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Abstract 

Three-dimensional analysis of stability is carried out for slopes with the failure mechanism confined 

to a narrow space. A curvilinear cone failure surface is modified by removing a slice from its central 

portion, to make the failure mechanism fit in the narrow space. The resulting surface is no longer 

smooth, and it is referred to as the ridge mechanism for a distinct ridge in the failure surface. The 

analysis of narrow slopes based on the ridge mechanism appears to yield lower stability factors than 

the mechanisms used in geotechnical engineering thus far. Kinematic limit analysis utilized in 

calculations provides an upper bound to the true stability factor solution, hence the newly proposed 

mechanism delivers a more accurate solution.   
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1. INTRODUCTION AND PROBLEM STUDIED 

 

Assessment of safety of earth slopes has a rich literature, particularly for wide slopes where the 

failure can be approximated with a two-dimensional collapse mechanism. This paper relates to 

narrow slopes, which call for a three-dimensional analysis. In the last decade, a mechanism 

suggested by Michalowski and Drescher1, 2 became widely accepted in limit analysis of slopes. This 

mechanism was postulated based on the kinematic admissibility of a rotational motion of the soil 

block in soil governed by the Mohr-Coulomb failure criterion and the normality plastic flow rule. The 

failure surface in this mechanism was patterned after the surface used in three-dimensional stability 

analysis of rectangular footings3. Even though the rotational motion is considered as a slope 

incipient failure mechanism, whereas the translational mechanism governs the footing collapse3, the 

failure surfaces have the same characteristics. The shape of this failure surface resembles a 

curvilinear cone, and it is of the same type as the one derived by means of variational calculus by 

Leshchinsky et al.4, 5, though the latter does not provide the same geometric flexibility, as discussed 

elsewhere6. Over the last decades, there were a number of attempts at 3D limit analyses of slopes in 

pressure-dependent soils besides those already mentioned7-9. Observation of results indicates that 

the rotational mechanisms are typically more efficient (yield a more accurate bound to a safety 

measure) than the translational mechanisms are. Therefore, a rotational mechanism for narrow 

slopes is pursued in this paper.   

 

While the method used in this paper includes the kinematic approach of limit analysis, other 

methods have been used equally often in the subject of three-dimensional safety assessment of 

slopes. For example, more recent applications of the finite element method can be found in Hicks 

and Li10 or Cremonesi et al.11, whereas the FEM approach in limit analysis is used in Camargo et al.12 

A more traditional though recent application of a limit equilibrium method can be found in Tun et 

al.13  
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It was pointed out throughout the literature that if the slope is very narrow (width smaller than 

height), then a toe mechanism with the curved cone failure surface may not be accommodated by 

this narrow space. This is illustrated in Fig. 1(a), where the size of the slope is limited to the light-

colored portion with width B, whereas the dark sections on either side are to simulate the geometric 

constraints, for example, rock outcrop. A common procedure is then to scale down the surface with 

respect to the slope, so that it fits in the space between the constraints. This, however, will no 

longer be a toe mechanism; rather, the surface will intersect the face of the slope as illustrated in 

Fig. 1(b). This type of failure pattern is referred to as a face failure. An approach investigated in this 

paper is based on a different concept. This study is motivated by an observation that the traditional 

face failure is a common mechanism used in slope analyses, but scaled to a height smaller than the 

actual slope height, so that it can be accommodated in a slope with a stringent width constraint. 

There is no effort in such analyses to make the mechanisms more accurate in assessing the slope 

safety, but only to make them kinematically admissible, i.e., consistent with the plastic flow rule.  

The authors do not have a database with slopes failed in narrow spaces, and the study is based on a 

purely theoretical effort of constructing a new mechanism that appears to yield better assessment 

of the slope safety measures.     

