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Appendices

Appendix A: Proofs of Propositions

A.1. Proof of Proposition 1

Consider the case where items are ordered at the start of the selling horizon, and online demands are

fulfilled over T fulfillment periods. Assume that CT+1(x
T+1, D̃T+1) = 0 without loss of generality. Thus, from

(2),(3),(4), CT (x
T, D̃T ) is the optimal value of a linear program which is jointly convex in (xT, D̃T ). This

leads to the base case result that CT (x
T, D̃T ) is convex in xT given any D̃T . By backward induction, we need

to show that Ct(x
t, D̃t) is convex in xt for any given D̃t, with the assumption that Ct+1(x

t+1, D̃t+1) is convex

in xt+1 given any D̃t+1. The cost-to-go function can be represented by Ct(x
t, D̃t) = min

zt,Zt∈∆
G(xt, D̃t,zt,Zt),

where

G(xt, D̃t,zt,Zt) =
[

P (xt, D̃t,zt,Zt)+ECt+1(x
t
i − zt

i −
N∑

j=1

Zt
ij, D̃

t+1)
]

(28)

Consider any µ≥ 0, and xt
1,x

t
2 ≥ 0. Let (zt

i ,Z
t
i ) = argmin

zt,Zt∈∆

G(xt
i , D̃

t,zt,Zt). Note that P is a linear function

in its variables (Equation 3), and ECt+1(x
t+1, D̃t+1) is convex in xt+1, as expectation preserves convexity.

Let x̄t = µxt
1 +(1−µ)xt

2, z̄
t = µzt

1 +(1−µ)zt
2 and Z̄t = µZt

1 +(1−µ)Zt
2. We have:

Ct(x̄
t, D̃t) = min

zt,Zt∈∆

[

P (x̄t, D̃t,zt,Zt)+ECt+1(x̄
t
i − zt

i −
N∑

j=1

Zt
ij, D̃

t+1)
]

≤ P (x̄t, D̃t, z̄t, Z̄t)+ECt+1(x̄
t
i − z̄t

i −
N∑

j=1

Z̄t
ij, D̃

t+1)

≤ µP (xt
1, D̃

t,zt
1,Z

t
1)+ (1−µ)P (xt

2, D̃
t,zt

2,Z
t
2)+ECt+1(x̄

t
i − z̄t

i −
N∑

j=1

Z̄t
ij , D̃

t+1)

(29)

The first inequality follows from the feasibility of z̄t, Z̄t in ∆, as (zt
1,Z

t
1) and zt

2,Z
t
2) are feasible in ∆. The

second inequality follows from the convexity of P . As ECt+1(x
t+1, D̃t+1) is convex in xt+1, we have:

ECt+1

(
x̄t
i − z̄t

i−
N∑

j=1

Z̄t
ij, D̃

t+1
)
=ECt+1

[

µ

(

xt
1,i− zt

1,i−
N∑

j=1

Zt
1,ij

)

+(1−µ)

(

xt
2,i− zt

2,i−
N∑

j=1

Zt
2,i

)

, D̃t+1

]

≤ µECt+1

[

xt
1,i− zt

1,i−
N∑

j=1

Zt
1,ij, D̃

t+1

]

+(1−µ)ECt+1

[

xt
2,i− zt

2,i−
N∑

j=1

Zt
2,i, D̃

t+1

]

(30)

Thus, from Equation 28, we have:

Ct(x̄
t, D̃t)≤ µG(xt

1, D̃
t,zt

1,Z
t
1)+ (1−µ)G(xt

2, D̃
t,zt

2,Z
t
2)

= µCt(x
t
1, D̃

t)+ (1−µ)Ct(x
t
2, D̃

t)
(31)

The equality follows from the definitions of (zt
1,Z

t
1) and (zt

2,Z
t
2). �

A.2. Proof of Lemma 1

By recursion on xt
i, we have: x

T
i −zT

i −
∑

j

ZT
ij = yi−

T∑

t=1

zt
i−

T∑

t=1

∑

j

Zt
ij. Thus, we have the following coefficients

for the decision variables in the objective:

zt
i :−ps− h , ∀i,∀t≤ T

Zt
ii : s− po− h , ∀i,∀t≤ T

Zt
ij : sij − po− h ∀i, j 6= i,∀t≤ T
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Note that based on the assumptions in Equation 1, we have: −ps − h > s − po − h ≥ sij − po −
h. Then, by greedy allocation for each i, we will have

