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Abstract
An omnichannel retailer with a network of physical stores and online fulfillment

centers facing two demands (online and in-store) has to make important, interlinked

decisions—how much inventory to keep at each location and where to fulfill each

online order from, as online demand can be fulfilled from any location with avail-

able inventory. We consider inventory decisions at the start of the selling horizon for

a seasonal product, with online fulfillment decisions made multiple times over the

horizon. To address the intractability in considering inventory and fulfillment deci-

sions together, we relax the problem using a hindsight-optimal bound, for which the

inventory decision can be made independent of the optimal fulfillment decisions,

while still incorporating virtual pooling of online demands across locations. We

develop a computationally fast and scalable inventory heuristic for the multilocation

problem based on the two-store analysis. The inventory heuristic directly informs

dynamic fulfillment decisions that guide online demand fulfillment from stores.

Using a numerical study based on a fictitious network embedded in the United States,

we show that our heuristic significantly outperforms traditional strategies. The value

of centralized inventory planning is highest when there is a moderate mix of online

and in-store demands leading to synergies between pooling within and across loca-

tions, and this value increases with the size of the network. The inventory-aware

fulfillment heuristic considerably outperforms myopic policies seen in practice, and

is found to be near-optimal under a wide range of problem parameters.
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1 INTRODUCTION

In 2019, e-commerce sales accounted for around 11% of

the total retail sales in the United States (U.S. Census

Bureau, 2019). Although this is a small portion of the total

sales, online sales have been increasing at a rapid year-to-year

growth rate around 18% in 2019 (Young, 2019), and pro-

jected to account for 22% of all retail sales within the next

5 years (Chaffey, 2019). With customers increasingly favor-

ing the online channel, traditional brick-and-mortar (B&M)

retail firms are equipping themselves with the ability to fulfill

online orders from multiple inventory nodes (stores, fulfill-

ment centers, etc.).

Omnichannel refers to this seamless integration of a

retailer’s sales channels, such as in-store and online. Cus-

tomers can purchase an item in different ways, including

placing an order through the online store (websites), through

mobile devices (mobile apps), as well as through the tra-

ditional practice of walking into physical stores. In addi-

tion, customers placing orders online can also choose how

they receive the item: they can pick up their items from a

nearby physical store (in-store pickup) or from designated

self-service kiosks like Amazon Lockers, or simply have

the item shipped directly to their homes (ship-to-customer).

There is an industry-wide shift to omnichannel retailing, with

one-time B&M firms like Macy’s and Walmart integrating an
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online channel by leveraging their existing network of retail

stores (Nash, 2015); the e-commerce giant Amazon has also

added a network of physical stores through the purchase of

Whole Foods Market.

A key aspect of omnichannel operations is store fulfillment,
which is the use of physical stores to fulfill online orders.

An online customer who chooses ship-to-customer fulfillment

may receive a package originating from, in theory, any inven-

tory node in the network. Usually, the closest node is used

since the shipping rate increases with the distance. However,

when the closest node stocks out, the demand would “spill

over” to other nodes (Acimovic & Graves, 2017), guaran-

teeing that the demand is not lost while there is inventory

still remaining in the retail network. This risk pooling across

inventory nodes is reminiscent of transshipments between

B&M stores; a distinction is that e-commerce fulfillment

allows for this flexibility without prepositioning the inventory

in a customer location.

Allowing demand spillovers essentially pools the geo-

graphically separate inventories. Since traditional inventory

models do not account for demand spillovers, they overes-

timate the inventory required across the network. Indeed,

this is reflected in the fact that, from 2010 to 2014, even as

retail and online sales increased, inventory turnover decreased

(Samuel, 2017). Therefore, to reduce the burden of carrying

too much inventory, omnichannel inventory planning must

use network-based models that capture fulfillment flexibil-

ity. In this paper, we develop network-based strategies (that

take into account online demand spillover) to optimize inven-
tory levels and fulfillment decisions for an omnichannel firm.

In particular, this firm has a network of physical stores and

online fulfillment centers facing online (ship-to-customer)

demands and in-store demands.

We consider the problem for a single, seasonal product

with long lead times, such that inventory decisions are only

made once for the start of the selling horizon. We assume

that the selling horizon is divided into multiple periods, with

the following dynamic in each period: in-store demands are

fulfilled as they arrive; online fulfillment decisions (assign-

ing online orders to fulfillment locations) are made at the

end of the period with the available inventory; and unmet

demands are lost. This assumption can be used to approx-

imate the continuous-time problem, as the length of these

periods can be arbitrarily small such that at most one unit of

demand arrives in any period. This model leads to a multi-

stage stochastic programming problem, and is intractable due

to the size of the state space as well as complexities in the

action space.

Our main contribution is a joint heuristic that co-ordinates

network-based inventory and fulfillment decisions for

omnichannel retailers. We derive the inventory heuristic

based on a two-stage approximation that allows optimization

of the inventory levels for the hindsight-optimal fulfillment

policy. The fulfillment heuristic provides location-specific,

time-varying inventory thresholds (calculated with the help

of the inventory heuristic) which dictate the rationing of

store inventory between in-store and online demands. We

show by means of numerical studies on realistic inventory

networks embedded in the United States, that by virtue

of taking into account demand spillovers, our heuristic

solution outperforms traditional decentralized strategies.

The inventory-aware fulfillment heuristic is shown to be

near-optimal under a variety of problem parameters, and pro-

vides significant cost savings compared to the myopic policy

commonly seen in practice. Our solutions are highly scalable

and easy to understand, which are of utmost importance in

practice for retail networks.

We show that the value of such centralized planning (tak-

ing demand spillovers into account) is highest when there is

a moderate mix of online and in-store demands that takes

advantage of synergies in pooling across locations (demand

spillovers) and within each location (in-store and online).

Based on our analysis, for the current state of the indus-

try (with around 10% of sales occurring online and growing

quickly), we emphasize that retailers can significantly benefit

by switching to centralized planning strategies that take into

account online demand spillover.

We organize the paper as follows. We discuss relevant lit-

erature in Section 2, and introduce the general problem in

Section 3. In Section 4, we develop the replenishment pol-

icy for the multilocation problem based on the two-stage

hindsight-optimal approximation. In Section 5, we develop

fulfillment thresholds informed by the inventory solution to

guide dynamic fulfillment of online orders from stores. In

Section 6, using realistic retail networks, we numerically test

our heuristics against the benchmark solution and the hind-

sight optimal bound. Finally, we conclude with Section 7

discussing extensions and future research.

2 LITERATURE REVIEW

Omnichannel retailing is a relatively new area in operations

management literature, and has been gaining traction in recent

years. Readers are referred to Rigby (2011) and Brynjolfsson

et al. (2013) for comprehensive reviews of the topic. There

have been a number of papers that have focussed on customer

behavior—Gao and Su (2017) study the impact of implement-

ing store pickup on store operations, and Gallino et al. (2017)

focus on sales dispersion from implementing store pickup.

Other papers study the impact from the customers’ point of

view: Bell et al. (2017), Ansari et al. (2008), and Gallino

and Moreno (2014) study customer migration due to prod-

uct information, and Gao and Su (2016) analyze the effect of

information provided to strategic omnichannel customers on

store operations. Nageswaran et al. (2020) consider optimal

return policies for omnichannel firms when customers can

return items in physical stores that were bought online.

Optimal fulfillment decisions for e-commerce demand

has enjoyed recent attention in literature: Acimovic and
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Graves (2017) study the optimal allocation of replenishment

to fulfillment centers to reduce shipping costs and mitigate

costly spillovers; Lei et al. (2018) consider the joint pric-

ing and fulfillment strategy to maximize the expected profits

(revenue minus shipping costs); Acimovic and Graves (2014)

focus on fulfillment strategies to minimize outbound ship-

ping costs; DeValve et al. (2018) study the benefit of adding

fulfillment flexibility to a large online retailer’s network by

combining an allocation policy based on a stochastic program

with a fulfillment policy which restricts the spillover demand

that is fulfilled; and Bayram and Cesaret (2020) consider the

optimal dynamic fulfillment decisions for an omnichannel

retail network when the initial inventory levels are given, by

modeling shipping costs from each location as independent

random variables.

There have been some studies which discuss integration

of online demand to physical stores by means of a separate

online fulfillment center, as this was the primary mode of

fulfillment in the e-commerce channel in its nascent stages.

Seifert et al. (2006) consider the inventory management of

a system where an online warehouse handles online orders,

and in case of stockouts, stores can fill these orders. Chen

et al. (2011) consider a three location system consisting of

two stores and an etailer, with a hierarchy to fulfillment—the

etailer can fulfill online orders with the least cost, followed by

store 1 and then store 2.