 

In order to assure that the stability analysis solution tends to a 2D solution in the absence of a 

constraint on the slope width, a prismatic insert is placed in the center of the mechanism1. For a very 

narrow slope, it is now suggested that a slice of the horn-shape failing block be removed from the 

block’s central section, so that the combined width of the remaining portions matches the 

constraining width B. This is illustrated in Fig. 1(c). The failure surface is no longer smooth, and it has 

a distinct ridge coinciding with the symmetry plane. This failure mechanism will be referred to as the 

ridge mechanism. A similar approach was used recently in an analysis of slopes in intact rock 

governed by the Hoek-Brown failure criterion14. The concept of the collapse mechanism is very 

similar to that in the recent paper14, but the form of the failure surface and its mathematical 

description is different as the kinematic admissibility in the two cases is governed by the plastic flow 

rule associated with strength envelopes of considerably different shape. This paper attempts to 

determine whether the ridge mechanism can yield a more accurate assessment of the slope safety 

than the mechanisms, which utilize the smooth failure surfaces in soil slope engineering.  

 

2. APPLICATION OF LIMIT ANALYSIS IN STABILITY ASSESSMENT  
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2.1. Kinematic limit analysis  

 

The method used in this paper is the kinematic approach of limit analysis. The premise upon which 

the method is developed is a material model with convexity of the failure criterion and the normality 

of the plastic flow rule.  These assumptions allow one to prove that the rate of dissipated work 

during incipient failure in any kinematically admissible mechanism is not smaller than the work rate 

of true external forces in that mechanism. For slopes loaded with self-weight alone, and failure 

occurring only along failure surfaces L, this theorem can be written as 

 

 [ ]i i i i
L V

T v dL X v dV    (1) 

 

where Ti  and [v]i are the stress vector and velocity discontinuity vector on failure surfaces L, and Xi 

and vi are the gravity force vector acting in mechanism volume V and the velocity vector, 

respectively.    

 

The left-hand side of the theorem in Eq. (1) represents the rate of dissipated work in an incipient 

failure process, whereas the right-hand side is the work rate of gravity forces.  Finding both rates in 

an admissible collapse mechanism makes it possible to arrive at a rigorous bound to the true 

solution to a selected measure of slope safety.    

 

2.2. Measures of slope safety  

 

Any slope of given inclination can be characterized by a dimensionless group γH/c, where γ, H and c 

are the unit weight of the soil, slope height, and soil cohesion, respectively. Such a characterization 

presumes that the strength of the soil is defined by the Mohr-Coulomb criterion. For every slope, 

there is a limiting value of this dimensionless group; if this limiting (or critical) value is reached, the 
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collapse of the slope is imminent. This critical value of dimensional group γH/c is referred to as 

stability factor15 Nf  

 f

crit

H
N

c

 
  
 

  (2) 

The difference between dimensionless group γH/c and its critical value Nf is indicative of the margin 

of safety.  For an undrained process of failure, the stability factor is defined as 

 

 f

u crit

H
N

s

 
  
 

  (3) 

 

where us  is the undrained shear strength of the soil. The kinematic approach of limit analysis used in 

this paper yields an upper bound to the stability factor.  

 

A reciprocal of the stability factor is often used in the assessment of safety, as it allows for 

presentation of a wider range of the results without resorting to the log scale. It is referred to as 

stability number Nn and can be written as 

 

 n

crit

c
N

H

 
  
 

  (4) 

  

The stability factor and the stability number contain essentially the same information, although the 

safety of the slope increases with an increase in the dimensionless group γH/c, whereas the slope 

safety decreases with an increase of group c/γH. The kinematic approach of limit analysis yields a 

lower bound to the stability number.  
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A more traditional slope safety measure, but also more intuitive, is factor of safety F.  It is defined as 

the ratio of the shear strength of soil   to the demand on the shear strength 
d  needed for stability 

 
d

F



   (5) 

The kinematic approach yields the upper bound to the factor of safety. All three measures will be 

considered in this paper. 