T∑

t=1

zt
i = min(y1,

T∑

t=1

Dt
is, followed by

T∑

t=1

Zt
ii =

min

((

yi−
T∑

t=1

Dt
is

)+

,
T∑

t=1

Dt
io

)

. Finally,
T∑

t=1

∑

i,j

Zt
ij =min

(
N∑

i=1

(

yi−
T∑

t=1

Dt
is

)+

,
N∑

i=1

T∑

t=1

Dt
io

)

. �

A.3. Proof of Proposition 2

First we eliminate xt
i variables using xt

i = yi−
t−1∑

t′=1

zt′

i −
t−1∑

t′=1

Zt′

ij . Thus, (6) is equivalent to:

C(y, D̃) = min
zt,Zt

T∑

t=1

[
N∑

i=1

ps(D
t
is− zt

i)+
N∑

j=1

po

(

Dt
jo−

N∑

i=1

Zt
ij

)

+
N∑

i=1

sZt
ii +

N∑

i=1

N∑

j=1,j 6=i

sijZ
t
ij

]

+
N∑

i=1

h

(

yi−
T∑

t=1

zt
i −

T∑

t=1

N∑

j=1

Zt
ij

)

s.t.
t∑

t′=1

zt′

i +
t∑

t′=1

N∑

j=1

Zt′

ij ≤ yi, ∀i∈ [N ],∀t∈ [T ],

zt
i ≤Dt

is, ∀i∈ [N ],∀t∈ [T ],
N∑

i=1

Zt
ij ≤Dt

jo, ∀j ∈ [N ],∀t∈ [T ],

zt,Zt ≥ 0, ∀t∈ [T ]

(32)

First, note that the first constraint can be replaced by
T∑

t′=1

zt′

i +
T∑

t′=1

N∑

j=1

Zt′

ij ≤ yi, ∀i ∈ [N ], since zt,Zt ≥ 0.

Since the objective in (6) contains the decision variables zt
i , Z

t
ij only occurring in the sum over T (i.e.

as
T∑

t=1

zt
i and

T∑

t=1

Zt
ij), we can replace the second and third constraints by

T∑

t=1

zt
i ≤

T∑

t=1

Dt
is, ∀i ∈ [N ] and

T∑

t=1

N∑

i=1

Zt
ij ≤

T∑

t=1

Dt
jo, ∀j ∈ [N ] respectively. Note that this replacement relaxes the problem, but we show

that the objective solution does not change in value. Consider the second constraint involving zt
i variables.

Any feasible solution to the relaxed problem can be modified to be feasible in the original problem without

altering the objective, as the objective only contains terms of the form
T∑

t=1

zt
i . The proof is by contradiction,

as if the solution cannot be modified to be feasible in the original problem, then it cannot be feasible in the

relaxed problem. Similar arguments can be made for the third constraint involving Zt
ij variables. Thus, an

equivalent formulation of (6) is:

C(y, D̃) = min
zt,Zt

T∑

t=1

[
N∑

i=1

ps(D
t
is− zt

i)+

N∑

j=1

po

(

Dt
jo−

N∑

i=1

Zt
ij

)

+

N∑

i=1

sZt
ii +

N∑

i=1

N∑

j=1,j 6=i

sijZ
t
ij

]

+

N∑

i=1

h

(

yi−
T∑

t=1

zt
i −

T∑

t=1

N∑

j=1

Zt
ij

)

s.t.

T∑

t=1

zt
i +

T∑

t=1

N∑

j=1

Zt
ij ≤ yi, ∀i∈ [N ],

T∑

t=1

zt
i ≤

T∑

t=1

Dt
is, ∀i∈ [N ],

T∑

t=1

N∑

i=1

Zt
ij ≤

T∑

t=1

Dt
jo, ∀j ∈ [N ],

zt,Zt ≥ 0, ∀t∈ [T ]

(33)
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Applying the transformations completes the proof:

Dis←
T∑

t=1

Dt
is, Dio←

T∑

t=1

Dt
io

zi←
T∑

t=1

zt
i , Zij←

T∑

t=1

Zt
ij

�

A.4. Proof of Proposition 3

Proof: Consider the linear program representation C̃(y, D̃), where zi represents the amount of inventory

at Ri used to fulfill its in-store demand, and Zij represents the amount of inventory of Ri used to fulfill

online demand from region j.

