext PT Feedback 111.6
5 

113.6
6 

112.4
5 

120.4
2 

4.5
3 

3 34.82 13.73 10 10 

31 prone ext No feedback 102.3
0 

109.6
7 

105.5
0 

115.4
7 

4.1
2 

3 52.95 29.87 11 10 

31 flexion  RehabBuddy 95.45 97.83 96.82 103.0
9 

4.9
0 

3 34.23 15.60 10 10 

31 flexion  PT Feedback 95.98 98.16 96.61 101.5
5 

4.4
0 

3 46.93 20.39 10 10 

31 flexion  No feedback 95.08 100.1
0 

98.19 103.7
9 

4.5
2 

3 63.20 26.83 11 10 
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