 

3. THREE-DIMENSIONAL RIDGE FAILURE MECHANISM  

 

3.1. Mechanism geometry 

 

A toe failure mechanism, patterned after Michalowski and Drescher1, is shown in Fig. 2(a), whereas 

the transformation of this mechanism into a ridge mechanism is illustrated in Fig. 2(b).  The failure 

block rotating about an axis passing through point O has a horn-like shape (a curved cone), with 

lower and upper contours described by the following two log-spirals  

 

 
 0 tan

0r r e
  

   (6) 

 
 0 tan

0r r e
       (7) 

 

with 0r  and 0r   equal to OP and OP’ (Fig. 2(a)), respectively; 0  is the angular coordinate of points P 

and P’, and  is the internal friction angle of the soil. The radii in Eqs. (6) and (7) are quite different 

from those in intact rocks considered in Park and Michalowski14. This is the consequence of 

kinematic admissibility governed by the normality flow rule used with different failure criteria in the 

two cases.  A cross-section of the rotating block with any plane perpendicular to the plane of the 

figure and passing through point O forms a circle of radius R  
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   (8) 

and the center of the circular cross-section is located at distance 
cr  from point O 

  

 
( ) ( )

( )
2

c

r r
r

 



   (9) 

If a toe mechanism so constructed violates width constraint B (as in Fig. 1(a)), then it is possible to 

transform this mechanism into a ridge mechanism by extracting a vertical slice of the rotating block 

from its middle portion, as illustrated in Figs. 1(c) and 2(b). The width of the slice to be extracted, b*, 

can be found as the larger value calculated from the two following expressions  

 

 

*

* 2 2

2 max( ) ,

2 max ( ) ,

c s

s c c s

r rb R B

b R r r B r r

  

     
 

  (10) 

where B is the width constraint on the size of the mechanism, cr  is expressed in Eq. (9), and sr   

describes the slope contour in the polar coordinate system and is given in the Appendix (Eq. (A1)). 

After removing the vertical slice of width b* from the central portion of the block, the two remaining 

parts combined into one block form a surface with a discontinuous derivative along the symmetry 

plane as indicated on two cross-sections in Fig. 2(b). The block now fits exactly into width B. Contrary 

to line PQ, the ridge in the surface, line P*Q*, is no longer a log-spiral, and its radial coordinate r* is 

described in the following expression  

 

 

2
*

* 2 * *

0( ) ( ) ( ) ,
2

c h

b
r r R     

 
     

 
  (11) 
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where 
*

0  and 
*

h  are the angular coordinates of point P* on the top surface and point Q* on the 

slope just above the toe, respectively. The failure surface in a ridge mechanism so constructed does 

not pass through the toe (i.e., 
*

h h  ). Both 
*

0  and 
*

h  can be found from implicit equations 

(solved iteratively), which make use of the condition that both P* and Q* are located on the slope 

contour defined by radius sr (Eq. (A1)) 

 

 

2
*

* 2 * *

0 0 0( ) ( ) ( )
2

c s

b
r R r  

 
   

 
  (12) 

 

2
*

* 2 * *( ) ( ) ( )
2

c h h s h

b
r R r  

 
   

 
  (13) 

 

 

3.2. Rates of work dissipation and gravity work in the ridge mechanism 

 

Rigorous bounds to specific stability or safety measures are calculated from the balance equation, in 

which the two terms in Eq. (1), rate of dissipation D and gravity work rate W , are taken as equal to 

one another  

 D W   (14) 

Rate of work dissipation d per unit area of the failure surface is16  

 

 [ ]cosd c v    (15) 

 

where [v] is the magnitude of the velocity discontinuity vector [v] on the failure surface. Introducing 

infinitesimal area of failure surface dS (Fig. 2)  
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R
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  (16) 

 

the total rate of work dissipation D can be calculated for the ridge mechanism by integrating the 

expression in Eq. (15) over the entire failure surface. Considering that the velocity discontinuity 

vector in the rotational mechanism is described as [v] =  ( - angular velocity about the axis 

through point O, and  - radial coordinate of the point on the failure surface) the following 

expression is derived 

 

 

* *

*
0

2

2 2
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( )

h
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r
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c

R
D c v dS c d d
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  (17) 

 

Introducing the infinitesimal volume element for the ridge mechanism (Fig. 2(b)) 

 

 
*

2 2( )
2

c

b
dV R r d d   

 
    
 

  (18) 

the total rate of work of gravity forces can be calculated as 

 

 

* *

*
0

2 2 2 *cos 2 ( ) cos
h

s

r

c
V r

W v dV R r b d d





                
  (19) 

 

where γ is the unit weight of the soil in the slope.  