C̃(y, D̃) = min
zi,Zij

∑

i

h (yi− zi−
∑

j

Zij)+
∑

i

ps(Dis− zi)

+
∑

i

po(Dio−
∑

j

Zji) +
∑

i

sZii +
∑

i

∑

j 6=i

sijZij

subject to zi +
∑

j

Zij ≤ yi, ∀i
zi ≤ Dis, ∀i
∑

j

Zji ≤ Dio, ∀i
zi, Zij ≥ 0, ∀i, j

(34)

Note that CIIP (y) = E(C̃(y, D̃)). The structure of CIIP as an expectation of a linear program draws

direct comparison with the value function in newsvendor networks (van Mieghem and Rudi 2002). Similar

to proposition 2 in Harrison and van Mieghem (1999), the gradient of the function C̃(y, D̃) with respect to

y= (y1, y2) can be written as:

∇yC̃(y, D̃) = (h,h)T −λ(y, D̃) (35)

where λ(y, D̃) is the dual-price vector corresponding to the constraints with y1 and y2 in (34). For a given

y, the 4-dimensional demand space (D1s,D1o,D2s,D2o) can be divided into domains (Ωk(y))
20
k=1 such that

in each domain, the optimal values of the decision variables zi, zii and zij are linear in yi, and hence the

dual-price vector λ(y, D̃) is constant (refer to Appendix B for a discussion). The first-order conditions are:

0 =∇yC
IIP (y) =∇yE

(

C̃
(

y, D̃
))

(36)

We can interchange the gradient and expectation on the right hand side of Equation 36 (see Harrison and

van Mieghem (1999) for a proof), and thus Equation 36 becomes

0 =∇yC
IIP (y) =ED̄∇yC̃

(

y, D̃
)

= (h,h)T −ED̃λ
(

y, D̃
)

= (h,h)T −
∑

k

λk
P (Ωk (y))

(37)

where λk is the constant λ(y, D̃) for D̃∈Ωk (y). �
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A.5. Proof of Proposition 4

Based on the approximation used to formulate CLB, the difference in costs between CIIP and CLB is:

CIIP (y)−CLB(y) = (h+ po− s12)E
[(∑

i

Dio−
∑

i

(yi−Dis)
+
)+

+
∑

i

(Dis− yi)
+−

(

D−
∑

i

yi

)+]

≥ (h+ po− s12)E
[(∑

i

Dio−
∑

i

(yi−Dis)
+ +

∑

i

(Dis− yi)
+
)+

−
(

D−
∑

i

yi

)+]

= 0

The first inequality follows from : a+ + b+ ≥ (a+ b)+, and further simplification uses x+− (−x)+ = x. �

The proof follows for any number of stores, as long as the cross-shipping cost is a constant and s12 <h+ po.

A.6. Proof of Proposition 5

A similar result is proved in Dong and Rudi (2004, Lemma 1), who consider the case of traditional trans-

shipment. Substituting yDIP into the first order condition for CLB in Equation 19, we have:

(h+ po− s12)FD

(
∑

j

yDIP
j

)

+(s12− s)FDi
(yDIP

i )+ (ps− po+ s)FDis
((yDIP

i )− ps

= (h+ po− s12)

(

Φ

(

zDIP
∑

i

σi/σ

)

−Φ
(
zDIP

)

)

where Φ is the CDF of the standard normal distribution. The equality follows from the fact that yDIP satisfies

Equation 12, and the normality of demands, as we can write yDIP
i = µi + zDIPσi, where Di ∼N (µi, σi), and

D∼N (µ,σ). As
∑

i

σi/σ≥ 1, it follow that the gradient of CLB at yDIP is ≥ 0(≤ 0) whenever zDIP ≤ (≥)µi.

Also, writing σ =
√∑

i

σ2
i +

∑

j

2ρlσiσj , where ρl is the correlation coefficient between locations, yDIP is

optimal to CLB and CIIP when ρl = 1. �

A.7. Proof of Proposition 6

The proof follows from Govindarajan et al. (2020), by noting that the nested structure provides a closed-form

expression for the total shipping cost, as opposed to a linear program, by summing the shipping costs in each

level. The key difference from Govindarajan et al. (2020) is that the available inventory levels at location i

is (yi−Dis)
+), rather than just yi, which gives rise to nested piecewise linear terms in the cost function.