We consider a generalized setting representing the current

retailing situation wherein physical stores are the primary

ports of online fulfillment, and we consider the problem of

deciding inventory levels across the network in the pres-

ence of e-commerce fulfillment flexibility. To the best of our

knowledge, the study closest to ours is Alishah et al. (2017),

who consider a single store with online and in-store demands,

and analyze decisions at three levels—fulfillment structure,

inventory optimization and inventory rationing. They show

that the optimal rationing policy between in-store and online

demands is threshold-based. They propose (without theoret-

ical guarantees) using these rationing policies when there

are multiple stores and a single online fulfillment center,

with fulfillment costs not dependent on shipping distances. In

contrast, we analyze the problem for general networks with

multiple stores and fulfillment centers, with realistic fulfill-

ment costs that depend shipping distances, which introduces

complexity due to an additional rationing decision—online

orders from other regions.

The key feature that online demands can be fulfilled from

any store in the system is analogous to a reactive transship-

ment setting with zero transshipment lead time, as pointed

out by Yang and Qin (2007), who called this ‘virtual lateral

transshipment’. In addition, our problem has multiple demand

classes (online and in-store), where some classes of demand

(in-store) cannot be subject to transshipment. For an exten-

sive review of the transshipment literature, the readers are

referred to Paterson et al. (2011). Transshipment problems are

infamously hard to solve, and analytical approaches can be

done only for simplified cases with zero replenishment and

transshipment leadtimes and two regions (Tagaras, 1989) or

identical shipping costs across regions (Dong & Rudi, 2004).

Tagaras and Cohen (1992) show that when there is posi-

tive replenishment leadtime, the problem becomes intractable

even for two regions due to the interdependence of optimal

decisions on demands during the leadtime, on-hand inventory

and in-transit inventory.

Obtaining optimal order-up-to policies are by extension

intractable as well, as they need to be calculated based on

the optimal transshipment policy. Yao et al. (2016) have

recently considered the optimal joint initial stocking and

transshipment decisions for the two-store case. Their anal-

ysis is limited to two stores, as key mathematical proper-

ties like submodularity do not extend to multiple regions.

Lim et al. (2020) consider a robust optimization approach

to the joint allocation-fulfillment problem for e-commerce

networks. They consider a two-step approach to optimiza-

tion, wherein the periods in which replenishments arrive

are optimized first, followed by the allocation and fulfill-

ment decisions. To the best of our knowledge, our paper is

the first to consider the multilocation omnichannel inventory

and fulfillment problem, where we provide provably scalable

and easy-to-implement policies that coordinate inventory and

fulfillment strategies.

3 THE GENERAL PROBLEM—MODEL AND
ASSUMPTIONS

Consider a firm selling a single product to multiple customer

regions. We assume that a facility (inventory node) is located

in each customer region. Customer regions without a facil-

ity in it can also be incorporated as zero-inventory facilities.

We consider the problem of optimizing inventory and fulfill-

ment decisions for this single product. Considering multiple

products introduces complex combinatorial features to the

fulfillment problem as a multiitem order can be fulfilled in

different ways (Jasin & Sinha, 2015); we disregard this in our

analysis to better study the interplay between inventory and

fulfillment decisions.

There are two classes of demand originating in each cus-

tomer region i, modeled by nonnegative and continuous

random variables:

1. the in-store demand (Dis) consists of customers

picking items off the shelves (all the inventory is

available on the shelf), with unmet demand lost

immediately, and

2. the online (ship-to-customer) demand (Dio), con-

sisting of customers ordering through the website or

mobile app, expecting items to be delivered directly

to their homes.

The demands are exogenous and are temporally indepen-

dent, but can have any general channel or location correlation
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FIGURE 1 Three types of facilities in an omnichannel fulfillment network (a) traditional brick-and-mortar stores (s), (b) Omnichannel stores (so), and (c)

online fulfillment centers (o)

structure. A typical retail fulfillment network is shown in

Figure 1, where dashed lines represent customers visiting

physical stores and solid lines represent items shipped to cus-

tomers’ homes. We consider three different types of facilities

described by the following sets:

• s—physical stores which handle only in-store demand.

• o—online fulfillment centers (OFCs) which handle only

online orders.

• so—omnichannel physical stores which handle both

online and in-store demands.

Since traditional B&M stores plan for inventory indepen-

dent of other facilities in the network, we exclude regions

with such stores from our analysis. We are only interested in

regions where the facility is involved in online fulfillment,

namely omnichannel stores and online fulfillment centers. Let

 = o∪so be the set of regions with omnichannel facilities.

We denote N = || as its cardinality. We refer to the regions

in  as R1, … , RN .

There are two important features to be noted in the

omnichannel problem. The first feature is that unfulfilled

in-store demand at one region cannot be fulfilled by facilities

in other regions. The second feature is that a facility in  with

available inventory can fulfill online orders from any cus-

tomer region. Hence, there is risk pooling of online demands

across regions, as well as risk pooling of in-store and online

demands within each region.

3.1 Sequence of events

We consider a seasonal product for which the replenishment

lead time is longer than the selling season, and hence there

is only one chance at the start of the selling season to decide

the inventory levels y1, … , yN across the network. We divide

the selling season into T fulfillment periods. In each period

t∈ [T], in-store demand (Dt
is) is fulfilled as it arrives, whereas

fulfillment decisions to satisfy the online demands (Dt
io) are

made at the end of the period with the available inventory in

the network, and unmet demands are lost.

We note that the length of these periods can be arbitrar-

ily small such that at most one unit of demand arrives in any

period, and hence we can model the case where fulfillment

decisions need to be made as soon as online orders arrive.

In some cases, batch fulfillment of online orders also makes

practical sense—most stores still rely on third party carriers

such as UPS and FedEx to ship items to customers. Online

orders to be shipped are loaded onto these trucks once a

day from the store backroom, usually towards the end of the

day.

3.2 Cost parameters

We consider a per-unit fulfillment cost sij for online demand

from region j fulfilled by Ri, which encapsulates the cost

of picking the item off the shelf, packing and labeling, as

well as the shipping cost for delivery. We have sij = sji and

sij ≥ sii for any i, j∈ [N] since it is costlier to ship an item

over longer distances. We will refer to sii (within the same

region) as in-location shipping costs, and sij (across regions)

as cross-shipping costs.

We assume that the in-location shipping costs are identical

across regions: sii = s for all i∈ [N]. This assumption makes

sense from a practical perspective, as the fixed component

of the fulfillment cost (pick-pack-and-label) dominates for

shipping over small distances, as this is usually done through

human labor. At the end of a fulfillment period, each unit of

unfulfilled in-store and online demands incurs penalty costs

ps and po, respectively. We assume that ps > po − s> 0, as

in-store demand is fulfilled first and is costlier to lose, and

cross-shipping always leads to a myopic reduction in cost:

sij < po for all i, j∈ [N]. At the end of the selling horizon, each

unit of unsold inventory incurs an overage cost h. We ignore

the purchasing cost, but this can be added easily through lin-

ear terms. We summarize our assumptions on cost parameters

in the set Ψ:

Ψ = {ps > po − sij > 0, ∀i, j ∈ [N]; sij ≥ s,
∀i, j ∈ [N] with j ≠ i}. (1)
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3.3 Stochastic programming formulation

We next develop the joint inventory planning and fulfillment

problem of the seller as a stochastic program. In fulfillment

period t∈ [T], let the starting inventory levels be denoted by

xt = (xt
i)i, and D̃

t
= (Dt

is,D
t
io)i denote the demands. From a

facility in region Ri, let zt
i be the amount of inventory used to

fulfill the in-store demand, and Zt
ij be the amount of inventory

shipped to fulfill online demand from region Rj. If region Ri
has an OFC facility, then this region has no in-store demand,

hence zt
i = Dt

is = 0. We denote the period t fulfillment

decisions in vector form as zt, Zt respectively.

Suppose the seller starts the season with inventory levels

y1, … , yN . The optimal fulfillment decisions can be found

by solving a (T + 1)-stage stochastic program which can be

solved through dynamic programming. Note that physical

stores always prioritize in-store demand (since ps > po − s)

and online fulfillment is decided at the end of the period.