 

4. COMPUTATION OF STABILITY ASSESSMENT MEASURES  
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4.1. Stability factor 

 

Substituting the work rate expressions in Eqs. (17) and (19) into Eq. (14), the following explicit 

expression is derived for dimensionless group γH/c 
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  (20) 

 

with the slope height expressed in the Appendix, Eq. (A4). Per definition in Eq. (2), the stability 

number is the minimum value of the dimensionless group in Eq. (20), calculated for independent 

variable angles 0  and h .  

 

As kinematic limit analysis leads to an upper bound to stability factor Nf, a minimization process was 

carried out with the minimum increment of 0.01 of the two independent variables (0 and h), and 

the solution was reached when the difference between two consecutive calculations became less 

than 10-6. In calculations of stability number Nn (reciprocal of the stability factor, Eq. (4)), the 

maximum of Nn was sought. 

 

4.2. Factor of safety 

 

Because the geometry of the failure mechanism is strongly dependent on internal friction angle , 

no explicit expression for the factor of safety could be derived. The reduced shear strength of the 

soil d  (Eq. (5)) at which slope failure is impending can be written for the specific case of the Mohr-

Coulomb failure criterion as 
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          (21) 

 

Factor of safety F can then be calculated from the following implicit expression  
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  (22) 

 

The expression in Eq. (22) is implicit, as both R and rc are dependent on internal friction angle  (see 

Eqs. (6) – (9)), and so is width b* and the limits of integration. Consequently, angle  (including the 

limits of integration) in all expressions on the right hand side of Eq. (22) need to be replaced with d  

 
tan

arctand
F


    (23) 

 

and the equation needs to be solved iteratively with respect to factor of safety F.  A minimum of F 

was sought in an optimization process with a convergence criterion as one used to solve for the 

stability factor (Section 4.1).    

 

5. COMPUTATIONAL RESULTS AND DISCUSSION 

 

5.1. Comparison of computational outcome to existing results 

 

Stability factors calculated for narrow slopes in a B/H range of 0.4 to 0.8, based on the newly 

constructed ridge mechanism (Figs. 1(c) and 2(b)), are graphically shown in semi-log scale in Fig. 3. 

Not surprisingly, the stability factor decreases with an increase in the width of the failure mechanism 
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(B/H) and with an increase in the slope inclination angle; the stability factor increases with an 

increase in the internal friction angle.  The numerical outcome of calculations is given in Table 1.  

  

A comparison of the new results based on the ridge failure mechanism and those for a face 

mechanism with a smooth failure surface in Park and Michalowski (2018)6 is shown in Fig. 4(a). 

These stability factors are shown for narrow slopes with B/H ≤ 0.8. The ridge mechanism results are 

illustrated in blue and those based on the face collapse mechanism with a smooth failure surface6 

are in red. When using the ridge failure mechanism, the largest improvement in the stability factors 

occurs for vertical slopes, Fig. 4(b). For practical reasons, the results in Fig. 4(b) are shown for B/H in 

the range of 0.4 to 0.8, but a wider range is given in Table 2. The improvement of the solution 

becomes very significant for very steep and narrow slopes. The stability factor calculated based on 

the “traditional” face failure mechanism overestimates the factor based on the ridge mechanism by 

nearly 20% (undrained failure of vertical slopes, B/H = 0.1). However, the difference becomes 

insignificant with an increase in the width of the failure mechanism.   

 

Few papers have addressed 3D stability of very narrow slopes. A comparison of stability factors 

calculated here based on the ridge mechanism and those in Gao et al.17 is illustrated in Fig. 5; the 

new solution in this paper is marked in blue and Gao et al.17 in red. For comparison, numerical values 

of stability factors calculated in this paper and two other papers are given in Table 3 for vertical 

slopes only.  For a vertical slope with B/H = 0.5 and for an undrained failure process, the solution of 

Gao et al.17 overestimates the ridge mechanism solution by about 29%, while the Park and 

Michalowski6 solution overestimates the new outcome in this paper by less than 2%.  For a drained 

failure process in soil with an internal friction angle of 30, the two other solutions overestimate the 

solution proposed here by 12.4% and 9.9%, respectively. For a little wider slope (B/H = 0.8), the 

difference between the proposed solution and that in Park and Michalowski6 becomes insignificant, 

but the solution of Gao et al.17 still overestimates the stability factor for an undrained process by 

9.4%.  