In level 0, the shipping cost is
∑

i∈[N] s ·min
(

Dio, (yi−Dis)
+
)

= s ·e⊤Do−
∑

i∈[N] s ·
(

Dio− (yi−Dis)
+
)

.

For any level ℓ≥ 1, the number of fulfilled units of demand from regions in set I(ℓ)k at level ℓ is

∑

m∈K(ℓ)
k




∑

i∈I(ℓ−1)
m

Dio−
∑

i∈I(ℓ−1)
m

(yi−Dis)
+





+

︸ ︷︷ ︸

unmet demand in Iℓ
k after level ℓ− 1

−






∑

i∈I(ℓ)
k

Dio−
∑

i∈I(ℓ)
k

(yi−Dis)
+






+

︸ ︷︷ ︸

unmet demand in I(ℓ)

k
after level ℓ

, (38)

where K(ℓ)
k is the set of level ℓ− 1 children of set I(ℓ)k . Note that the per-unit cost of this fulfillment is sℓ,k.

The total cost is thus given by:

CIIP (y) =E



h · (e⊤y− e⊤D)+ + ps · e⊤(Ds−y)+ + po ·
(
e⊤Do− e⊤(y−Ds)

+
)+

+s · e⊤Do +

L−2∑

ℓ=0

∑

k∈[nℓ]

(sℓ+1,m(ℓ+1)(k)− sℓ,k) ·






∑

i∈I(ℓ)
k

Dio−
∑

i∈I(ℓ)
k

(yi−Dis)
+






+
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where m(ℓ+1)(k) ∈ [nℓ+1] is the level ℓ+1 parent of k ∈ [nℓ]. The proof is completed using the definition of

ηℓ as given in the Proposition statement. �

A.8. Proof of Proposition 7

Proof of (1): The proof is similar to that of Proposition 4 and is hence omitted.

Proof of (2): CLB
2 is convex in the inventory levels, and its first order conditions can be solved to yield a

heuristic solution yIIPH characterized by the first order conditions:

(h+ po− s)FD

(
∑

j∈S

yIIPH
j

)

+(ps− po + s)FDis
(yIIPH

i ) = ps, ∀i∈S (39)

Rewriting the above equation, we have:

yIIPH
i = F−1

Dis








ps− (h+ po− s) ·FDS

(
∑

j∈S
yIIPH
j

)

ps− po+ s








Let m= ps− (h+ po− s) ·FDS

(
∑

j∈S
yIIPH
j

)

. Thus, we have:

yIIPH
i = F−1

Dis

(
m

ps− po+ s

)

(40)

Substituting the above equation into the definition of m, we have:
∑

j∈S

F−1
Dis

(
m

ps− po+ s

)

=F−1
D

(
ps−m

h+ po− s

)

(41)

The left hand side is increasing in m, whereas the right hand side is decreasing in m. Note that ps − (h+

po−s)≤m≤ ps− (po−s). Due to the monotonicity of the left and right hand sides and their extreme values

in this range, there must be a unique value of m that satisfies this equation, thus yielding a unique solution

from (40). �

Proof of (3): Since we can solve for a unique solution for m in (41) which yields a unique solution yIIPH from

(40), it directly follows that stores stocks at the same critical fractile of their in-store demand. �

Proof of (4): Consider a square of unit area in which N stores are uniformly distributed. Let the square be

divided into
√
N identical cells, such that each cell contains

√
N stores. The dimensions of each cell are thus

1

N
1
4
× 1

N
1
4
. The superscript l for a demand variable (e.g. Dl

is) denotes that the demand belongs to a store in

cell l.

Since the solution yIIPH yields identical quantities at each location when the demands and costs are

identical across locations, we simplify notation for the sake of this proof by replacing C(y) by C(y), where y

is the inventory level at each location as specified by the solution y. Let CLB′

be the cost function obtained

from CIIP by lowering all cross-shipping costs to the within-region shipping cost s. Let CIIPc and CLB′
c be

the functions obtained by restricting CIIP and CLB′

respectively, so that cross-shipments can only be made

between two stores belonging to the same cell. Clearly, CIIP (y)≤CIIPc(y) and CLB′

(y)≤CLB′
c(y) for any

y ≥ 0. Let g(y,N) denote the cost incurred by N stores starting with inventory y each, without the option

of cross-shipping:

g(y,N) =
N∑

i=1

[

h (y−Di)
+ + ps (Dis− y)+ + po

(

Dio− (y−Dis)
+
)+

+ smin
(

Dio, (y−Dis)
+
)]
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Note that g(y,N) represents the sum of costs incurred by individual stores, and hence, Eg(y,N) =