Therefore, without loss of generality, we can assume that

zt, Zt is decided with knowledge of the demand realization

D̃
t
. Hence, (xt, D̃

t
) is the state of the dynamic program. The

optimal cost-to-go function in period t can be written as:

Ct(xt, D̃
t
) = min

zt,Zt∈Δt

[
P(xt, D̃

t
, zt,Zt) + ECt+1

×

((
xt

i − zt
i −

N∑
j=1

Zt
ij

)
i

, D̃
t+1

)]
(2)

where P(xt, D̃
t
, zt,Zt) is the total cost in fulfillment period t,

given by:

P(xt, D̃
t
, zt,Zt) =

N∑
i=1

ps(Dt
is − zt

i) +
N∑

j=1

po

(
Dt

jo −
N∑

i=1

Zt
ij

)

+
N∑

i=1

sZt
ii +

N∑
i=1

N∑
j=1,j≠i

sijZt
ij (3)

and Δt is the set of feasible fulfillment decisions in period t,
described by the following set of constraints:

zt
i +

N∑
j=1

Zt
ij ≤ xt

i, ∀i ∈ [N]

zt
i ≤ Dt

is, ∀i ∈ [N]
N∑

i=1

Zt
ij ≤ Dt

jo, ∀j ∈ [N]

zt,Zt
≥ 0. (4)

The first inequality in Δt represents the supply constraint

(where x0
i = yi for all i∈ [N]), and the second and third

inequalities model the fulfillment constraints. Note that the

online demand in one region can be fulfilled from any facility

in the network, as seen in the third inequality in (4). At the end

of the horizon, leftover inventory incurs a per-unit overage

cost h, and hence, we have the boundary condition:

CT+1(xT+1, D̃
T+1

) = h ⋅ xT+1, for any D̃
T+1

(5)

Hence, given the initial stocking level y = (yi)i at stage

0, the total expected cost over the T fulfillment periods is

C(y) ≔ EC1(y, D̃
1
). The optimal initial stocking level mini-

mizes this total expected cost. This initial inventory problem

is shown to be a convex optimization problem in the following

Proposition.

Proposition 1 C(y) ≔ EC1(y, D̃
1
) is jointly

convex in the inventory levels y = (yi).

All proofs are relegated to the Online Appendix. We now

discuss the intractability in the joint inventory and fulfill-

ment problem. First, due to the assumption that ps > po − s,

in the optimal solution, we will have zt
i = min(xt

i,D
t
is), that

is, in-store demand is fulfilled first. However, the online ful-

fillment decisions are not straightforward—myopic policies

that try to fulfill all online demand in the current period

may be suboptimal, as future in-store demands have a higher

penalty cost. In addition, cross-shipping items to fulfill online

demands at other regions may be sub-optimal as well, as it

may be more profitable to reserve these items for cheaper

future in-location store or online demands.

These two rationing elements render the multistage stochas-

tic program intractable. In fact, a similar issue arises

for optimal transshipment decisions with nonnegligible

lead times. Tagaras and Cohen (1992) show that for the

two-store transshipment problem, even if the optimal policy

is threshold-based, the optimization becomes intractable due

to the complexity of the decision space in the dynamic pro-

gramming formulation. The intractability arises solely due to

the fact that in any period, it may be ex post optimal to reserve

inventory for future, less costly demand. Overlaying multi-

ple regions, an additional class of demands, and inventory

optimization, we cannot hope to solve this problem optimally.

4 DETERMINING THE STATIC
REPLENISHMENT POLICY

Our primary goal is to develop inventory solutions that take

into account virtual pooling of online demand across regions.

To this end, we relax the intractable joint inventory and

fulfillment problem through a hindsight-optimal bound, and

develop the inventory heuristic based on this bound. This

inventory heuristic directly informs a simple, threshold-based

fulfillment policy described later in Section 5, and we show

that our joint inventory and fulfillment policy performs sig-

nificantly better than traditional decentralized strategies.

4.1 The two-stage approximation

First, we introduce a lower bound to C(y). We do this by

introducing the following hindsight-optimal T-period cost:

C(y, D̃) ≔ min
xt ,zt ,Zt

T∑
t=1

[ N∑
i=1

ps(Dt
is − zt

i)
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+
N∑

j=1

po

(
Dt

jo −
N∑

i=1

Zt
ij

)
+

N∑
i=1

(
sZt

ii +
N∑

j=1,j≠i
sijZt

ij

)]

+
N∑

i=1

h

(
xT

i − zT
i −

N∑
j=1

ZT
ij

)

s.t. zt
i +

N∑
j=1

Zt
ij ≤ xt

i, ∀i ∈ [N],∀t ∈ [T],

zt
i ≤ Dt

is, ∀i ∈ [N],∀t ∈ [T],
N∑

i=1

Zt
ij ≤ Dt

jo, ∀i ∈ [N],∀t ∈ [T],

zt,Zt
≥ 0, ∀t ∈ [T],

xt+1
i = xt

i − zt
i −

N∑
j=1

Zt
ij, ∀i ∈ [N],∀t ∈ [T],

x1 = y. (6)

Given the initial inventory y and after the realization of the

demands D̃ = (Dt
is,D

t
io)i,t in all regions and in all periods,

the two-stage model (6) finds the T-period fulfillment deci-

sion (zt, Zt)t that minimizes the total cost. Since this sequence

of fulfillment decisions are optimized after all demands are

realized for the entire T periods, any nonanticipating fulfill-

ment policy cannot achieve a total cost lower than C(y, D̃)
on a given sample path D̃. Therefore, E(C(y, D̃)) is a lower

bound on the expected total cost C(y) of the optimal nonan-

ticipating fulfillment policy. Hence, we refer to E(C(y, D̃))
as the hindsight-optimal bound for the multistage stochastic

program.

The hindsight-optimal bound is useful since it simplifies

the fulfillment decisions. The following lemma provides a

closed-form expression for the optimal fulfillment in (6).

Lemma 1 An optimal solution (zt∗ ,Zt∗ ) to (6)
satisfies the following:

1.
T∑

t=1

zt∗
i = min

(
yi ,

T∑
t=1

Dt
is

)
, ∀i ∈ [N]

2.
T∑

t=1

Zt∗
ii = min

⎛⎜⎜⎝
(

yi −
T∑

t=1

Dt
is

)+

,
T∑

t=1

Dt
io

⎞⎟⎟⎠ , ∀i ∈ [N]

3.
T∑

t=1

N∑
i=1

N∑
j=1

Zt∗
ij = min

⎛⎜⎜⎝
N∑

i=1

(
yi −

T∑
t=1

Dt
is

)+

,
N∑

i=1

T∑
t=1

Dt
io

⎞⎟⎟⎠
Here, x+ = max(x, 0) for any x∈ℜ. The implication of

this lemma is that the hindsight-optimal solution can be

determined sequentially. First, all in-store demands are ful-

filled to the maximum extent. Then, with the leftover inven-

tory, in-location online demands in each region are fulfilled.

Finally, cross-fulfillment takes place to fulfill unmet online

demands with leftover inventory in the network. This char-

acterization of optimal fulfillment decisions is helpful, as we

can rewrite the second-stage cost function in an interpretable

manner.

Proposition 2 C(y, D̃) is equivalent to the
following linear program:

C(y, D̃) = min
z,Z

N∑
i=1

ps(Dis − zi) +
N∑

j=1

po

(
Djo −

N∑
i=1

Zij

)

+
N∑

i=1

(
sZii +

N∑
j=1,j≠i

sijZij

)
+

N∑
i=1

h

(
yi − zi −

N∑
j=1

Zij

)

s.t. zi +
N∑

j=1

Zij ≤ yi, ∀i ∈ [N],

zi ≤ Dis, ∀i ∈ [N],
N∑

i=1

Zij ≤ Djo, ∀j ∈ [N],

z,Z ≥ 0 (7)

where Dis ←
∑T

t=1 Dt
is, and Dio ←

∑T
t=1 Dt

io.

We observe that the difference between (6) and (7) is that

the former model determines the fulfillment quantities in

each period, while the latter model determines the fulfillment

quantities aggregated over the T periods.

The expected hindsight-optimal cost is defined to be

CIIP(y) ≔ E[C(y, D̃)] (8)

where, by Proposition 2, C(y, D̃) is equivalent to a

single-fulfillment-period problem. Recall that CIIP(y)≤C(y).

We can then interpret CIIP(y) as an approximation of the opti-

mal cost of the stochastic program C(y) which simplifies the

fulfillment problem. Hence, by using cost function CIIP(y)

to optimize the inventory levels, we are able to decouple the

inventory problem from the intractable dynamic fulfillment

problem, while still capturing the effect of virtual pooling of

online demands across locations. We refer to the problem of

optimizing CIIP(y) as the Integrated Inventory Planning (IIP)

problem, since it jointly optimizes the inventory in the entire

network. We denote CIIP as the optimal IIP expected cost, that

is, CIIP ≔miny≥ 0CIIP(y).