 

Equally significant is the improvement in accuracy when calculating the factor of safety. Fig. 6 

graphically indicates the overestimation of factors of safety calculated by Gao et al.18 and those in 

this paper using the ridge failure mechanism.   



 

This article is protected by copyright. All rights reserved. 

13 

 

5.2. Transition from ridge mechanism to a smooth failure surface 

 

Calculations with the ridge mechanism were carried out for below-tow (or deep-seated) failures, but 

they were either kinematically inadmissible or not critical even for gentle slopes (β = 30) confined 

to narrow widths.  However, it is interesting to examine the dependency of the critical mechanism, 

particularly its depth, on some of the geometrical and material parameters.  

 

Figure 7(a) illustrates normalized height H* (or depth) of the critical failure mechanism of a vertical 

slope as a function of normalized constraint B/H on the width of the mechanism. This figure shows 

the comparison of the height in the ridge mechanism and the face failure mechanism for an 

undrained and a drained failures.  First, the relationship for the face failure mechanism is linear until 

the mechanism reaches the toe of the slope (H*/H = 1). This is not surprising given the earlier 

studies6. However, the relationship for the ridge mechanism is nonlinear. In general, for a given 

constraint B/H the ridge mechanism is deeper and more critical (gives a lower factor of safety). 

However, there is a threshold B/H when both the ridge and the face mechanism reach the slope toe, 

and beyond this threshold the best mechanism requires insert b as discussed in Michalowski and 

Drescher1 (Fig. 2 therein).  Both the extracted slice with normalized width b*/H in the ridge 

mechanism and the normalized insert width b/H are illustrated in Fig. 7(b) and functions of the width 

constraint B/H.   

 

First, concentrate on the drained failure (solid blue and red bullets in Fig. 7). For a very stringent 

width constraint of B/H = 0.2, the depth of the face mechanism, H*/H, is less than 0.3 of the slope 

height (Fig. 7(a)), but for the ridge mechanism, normalized depth H*/H is more than 0.7. Both the 

ridge and the face mechanisms reach the toe at the width constraint of about B/H = 0.7, but the 

ridge mechanism still has a small slice of width b* extracted from it until constraint B/H reaches a 

value of about 0.88, Fig. 7(b). For wider slopes (B/H > 0.88), the ridge failure surface is no longer 

critical, and the critical mechanism is one that extends down to the slope toe and includes an insert, 

as discussed earlier. The increasing width of the insert, b/H, with an increase in B/H is illustrated in 

the lower right corner of the chart in Fig. 7(b). The undrained failure (hollow bullets) follows a similar 
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pattern, but a quantitatively different one. It is interesting that the width of a central portion 

removed from the mechanism, b*/H, when constructing the ridge failure surface (Fig. 2(b)) is quite 

large, and the narrower the slope the larger the width of the cut-out b* (see the left portion of the 

graph in Fig. 7(b)). The conclusion from this observation is that the critical ridge mechanisms are 

constructed from quite wide mechanisms with a wide central portion removed, as illustrated in the 

lower portion of Fig. 2(b).  

 

The results in Fig. 7 were obtained for vertical slopes, but a similar trend was found for slopes with 

different inclinations. Normalized mechanism depth H*/H and the width of an insert in critical 

mechanisms for a 45-degree slope are illustrated in Fig. 8(a) for both the undrained and drained 

mechanisms. For comparison, the combined results for the vertical slope are replotted in Fig. 8(b); 

clearly, the angle of slope inclination has a small influence on the tendency in the geometrical 

features of the critical mechanism.  