E

√
N∑

l=1

g(y,
√
N) =

√
Ng(y,

√
N). Let CSij(y,N) denote the cross-shipped quantity between stores i and j,

when there are N stores with order-up-to quantity y each (CSl
ij when defined within a cell). Note that both

the functions g and CSij also depend on the demand vector, but the dependency is ignored for notational

convenience. As the cells are identical in terms of demands and costs, we have:

CIIPc(yIIPH) = E





√
N∑

l=1



g(yIIPH ,
√
N)+

√
N∑

i=1

√
N∑

j=1,j 6=i

(slij − h− po)CSl
ij(y

IIPH ,
√
N)









= Eg(yIIPH ,N)+E





√
N∑

l=1





√
N∑

i=1

√
N∑

j=1,j 6=i

(slij − h− po)CSl
ij(y

IIPH ,
√
N)









CLB′

(yIIPH) = CLB′
c(yIIPH)

+ (s− h− po)E





√
N∑

l=1





√
N∑

i=1

Dl
io−

(
yIIPH −Dl

is

)+





+

−
(

N∑

i=1

Dio−
(
yIIPH −Dis

)+

)+




= Eg(yIIPH ,N)+E





√
N∑

l=1





√
N∑

i=1

√
N∑

j=1,j 6=i

(s− h− po)CSl
ij(y

IIPH ,
√
N)









+(s− h− po)




√
NE





√
N∑

i=1

Dl
io−

(
yIIPH −Dl

is

)+





+

−E

(
N∑

i=1

Dio−
(
yIIPH −Dis

)+

)+




The expression for CLB′

is written as the sum of CLB′

c which restricts cross-shipping to within each cell, and

the cost of the additional cross-shipped units with this restriction removed. We know that CLB
2 (yIIPH) ≤

CLB′

(yIIPH)≤CIIP (yIIPH)≤CIIPc(yIIPH). We first show that CIIPc (yIIPH )

CLB′ (yIIPH)
→ 1 as N →∞. We have:

CIIPc(yIIPH)

CLB′(yIIPH)
− 1=

E

(√
N∑

l=1

(√
N∑

i=1

√
N∑

j=1,j 6=i

(slij − s)CSl
ij(y

IIPH ,
√
N)

))

CLB′ (yIIPH)

+

(h+ po− s)




√
NE

(√
N∑

i=1

Dl
io− (yIIPH −Dl

is)
+

)+

−E

(
N∑

i=1

Dio− (yIIPH −Dis)
+

)+




CLB′(yIIPH)

We have slij−s= f(dl
ij)≤ f

( √
2

N
1
4

)

, as the maximum distance within a cell is
√
2

N
1
4
. Thus, using CLB′

(yIIPH)≥

E

(√
N∑

l=1

(√
N∑

i=1

√
N∑

j=1,j 6=i

(s)CSl
ij(y

IIPH ,
√
N)

))

for the first term, and CLB′

(yIIPH)≥ sµoN for the second term,

we have

CIIPc(yIIPH)

CLB′(yIIPH)
− 1≤

f
( √

2

N
1
4

)

s
+

(
h+ po− s

sµo

√
N

)

E





√
N∑

i=1

Dio−
(
yIIPH −Dis

)+





+

(42)

The first term on the right hand side vanishes to zero as N →∞, as f(d)→ 0 as d→ 0. To simplify the

second term, we need the following lemmas.

Lemma 2. If h< po− s, then yIIPH >µ where µ= µs +µo, and if additionally h< (ps− po + s)Fs(µ),

yIIPH→ F−1
s

(
ps− po + s− h

ps− po + s

)

∈ (0,∞), as N →∞ (43)
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Proof: Lemma 1 is proved from the optimality equations of CLBN (Equation 25) for identical stores:

(h+ po− s)P

(
N∑

i=1

Di ≤NyIIPH

)

+(ps− po + s)FD1s
(yIIPH) = ps

From the above equation, when h < po − s, we have ps < 2 (po− s)P

(
N∑

i=1

Di ≤NyIIPH

)

+ (ps− po+ s).