Before we analyze the IIP problem, it is worthwhile dis-

cussing the simpler case where cross-fulfillment is not taken

into account in inventory planning: this corresponds to the

solution where Zij = 0 for all i, j∈ [N] where i≠ j. When

cross-fulfillment is not allowed, (7) yields the following opti-

mal fulfillment quantities:

zi = min(yi,Dis) ∀i ∈ [N]
Zii = min((yi − Dis)+,Dio) ∀i ∈ [N] (9)

When cross-fulfillment is ignored, the problem of deter-

mining the optimal initial inventory to minimize the total

expected cost is referred to as the Decentralized Inventory

Planning (DIP) problem, where the expected cost can be
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decomposed by region as follows:

CDIP(y) =
N∑

i=1

E[h((yi − Dis)+ − Dio)+ + ps(Dis − yi)+

+ po(Dio − (yi − Dis)+)+

+ s min((yi − Dis)+,Dio)]. (10)

Most contemporary omnichannel firms plan for inventory

in this decentralized fashion for each store, a relic from

traditional brick-and-mortar inventory models.

We can further simplify the decentralized expected cost.

To do so, we use the identities min(x, y) = y− (y− x)+, and

(Dis − yi)
+ + (Dio − (yi −Dis)

+)+ = (Di − yi)
+. Hence, (10)

can be expressed in terms of the total demands Di = Dis +Dio
as follows:

CDIP(y) =
N∑

i=1

(s𝜇io + E[h(yi − Di)+ + (po − s)(Di − yi)+

+ (ps − po + s)(Dis − yi)+]) (11)

where 𝜇io = E[Dio]. It is evident from (11) that CDIP(y)
is a jointly convex function in y. Therefore, the following

first-order conditions are necessary and sufficient for the

optimal DIP inventory solution:

(h+po − s)FDi(yi)+ (ps −po + s)FDis(yi) = ps,∀i ∈ [N] (12)

where FD denotes the cumulative distribution function of

demand D. Note that the left-hand side in (12) is nondecreas-

ing in yi, while the right-hand side is constant. Therefore, a

simple bisection method yields the unique optimum yDIP =
(yDIP

i )i∈[N].

Thus, we see that the inventory solution is simple when

cross-fulfillment is ignored in optimizing the inventory levels.

However, solving the IIP problem (8) where cross-fulfillment

is allowed, is not straightforward. This is because the total

fulfillment costs can only be characterized through a linear

program. Even if there are only two locations, where ful-

fillment costs can be characterized in closed-form, certain

complications arise. We first analyze the two-store setting

to exhibit the complicated nature of the inventory problem

alone. The insights derived in this case inform our analysis of

a generalized multilocation case, which includes a network of

omnichannel stores and online fulfillment centers.

4.2 The two-store integrated inventory planning (IIP)
strategy

We consider the single period problem described in (7), with

N = 2, and the facilities in each region are omnichannel stores.

Using the property in Lemma 1, the quantity cross-shipped

to region Rj by the store in Ri is the minimum of the inven-

tory remaining at Ri and the unfulfilled online demand at Rj,

after both stores have fulfilled their own demands. Hence, the

expected cost function is:

CIIP(y) ≔ E

[∑
i=1,2

(h((yi − Dis)+ − Dio)+ + ps(Dis − yi)+

+ po(Dio − (yi − Dis)+)+ + s min((yi − Dis)+,Dio))
+ (s12 − h − po)min(((y1 − D1s)+ − D1o)+,
(D2o − (y2 − D2s)+)+)

+ (s21 − h − po)min(((y2 − D2s)+ − D2o)+,

(D1o − (y1 − D1s)+)+)
]

(13)

The last two terms in Equation (13) represent the value of

cross-shipping: the total savings by cross-shipping a unit from

Ri to Rj, h+ po − sij, times the total quantity cross-shipped

from Ri to Rj (and vice versa). The total cross-shipped quantity

can be expressed as:

∑
i=1,2

(Dio − (yi − Dis)+)+ −

(∑
i=1,2

Dio −
∑
i=1,2

(yi − Dis)+
)+

(14)

The first term represents the total unfulfilled online demand

if there was no cross-shipping allowed, and the second term

represents the unfulfilled online demand with cross-shipping.

Naturally, the difference yields the cross-shipped quan-

tity. Since s12 = s21, we can simplify Equation (13) as

follows:

CIIP(y) = s
∑
i=1,2

𝜇io +
∑
i=1,2

E[h(yi − Di)+

+ (ps − po + s)(Dis − yi)+ + (po − s)(Di − yi)+]

+ (s12 − h − po)

[∑
i=1,2

(Di − yi)+ −
∑
i=1,2

(Dis − yi)+

−

(∑
i=1,2

Dio −
∑
i=1,2

(yi − Dis)+
)+]

(15)

Note that (15) is a special case of C(y) where N = 2 and

T = 1. Hence, from Proposition 1 we know that CIIP(y) is

a convex function whose optimizer can be found efficiently

using gradient descent methods. However, the nested term

(
∑

iDio −
∑

i(yi −Dis)
+)+ complicates the calculation of the

gradient. Note that the presence of this nested piece-wise lin-

ear term is due to the fact that in-store demand is prioritized.

(This type of term does not arise for the case of traditional

transshipments which can be seen by setting Dis = 0 for all

i = 1, 2.) By noting structural similarities of the IIP problem

with a newsvendor network (van Mieghem & Rudi, 2002),

we derive an expression for the gradient based on the dual

prices 𝜆 = (𝜆1, 𝜆2)⊺, which are simply the shadow prices

of the constraints involving y1 and y2 in the linear program

representation (7).

Proposition 3 (van Mieghem & Rudi, 2002).

Under the conditions on cost parameters in
Ψ, with N = 2, there exists a partition
(Ωk(y1, y2))20

k=1
of the demand space such that

in region k of the partition, the dual-price vec-
tor of the inventory constraints is equal to 𝜆k =
(𝜆k

1
, 𝜆k

2
). Hence, the gradient of the IIP cost
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function can be written as

∇CIIP(y) = (h, h)⊺ −
20∑

k=1

𝜆k ⋅ P(D̃ ∈ Ωk(y1, y2)). (16)

The four-dimensional demand vector is separable into 20

independent regions based on the values of y1 and y2, within

which the dual price vector of the inventory constraints is con-

stant (refer to Online Appendix B for a detailed discussion).

This enables formulating the gradient as in Equation (16).

The optimal solution yIIP = (yIIP
1
, yIIP

2
) can thus be obtained

by gradient descent, where in each iterative step, the prob-

ability of realization of every demand region has to be

recalculated.

However, this gradient-based approach does not extend to

more than two stores, as the number of regions in the partition

increases exponentially, and the regions cannot be enumer-

ated tractably. This is due to the fact that cross-shipment

quantities are now set by a linear program, as compared to

explicit expressions in the two-store case. Hence we develop

a tractable lower bound based on a relaxation motivated by

practice, yielding a heuristic solution for the two-store case,

which we then extend to multiple regions.

4.2.1 Lower bound and heuristic for the two-location
problem
An important feature which complicates the IIP cost function

is that the in-store demands are not pooled across regions,

which in turn leads to the nested piecewise linear terms

in the cost function. We relax this by treating unfulfilled

in-store demand as online demand which can be fulfilled by

cross-shipping. This is commonly seen in practice, where if

an in-store customer is unable to find an item on the shelf,

store personnel are equipped with the ability to place an online

order for the item to be delivered directly to the customer’s

home.

Mathematically, we make the following replacement:∑
i=1,2

(Dis − yi)+ +

(∑
i=1,2

Dio −
∑
i=1,2

(yi − Dis)+
)+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
unfulfilled demand with in-store demand not pooled

(≥)
→

(∑
i=1,2

Di −
∑
i=1,2

yi

)+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
unfulfilled demand when all demands are pooled

. (17)

Here, recall that Di = Dis +Dio is the aggregate demand in

region i. Using the relaxation (17), Proposition 4 formally

establishes a lower bound to the IIP expected cost:

Proposition 4 For any y≥ 0, we have
CLB(y)≤CIIP(y), where

CLB(y) ≔ s(𝜇1o + 𝜇2o) + E[h(y1 + y2 − D)+

+ (po − s12)(D − y1 − y2)+

+ (s12 − s)(D1 − y1)+ + (s12 − s)(D2 − y2)+

+ (ps − (po − s))(D1s − y1)+

+ (ps − (po − s))(D2s − y2)+] (18)

where D = D1 +D2 is the total demand.