 

Stability factors were calculated for slope inclinations of 30 up to vertical slopes (with 15 intervals), 

for undrained failures and up to internal friction angle of 45 (with 5 intervals), and selected results 

were already illustrated in Figs. 3 through 5. For very narrow slopes, B/H of 0.4 and 0.5, all critical 

mechanisms were ridge mechanisms. However, some of the optimized ridge failure surfaces 

terminated on the slope face (indicated by H*/H < 1 in Fig. 7(a)) and some reached the toe 

(H*/H = 1). With an increase of the slope width (B/H) to 0.6, the undrained failures for slopes with 

inclinations in the range of 45 to 75 had smooth (no ridge) failure surfaces that reached the toe, 

but the optimized mechanisms for drained failures were still of the ridge type. With a further 

increase of the slope width to B/H = 0.8, only the vertical slopes with internal friction angle 20    

remained as the ridge type, whereas the failure surfaces for all other slopes had smooth failure 

surfaces reaching the slope toe. The same trend was found in calculations of the factor of safety, 

Fig. 6. Not surprisingly, consideration of the ridge mechanism is only important for very narrow 

slopes.  

 

5.3. The influence of pore water pressure on stability of narrow slopes  
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The ridge mechanism appears to be successful in improving the accuracy of safety measures of 

slopes confined to a narrow width. It is a relatively straightforward process to extend its application 

to slopes subjected to pore water pressure, as well as to quasi-static seismic forces.  First, consider 

the distribution of the pore water pressure in the slope. In order to find the pore pressure field, the 

Laplace equation needs to be solved (flow net) for given boundary conditions. In the absence of data 

defining the boundary conditions, Bishop and Morgenstern19 suggested an approximate description 

of the pore pressure field by introducing coefficient ru varying in a range from 0 to 0.5. This method 

is adopted here. Once the pore pressure distribution is determined, its influence on stability is 

calculated by including the work rate of the pore water pressure on the volumetric strain rate of the 

soil on the right-hand side of inequality (1).  It can be proved that this additional term is equivalent 

to the work of the seepage and buoyancy forces20. Because the failure mechanism includes the rigid 

rotation of one large block, plastic deformation occurs only in the narrow layer of soil on the 

interface of the rotating block and the stationary material. As this failure zone (thin layer) is 

considered a surface in the calculations, the appropriate term assumes a simple form 

 

 [ ]sinu

L

W u v dL    (24) 

 

where u is the pore water pressure, [v] is the velocity discontinuity vector on failure surface L, and  

is the internal friction angle.  

 

The results in terms of the stability numbers as defined in Eq. (4) are illustrated in Fig. 9. While the 

stability numbers for incompressible (undrained) failures are insensitive to coefficient ru, the 

influence of the pore water pressure becomes significant for drained failures, and this influence 

increases with an increase in the internal friction angle, as illustrated by Fig. 9 for coefficient ru of 

0.25 and 0.5. Calculations were performed for slopes with inclinations in the range of 30 to 90. For 

narrow slopes (B/H  0.5), all failure mechanisms were of the ridge type. With an increase in the 

slope width, the trend in changing from the ridge mechanism to the smooth toe surface is similar to 

that for slopes not subjected to pore water pressure, and described in Subsection 5.2.   
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5.4. Quasi static seismic load  

 

Including the seismic load in terms of the quasi-static inertial force is a straightforward procedure, 

where the rate of work of the inertial (seismic) force during incipient failure is calculated21 and 

included in inequality (1). In general, this term can be written in terms of the volume integral as  

 

 sins h

V

W k v dV     (25) 

 

where kh is the coefficient of earthquake acceleration, γ is the soil unit weight, v is the magnitude of 

the velocity, and  is the angle between the velocity and the gravity direction (Fig. 2). This term was 

included on the right-hand side of inequality (1), which was used to calculate the rigorous bound to 

the stability number. The outcome of calculations for seismic acceleration coefficient kh of 0.1, 0.2, 

and 0.3 is illustrated in Fig. 10. Calculations indicated that the critical mechanism of failure of narrow 

slopes subjected to seismic loads is predominantly of the ridge type, particularly for larger seismic 

accelerations.    