This simplifies to yield yIIPH > µ. Now, by applying the central limit theorem as N →∞ and yIIPH > µ,

P

( N∑

i=1

Di/N ≤ yIIPH

)

→ 1, and the result follows. Note that the asymptotic solution should also satisfy

yIIPH >µ, which translates to the condition h< (ps− po+ s)Fs(µ). �

Lemma 3. When h < min(po − s, ps − po + s), and the demands are bounded above as Dis ≤Ms and

Dio ≤Mo for all i,

P





√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+



≤ exp

{

−2
√
N(yIIPH −µ)2

Mo +Ms

}

(44)

Proof:

P





√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+



= P





√
N∑

i=1

(

Di−
(
Dis− yIIPH

)+
)

>
√
NyIIPH



≤ P





√
N∑

i=1

Di >
√
NyIIPH





≤ exp

{

−2
√
N(yIIPH −µ)2

Mo +Ms

}

→ 0, as N →∞

The final inequality follows from the Hoeffding bound for tail probabilities Hoeffding (1963), as yIIPH > µ

and demands are bounded, and the limit exists as yIIPH approaches a finite positive quantity as N →∞ by

Lemma 1. The expectation in the second term of Equation 42 can be bounded as follows:

E





√
N∑

i=1

(

Dio−
(
yIIPH −Dis

)+
)





+

=E









√
N∑

i=1

(

Dio−
(
yIIPH −Dis

)+
)





+ ∣
∣
∣
∣
∣

√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+



P





√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+





≤E





√
N∑

i=1

Dio

∣
∣
∣
∣
∣

√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+



P





√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+





≤Mo

√
N exp

{

−2
√
N(yIIPH −µ)2

Mo +Ms

}

The last inequality follows from Lemma 2 and the boundedness of the demands as Dis ≤Ms, and Dio ≤Mo

for all i with 0<Ms,Mo <∞. �

Thus, we have:

CIIPc(yIIPH)

CLB′(yIIPH)
≤ 1+

f
( √

2

N
1
4

)

s
+

(
h+ po− s

sµo

)(

Mo

√
N exp

{

−2
√
N(yIIPH −µ)2

Mo +Ms

})

→ 1, as N →∞
(45)
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The next step is to show the CLB
2 is off by a constant factor from the CLB′

. From the proof of Proposition

4, the difference simplifies to:

CLB
′

(yIIPH)−CLB
2 (yIIPH)

= (h+ po− s)E





(
N∑

i=1

Dio−
(
yIIPH −Dis

)+

)+

+
N∑

i=1

(
Dis− yIIPH

)+−
(

D−
N∑

i=1

yIIPH

)+




where D=
∑N

i=1Dis +Dio.

Similar to what was done to bound the second term in Equation 42, we can show that whenever the

conditions in Lemma 2 are satisfied, E

(
N∑

i=1

Dio− (yIIPH −Dis)
+

)+

≤MoN exp
{

−2N(yIIPH−µ)2

Mo+Ms

}

. Thus, we

have:

CLB
′

(yIIPH)−CLB
2 (yIIPH)≤ (h+ po− s)

[

MoN exp

{−2N(yIIPH −µ)2

Mo +Ms

}

+

N∑

i=1

(
Dis− yIIPH

)+

]

Using CLB
2 (yIIPH)≥ sµoN and CLB

2 (yIIPH)≥ (ps− po + s)
N∑

i=1

(Dis− yIIPH)
+
, we have:

CLB′

(yIIPH)

CIIPH(yIIPH)
− 1≤

(
h+ po− s

sµo

)(

Mo exp

{−2N(yIIPH −µ)2

Mo +Ms

})

+

(
h+ po− s

ps− po + s

)

(46)

Thus, from Equations 45 and 46, as N →∞, we have

CIIPc(yIIPH)

CLB
2 (yIIPH)

≤ 1+
h+ po− s

ps− po + s

⇒ CIIP (yIIPH)

CIIP (yIIP)
≤ h+ ps

ps− po + s

The final step follows from CIIPc(yIIPH)≥CIIP (yIIPH), and CLB
2 (yIIPH)≤CIIP (yIIP). �

The result may hold subject to some generalizations, such as the unit square can be replaced with any

finite area, and non-identical cells as long as the number of stores in each cell grows to infinity as N →∞.

The resulting cases may call for a more complicated proof, and is outside the scope of this study.