Note that since the right-hand side of (18) does not have

nested piecewise linear terms, the gradient of CLB(y) has a

simple expression. Hence, the first-order conditions satisfied

by the optimizer of CLB can be written as:

(h + po − s12)FD

(∑
j=1,2

yj

)
+ (s12 − s)FDi(yi)

+ (ps − po + s)FDis(yi) = ps, ∀i = 1, 2. (19)

Since CLB is a convex function, these first-order conditions

are necessary and sufficient. Equation (19) is of a similar

structure to the first-order conditions obtained by Dong and

Rudi (2004) for the case of constant transshipment cost, with

a key difference: there is an additional term stemming from

the presence of in-store demands with a higher underage cost

than the online demands. This means that the inventory lev-

els in each region must be different, in contrast to Dong

and Rudi (2004) where the optimality equation only yields a

system-wide inventory level.

Note that the first-order condition (19) is a system of two

equations with two variables. This system can be solved

numerically to yield the inventory solution yIIPH. Since the

first-order conditions are necessary and sufficient for optimal-

ity, yIIPH minimizes the lower bound function CLB(⋅). We use

it as a heuristic solution to the IIP problem (15). We denote

the expected cost of the heuristic under the IIP problem as

CIIPH ≔CIIP(yIIPH).

The relaxation (17) to formulate the lower bound will be

tight when the in-store demand is small compared to the

online demand since the optimal inventory levels will be

based on the total demands. We test this numerically by

changing the mix of in-store and online demands in Figure 2.

The mean in-store and online demands are calculated as a pro-

portion of a fixed total mean demand (=100) in each region.

The demands are normal and identical across regions, with the

coefficient of variation fixed at 0.3 for each demand. The cost

parameters are: h = 10, ps = 100, po = 100, s = 5, s12 = 7.5.

In Figure 2A, we compare the expected costs of the heuris-

tic, CIIPH , the optimal IIP expected cost CIIP, the expected

cost of the decentralized inventory levels, CDIP ≔CIIP(yDIP),

and the lower bound: CLB ≔CLB(yIIPH). We make a few

observations. First, the heuristic provides savings over the

decentralized inventory solution for most cases, except when

the online market share is low (<10%). However, we note that

when the online market share is low, the potential savings

from centralized planning is limited, as seen from comparing

CIIP and CDIP. Thus, in cases of very low online market share,

the firm can simply plan for each region separately using the

decentralized inventory strategy.
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FIGURE 2 Shows the effect of online market share on expected costs (left) and the optimal store inventory levels (right)

Second, centralized inventory planning is most valuable

when there is a moderate mix of online and in-store demands

(the expected cost CIIP is minimum when the online mar-

ket share is ∼20%). As online demand grows in comparison

to in-store demands, the effect of pooling across regions

increases, due to two reasons: (a) more demand is pooled

across regions which leads to a bigger reduction in variabil-

ity of the total online demand, and (b) pooled online demands

can better absorb the variability in the in-store demands. Thus,

the maximum savings is achieved when there is a good mix

of online and in-store demands so that the pooling across

channels and regions work in synergy.

Third, as the in-store demand becomes smaller, the proba-

bility that there will be unfulfilled in-store demand decreases,

so the relaxation (17) becomes tighter—we see that the lower

bound is tight when the online market share is more than

30%. Correspondingly for this range of online market share,

in Figure 2B, we see that the solution for the relaxed problem

(IIPH) converges to the optimal IIP solution. We infer that

when a significant portion of the demand occurs online

(>30%), in-store demand can effectively be treated as online

demand that can be fulfilled from any location (which makes

the model tractable), as the probability of unfulfilled in-store

demand becomes negligible.

The savings in cost in Figure 2A arises from a change

in inventory levels in anticipation of pooling across cus-

tomer regions. Proposition 5 addresses this observation from

Figure 2B that the IIPH solution consistently stocks less than

the DIP solution at each store.

Proposition 5 For identical stores and
normal demands, yIIPH ≤ (≥) yDIP whenever
yDIP ≥ (≤) m, where m is the vector of mean
total demands at stores. Under perfect pos-
itive correlation across customer regions,

yIIPH = yDIP = yIIP.

Similar to the intuition in newsvendor settings, yDIP ≥m
occurs when underage costs are greater than overage costs, but

this does not translate into an analytical proof due to the struc-

ture of the optimality equations in (12), which has a mixture

distribution as compared to a simple normal distribution in

newsvendor theory. Lastly, positive correlation across regions

reduces the pooling benefits achieved by cross-shipping, and

under perfect correlation, there is no benefit from pooling as

all regions either have too much or too little inventory without

any imbalance.

4.3 The multistore integrated inventory planning
(IIP) strategy

We now consider the integrated inventory planning problem

IIP (8) for a general system with multiple customer regions

(i.e., N ≥ 2). The cross-shipping costs are taken to be

sij = s+ f (dij), where dij is the distance between region Ri and

region Rj, and f is a nonnegative, increasing function such that

f (d)→ 0 as d → 0. For the conditions (1) on the cost param-

eters to hold true, we assume supd∈f (d) < po − s where

 ≔ {dij ∶ i, j ∈ [N]}.

4.3.1 Hierarchical shipping cost structures
The second-stage cost function in the IIP problem has a

closed-form expression when N = 2 since the total shipping

cost can be formulated in closed-form (see Equation (13)).

The closed-form equation was key in the development of the

lower bound and the heuristic for the two-store case.

However, when N > 2, the second-stage cost function is the

optimal value of a linear program, as seen in (7), and may

not have a closed-form equation. We next show that if the

shipping costs satisfy a hierarchical property (called nested
cost structures in Govindarajan et al., 2020), then we can

still express the expected cost in closed-form. Restricting our

focus on these cost structures allow us to develop a heuristic

for the multistore case.

We say that the IIP problem has nested shipping costs if

these costs can be represented by a tree structure with L levels

(2≤L≤N). The bottom-most level consists of N leaves, with

each leaf representing a customer region. Each level of the

tree corresponds to different shipping cost values; the cost is

increasing when traversing the tree from bottom to top. The

lowest level corresponds to the in-location shipping cost, s.
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The highest level corresponds to the most expensive ship-

ping cost value. When determining the shipping cost between

regions Ri and Rj, this is simply the cost value corresponding

to the lowest level where the two regions are connected.

Nested shipping costs are useful since they imply a hier-

archy to cross-shipping. Since the bottom-most level cor-

responds to the least expensive shipping cost, demand is

fulfilled to the maximum extent using in-location fulfillment.

If there are any unfulfilled demand or remaining inventory

after this level of fulfillment, we can use the next level up for

fulfillment, and so on. This is done until we reach the top-most

level with the highest shipping cost. Hence, when the ship-

ping costs are nested, the second-stage cost function (7) can be

formulated as a sum of piecewise linear functions in y and D̃.

To formally state this result, we introduce some notation.

(This notation is consistent with Govindarajan et al., 2020

where nested structures are discussed in detail.) The set

of regions [N] is partitioned in to N𝓁 sets for each level

𝓁 = 0, 1, … , L− 1, such that N = N0 >N1 > · · ·>NL− 1 = 1.

If two regions belong to the same set in level 𝓁, then

they are connected at that level of the tree. We denote

the N𝓁 sets in partition 𝓁 as {(𝓁)
1

,(𝓁)
2

, … ,(𝓁)
N𝓁

}. Define

Ξ = {E0, E1, … , EL− 1} as the set of assignment matrices,

where the level 𝓁 assignment matrix E𝓁 is a binary matrix of

size N𝓁 ×N where the (k, i) entry is equal to 1 if and only if

region Ri is in 
(𝓁)
k . Note that E0 is the N ×N identity matrix,

and that EL− 1 is the row vector of all ones. The tree struc-

ture follows from the assumption that any set in level 𝓁 is the

union of sets in the preceding level 𝓁 − 1.

If two regions are in set 
(𝓁)
k , then the shipping cost between

the two regions is s𝓁, k. To induce the nested hierarchy for ful-

fillment, we assume that it is less costly to fulfill demand in

lower levels. Mathematically, if k(𝓁)(i) is the level 𝓁 set index

of region Ri, since s0,k(0)(i) = s for all i∈ [N], we assume that

s ≤ s1,k(1)(i) ≤ · · · ≤ sL−1. We denote by S = {s𝓁, k} the set of

all shipping costs. Note that the nested hierarchy, Ξ, and the

shipping costs, S, fully characterize the nested cost structure.

Proposition 6 (Govindarajan et al. (2020)).