 

5.5. Ridge-toe mechanism  

 

The optimization process briefly mentioned in Section 4.1 automatically determined whether the 

critical mechanism (which yields the best bound to a given safety measure) is a ridge mechanism or a 

mechanism with a smooth failure surface reaching the slope toe. This procedure was also capable of 

approaching the toe-ridge mechanisms (ridge failure surfaces that reached the slope toe). However, 

the procedure consistent with the construction of the failure surface as indicated in Fig. 2(b) would 

always force the optimization process to start searching from a ridge mechanism that does not reach 

the toe. In order to assure that such a starting point does not lead to a local optimum, a procedure 

was developed that allowed identifying a toe-ridge mechanism as the first guess in the optimization 

process. This process is briefly described below.      
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The mechanism in Fig. 11(a) shows the same ridge failure pattern as in Fig. 2(b), but with fewer 

details for clarity. Note that the failure surface illustrated in Fig. 2(b) does not reach the toe. An 

improvement of the solution to the slope safety measures was attempted by constructing a 

toe-ridge mechanism. This effort is illustrated in Fig. 11(b). The toe-ridge mechanism was achieved 

by selecting an under-toe mechanism such that after removing the vertical slice of width b* from the 

rotating block, point Q* at the bottom of Fig. 11(b) assumes exactly the location on the toe. The 

procedure for constructing the toe ridge mechanism is elaborate, but the improvement in the 

stability factor is not significant. For slopes with inclination in the range of 30 to 90 and for both 

the undrained failure and drained collapse with an internal friction angle up to 45, the mechanism 

in Figs. 11(b) provided a better estimate than the mechanism in Fig. 2(b) in a rather narrow range of 

parameters, and the difference was found not to exceed 1%. Therefore, all ridge mechanism 

calculations were carried out with the surface as constructed in Fig. 2(b). 

 

6. CONCLUSIONS 

 

The kinematic approach of limit analysis is often used for safety assessment of slopes.  When the 

mechanism of the slope failure is limited to a small width, because of a nearby infrastructure or rock 

outcrop, the geometric constraint makes it difficult to construct a mechanism that is both 

kinematically admissible and capable of yielding a good (close to exact solution) upper bound to the 

stability factor or the factor of safety. A mechanism was constructed with the failure surface that is 

not smooth, but has a ridge (discontinuous derivative) along the symmetry plane. Calculations 

indicated that mechanisms suggested earlier in the literature overestimate the newly calculated 

stability factor based on the ridge mechanism by as much as 29% for vertical narrow slopes 

(B/H = 0.5).  The difference becomes smaller with an increase in the slope width, and it becomes 

almost insignificant when the normalized width of the slope, B/H, increases above 1.0. The newly 

constructed mechanism was found to accommodate seepage through the slope soil easily and also 

to account for the seismic load by including the quasi-static force owed to seismic acceleration. 
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APPENDIX 

Radial coordinate sr of the slope contour is determined in two distinct regions: PC and CQ (Fig. 2(a)) 
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and slope height H uniquely related to radius r0  
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Table 1. Stability factor γH/su or γH/c for soil slopes based  

on the ridge failure mechanism  

 

B/H ϕ (°) 
β (°) 

30 45 60 75 90 

0.3 0
*
 23.89 18.01 15.14 13.45 12.35 

 15 125.69 53.78 33.63 24.74 20.03 

 30  - 79.49 65.31 39.05 28.13 

 45  -  - 173.32 67.49 39.84 

0.4 0
*
 19.16 14.70 12.44 11.02 9.99 

 15 92.50 39.64 25.08 18.65 15.23 

 30  - 108.30 48.70 29.57 21.36 

 45  -  - 129.70 50.82 30.31 

0.5 0
*
 16.39 12.75 10.85 9.59 8.61 

 15 73.43 31.46 20.24 15.25 12.51 

 30  - 95.35 39.08 24.00 17.39 

 45  -  - 103.72 41.24 24.67 

0.6 0
*
 14.52 11.47

§
 9.81

§
 8.63

§
 7.70 

 15 60.88 26.50 17.36 13.20 10.74 

 30  - 79.48 33.01 20.45 14.80 

 45  -  - 87.40 35.06 20.99 

0.8 0
*
 12.24

§
 9.92

§
 8.55

§
 7.50

§
 6.61

§
 

 15 46.07
§
 21.22

§
 14.30

§
 10.94

§
 8.81

§
 

 30  - 62.13
§
 26.47

§
 16.53

§
 11.88 

 45  -  - 69.96
§
 28.09

§
 16.68 

*
Undrained failure process  

§
Smooth toe failure surface, all other ridge surfaces 
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Table 2. Stability factor γH/su or γH/c for vertical slopes  