Appendix B: Demand Regions for the IIP Solution

We illustrate the identification of demand regions in which the dual vector λ is constant (as discussed in

Section 3.1.3) and the calculation of the corresponding probabilities. For any given (y1, y2), the demand

space (D1s,D1o,D2s,D2o) can be divided into a number of independent regions. Based on the values taken

by the variables in the optimal solution in (34), Table 5 shows the different cases that are possible given

y1 and y2. From these cases, the independent demand regions are listed in Table 6 along with the constant

dual prices in those regions. The underlined cases are redundant, and can be discarded while calculating the

probability for each region. The dual prices λ1, λ2 are the shadow prices of the constraints which contain y1

and y2 respectively, namely the first set of constraints zi +
2∑

j=1

zij ≤ yi,∀i in the linear program in (34), and

can be obtain in a standard fashion from linear programming theory. For example, for the demand regions

with the case D1, that is, y1 ≥D1 +D2o, irrespective of the value of y2, there will be inventory left over at

retail store 1 at the end of the period. Thus the constraint z1 +
2∑

j=1

z1j ≤ y1 will not bind, and hence λ1 =0.
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Table 5 Table showing the various demand cases based on the values of y1, y2

A B C D

1 y1 <D1s D1s ≤ y1 <D1 D1 ≤ y1 <D1+D2o y1 ≥D1+D2o

2 y2 <D2s D2s ≤ y2 <D2 D2 ≤ y2 <D2+D1o y2 ≥D2+D1o

3 y1+ y2 <D1+D2 y1+ y2≥D1+D2

Table 6 Table showing the various demand regions and the corresponding constant dual-prices. (underlined

notation indicates redundant cases)

Region Case λ1 λ2 Region Case λ1 λ2

Ω1 A1,A2,A3 h+ ps h+ ps Ω11 C1,A2,A3 h+ po− s12 h+ ps

Ω2 A1,B2,A3 h+ ps h+ po− s Ω12 C1,B2,A3 h+ po− s12 h+ po− s

Ω3 A1,C2,A3 h+ ps h+ po− s12 Ω13 C1,B2,B3 0 s12− s

Ω4 A1,D2,A3 h+ ps 0 Ω14 C1,C2,B3 0 0

Ω5 A1,D2,B3 h+ ps 0 Ω15 C1,D2,B3 0 0

Ω6 B1,A2,A3 h+ po− s h+ ps Ω16 D1,A2,A3 0 h+ ps

Ω7 B1,B2,A3 h+ po− s h+ po− s Ω17 D1,A2,B3 0 h+ ps

Ω8 B1,C2,A3 h+ po− s h+ po− s12 Ω18 D1,B2,B3 0 s12− s

Ω9 B1,C2,B3 s12− s 0 Ω19 D1,C2,B3 0 0

Ω10 B1,D2,B3 s12− s 0 Ω20 D1,D2,B3 0 0

The probability for each region is calculated as follows, when demands follow normal distributions. The

region is expressed as an inequality of the form RkD̃ <= SkY , where D̃ = [D1s,D1o,D2s,D2o]
⊺ and Y =

[y1, y2]
⊺. For example, Ω3 = (A1,C2) = {y1 <D1s,D2 ≤ y2 <D2 +D1o}. This can be expressed as:





−1 0 0 0
0 0 1 1
0 −1 −1 −1










D1s

D1o

D2s

D2o




≤





−1 0
0 1
0 −1





[
y1
y2

]

RkD̃ is multivariate normal with mean Rkµ and covariance matrix RkΣΣ
⊺R⊺

k, where µ and Σ are the mean

and covariance matrices of D̃. The probability of region k reduces to evaluating the cumulative distribution

function of AkD̃ at BkY . For general demand distributions, numerical methods have to be employed.

Appendix C: Heuristic based on Constant Shipping Costs for a Network of
Omnichannel Stores and OFCs

We obtain the heuristic solution yIIPH for multiple locations with So 6= ∅ by calculating order quantities for

the OFCs separately, and using them in Equation 39 to compute order quantities for the omnichannel stores.

The order-up-to quantities for OFCs are calculated from the pooled total order quantity for OFCs, which is

determined using the newsvendor quantity for the combined online demand DSo
=
∑

i∈So

Dio.