Under the L-level nested structure,

CIIP(y) = E

[
s ⋅ e⊤Do + h ⋅ (e⊤y − e⊤D)+ + ps ⋅ e⊤(Ds − y)+

+
L−1∑
𝓁=0

𝜂⊤𝓁 (E𝓁Do − E𝓁(y − Ds)+)+
]

(20)

where Do = (Dio)Ni=1
, Ds = (Dis)Ni=1

,

D = (Dio,Dis)Ni=1
, 𝜂L− 1 = po − sL− 1 and,

for 𝓁 ≤ L− 2, 𝜂𝓁 = (𝜂𝓁,k)k∈[n𝓁 ] with 𝜂𝓁,k =
s𝓁+1,m(𝓁+1)(k) − s𝓁,k where m(𝓁 + 1)(k) is the index
of the level 𝓁 + 1 parent of set (𝓁)

k .

The reason that such a reformulation is possible under a

nested structure is due to the fact that the total shipping cost

can be expressed in closed-form by summing the shipping

costs in each level. In level 0, the shipping cost is∑
i∈[N]

s ⋅ min(Dio, (yi − Dis)+)

= s ⋅ e⊤Do −
∑

i∈[N]
s ⋅ (Dio − (yi − Dis)+).

Because of the hierarchy in fulfillment induced by the costs,

we know that for any level 𝓁 ≥ 1, the number of fulfilled units

of demand from regions in set 
(𝓁)
k at level 𝓁 is

∑
m∈(𝓁)

k

⎛⎜⎜⎝
∑

i∈(𝓁−1)
m

Dio −
∑

i∈(𝓁−1)
m

(yi − Dis)+
⎞⎟⎟⎠
+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
unmet demand in 𝓁

k after level 𝓁−1

−
⎛⎜⎜⎝
∑

i∈(𝓁)
k

Dio −
∑

i∈(𝓁)
k

(yi − Dis)+
⎞⎟⎟⎠
+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
unmet demand in 

(𝓁)
k after level 𝓁

, (21)

where 
(𝓁)
k is the set of level 𝓁 − 1 children of set 

(𝓁)
k . Note

that the per-unit cost of this fulfillment is s𝓁, k. The same idea

was used to quantify the number of units fulfilled through

cross-shipping in the two-store case in Equation (14). This

can also be reconciled with the fact that the two-store case

naturally has a 2-level nested structure.

Thus, the total shipping cost is calculated as:

s ⋅ e⊤Do +
L−2∑
𝓁=0

∑
k∈[N𝓁]

(s𝓁+1,m(𝓁+1)(k) − s𝓁,k)

⋅
⎛⎜⎜⎝
∑

i∈(𝓁)
k

Dio −
∑

i∈(𝓁)
k

(yi − Dis)+
⎞⎟⎟⎠
+

While nested cost structures are a good approximation for

geographic distances in countries like the United States, in

general, shipping costs need not exhibit a nested structure.

When shipping costs are not nested, they can be approximated

with nested shipping costs using a hierarchical agglomera-

tive clustering algorithm. Govindarajan et al. (2020) showed

that such an algorithm resulted in only a small gap in approx-

imation of the expected shipping costs. Hence, even though

our focus in this section is on nested shipping costs, the

heuristics that we develop are applicable to general shipping

costs.

4.3.2 Lower bound and heuristic for the multilcation
problem
The key difference of our setting from the pure e-commerce

setting in Govindarajan et al. (2020) is that the avail-

able inventory at region i for online demand fulfillment is

(yi −Dis)
+ instead of yi. This gives rise to nested piecewise

linear terms in (20) that complicate the calculation of the

first-order conditions for optimality. Similar to the two-store

case, we make the following relaxation for each level 𝓁 to

obtain a lower bound:
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E𝓁(Ds − y)+ + (E𝓁Do − E𝓁(y − Ds)+)+
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

unfulfilled demand at level 𝓁 with in-store demand not pooled

(≥)
→ (E𝓁D − E𝓁y)+

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
unfulfilled demand when all demands are pooled

This relaxation implies that in-store demand is also pooled

among the regions in set I(𝓁)k in a nested fashion. If a region Ri
stocks out, any unmet in-store demand is routed to other loca-

tions with available inventory in the set I(𝓁)k(𝓁)(i), for increasing

values of 𝓁 starting with 𝓁 = 0, and the demand is lost if no

inventory exists after level L− 1. Using this approximation, a

lower bound to CIIP(y) is given by:

CLB
L (y) = E[s ⋅ e⊤Do + h ⋅ (e⊤y − e⊤D)

+ (ps − po + s) ⋅ e⊤(Ds − y)+

+
L−1∑
𝓁=0

𝜂⊤𝓁 (E𝓁D − E𝓁y)+
]

(22)

where 𝜂𝓁 = 𝜂𝓁 for all 𝓁 ≤L− 2, and 𝜂L−1 = h+po − sL−1. The

subscript L on CLB
L refers to the L levels to the nested shipping

costs.

Having eliminated the nested piecewise linear terms, we

can obtain the first order conditions as follows:

h + (ps − po + s) ⋅ (FDis(yi) − 1)

+
L−1∑
𝓁=0

(𝜂⊤𝓁 )k(𝓁)(i) ⋅ (F(E𝓁D)k(𝓁)(i) ((E𝓁y)k(𝓁)(i)) − 1) = 0,

∀i ∈ so

h +
L−1∑
𝓁=0

(𝜂⊤𝓁 )k(𝓁)(i) ⋅ (F(E𝓁D)k(𝓁)(i) ((E𝓁y)k(𝓁)(i)) − 1) = 0,

∀i ∈ o (23)

where (x)j denotes the jth element of vector x, and k(𝓁)(i) is the

level 𝓁 set index of region i. The optimal solution can be found

easily for small number of stores by iterative root-finding

algorithms such as the Newton–Raphson method. The com-

putational burden of this solution, although reduced from

the newsvendor network approach by van Mieghem and

Rudi (2002), is still significant for omnichannel networks in

practice with thousands of stores due to the number of vari-

ables involved. Solving these system of N equations can be

challenging, especially for large values of N seen in practice.

Suppose that the shipping costs S = (sij) are not nested.

By using hierarchical agglomerative clustering (described in

Govindarajan et al., 2020), we can approximate these ship-

ping cost values with the nested shipping costs S′ = (s′ij). This

leads to an approximation of the IIP cost CIIP(y) with func-

tion CIIP′ (y) which we define to be the right-hand side of (20)

with the approximate cost values S′
. The corresponding lower

bound (22) is a lower bound on CIIP′ (y), but not necessarily to

IIP cost CIIP(y) of the original problem. This is because hier-

archical clustering is not guaranteed to provide a lower bound

to CIIP(y).

Alternatively, we can obtain a lower bound to CIIP(y) using

a different nested structure approximation: we set L = 2, with

s0 = s1 = s, that is, the shipping costs are constant and equal to

the in-location fulfillment cost, which gives us the following

expected cost:

CLB
2
(y) = E

[
s ⋅ e⊤Do + h ⋅ (e⊤y − e⊤D)+

+ (po − s)(e⊤D − e⊤y)+

+(ps − po + s)
∑
i∈so

(Dis − yi)+
]

(24)

This function is a lower bound on the IIP cost, as formalized

in the following Proposition.

Proposition 7 When o = ∅, the following
are true for the cost function CLB

2
:

1. CLB
2
(y) ≤ CIIP(y) for any y≥ 0.

2. Let yIIPH ≔ argminy≥0CLB
2
(y). yIIPH is

unique, and is given by the solution to the
system of N equations:

(h+ po − s) ⋅FD(e⊤y) + (ps − po + s) ⋅FDis (yi) = ps, ∀i ∈  ,

(25)

where FD is the cumulative distribution of the
aggregate demand D =

∑
j∈ (Djo + Djs).

3. When demands follow a multivariate normal
distribution, the optimal solution yIIPH has
the following property: for some 𝜈 ∈ [0, 1],

yIIPH
i = F−1

Dis
(𝜈), ∀i ∈  . (26)

4. If demands are bounded and i.i.d. across
regions, and if h> 0 is sufficiently small,
then as the number of regions increases,

yIIPH is near-optimal in an asymptotic sense
with a constant approximation factor. That
is, if yIIP ≔ argminy≥ 0CIIP(y), then:

1 ≤
CIIP(yIIPH)
CIIP(yIIP)

≤ 1 + h+po−s
ps−po+s

, as N → ∞.

Proposition 7 illustrates the utility of the constant fulfill-

ment cost approximation. First, it provides a valid lower

bound to the multilocation two-stage cost function CIIP(y).