 

B/H 

Undrained failure ϕ = 45° 

Ridge 

mechanism
*
 

Face 

mechanism
**

 

Ridge 

mechanism
*
 

Face 

mechanism
**

 

0.1 31.54 37.76 116.24 134.40 

0.2 17.14 18.90 58.96 67.20 

0.3 12.35 13.08 39.84 44.80 

0.4 9.99 10.42 30.31 33.60 

0.5 8.61 8.75 24.67 26.88 

0.6 7.70 7.81 20.99 22.40 

0.7 7.07 7.09 18.46 19.20 

0.8 6.61 6.61 16.68 16.86 

0.9 6.25 6.25 15.41 15.41 

1.0 5.98 5.98 14.49 14.49 

*
Based on the ridge failure mechanism (this study) 

**
Face failure mechanism after Park and Michalowski (2018)

6
  

 

Table 3. Comparison of stability factor γH/su or γH/c for vertical slopes 

B/H Source ϕ = 0°
*
 ϕ = 15° ϕ = 30° 

0.5 Ridge Mechanism (this study) 8.61 12.51 17.39 

 Park and Michalowski (2018)
6
  8.75 13.48 18.95 

 Gao et al. (2013)
17

  11.10 14.17 19.55 

0.6 Ridge Mechanism (this study) 7.70 10.74 14.80 

 Park and Michalowski (2018)
6
 7.81 11.19 15.64 

 Gao et al. (2013)
17

 9.31 11.79 15.30 

0.8 Ridge Mechanism (this study) 6.61 8.81 11.88 

 Park and Michalowski (2018)
6
 6.61 8.81 11.93 

 Gao et al. (2013)
17

 7.23 9.19 12.26 
*
Undrained failure process 
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Figure Captions 

 

Figure  1.  View of the failure surface intersecting a slope with width constraint B: (a) failure surface 

passing through the toe, but exceeding the slope width constraint, (b) failure surface 

matching the slope width, but passing through the slope face (face failure), and (c) ridge 

failure surface matching width B.  

 

Figure  2.  Cross-section of the failure mechanism: (a) classical toe mechanism1, and (b) ridge 

mechanism. 
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Figure  3.  Stability factor for narrow slopes as a function of the tangent of the internal friction angle, 

based on the ridge mechanism (semi-log scale). 
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Figure  4.  Comparison of stability factors for narrow slopes from calculations with the ridge 

mechanism (blue) and the face failure mechanism (red): (a) comparison as a function of 

slope inclination angle β, and (b) comparison for vertical slopes as a function of internal 

friction angle .   
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Figure  5.  Comparison of stability factors based on ridge mechanism (blue) to those in Gao et al.17 

(red).  
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Figure  6.  Comparison of factors of safety based on ridge mechanism (blue) to those in Gao et al.18 

(red).  
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Figure  7.  Geometric characteristics of a narrow ridge and face failure mechanisms and mechanisms 

with an insert as functions of width constraint B/H for vertical slopes: (a) normalized 

height of the critical mechanism H*/H (see Fig. 2(b)), and (b) normalized width of 

extracted block b*/H (see Fig. 2(b)) and normalized width of an insert b/H. 

 

Figure  8.  Comparison of geometric characteristics of failure mechanisms for 45 slopes and vertical 

slopes.  
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Figure  9.    Influence of the pore water pressure on stability of narrow slopes: stability number as a 

function of the tangent of internal friction angle for coefficient ru = 0.25 and ru = 0.5. 

 

Figure  10.  Influence of seismic acceleration on stability of narrow slopes: stability number as a 

function of the tangent of internal friction angle for seismic acceleration coefficient 

kh = 0.1, kh = 0.2, and kh = 0.3. 
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Figure  11.  Construction of the toe ridge mechanism: (a) cross-section of a ridge mechanism 

intersecting the slope above the toe, and (b) a toe ridge mechanism.   

 

 