∑

j∈So

yIIPH
j = F−1

DSo

(
po− s

h+ po− s

)

(47)

The actual underage cost for online demands at the OFCs would be less than po − s and would depend

on inventory information of stores, as stores can fulfill these online orders with available inventory. The
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calculation of inventory levels at stores and OFCs are dependent on each other, but since we are forced

to estimate the inventory at OFCs separately, we inflate the underage cost to po − s which yields a higher

overall inventory level at the OFCs. This is a limitation that arises out of our heuristic approximation, but

it allows us to extend the heuristic to the case where OFCs have a different shipping cost (so) compared to

the stores (s), as the inventory calculation for the OFCs is done separately.

To calculate the individual order quantities at the OFCs, yIIPH
i , i ∈ So, we use the method of obtaining

order-up-to quantities for multiple products with capacity constraints, as described in Chopra and Meindl

(2007, p. 367). Each unit from
∑

j∈So

yIIPH
j is allocated incrementally to the OFCs based on the individ-

ual expected marginal costs. Once the order-up-to quantities for the OFCs are obtained, they are used in

Equation 48 to determine order-up-to levels for other omnichannel stores.

(h+ po− s)FDS

(
∑

j∈S

yIIPH
j

)

+(ps− po+ s)FDis

(
yIIPH
i

)
= ps, ∀i∈Sso (48)

Calculating this heuristic solution yIIPH is also computationally fast, as Proposition 7(3) still applies to

Equation 48. The cost of the heuristic solution is given by CIIPH = CIIP (yIIPH). We capture the effect of

virtual pooling among the facilities in this heuristic, and the systematic approach is shown in Algorithm 2.

Algorithm 2 Procedure to calculate the heuristic solution yIIPH

1: For physical stores in set Ss, set yIIPH
i = F−1

is

(
ps

h+ps

)

,∀i∈ Ss.
2: for i∈So (OFCs) do

3: Calculate total order quantity: yTOT = F−1
DSo

(
po−s

h+po−s

)

, where DSo
=
∑

i∈So

Dio.

4: Set yIIPH
i = 0,∀i∈ So, and rem= ⌊yTOT ⌋.

5: Calculate marginal cost MCi (y
IIPH
i ) =− (po− s) (1−FDio

(yIIPH
i ))+ hFDio

(yIIPH
i )

6: Choose i∗ =min
i∈So

MCi(y
IIPH
i ). Set yIIPH

i∗ ← yIIPH
i∗ +1

7: Set rem← rem− 1. If rem> 0, go to Step 3.

8: for i∈Sso do

9: Calculate order quantities implicitly from the optimality equations: (h+ po− s)FDS

(
∑

j∈S
yIIPH
j

)

+

(ps− po + s)FDis
(yIIPH

i ) = ps, ∀i∈Sso.

Appendix D: Additional Details for Numerical Analyses

All numerical analyses were done on a desktop computer (i7-3770 CPU @3.7GHz, 16GB RAM). The total

market is assumed to be the top 300 most populous cities in mainland US. We take the sum of the mean

in-store and online demands in each region to be a fixed proportion of the cities’ populations. This represents

the average market size of the region, and the mean in-store and online total demands over the horizon are

calculated as 1−α and α proportions respectively of this mean market size in each region. The demands for

the OFCs are calculated based on the population not covered by omnichannel stores. This online demand is

allocated to each OFC based on the optimal throughput rates estimated by Chicago Consulting (2016).
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D.1. Simulation Procedure

A brief overview of the simulation is listed below:

1. The parameters for demands in each fulfillment period are calculated based on demands over the horizon

estimated from population data. The starting inventory level vectors yDIP and yIIPH are calculated

using the demand information based on Equation 12 and Algorithm 1 respectively.

2. We generate a sample of size 104, where each sample is a realization of demands over the entire selling

horizon, although fulfillment decisions in each fulfillment period are made without knowing future

demands. For each sample, we iterate over steps 3-7, and take the sample averages as approximations

for expectations.

3. The fulfillment thresholds for the TF policy are calculated based on Equation 27. For the MF policy,

these thresholds are set to zero.

4. For t = 1, . . . , T , iterate over steps 5-6. The starting inventory levels are set based on the inventory

policy followed (IIPH or DIP).

5. Implement Algorithm 2 based on the fulfillment policy followed (MF or TF) and the corresponding

thresholds calculated in Step 3.

6. At the end of each fulfillment period, penalty and shipping costs are calculated. The ending inventory

at a location becomes the starting inventory for the next fulfillment period.

7. The total cost is the sum of the costs in each fulfillment period over the selling horizon.