Second, the finding the optimal solution to the lower bound

is equivalent to solving a simple system of equations. Third,

in the case where demands follow a normal distribution (a

common assumption in practice), finding the optimal solu-

tion is further simplified by the reduction to a single variable

optimization problem, namely over the common critical frac-

tile (𝜈) of the in-store demands. Finally, the solution obtained

by the approximation has an asymptotically bounded perfor-

mance when the network size is large, thereby ensuring that

the heuristic is not arbitrarily bad compared to the optimal

solution.
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When o ≠ ∅, Proposition 7(1) still holds; however, the

first order conditions (25) fail to yield a feasible solution. We

describe an algorithm for networks with o ≠ ∅ in Online

Appendix C—the algorithm preserves the scalability property

(Proposition 7(3)), and requires calculation of inventories at

OFCs separately, while using them as input to calculate the

store inventory levels. The scalability of the constant fulfill-

ment cost heuristic (yIIPH) makes it a favorable candidate for

inventory planning for networks of large sizes—we show in

the numerical analysis (Section 6), the benefit of such cen-

tralized planning increases with network size, and hence a

scalable solution is of utmost importance for real life networks

with thousands of inventory nodes.

5 DETERMINING THE REACTIVE
FULFILLMENT POLICY

Recall the dynamics of the joint inventory and fulfillment set-

ting described in Section 3.1. Specifically, after the initial

inventory levels are chosen, the seller then has to decide how

to dynamically fulfill the online demands that arrive over T
fulfillment periods. The previous section focused on develop-

ing an inventory heuristic yIIPH that can be found efficiently

by solving a system of equations. Hence, in this section, we

next focus on developing a dynamic fulfillment policy for a

given initial inventory level.

The simplest policy one can think of is myopic

fulfillment—online demands are fulfilled as they arrive, from

the closest location (in terms of shipping cost) with avail-

able inventory. Indeed, many firms follow this policy due to

its simplicity. Note that this policy ignores future demands

while making decisions on the fly. However, it may be ex post

optimal to withhold inventory at a location to fulfill future

demands, than to fulfill an online order in the current period

from a far-away location.

The natural question is to then ask, how much inven-

tory should be withheld at a location in any period? We

consider two fulfillment policies, which guide online order

fulfillment:

1. the myopic fulfillment (MF) policy, where

online demands in the current fulfillment

period are fulfilled to the maximum possible

extent with the available inventory, without

consideration for demands in the future, and

2. the threshold fulfillment (TF) policy, which

reserves inventory at each location for future

demands, by halting online fulfillment from

a location when the inventory level falls

below a (time-dependent) threshold.

Since in-store demands are costlier to lose and do not have

the additional flexibility of cross-shipping, it is intuitive that

the TF policy can lead to reduction in costs compared to the

MF policy, but only if the thresholds are chosen correctly.

Incorrectly setting aside too much inventory (by setting a high

threshold) affects demand fulfillment, leading to increased

lost online sales. Rationing inventory between high-priority

and low-priority demands has been studied in literature (for

a review, refer to Kleijn & Dekker, 1999), and along simi-

lar lines, Jalilipour Alishah et al. (2017) prove the existence

of an optimal threshold rationing policy between in-store and

online demands at a single store.

In the multilocation problem, it is not straightforward

to estimate the underage cost for the low-priority (online)

demand, as it is endogenized by the fulfillment policy and

depends on where an order is fulfilled from. The opti-

mal thresholds depend on in-store and online demands in

a complicated, network-based fashion, as online demands

are pooled across locations, and their calculation is akin to

obtaining optimal transshipment decisions based on such a

threshold structure. Alternatively, we leverage the fact that the

IIP inventory model developed in the previous section cap-

tures these network-based trade-offs. We utilize the inventory

heuristic (yIIPH) to inform fulfillment decisions in the fol-

lowing way: at store i, after in-store demands are fulfilled at

the end of period t, use the excess inventory (if any) above

thresholds wt
i to fulfill online demands, where wt

i is calculated

as:

wt
i =

⎧⎪⎨⎪⎩
max

(
F−1

D[t+1,T]
is

(
ps

h+ps

)
, (yIIPH,t+1)i

)
, if i ∈ so,

0, if i ∈ o,

(27)

where D[t+1,T]
is ≔

∑T
t′=t+1 Dt′

is, and yIIPH,t+ 1 is the inventory

heuristic applied to the time horizon [t+ 1, T]. Thus, this pol-

icy sets aside inventory at each store for future demands as

specified by the IIP inventory heuristic. In Figure 2, we noted

that when in-store demand is dominant, the heuristic yields

inventory levels that are lower than optimal. To correct for this

phenomenon, we take the maximum of the heuristic inventory

level, and a newsvendor quantity that caters to future in-store

demands alone.

Algorithm 1. Implementation of the threshold fulfillment

(TF) policy

1. In each fulfillment period t, each store first fulfills its own

in-store demand to the maximum possible extent, and the

leftover inventory at store is x̂t
i,∀i ∈ so.

2. The inventory available for online fulfillment at each store

is Kt
i = (̂xt

i − wt
i)
+,∀i ∈ so, where the thresholds wt

i are

calculated from (27).

3. Given the online demands Djo, j ∈  , the online fulfill-

ment decisions Zt
ij, i, j ∈  are obtained from solving the

transportation LP:

min

{∑
i,j∈

(sij − po)Zt
ij ∶

∑
k∈

Zt
kj ≤ Djo,

∑
k∈

Zt
ik ≤ Kt

i , Zt
ij ≥ 0, ∀i, j ∈ 

}
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We formalize the TF policy in Algorithm 1. The fulfillment

thresholds can be calculated at the start of the selling season,

and only need be re-evaluated if the demand forecasts for the

remaining periods in the horizon are updated. The calcula-

tion of fulfillment thresholds is computationally light due to

the scalability of the inventory heuristic (Proposition 7(3)).

The MF policy places no threshold restrictions on online ful-

fillment, and can simply be recovered from Algorithm 1 by

setting the thresholds wt
i to be zero for all i ∈  in step 1.

We can evaluate the performance of these fulfillment poli-

cies for any given inventory decision by comparing them

with the clairvoyant hindsight-optimal policy that can be

calculated from (6). In Section 6, we show that the TF

policy achieves a much smaller gap with respect to the

hindsight-optimal lower bound, compared to the MF policy.

6 NUMERICAL ANALYSIS

We employ a realistic setting to test the performance of

the inventory and fulfillment heuristic solutions, based on

a fictitious network embedded in mainland United States.

Even though we developed our joint inventory and fulfill-

ment heuristic policy based on relaxations of the problem,

we will evaluate all policies based on the total expected cost

of the T-fulfillment period problem, C(y), through a Monte

Carlo simulation with sample size of 104. By varying dif-

ferent problem parameters, we primarily compare our joint

heuristic ⟨IIPH, TF⟩ with the traditional solution ⟨DIP, MF⟩
as a benchmark, to demonstrate the value of centralized

planning. We also report the gap achieved by the fulfill-

ment policies (MF,TF) from the lower bound following the

hindsight-optimal policy (HF), for starting inventory yIIPH.

We considered alternative benchmarks and bounds which

are not reported here. A deterministic solution that stocks the

mean total demand at each location (which then informs ful-

fillment thresholds) was found to be an inferior benchmark

compared to ⟨DIP, MF⟩ in most cases. A lower bound for the

expected cost of the joint heuristic can be obtained by jointly

optimizing (6) for inventory and fulfillment decisions; in most

cases, this yielded an optimality gap of less than 20%. Due

to looseness of this clairvoyant bound, in few cases (such as

low online market share), the upper bound on the optimal-

ity gap was even as high as 70%, rendering this comparison

noninformative without access to optimal costs.

6.1 Network setup

Stores are taken to be located at the most populous cities in

mainland United States (Wikipedia, 2016) and the OFCs are

located according to the list of most efficient locations for

warehouses in terms of possible transit lead-times (Chicago

Consulting, 2016). The shipping costs are calculated using

the cost equation estimated by Sinha (2015) based on UPS

ground shipping rates for an item weighing one pound:

sij = 9.182+ 0.000541dij, where dij is the distance in miles

from region i to region j. Other cost parameters used are:

h = 10, ps = po = 100, s = 9.182. The demands are taken

to be independent and normally distributed with parameters

proportional to the population of the cities, with 𝛼 being the

proportion of the total demand that occurs online. The coeffi-

cient of variation of the total selling-season demands at each

location are fixed at 0.2. The total demand is split evenly

across the T fulfillment periods into identical and independent

normal random variables. We denote the number of physical

stores by ns, and the number of OFCs by no. In the base case,

we take 𝛼 = 0.5, T = 5, ns = 50, n0 = 2. Further details on

the numerical setup and a brief overview of the simulation

process can be found in Online Appendix D.

6.2 Effect of network size

Table 1 shows that increasing the network size has a posi-

tive and marginally decreasing effect on the cost savings of⟨IIPH, TF⟩ relative to the traditional solution of decentral-

ized inventory planning and myopic fulfillment ⟨DIP, MF⟩.
As the network size increases, centralized inventory planning

and strategic fulfillment is increasingly valuable, as there is

more pooling and flexibility in terms of options available in

fulfillment.

We also compare the strategies based on two important met-

rics: inventory imbalance and inventory efficiency. Higher

imbalance can lead to costly spillovers and local stockouts

(Acimovic & Graves, 2017), which in turn can cause mark-

downs in stores. We measure imbalance by recording the vari-

ance of ending inventory positions across locations at the end

of each fulfillment period, and taking the average value over

the selling horizon. Although this is different from the metric

used by Acimovic and Graves (2017), it captures the essence

of imbalance among locations in an omnichannel network. We

see that our combined heuristic achieves a lower imbalance

across locations as compared to the ⟨DIP, MF⟩ strategy, and

this effect is more pronounced for larger networks.

We define another metric, inventory efficiency, as an equiv-

alent measure for inventory turnover, calculated as the ratio

of the total fulfilled demand to the average inventory level

of the system in the selling horizon (calculated as the mean

of the starting inventory level and expected ending inventory

at the end of the horizon). Higher efficiency achieved by the

heuristic ⟨IIPH, TF⟩ stems from a reduction in the starting

inventory levels without a considerable decrease in service

levels, due to planning in advance for cross-shipping. This

offers a potential solution to the decreasing trend in turnovers

in the retail industry in recent years (Samuel, 2017). The last

two columns of Table 1 show that the threshold-based ful-

fillment (TF) policy significantly outperforms myopic fulfill-

ment (MF) when compared relative to the hindsight-optimal

fulfillment (HF). While increasing number of stores increases

the gap of both policies to the hindsight-optimal lower bound,

the threshold-based policy achieves a significantly smaller
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TABLE 1 Effect of network size (number of stores and OFCs)

⟨IIPH, TF⟩ vs. ⟨DIP, MF⟩ % gap vs. ⟨IIPH, HF⟩

No. of OFCs No. of stores % savings
% imbalance
reduction

% turnover
increase ⟨IIPH, MF⟩ ⟨IIPH, TF⟩

1 50 12.0 5.9 20.8 13.7 1.2

1 100 16.5 13.1 25.3 19.2 1.7

1 150 19.0 20.2 27.8 22.2 1.9

2 50 14.4 16.5 23.1 13.9 1.2

2 100 17.5 23.2 26.5 18.9 1.7

5 150 19.7 29.4 28.8 21.7 1.8

5 50 16.6 32.2 26.4 12.9 1.1

5 100 18.8 35.2 28.3 16.9 1.5

10 150 21.1 37.7 30.3 20.6 1.8

10 50 17.4 35.3 27.3 12.5 1.0

10 100 19.5 36.7 28.8 17.1 1.5

150 21.4 38.0 30.6 20.1 1.7

TABLE 2 Effect of the sensitivity of cross-shipping costs to distance
(smax/s)

% savings % gap vs ⟨IIPH, HF⟩

smax/s
⟨IIPH, TF⟩ vs
⟨DIP, MF⟩ ⟨IIPH, MF⟩ ⟨IIPH, TF⟩

1.16 13.6 13.4 1.2

2 13.1 13.0 1.2

3 12.7 12.6 1.2

4 12.4 12.2 1.3

5 11.6 12.5 1.4

gap compared to the myopic policy. Note that the achieved gap

with respect to the hindsight-policy is an upper bond on the

optimality gap (with respect to the optimal nonanticipating

fulfillment policy).

6.3 Effect of cross-shipping costs

We next vary the slope of shipping costs with respect to

distance, thereby increasing the ratio smax/s (value of 1.16 cor-

responds to the base case setting), where smax = maxi, jsij. As

expected, the relative performance of the heuristic decreases

as shipping costs become more sensitive to distance (Table 2).

In practice, the range of shipping costs is not too large:

for a 5 lb package, the ratio smax/s is less than 2 for the

UPS Ground option, and less than 3 for the UPS Next Day

Air option (UPS, 2017) for locations within the mainland

United States. Hence the heuristic provides significant sav-

ings for most existing shipping cost structures, while still

being near-optimal (<1.5% optimality gap).

6.4 Effect of online market share

We observe similar trends (as previously seen in Figure 2A)

when the online market share is varied (Table 3). As expected,

we see that when the online market share is low, the bene-

fit achieved by the heuristic is limited. However, the savings

TABLE 3 Effect of online market share (α)

% savings % gap vs. ⟨IIPH, HF⟩
Online market
share (𝜶)

⟨IIPH, TF⟩ vs
⟨DIP, MF⟩ ⟨IIPH, MF⟩ ⟨IIPH, TF⟩

10% 1.7 51.6 6.1

20% 17.9 65.5 11.0

30% 18.3 44.1 7.2

40% 16.1 24.2 2.9

50% 13.9 13.0 1.2

60% 12.2 7.8 0.5

70% 11.3 4.9 0.3

80% 11.0 2.9 0.2

90% 10.9 1.5 0.1

increases sharply when the online market share increases,

thus demonstrating that firms can obtain considerable savings

through centralized inventory strategies in the current state of

the industry.

Surprisingly, the lower bound gap of the fulfillment poli-

cies are also nonmonotone. In fact, the myopic policy is quite

close to the lower bound when the online market share is high,

indicating that a simple myopic policy can be effective for

pure-play e-commerce firms. However, the TF policy is far

superior, especially for omnichannel firms with a moderate

mix of online and in-store demands.

6.5 Effect of number of fulfillment periods (T)

By increasing the number of times online fulfillment deci-

sions are made, we can closely model the continuous-time

case where fulfillment decisions are made as and when online

orders arrive. We keep the parameters of the total demand

over the selling season constant, and keep demands across

fulfillment periods independent and identically distributed.

Table 4 tabulates the results. We see that the savings

achieved by the heuristic is fairly stable and robust to the

chosen value of T , whereas the lower bound gap achieved by
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TABLE 4 Effect of number of fulfillment periods (T)

No. of % savings % gap vs. ⟨IIPH, HF⟩

Periods
⟨IIPH, TF⟩ vs.
⟨DIP, MF⟩ ⟨IIPH, MF⟩ ⟨IIPH, TF⟩

1 14.2 0.0 0.0

5 14.1 13.8 1.3

10 14.6 23.3 2.6

15 14.4 28.5 4.3

20 14.3 32.2 5.8

25 14.1 34.3 7.3

30 14.2 36.5 9.1

35 13.9 38.9 10.7

40 13.6 42.0 12.2

the fulfillment policies are increasing in T . The MF policy

is punished for failing to reserve inventory for future in-store

demands, and the lower bound gap increases at a higher rate

compared to the TF policy’s gap, since the TF policy takes

future demands into account.

It is worth noting here that the hindsight-optimal solution

is only a proxy for the optimal nonanticipating fulfillment

policy—as T increases, the variability of demands increase

(since the variability of the total demand is kept constant), and

hence we can expect that the hindsight-optimal bound may

get looser with respect to the nonanticipating optimal fulfill-

ment policy. Thus, while the upper bound to the optimality

gap increases with T , it is not certain that the actual optimality

gap does too.

7 CONCLUSION

Despite numerous retailers struggling with the opera-

tional problems posed by omnichannel retailing, the area

has received comparatively less attention in literature.

Our research addresses an important facet of omnichannel

retailing—network inventory management, by demonstrat-

ing the value in utilizing the pooling benefits offered by

omnichannel retailing, through a combined inventory and

fulfillment policy. Our heuristic solutions are highly scalable

and easy to understand, and provide significant savings over

strategies that are traditionally used in practice. Our solutions

are generalizable to demands originating from arbitrary cus-

tomer regions, by treating them as facilities that carry zero

inventory.

An important direction for future research is to include

multiple classes of online demand, especially in-store pick-

ups, which is a popular mode of omnichannel fulfillment.

Multiperiod models for regular products may be considered,

however, the complexity arising from fulfillment decisions

may render these models intractable. A heuristic control for

managing multiple products is also an interesting and impor-

tant extension. Our models can also inform important network

design decisions in determining optimal locations for new

facilities. In conclusion, we believe that the scalability, inter-

pretability and generalizability of our solutions make them

capable of serving as helpful decision tools for practitioners.
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